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Abstract.

A finite Larmor radius approximation is derived from the classical Vlasov equation, in the limit of large
(and uniform) external magnetic field. We also provide an heuristic derivation of the electroneutrality
equation in the finite Larmor radius setting. Existence and uniqueness of a solution is proven in the sta-
tionary frame for solutions depending only on the direction parallel to the magnetic field and factorizing
in the velocity variables.

Introduction. The ITER project is a challenge to the growing need of new sources of energy. It
aims at producing energy by nuclear fusion. Nuclear reactions take place in a tokamak, where a high
temperature plasma is confined. So far, confined plasmas are performed with relatively short energy
confinement times due to microscale instabilities that generate turbulent transport [II199]. It is observed
that the characteristic frequencies of these instabilities is several orders of magnitude smaller than the ion
Larmor gyration frequency governed by the strong magnetic field. Studies of nuclear fusion in tokamaks
are in full expansion, both experimentally and theoretically. Kinetic models are appropriate for studying
the core of the plasma since the collisions have a very weak effect in these hot and low density plasmas.
Physicists use gyrokinetic models and especially the finite Larmor radius approximation to model the
core of the plasma [GIVT09]. Taking into account the fast Larmor gyration of the charged particles
that characterizes magnetic confinement, these models allow one to average over that fast gyration and
reduce the 6D kinetic problem to a 5D gyrokinetic one. That property is especially interesting for
numerical simulation. In this paper the finite Larmor radius approximation is derived from the Vlasov
equation, in the limit of large uniform magnetic field and with an external electric field. Because of the
homogenization on the fast Larmor gyration, the limit equation (1.10) is written in 5D gyro-coordinates
(zg, ||, |vi]) defined in (1.11). These coordinates are the position of the so-called particle guiding center,
74 in the 3D space together with the parallel velocity v and the amplitude of transverse velocity |v_ |
that is proportional to the magnetic moment, an adiabatic invariant of the particle motion in the strong
magnetic field limit (given a constant magnetic field) . Its mathematical structure is a combination
of the Vlasov equation in the direction parallel to the magnetic field and of the Euler equation in the
perpendicular direction, where the original fields are replaced by the corresponding gyro-average fields.
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To close the system, physicists use the electroneutrality equation n. = Zn; where n, stands for the
electron density and n; the ion density, each ion having a charge Z. In the following Z = 1 will be
considered with no loss of generality. It can be shown that the electroneutrality equation is in fact the
the Poisson equation solved on scales that are significantly larger than the Debye length. Since the latter
governs the Laplacian term of the Poisson equation, the electroneutrality equation is an appropriate
approximation on scales of the order or larger than the Debye length. Moreover, taking into account the
difference between the density of particles and that of guiding centers leads one to introduce a polarization
correction due to the non uniform distribution of particles on gyro-circles. In the second part of this paper,
the electroneutrality equation (1.25) is carefully written. The coupling of the 5D gyrokinetic Vlasov
equation (1.10) to the electroneutrality equation (1.25)is the model used for instance in the GYSELA
code, a project that aims at modeling the turbulent transport in fusion plasmas [GSGT06b, GSGT06a].
While in the GYSELA code there is the possibility to use a collision operator we concentrate here on the
actual Vlasov equation with no collisions.

A difficulty raised by the electroneutrality equation taken as such is the lack of an explicit regulariza-
tion term for the electric potential. Consequently, the regularity of the latter is not sufficient to ensure
a mathematical solution of the Vlasov transport equation. The analysis of the well-posedness of limit
model based on the electroneutrality equation thus seems impossible today. For that reason we restrict
ourselves to the 1D Vlasov equation (without gyro-kinetic effects), coupled to the electroneutrality con-
dition. That model is a particular case of the 3D model, provided the solutions do not depend on the
direction perpendicular to the magnetic field. Even for that simple kinetic model, not much is known
about solutions. The difficulty lies in the fact that the force term is proportional to the derivative of
the density in the field direction. Indeed, while the Vlasov equation ensures that all LP-norms of the
distribution function can be bounded, there is no control on the norms of its derivatives. In this paper,
we prove the existence and uniqueness of a steady state solution in a slab geometry, therefore between
two boundary conditions, provided one fulfills some conditions, in particular that they are no particles
trapped between the two boundaries.

1 Derivation of the finite Larmor radius
approximation

The ion distribution in low density plasmas submitted to a magnetic field is well described by the Vlasov
equation. The latter is valid provided one can neglect the two-particle distribution function altogether
[Nic83] so that the evolution of the standard distribution function is governed by the Liouville equation
for the conservation of particles

of

Ze
E—i—v-vmf—I—E(E(t,x)—i—vxB)-VUf—O, (1.1)

where f is the phase space density depending on time, position (in the domain D of the plasma) and
velocity (in R3) of the ions, and where Ze and m; are the ion charge and mass respectively. As stated
in the introduction, we shall consider Z = 1 in the following with no loss of generality. A priori, the
electric and magnetic fields are governed by the Maxwell equations, but a scale analysis allows one to
approximate, and thus simplify, these laws. This will be made clear in the following.

For a strong external magnetic field, the charged particles exhibit a fast rotation motion around
the magnetic field lines. The frequency of that gyration, the Larmor frequency, is several orders of
magnitude larger than the observed frequency range of turbulence. Furthermore, in the quasineutral
limit this frequency is larger than all other frequencies of the particle dynamics, thus providing the
means for an efficient scale separation. It is noteworthy that this is the basis of magnetic confinement
that is presently realized in devices such as the tokamaks. In this framework, one separates two parts
in the particle motion, on the one hand the slow motion of the center of the Larmor gyration, and, on
the other hand, the fast gyro-motion. The phase space reduction achieved by only considering the slow
motion, thus ignoring the fast gyro-motion, leads one to the 5D gyrokinetic model. These are usually
derived by physicists either by averaging the single particle dynamics ([Cat78] and [CTB81]) or by a
Lie-transform perturbative approach ([Hah88], [BH07] and [GLV08]). Mathematically, this is achieved
by looking at the limit of equation (1.1) when the modulus of the external magnetic field |Be,:| tends to
infinity. However, different models can be obtained, depending on the way the other control parameters
vary when |Begt| — co. For a magnetized plasma, two relevant scales characterize the limit regimes that
have been discussed. These are the Debye length Ap and the thermal Larmor radius of the ions pyp.



The Debye length weights the Laplacian in the Poisson equation and thus defines the transition from
the non-neutral description of the plasma required on the sub-Debye scales from the quasineutral plasma
description for scales larger than the Debye length. The thermal Larmor radius is the radius of the fast
Larmor gyration for ions with average speed vy,. The averaging over the small time scales governed by
the ion Larmor frequency then tends to translate into an averaging over the ion Larmor scale. The finite
Larmor radius terms are therefore introduced to take into account this rather weak cut-off effect. The
radius of the electrons gyration is generally much smaller for comparable ion and electron temperatures
and will be neglected. The two scales discussed above are defined by

A\ eole p miVsh
D= th =
ne? ’ eB '’

(1.2)

where the electron thermal energy T, is introduced rather than that of the ions since it is more
appropriate to characterize the large electron mobility and therefore strong response to the electric
field. Let us introduce the characteristic scale of the system L, for instance introduced by the boundary
conditions. The large magnetic field limit then corresponds to the vanishing ion Larmor radius limit,
namely the gyro-center approximation where py, /L — 0. Within this framework, E. Grenier uses pseudo-
differential calculus to prove [Gre97] the convergence of a 2D fluid model towards an incompressible fluid
model when ¢ goes to zero with py,/L = € and (Ap/L)? = e. For the same scaling and cold initial
distributions, i.e. the approximation of a Dirac measure at velocity zero for the distribution function,
Y. Brenier proved in [Bre00] with modulated energy technics the convergence of solutions of the Vlasov-
Poisson system towards dissipative solutions (introduced by P.-L. Lions) of the Euler equation, for weel-
prepared initial data. F. Golse and L. St-Raymond used the same technics in [GSR03] to prove the
convergence of a Vlasov-Poisson model on the torus towards the 2D1/2 Euler equation. This is done
for a vanishing ¢ with ps;,/L = € and using another scaling for the Debye length, namely Ap/L = e.
This property is restricted to a torus size such that there is no resonant oscillation. This particular case
appears to be relevant for electrons in a region close to the tokamak boundary.

Derivations have also been performed in the gyrocenter approximation, p;, /L, small but finite. Here
L is a carcteristic length in the perpendicular direction, which is usually choosen smaller thant the one
in the parallel direction in finite Larmor radius approximation. In [FS00a] (see also [FS00b] for a short
version) E. Frénod and E. Sonnendriicker studied the convergence of a linear Vlasov equation (external
magnetic field), in this finite Larmor radius limit (large B but finite Larmor radius), using two scale
convergence methods. M. Bostan studied the 2D strong magnetic field limit, using Hilbert expansion
technics, in a setting of finite Debye length and Larmor radius, Ap/(eL) = p/(eL) = 1, where ¢ is
small but finite [Bos09] and obtained strong convergence results for regular initial conditions. Here, we
further examine the linear case studied by Frénod and Sonnendriicker, and obtain a simpler and more
complete derivation. The finite Larmor radius approximation is correct for fusion plasmas, including the
core and most of the edge plasma. However, the ion Larmor radius is much larger than the Debye length
throughout the plasma. An interesting derivation should be done in the framework of present gyrokinetic
calculations, namely pu/(¢L) = 1, Ap/(eL) — 0, yet nothing has been done in this very demanding
limit (see the beginning of 1.2 for more details).

The resolution of equation (1.1) is known in the case where the fields E and B are external and C! or
at least BV. In the BV-case, one can use the DiPerna Lions theory of transport equation [DL89b] with
its latest developments ([Amb04]). In the case where the electric potential is given by self-interaction with
the usual Poisson law, and the magnetic field B is still considered as external, results of existence and
uniqueness obtained for the Vlasov equation without magnetic field may be used with the appropriate
modifications. We refer to [LP91], [Hor93]. In the case where the self-induced magnetic field is not
negligible any more, we refer to the work [DL89a] of DiPerna and Lions about the Vlasov-Maxwell
equation. In the case of an electric field given by an electroneutrality equation, nothing is known from
the mathematical point of view.

1.1 The finite Larmor radius gyro-kinetic approximation. Rigorous approach.

For the sake of simplicity, we neglect the variation of the external magnetic field Bey;. In this cylindrical
approximation, the curvature of the magnetic field is not considered, and one neglects the exploration
of the magnetic field variation by the particles during the fast cyclotron motion. With respect to the
relevant scales this effect if of the order of the Larmor radius ps, divided by the characteristic radius of
the magnetic field curvature, namely the tokamak major radius R. Although p: /R is a small parameter,
this approximation is too strong with respect to many aspects of the tokamak physics, in particular since



curvature effects are considered by physicists as the cause of a large class of micro-instabilities. The
strong impact of such a small parameter can be traced back to a symmetry breaking of the system since
the curvature governs the leading term that produces a charge separation. The present simplification
must be regarded as a first step that is only valid when one addresses issues that do not lead one to
symmetry breaking. Moreover, in order to avoid problems with boundary conditions, which are complex
to handle, a periodic setting is used. In other words, we work on the torus T® in space, and R? in speed,
with a constant magnetic field B = |B|(0,0, 1).
Next, we define dimensionless variables

with characteristic time 7, parallel length L), perpendicular length L, , velocity v, and electric field Ep.
In this new set of dimensionless variables the Vlasov equation (1.1) may be rewritten as:

TUsh, TeEy
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where the subscript L (resp. ||) stands for the projection on the perpendicular (resp. parallel) direction,
and the superscript L stands for the projection on the plane orthogonal to the field line and the rotation
by —n/2 around the field line direction: vt = (vg,—wv;,0) if v = (vi,ve,v3). The time scale 7 can

conveniently be defined to reduce the number of control parameters in Eq.(1.3) by setting:

TUth,

Ly

=1

In a similar fashion, the normalization of the electric field can be used to define the third control param-

eter, hence:

TeEy 1

miVth

The two remaining control parameters are then Lj/L, for the third term in Eq.(1.3) and Lj/ps, for
the last term. It will be assumed here that both parameters L and p;, exhibit the same asymptotic
behavior L o pin. Let us define the perpendicular scale as Ly = pin 27/ (k1 pern). In this expression, k.
is the typical wave vector of the cross-field fluctuations. For a sufficiently small Larmor radius, one can
then assume that the turbulence follows the so-called gyro-Bohm scaling such that k| p;, is a constant
[LEHTO02]. In particular it does not depend on the magnitude of the magnetic field. One then finds the
following relationship between the two control parameters

L” L” 1 1

pin Likipm e’

that can be grasped by the following relation whenever one drops the proportionality constant

iy _1
ptn L1 €
In practice, one could also define the normalization scale as L = py, so that the the two control

parameters would be exactly the same. In this discussion, we have considered a transverse scale related
to the fluctuation properties that allows one to characterize one of the terms in the Vlasov equation.
However, other control parameters must be considered to account for the boundary conditions. The so-
called p, parameter used in magnetic fusion is such a parameter since p, = pi/a where a is the plasma
minor radius, the scale related to the boundary conditions while p;; is the fluctuation scale. Relating the
parameter € to p, introduces aspect ratios that stem from the periodic boundary conditions.

a

€= px—
Ly

The ratio a/ L) depends of the safety factor and the tokamak aspect ratio in the actual tokamak geometry

but represents the ratio of the sizes of the domain in the radial and parallel direction with the present

setting. The parameter £ can also be expressed in terms of the slow and fast characteristic times of the

particle motion. The slow time 7 introduced in the normalization of Eq.(1.3), is the characteristic time



to explore the tokamak geometry along the parallel direction and the fast time is due to the gyration
motion, hence:

1

7Q

In this last step one thus finds that the ion Larmor frequency 2 = eB/m; is of order (re)~!. In
other words, one thus assumes that the ion Larmor frequency is much larger than the parallel connection
frequency 7~ !. That is a valid assumption in all regions of a tokamak. Indeed, for ITER conditions, the
ion Larmor frequency is of the order of 2 103 Hz and the connection time 7 ranges from 10735 to 10™%s.
These parameters mainly depend on the magnitude of the magnetic field and on the size of the device so
that € characterizes a given fusion device, e ~ 10~° for ITER parameters.

Dropping the primes, we obtain the following rescaled version of the Vlasov equation (1.1),

of
ot

1
+UH ' am\\f—’—E vvf+ g(’UL : vaf—i_vJ_ : vULf) =0, (14)

When ¢ — 0, the largest terms are those proportional to the factor 1/e. Retaining the latter, we
obtain a transport equation associated to the following system of ODE in the plane transverse to the
magnetic field, . .

. . 1

&=- v, U= vl (1.5)
As B is homogeneous, the trajectories are circles of center x4 = x1 + v, and radius |v, | covered with
frequency ¢~!. The global motion is the sum of this very quick motion of gyration and a slower and
more complicated motion (with velocity of order one). In the limit of large | B|, particles are assumed
to be evenly distributed on the gyro-circles, and their motion is the sum of a drift in the perpendicular
direction, and a classical acceleration in the parallel direction. Heuristically, the electric drift v may be
obtained from the Newton law in normalized variables,

1
v=F+ = vt (1.6)
3

Given the assumption that the particles have a fast motion of gyration, one can integrate the previous
equation over a period of gyration, at lowest order, vy is given by the averaged velocity such that:

1
0~ (E) +~vg sothat vg =¢ (E*). (1.7)
€

In the latter expression one readily recognizes the usual form of the electric drift velocity vg = E x B/B?,
however where the electric field is averaged over a period (E). One can show that this average of the
field E corresponds to an average over a circle of radius |vy | in the perpendicular plane. Provided the
only dependence on the gyrophase stems from the particle motion, this average translates into a Bessel
operator defined as:

1 2 i
T, hleg) = 5= [ g+ pye#) doc (1.8)

where p, is the ion Larmor radius and e®¥¢ = (cos ¢, sin ¢, 0). We also introduce the operator jSL which
stands for a position-velocity version of this average,

~ 1

2
Ty 9(zg,p ) = %/0 glxg + pre'e,p P L oe)) dee (1.9)

where ¢ = (0,0, 1).

Given the average on the gyrophase ¢., the motion is reduced to a 5D space. The gyration radius
p. = |vi| (given the chosen normalization) is related to the magnetic moment p = m;p? /(2¢B), a
quantity that is an adiabatic invariant, i.e. a constant of motion in the large B limit. One can show
that this invariant is the conjugate variable of the gyrophase. Here, as B is homogeneous, p, = |v | will
remain constant in the limit |Beyt| — +00. We thus obtain a 4D + 1D model, i.e. a 5D model with no
dynamics in the variable derived from the magnetic moment. This reduction of the phase space is very
interesting for numerical simulations. The following theorem states this reduction precisely.



Theorem 1.1 Let us assume that f0 is uniformly bounded in L1, q > 1, that it weakly converges toward
fO e L9, and that E is a gradient and belongs to wa where p~! + ¢t = 1. For each ¢ > 0, let f. be a
solution of (1.4) with the initial condition fO. Then, up to a subsequence (), (f-(t, 24 — v, v)) weakly

converges to f in L1, where f only depends on (t,x,, v, vl = p,) and is solution of

of F . 70 P 0 1 7
N + ) Oz [+ ‘]PL E Oy, [+ (JPL Ey )"V, f=0, (1.10)
with the initial condition ng (f9).

Moreover, if JSL E € BV(R3), for a.e. p, >0, then there is no need to extract a subsequence and the

limit f is the unique solution of (1.10) with the initial condition ng (f%).

Remark 1.1 The Bessel operator JSL has some reqularization properties. It goes from H® to H**1/2 for

all s, so that if £ € Hl} X Hj_/z, then JSLE € H*', a condition that ensures the uniqueness of the solution
of equation (1.10).

Remark 1.2 The operator J° is important to perform the adaptation of the 6D initial condition to the
5D limit model. Indeed, the very fast Larmor gyration creates an initial layer that instantaneously adapts
the initial condition to the limit model.

Proof of Theorem 1.1.

The phase space in position-velocity coordinates is not well adapted to perform the fast gyration
averaging. To handle it more easily, it is convenient to change the system of coordinates and consider
the gyro-coordinates defined by

Ty =2z +v", vg=v. (1.11)

x4 is the position of the gyro-center and p, = |v| is the ion Larmor radius. To express the gradient in
x and v in this new system of coordinates, one can conveniently remark that:

Veh(dzg — dvy) + Vyhdvg = Vo, hdzg + YV, hdvg, (1.12)

for any smooth function h, with the function h defined by h(zg4,vy) = h(z,v). Then V, = V,, and
Vy=V,, — Vf;g, where ng = (02,4, —0s,,,0). Note that V* stands for the gradient vector rotated by
—7/2 and not 7w/2. The gradients are taken at the corresponding points. For instance, the first equality
reads V h(x,v) = V%i_z(zg, vg). The anti-symmetry of 1, a-bt = —a™ - b, has been used (and we shall
make a wide use of it in the sequel). Given these relations, (1.4) can be modified leading one to an
equation satisfied by the function f.(t,z,,v,) = f=(t, x,v),

ofe 7 7
W‘H’II O fe + E)(t,xg — ”gL) AVE
(1.13)

+E (t,xg — v;‘) (Vy, fe — ngfg) + év; Vo, fe =0,
with initial condition f°. Here the subscript L stands for the perpendicular components to the magnetic
field, for instance | = (Fj, E3,0). Barred quantities are functions of the gyro-coordinates.

Since (1.6) is a conservative transport equation, i.e. it may be written as 9;f + div(...) =0, the
Li-norms of f. and then of f. are conserved. Thus, ||f.]| reo(ze.,) is uniformly bounded. Then, up to
the extraction of a subsequence, we may assume that f. weakly converges towards some f € Ly(LE )
Upon multiplying equation (1.13) by ¢, in the limit &€ — 0, we obtain

U;'vvgfzoa

All the other terms from Eq.(1.13) are bounded in the sense of distributions and their product with e
therefore vanishes in the limit ¢ — 0. This reduced form of the Vlasov equation implies that the only
dependence of f on v, | is on |v, | |. Hence with no dependence on the gyrophase.

Let us now consider equation (1.13) for f., when integrated against a smooth test fonction ¢ with
support in time avoiding ¢ = 0 (we will handle the initial conditions later). Let us further assume that
the dependence on v, | is restricted to a dependence on |vg, 1 |. For such a function, one readily finds
that

1 _
. / fevy Vodagdvg =0



for symmetry reasons. As a consequence, the projection of f. takes the following form
/fg(at(b + vgynamg’”qﬁ + E”&Jqub + FE, - va(b — E*+. V%qﬁ) dzgdvgdt =0, (1.14)

keeping in mind that E is calculated at the point x4, — vj-. We have also used the relation a* -b = —a-b*
as well as the fact that equation (1.13) may be written in a conservative form because ( if J is the matrix
of the linear map v — v*),

divy, (E(t,x — vg)) Tr((VE)J) = —0y,E1 + 0, E2 =0,

div,, Et = Tr(J(VE)) = Tr((VE)J) =0,

since E is a gradient. At this stage, we can take the limit and obtain that f also satisfies equation (1.14).

This is not yet a proper equation in the sense of distributions, even though f depends on |vg, ( |. Indeed,
the electric field still exhibits the dependence on the particle position E = E(t, x4 — v;-). To obtain an
equation only depending on |v,, 1 |, we use polar coordinates for vy 1, i.e. vy = (p, cos e, p, singe,v))
and Fubini’s theorem to integrate the previous integral first in ., then in the other variables. This leads
one to the following equation:

[ Cmp) @b, 04 T3, BB, 6+ (I3, BN Vi, (1.15)
TgsVg, |57 -

+ R(t, g, v, p,) - Vp, ) dzgdvg dp, =0,
where the the operator JSL is defined in (1.8), and the term R is equal to

27
R(t, 24,00 ),0,) = |  Ei(zg—p,e¥T2)). e dp,,
0

with the previously introduced notation e‘¥¢ = (cos @, sin ¢, 0). It can be shown that R is null since it
is the circulation of the electric field F along a gyrocircle. The latter vanishes in the electrostatic case
since E is a gradient. With R = 0, (1.15) is identical to the equation (1.10) written distribution wise
for 27p, f. As there is no dynamics in the p, direction, the factor p, is only a multiplicative constant.
One can then introduce &/, /% +7 as test function, and then obtain that fp, /,/p? + satisfies the equation.
Letting n — 0 in that linear equation, we obtain the appropriate result for the equation governing the
evolution of f.

Regarding the initial conditions we use a similar projection technique with a test function ® depending
on |v,, |, but not vanishing at ¢ = 0. We then obtain equation (1.14), with the right-hand side replaced
by

z0
- / E (I)(Oa Lg; Vg, pL) d.%'gd’UngpL dp,dec . (1'16)
The asymptotic limit then leads one to:
1 2 _ )
/% ( ; fOxg, p e + ’U|€||)d(pc) (0, -) dzydvg | 2mp, dp, . (1.17)

Changing coordinate to recover the position-velocity coordinates in the ¢. integral, we exactly obtain the
initial condition J, fO that is expected for f. ]

This proof is valid for external electric and magnetic fields. The case where the equation (1.13),
invariant in the parallel direction, is coupled to the Poisson equation given a Debye length of the same
order as the Larmor radius has been treated by Frénod and Sonnendriicker in [FS01]. Tt corresponds to a
Debye length of order /. Technically, we may handle that case with our technic to obtain weak solution
as in Arsenev’s work [Ars75]. The main point is to obtain L? estimates on the density n; = [ f dv. They
can be obtained by classical estimates using upper bounds for the kinetic energy. The case where the
Debye length is taken much smaller than the Larmor radius will be of greater interest, but the difficult
problem is there to average the strong oscillations appearing at the scale of the Debye length. We refer
to [Gre95], [Gre96] and [CGO0] for more details on quasi-neutral plasma without magnetic field, and to
[GSRO03] for results in the guiding-center approximation with p, o e, Ap & ¢ and € — 0.



1.2 The electroneutrality equation. Heuristic approach.

In this section we address the self-consistent problem when linking the electric field to the charge distri-
bution. The relevant equation is the Maxwell-Gauss equation that relates the divergence of the electric
field to to the local charge governed by the particle density of charged particles. The latter must be
determined using the ion distribution function for the guiding centers that is solution of the gyrokinetic
Vlasov equation. A similar treatment for the electrons must be done. We will follow heuristic arguments
together with assumptions that are not justified rigorously. However, this heuristic derivation bares some
interest. It is an alternative to the physicists’ presentation of that equation based on the Fourier trans-
form. Furthermore, it allows one to recover the electroneutrality equation (1.25) used in the GYSELA
code to close the gyrokinetic equation (1.10).

For quasineutral plasmas, the electric field response to any charge separation governs a restoring force.
Should the charge separation extend on a scale larger than the Debye length, the restoring force would be
to strong to allow any significant charge build-up. The plasma can thus be considered to be everywhere
with near zero charge, hence quasineutral. As a consequence, the density of negative charges en. (n.
being the density of electrons) equals the density of positive charges en; (n; being the density of ions).
In the electrostatic limit, neglecting the time dependence on the vector potential, one can recover this
physics based argument as an asymptotic limit of the Poisson equation for the electric potential.

€ |9 Ne — Ny
T, ADAD = pa—

The right hand side is dimensionless and so is e®/T,. The dimensionless control parameter on the left
hand side operator thus appears as the square of the ratio of the Debye scale divided by the characteristic
scale of the charge separation. In the limit A% — 0, one readily recovers the quasineutrality equation,
namely: n. = n;. Let us consider the ions density. Given the Vlasov equation and its dependence on the
electric field, it is likely that the ion distribution function (and thus the ion density) is an implicit function
of the electrostatic potential. The same applies for the electron density. Then, in the limit A%, — 0, there
is no analytical dependence on the electric potential. The latter then becomes a Lagrangian multiplier
associated to the quasineutrality equation. On such issues, we acknowledge the work of E. Grenier
[Gre95], [Gre96] (the only work, at our knowledge, on that subject where the limiting model is kinetic
and not fluid), Y. Brenier [BG94], S. Cordier [CG00] and N. Masmoudi [Mas01].

However, if we assume that the system is close to equilibrium, i.e. that the departure from a constant
electric potential is small, then the electroneutrality equation n. = n; provides an explicit dependence on
a mean-field electric potential. For an electron-ion plasma, the mass ratio is such that the electrons are
far more mobile than the ions. One can then assume that their response to an electrostatic perturbation
is adiabatic on magnetic field lines or surfaces. In that case, assuming that the equilibrium density of
electrons n. o and that of ions n; o are equal to ng, one may write

£ (>—(®
ne=noe’ " 2 ng (14 (@ — (@), (1.18)
€
where (®) is the average of ® on a closed magnetic field line or surface. The expansion on the right
hand side holds if e® << T,. In the very simple geometry that is considered here (with B = (0,0, B)),
(®) is the average in the x| direction: (®) = [ ®(x)dx). The approximation of adiabatic electrons thus
reintroduces an explicit dependence on the electrostatic potential.

For the perturbation of the ion distribution, the first difficulty is to obtain the distribution of ions in
physical space from f written in gyro-coordinates. If the distribution in physical space is assumed to be
constant on gyrocircles as shown in the last section for the limit model, the following formula is obtained,

f(t,x,v):f(t,x+vJ‘,|vJ_|,v”). (1.19)

Taking the integral in v leads to
nz(tvx) = 1o / JSL (f(ta €L, vavH>)27TpL dpLde ) (120)
where JSL only acts on the z variable (since p, = |vy| with our conventions). The quasineutrality

equation, n, = n;, then leads one to

1+ Tie(q) B <(I)>) - /J/(J)L (-](T(t’z’pL’v”))27TpLdpLd’UH' (121)



However, the assumption that the distribution f is constant on the gyrocircles is unrealistic whenever
the electric potential is not constant. In order to express the inhomogeneity of the density on gyrocircles,
we add a perturbation to f. It can be expressed as an adiabatic perturbation on the gyrocircles

e _
— (@ = ®)nofi(v), (1.22)
i
® is the average of ® over the gyrocircle of a given particle, and f;(v) is the equilibrium distribution of
ions. Note that this adiabatic perturbation depends on v, through the choice of the gyrocircle used in
determining the average ®.

_ 1 )
O(t,z,v) = %IQ)(t,quvJ‘quLe“PC)dgac,
= n -, .
nOf(I)(taxa'UL)fi(U) dv = ﬁfq)(tax — Pr (eupc +eupc))fi(pLa’UH)d@cd(pépLdpLdUH
= o [, Pt )bl ) dp, (1.23)

where e?e = (cos ., sin¢.,0) and hi(p,) = 27p, [ fi(p,,v|)dvy. When the equilibrium distribution

is a maxwellian, f;(v) = 1/(T;m)3/2e=1"I"/Ti | so that hi(p,) = 2pL/Tie_p2L/Ti. Adding the adiabatic
perturbation of the gyrocircles, we finally obtain the following electroneutrality equation,

1+ —(®— () = /JSL (f(t,z,p,,v)))2m p,dp, doy

) c (1.24)
- / (1 - (JSL)z)q)(t,x)hi(pL)dpL ,
Multiplying by T./e, then yields
Te
(@ - <(I)>)+? / ((I) — (JSL )2(1)) hi(p, )dp, =
2 (1.25)
f(/‘]SL (F(t 2., vy) 270, dp, dvy — 1)

Remark 1.3 If the equilibrium density of ions is a Maxwellian, then h;(p,) = 2p, /T; e 1/T and the
operator

J AR (1.26)
is the convolution in the perpendicular plane with the radial function H,, (r) defined by
ei‘[i;i

See Appendiz A for a detailed proof.

Since p, is a parameter in the equation of motion (1.10), the equilibrium distribution and the initial
perturbation remain concentrated on a unique value of p, at all time provided it is the case for the initial
conditions. A first step to solve the system might be to start under this assumption of single value of
p, - This would likely be the most difficult step, since the general case is a superposition of such cases.
The gyrokinetic Vlasov equation (1.10) is unchanged when considering a single value of p, , however the
electroneutrality equation (1.25) may be simplified and becomes:

T, T, _
(@) + 7 (1 — (2 )2)<I>(t, 7)==~ (J,?L (:(t, 7)) — 1) , (1.28)
where 17;(t, z) = 2mp, [ f(t,z,v)) dv| is the density of ions in gyro-coordinates.
Still, after this further simplification, the gyrokinetic Vlasov equation (1.10) coupled to the electroneu-
trality equation (1.28) remains is a very difficult mathematical problem. The main difficulties are the
following.



e The lack of regularity in the parallel direction. The potential ® has the regularity of f in the
parallel direction. This is to be compared to the Vlasov-Poisson case where D?® (A® in the
Poisson equation given above) has the regularity of f. We may overcome this problem by adding
some viscosity in that direction, in other words by adding a term —)\83H f in equation (1.10).

e A less important lack of regularity lies in the perpendicular direction. In fact, only the gyro-average
of ® appears in (1.10). Moreover, the term (®) is more regular than ®, so that by (1.28) ® has the
regularity of JSL (p). Hence JSL (®) has the regularity of (JSL )2(p). The operator (JSL )? sends L?
into H'. That is “almost” enough, in the sense that we could reach a sufficient regularity provided
(J; )? were compact from L? in H'.

In view of these difficulties, we focus in the next section on the lack of regularity in the parallel direc-
tion, and consider time-independent solutions depending only on x| and v, of the form f(z), v))f1L(JvL]).

2 Steady state solutions in the direction parallel to the magnetic
field

Let us consider steady state solutions (f, ®) to (1 10) (1.25) and let us assume that the function f can
be written in the form f(z),v)fL(JvL]), with f fr(vo)2m|vy|dlvi] = 1. Then the term f; has no
incidence in the evolution equation and can thus be factorized in (1.10). Taking T. = 1 for the sake of
simplicity, taking again into account the equilibrium density ng, not always constant in that section and
therefore denoted by n, and replacing n; by p, the electroneutrality equation (1.25) then reads:

O— <P >= P_ 1,
n
where p(z) = [ f(z,v)dv. To further simplify the notations, let z = ) and v = v). Solving (1.10)-(1.25)
is then equwalent to finding a distribution function f solution of the following equation.
8f P\ of
—)==0 2.1
Yoz ( ) v (2.1)

Note that ¢’ is the derivative of g with respect to z. Furthermore, we consider the problem in a slab
geometry z € [—1, 1], and therefore require given fi as boundary conditions,

f(=1L,v)=f_(v), v>0, f(1,v)=f+(v), v<O. (2.2)

Lemma 2.1 Given n positive, then any solution f to (2.1)-(2.2), such that £ is non decreasing, must
satisfy:

du

S0 i) g g VRO RCY uf_(w)

u2+22(1)—22£(z) V22220 \JuP—2L(z)+22(-1)

+f\/212(1) 2E(-1) \/uz 2p(z)+2p( )du (23)

Proof of Lemma 2.1 The characteristic (Z, V') of (2.1) starting from (z,v) is defined by:

Z'(s) =V(s), Z(0)=z,
V'(s) = 7(3) (Z(s)), V(0)=v.

n

Hence
V2(s) + 25(2(5)) =2 4 2%(2).

For v > 0, it crosses {(—1,u),u > 0}. For v < 0, it crosses {(1,u),u < 0} if and only if there is a solution
Vito V24 2£2(1) =v? +2£(2), ie. v? > 2(%(1) - %(z)) Consequently,

[0 = F-(Vis-(z0) if v>—/2(20) - 2(),

J(2,0) = f+ (V4 (z0)) if v<—[2(

SERS

S
—
N~—
|
S
—
N
N~—
N———
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where
V3(s+(z,0)) + 2%(:&1) =v2 4 2%(2), V(s—(z,v)) >0, V(sy(z,v))<D0.

Hence

Consequently,

+o0
+/_ 2Z(D—L2(2)) I~ (\/2(5(2) - g(_l)) + 'UQ)d’U.

Changes of variables in both integrals lead to (2.3).
For a constant density n, trivial solutions to (2.1)-(2.2) are

f(Z,’U)Zf_(’U), v >0, f(z,v):f+(v), v <0.

I
Proving the existence of solutions to (2.1)-(2.2) satisfying (f;) > 0, for a non constant n, is the aim of

this section. Denote by H;, 1 < ¢ < 4, the following set of assumptions.

(Hl) n <0
(H2) sup/Jroo %(u)du::)\<+oo.
>0z Vur—z
| 2p
(Hs) f-(u)=0, 0<u<2 o)’ where p = / fr(uw)du + A
0
(Hy) /0 du</ fa(u N fZ—(;L)du<@.

Notice that H» is satisfied when

—+o0
lim wf_(u) <400 and/ w| fL(u) | du < 4o0.
0

uU— 400

Remark 2.4 The assumption (H2) ensures that p is a perturbation of the equilibrium n, so that with
assumption (H1) the force-field will always be oriented rightward (no possibilities of trapped particles).
The assumption (H3) ensures that there are two beams of ions (one coming from the right and the other
from the left), and that all the ions coming from one side reach the other side (no turn-back).

The (H4) assumption is more technical and enforces that the derivative of the density is bounded.

Lemma 2.2 Assume H;, 1 <i <4, and Z—; € L*°. Denote by

K={aeWbt>®(-1,1]);a>0,a(l) —a(-1) < (1),0<a <dp | 2 > llso} - (2.4)
There is a solution o € K to
/ Vu? + /m Vu? — (z a(-1)
e[-1,1]. (2.5)

Moreover, « is the unique non-decreasing solution of (2.5) such that

11



Proof of Lemma 2.2. Prove that the map F that maps « € K in 3 defined by

| u | f+( ) du
/ Vu? + a(z)

du, e [-1,1],

/mwﬂa a(-1)

has a fixed point. First, F' maps K in K. Indeed, 3 € W1*°([-1,1]) like a,
[ is nonnegative, and

0 +o0 uf_(u)
—725(1) = w)du du,
@ /—oo f+(w) +/,/a(1)—a(—1) Vu? —a(z) +a(-1)

0 e uf_(u)
= /_oo fe(w)du+ /m JaZ —a() + e

Hence, 8(1) — B(—1) < 24 Moreover,

ﬂ’:2|:;|x+%/y,
where
|U|f+ uf_(u)
X = du,
/ \/u2 /M \/u2 a(z) + a(-1)
0 IUIf+() uf_(u)
Y = —du = du.
/. (@@ ta(l)—a()i " o/ (12— a(z) + a(-1))?

Since 8 > 0, and, X < ffoo fr(uw)du + A = p, then,

sup /2+°0 #f_(u)du < n(l) /0+00 f-(u)du.

>0J2yz (u? —x)

Indeed, either = > —(% and then

2 < n(1)

U
u > 2v/xr = =~ < ,
ve (u?2—x)2 = 3v3z ~ 3v3u

orzr < (1) and then f_(u) # 0 implies that u > 2 ( 5> hence

U < 2 n(1) n(1)
W —n)f = (5 -0f 3/
So that,
+oo 1 1
sup/ %f,(u)dug 0”( ) < n( ),
©>0J2yz (u? —1x)2 3V3 - f+(u)du 4
and by Hy,

Consequently, 8/ < 4u || Z—; loo. And so, F maps K in K. Moreover, F' is continuous for the topology
of C([-1,1]), by definition of § in terms of «. Finally, F' is compact for the topology of C([—1,1]), by
the compact embedding of W°([-1,1]) in C([—1,1]) and the boundedness of K in W ([-1,1]). It
follows from a Schauder fixed point theorem that there is a fixed point for F' in K.

12



Moreover, the solution of (2.5) is unique in the class of non-decreasing functions « such that o(1)—a(—1) €
[0 ]. Indeed, for any solution a of (2.5) in this class, z := a(1) — a(—1) solves G(x) = 0, where

/va—ff*f [

m/m fo(w)du + m/om f-(u)du.

Using estimates very similar to (2.6) and (Hy), we can show the function G is increasing. Moreover
it follows from Hs and H, that G(0) < 0 and G(%) > 0. Hence the value of (1) — a(—1) is unique,

as well as (a(1),a(—1)), given by

2p
’ n(1)

G(z):

/ f(u dw/ﬁ\/m—aﬂ) (1)du)’

a(—1) / N | u | f+( (71)du+ /O+OO f_(u)du).

If o and 8 are two non-decreasing solutions of (2.5), then

(a=B)(2)T(z) =0, ze[-1,1],

where
_ n(2)
T(z) = =5~
—0 Vw2 —a(2)+a(1)y/u2—B(2)+a(1) (/u2—a(z)+a(1)+1/u2—B(z)+a(1))
[t uf_ (u) d
f2,/% VP —a)tal- D/ tal—D) (v —az) tal—-Dtv/e—p) tal—1)

By Hi, Hs and Hy,

3
o - n(l) )2

0 u n +oo
1) —[ fJ;(Q )du - 3\;13’)“/0 f-(uw)du >0, zel[-1,1].

2T(z)2n(1)/0 fz—(;‘)d +°O L()du

Hence o = .

Theorem 2.3 Assume H;, 1 <i <4, and f1 € L.
There is a unique solution f € L>([—1,1] x IR) to (2.1)-(2.2), such that £ € K.

Proof of Theorem 2.3 Let o € K be the solution to (2.5). The distribution function f defined by
\/a )+ v2), v>—va(l) - alz),
f \/a a(l) +02) v < —va(l) —a(z),
is the unique solution to (2.1)—(2.2) in L>°([-1,1] x IR) such that £ ¢ K.

A Appendix: The polarization operator as
a convolution

In this section we restate and prove the result announced in Remark 1.3.
We define

Y
Bz [ e TR . (4.6)

where T is the temperature (of the ions) and J) is the gyro-average operator defined in (1.8). We forget

the subscript L in the Larmor radius for conveniance. We use here the measure (2p/T)e~?"/T and not an
usual Maxwellain, because we start from a 2D Maxwellian and perform an integration over the angular
variable in polar coordinates.

The operator Fy appears in the electroneutrality equation (1.25). Here we will prove the following
proposition:

13



Proposition A.1 The operator FY is the convolution with the radial function Hr, defined by

2

e_Z_T
Proof of the proposition. First, the square of the operator JS is
1 2w p2m ) o,
UDD@) =33 [ Fag+ peiee 4 gt doca.
To simplifiy it, we use the equality
Y et
p(eigpc +eiapc) = 2pcos (@c . Sﬁc) ez% 7
which helps defining the polar coordinates (r, ¢)
r=2p ‘cos (%_‘p;) ,
Vet ’ (A.8)
¢ = 62 < +e,

where € = 0 or 7 depending on the sign of the cosine. This is not exactly a change of variable since a
couple (r, ) has exactly two pre-images (., ¢..) and (., p.). But since it is always bi-valued, we can
use the formula for thechange of variables with a factor 2. The presence of € does not introduce specific
difficulties, if the intervals of integration are distinguished. The Jacobian of this transformation is

/ 2

o [(Pe=Pe N ) 2T

(55|
dpdr

1 2p 2T i
D) =5 [ [ s ren)

p

so that

The next step is to introduce cartesian coordinates. This is a standard transform with Jacobian r, so
that

dy
JO 2 zg) = Tg Y
PO = [ Sty

with y € R?, r = |y| and the notation B(a) for the ball of center 0 and radius a. This is exactly the
convolution with the radial function

X020 ()
2r\/4p% — r2’

where x, denote the characteristic function of A. It can be checked that

hy(r) =

/hp(r)27rr dr=1.

The last step is to perform the integration in p. As (JS)2 is the convolution with the radial function
hy, F =2 [ pe”gz/T(JS)2 dp is the convolution with the radial function

2 [T e
Hp(r) = T/ hy(r)pe™" T dp.
0
In other words,
2 +oo pepr/T
Hr(r) = —dp.
T( ) 2rT /2 /74p2 — T2 P
We perform the change of variable p’ = y/4p? — r2. Hence
o e [ ~r g
= _— 4T
7(r) 27T27’T/0 c P
67%
2w/ T
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It can be checked that Hr has total mass one. Indeed,

o 2
0

o0 1 r
Hr(r)2nrdr = — e 1T dr =
/0 r(r) \/7TT/
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