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ABSTRACT. We denote by N0 the set of nonnegative integers. Let d ≥ 1 and A =

{a1, . . . , ad} a set of positive integers. For every n ∈ N0, we write s(n) for the number

of solutions (x1, . . . , xd) ∈ Nd
0 of the equation a1x1 + · · · + adxd = n. We set g(A) =

sup{n | s(n) = 0} ∪ {−1} the Frobenius number of A. Let S(A) be the subsemigroup of

(N0,+) generated by A. We set S′(A) = N0\S(A), N ′(A) = CardS′(A) and N(A) = Card

S(A)∩{0, 1, .., g(A)}. Let p be a multiple of lcm(A) and Fp(t) =
∏d

i=1

∑ p
ai

−1

j=0
tjai . We give

an upper bound for g(A) and reduction formulas for g(A),N ′(A) and N(A). Characteriza-

tions of these invariants as well as numerical symmetric and pseudo-symmetric semigroups

in terms of Fp(t), are also obtained.

1 INTRODUCTION

We denote by N0 (resp. N) the set of nonnegative (resp. positive) integers. Let
d ∈ N and A = {a1, . . . , ad} ⊂ N. We set ρ = gcd(A) and l =lcm(A). For every
n ∈ N0, we write s(n) for the number of solutions (x1, . . . , xd) ∈ Nd

0 of the equation
a1x1+· · ·+adxd = n. We set g(A) = sup{n | s(n) = 0}∪{−1} the Frobenius number
of A. Let S(A) be the subsemigroup of (N0,+) generated by A, S′(A) = N0 \S(A),
N ′(A) = Card S′(A) and N(A) = Card S(A) ∩ {0, 1, .., g(A)}. We say that S(A)
is symmetric (resp. pseudo-symmetric) if gcd(A) = 1 and N ′(A) = N(A) (resp.
N ′(A) = N(A) + 1). The generating function of the s(n) is

Φ(t) =
1

∏d
i=1(1− tai)

.

Indeed, we have

1
∏d

i=1(1− tai)
=

d∏

i=1

∑

j≥0

tjai =
∑

n∈S(A)

s(n)tn.
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For p ∈ lN, we define the Frobenius polynomial

Fp(t) =

d∏

i=1

p
ai

−1∑

j=0

tjai =
(1 − tp)d

∏d
i=1(1− tai)

and we write

Φ(t) =
Fp(t)

(1− tp)d
. (1)

In theorem 3.1 we give formulas for g(A), N ′(A) and N(A) in terms of Fp(t). As
a consequence we obtain an upper bound for the Frobenius number (corollary 3.2)
which improves the upper bound given by Chrzastowski-Wachtel and mentioned in
[9]. A characterization of numerical symmetric and pseudo-symmetric semigroups
(corollary 3.4) is also obtained. In theorem 3.7 we prove reduction formulas for
g(A), N ′(A) and N(A). The first one generalizes a Raczunas and Chrzastowski-
Wachtel theorem [9]. As a consequence (corollary 3.10) we obtain a generalization
of a Rödseth formula [10]. It is known that the Hilbert function of a graded module
over a polynomial graded ring as well as s(n) are numerical quasi-polynomial func-
tions. In examples 4.9 and 4.10 we give a description of these functions in terms of
the Frobenius polynomial.

2 PRELIMINARIES

Given Q(t) =
∑

j qjt
j ∈ Q[t, t−1] and an integer p ≥ 1, there exists a unique

sequence Q0, . . . , Qp−1 ∈ Q[t, t−1] such that Q(t) =
∑p−1

r=0 t
rQr(t

p). Namely,
Qr(t) =

∑
k qr+pkt

k. The Qr are called the p-components of Q. We denote by
ω(Q) = inf{j | qj 6= 0} the valuation of Q and deg(Q) = sup{j | qj 6= 0} the
degree of Q, with ω(0) = +∞ and deg(0) = −∞. The following invariants will be
associated with Q

ωp(Q) = sup{ω(trQr(t
p)) | 0 ≤ r ≤ p− 1} the p-valuation of Q.

δp(Q) = inf{deg(trQr(t
p)) | 0 ≤ r ≤ p− 1} the p-degree of Q.

Ωp(Q) =

p−1∑

r=0

ω(Qr).

∆p(Q) =

p−1∑

r=0

deg(Qr).

Thus we have
ωp(Q) = +∞ = Ωp(Q) and δp(Q) = −∞ = ∆p(Q) if Qr = 0 for some r.

We fix an integer n ∈ Z and we set

Q̂(t) = tnQ(t−1).

So we have
̂̂
Q = Q and

deg(Q) + ω(Q̂) = n = deg(Q̂) + ω(Q) if Q 6= 0. (2)



The p-components Q̂r of Q̂ can be deduced from the p-components of Q. Namely,
we write n = pλ+ γ with 0 ≤ γ < p, so we get

Q̂(t) =

p−1∑

r=0

tpλ+γ−rQr(t
−p) =

γ∑

r=0

tγ−r(tp)λQr(t
−p) +

p−1∑

r=γ+1

tp+γ−r(tp)λ−1Qr(t
−p).

It follows from the uniqueness of the p-components that

Q̂r(t) = tλQγ−r(t
−1) for 0 ≤ r ≤ γ (3)

and
Q̂r(t) = tλ−1Qp+γ−r(t

−1) for r > γ. (4)

So we obtain
Q̂r = 0 ⇔ Qγ−r = 0 for 0 ≤ r ≤ γ (5)

and
Q̂r = 0 ⇔ Qp+γ−r = 0 for r > γ. (6)

If Q̂r 6= 0, we also deduce from (2)-(4) that

λ = deg(Q̂r) + ω(Qγ−r) when 0 ≤ r ≤ γ (7)

and
λ− 1 = deg(Q̂r) + ω(Qp+γ−r) when r > γ. (8)

Moreover, writing n = pλ+ r + (γ − r) = p(λ− 1) + r + (p+ γ − r) we get

n = deg(trQ̂r(t
p)) + ω(tγ−rQγ−r(t

p)) for 0 ≤ r ≤ γ

and
n = deg(trQ̂r(t

p)) + ω(tp+γ−rQp+γ−r(t
p)) for r > γ.

Hence
n = δp(Q̂) + ωp(Q) = δp(Q) + ωp(Q̂). (9)

Furthermore, using (7) and (8) we get

γ∑

r=0

(
deg(Q̂r) + ω(Qγ−r)

)
+

p−1∑

r=γ+1

(
deg(Q̂r) + ω(Qp+γ−r)

)

= (γ + 1)λ+ (p− γ − 1)(λ− 1) = n− p+ 1.

It follows that

∆p(Q̂) + Ωp(Q) = n− p+ 1 = ∆p(Q) + Ωp(Q̂). (10)

Given m, j ∈ Z, we consider the following polynomials

Nm,j(t) =
1

(m− 1)!

m−1∏

i=1

(t− j + i) if m > 1, Nm,j(t) = 0 if m ≤ 0 and N1,j(t) = 1.



For Q(t) =
∑

j qjt
j ∈ Q[t, t−1] such that Q(1) 6= 0, we define

Vm(Q, t) =
∑

j

qjNm,j(t).

Furthermore, let Q0, . . . , Qp−1 ∈ Q[t, t−1] be the p-components of Q. We consider
the polynomials U0, . . . , Up−1 ∈ Q[t, t−1] defined as follows Ur = 0 if Qr = 0 and
Qr(t) = (1 − t)irUr(t) with Ur(1) 6= 0 otherwise. For all 0 ≤ r ≤ p − 1, we put
mr = m− ir and we define the function

Hm(Q, .) : Z → Q by Hm(Q, r + pk) = Vmr
(Ur, k).

In order to illustrate these definitions we give the following examples.

EXAMPLE 2.1 Let Q(t) = F12 = (1−t12)2

(1−t2)(1−t3) = 1 + t2 + t3 + t4 + t5 + 2t6 +

t7 + 2t8 + 2t9 + 2t10 + 2t11 + t12 + 2t13 + t14 + t15 + t16 + t17 + t19.
We take p = 12, n = 19 and m = 2.
We write Q(t) = (1 + t12) + t(2t12) + t2(1 + t12) + t3(1 + t12) + t4(1 + t12) + t5(1 +
t12) + 2t6 + t7(1 + t12) + 2t8 + 2t9 + 2t10 + 2t11.
We see that the 12-components of Q(t) are Q0(t) = Q2(t) = Q3(t) = Q4(t) =
Q5(t) = Q7(t) = (1 + t), Q1(t) = 2t and Q6(t) = Q8(t) = Q9(t) = Q10(t) =
Q11(t) = 2.
We also have
Q̂(t) = t19Q(t−1) = Q(t).
ω12(Q) = 13, δ12(Q) = 6, Ω12(Q) = 1, ∆12(Q) = 7.
N2,0(t) = t+ 1, N2,1(t) = t.
Ur = Qr for all r.
V2(Ur, t) = 2t+ 1 for r ∈ {0, 2, 3, 4, 5, 7}, V2(U1, t) = 2t and V2(Ur, t) = 2(t+ 1) for
r ∈ {6, 8, 9, 10, 11}.
We obtain H2(Q, 12k+ r) = 2k+1 for r ∈ {0, 2, 3, 4, 5, 7},H2(Q, 12k+1) = 2k and
H2(Q, 12k + r) = 2(k + 1) for r ∈ {6, 8, 9, 10, 11}.

EXAMPLE 2.2 Let Q(t) = F6(t) = 1 + t2 + t3 + t4 + t5 + t7 = (1−t6)2

(1−t2)(1−t3) .

We take p = 6, n = 7 and m = 2.
We obtain
ω6(Q) = 7, δ6(Q) = 0, Ω6(Q) = 1, ∆6(Q) = 1.
Ur = Qr for all r.
N2,0(t) = t+ 1, N2,1(t) = t.
V2(Ur, t) = t+ 1 for r ∈ {0, 2, 3, 4, 5} and V2(U1, t) = t.
H2(Q, 6k + r) = k + 1 for r ∈ {0, 2, 3, 4, 5} and H2(Q, 6k + 1) = k.
We observe that H2(F6, .) = H2(F12, .).

Given Φ(t) ∈ Q[[t, t−1]], we write Φ(t) =
∑

n ϕ(n)t
n and we introduce

g(Φ) = sup{n | φ(n) = 0}.

S′(Φ) = {n ≥ 0 | ϕ(n) = 0}.

S(Φ) = {0 ≤ n ≤ g(Φ) | ϕ(n) 6= 0}.

N ′(Φ) = Card S′(Φ).

N(Φ) = Card S(Φ).



LEMMA 2.3 Given m ∈ Z and Q(t) =
∑

j qjt
j ∈ Q[t, t−1] such that Q(1) 6= 0,

we consider Φ(t) =
∑

n ϕ(n)t
n the expansion of (1 − t)−mQ(t) as a formal power

series. Then, the following conditions hold

1. ϕ(n) = Vm(Q,n) for all n > deg(Q)−m.

2. We suppose that m > 0 and Q(t) has nonnegative coefficients. Then,

(a) ϕ(n) = 0 ⇔ n < ω(Q).

(b) g(Φ) = ω(Q)− 1.

(c) N ′(Φ) = max{ω(Q), 0}. In particular, N ′(Φ) = ω(Q) if Q(t) ∈ Q[t].

PROOF. 1. Supposem > 0.We have Φ(t) = (1−t)−mQ(t) = (
∑

j qjt
j)
∑

j≥0

(
j+m−1
m−1

)
tj .

So ϕ(n) =
∑n

j=ω(Q) qj
(
n−j+m−1

m−1

)
. Moreover, we have

(
n− j +m− 1

m− 1

)
=

1

(m− 1)!

m−1∏

i=1

(n− j + i) if n ≥ j.

Hence ϕ(n) = Vm(Q,n) if n ≥ deg(Q), in particular, the statement is true form = 1.
Now, suppose m > 1 and deg(Q) − m < n < deg(Q) then −m < n − deg(Q) ≤
n−j < 0 for all j such that n < j ≤ deg(Q). It follows that there exists 1 ≤ i ≤ m−1
such that n− j + i = 0 thus Nm,j(n) = 0. So we can write

Vm(Q,n) =

n∑

j=ω(Q)

qjNm,j(n) =

n∑

j=ω(Q)

qj

(
n− j +m− 1

m− 1

)
= ϕ(n).

Furthermore, if m ≤ 0 then ϕ(n) = 0 for n > deg(Q)−m because Φ(t) ∈ Q[t, t−1]
and deg(Q)−m = degΦ(t).
2. Follows from the fact that ϕ(n) =

∑n
j=ω(Q) qj

(
n−j+m−1

m−1

)
> 0 if n ≥ ω(Q) and

ϕ(n) = 0 if n < ω(Q) �

THEOREM 2.4 Let m ∈ Z and p ∈ N. Given Q(t) =
∑

j qjt
j ∈ Q[t, t−1] such

that Q(1) 6= 0, we consider Φ(t) =
∑

n ϕ(n)t
n the expansion of (1 − tp)−mQ(t)

as a formal power series. Then the following conditions hold

1. ϕ(n) = Hm(Q,n) for all n > deg(Q)−mp.

2. We suppose that m > 0 and Q(t) has nonnegative coefficients. Then,

(a) ϕ(pk + r) = 0 ⇔ k < ω(Qr).

(b) g(Φ) = ωp(Q)− p = deg(Q)− p− δp(Q̂) where Q̂(t) = tdeg(Q)Q(t−1).

(c) N ′(Φ) =
∑p−1

r=0 max{ω(Qr), 0}.
In particular, N ′(Φ) = Ωp(Q) if Q(t) ∈ Q[t].

PROOF. We write Φ(t) =
∑p−1

r=0 t
r(1− tp)−mQr(t

p) =
∑p−1

r=0 t
r (1− tp)−mrUr(t

p) =∑p−1
r=0 t

rΦr(t
p) where Φr(t) = (1 − tp)−mrUr(t

p) =
∑

k ϕr(k)t
k. It follows from

lemma 2.3.1, that ϕ(pk+ r) = ϕr(k) = Vmr
(Ur, k) for all k > deg(Ur)−mr . There-

fore, ϕ(n) = Hm(Q,n) for n > deg(Q)− pm because n = pk + r > deg(Q)− pm ≥



p(deg(Qr)−m) + r ⇒ k > deg(Qr)−m = deg(Ur)−mr.
2 (a) follows from lemma 2.3.2 (a).
b) We have g(Φ) = max{pg(Φr) + r | 0 ≤ r ≤ p − 1} = max{p(ω(Qr) − 1) + r |
0 ≤ r ≤ p − 1} = ωp(Q) − p. Moreover, if Qr 6= 0 for all r we have ωp(Q) − p =

deg(Q)− p− δp(Q̂) by (9). Since ωp(Q) = +∞ = −δp(Q̂) if Qr = 0 for some r, the
equality is still true in this case.
c) Follows from lemma 2.3.2 (c) �

LEMMA 2.5 Let ξ = e
2iπ
p be a primitive p-th root of unity and Q(t) =

∑p−1
r=0 t

rQr(t
p) ∈

Q[t, t−1]. Then, the following conditions are equivalent

1. Q(ξj) = 0 for 0 < j < p.

2. Q(1) = pQr(1) for 0 ≤ r ≤ p− 1.

PROOF. By successive substitutions of 1, ξ, . . . , ξp−1 for t in Q(t) =
∑p−1

r=0 t
rQr(t

p)

we obtain a Vandermonde linear system
∑p−1

r=0 ξ
rjQr(1) = Q(ξj) for j = 0, . . . , p−1.

If Q(ξ) = · · · = Q(ξp−1) = 0, the unique solution is Qr(1) = 1
p
Q(1) for ev-

ery 0 ≤ r ≤ p − 1. Conversely, if Q(1)
p

is the common value of the Qr(1) then
Q(1)
p

∑p−1
r=0 ξ

rj = 0 = Q(ξj) for j = 1, . . . , p− 1 �

LEMMA 2.6 Let p, q, u be positive integers and Q(t),K(t) ∈ Q[t, t−1] such that
p = qu and K(tu) = Q(t). We denote by Qr (resp. Ks) the p-components of Q
(resp. the q-components of K). Then,

1. Qsu = Ks and Qr = 0 for all r /∈ uZ.

2. We set ξ = e
2iπ
p , then the following conditions are equivalent

(a) Q(ξj) = 0 for 0 < j < q.

(b) Q(ξq) = qQr(1) = K(1) for all r ∈ uZ.

PROOF. We can write Q(t) = K(tu) =
∑q−1

s=0 t
usKs(t

p). It follows from the unique-
ness of the Qr thatQsu = Ks for 0 ≤ s < q. Now, Q(ξq) = K(1) and Q(ξj) = K(αj)

with α = e
2iπ
q = ξu. We apply lemma 2.5 �

For every p ∈ lN, we set Fp(t) =
∏d

i=1

∑ p
ai

−1

j=0 tjai the Frobenius polynomial of A.
We write Fp,r for the p-components of Fp. It is easy to see that for n = deg(Fp) =

pd−
∑d

i=1 ai, we have F̂p(t) = tnFp(t
−1) = Fp(t). Let us write p = qρ and ai = biρ

for all 1 ≤ i ≤ d, where ρ = gcd(A). So we can write Fp(t) = K(tρ) with

K(t) =
(1− tq)d

∏d
i=1(1− tbi)

.

Moreover, for 0 < j < q the number ξj = e
2ijπ
q is a root of

∏d
i=1(1 − tbi) of

multiplicity < d because gcd(b1, .., bd) = 1 whereas ξj is a root of (1 − tq)d of mul-
tiplicity = d, then K(ξj) = 0. It follows from lemma 2.6 that Fp,r = K r

ρ
if r ∈ ρZ

and Fp,r = 0 otherwise. We also deduce that Fp,r(1) =
1
q
K(1) = ρpd−1

∏
d
i=1

ai
if r ∈ ρZ �



3 FROBENIUS NUMBER AND NUMERICAL SEMIGROUPS

In the case of the Frobenius polynomial Fp we set ωp(Fp) = ωp(A), δp(Fp) = δp(A),
Ωp(Fp) = Ωp(A), ∆p(F ) = ∆p(A).

THEOREM 3.1 For every p ∈ lN, we have

1. g(A) = ωp(A)− p = p(d− 1)−
∑d

i=1 ai − δp(A) = l(d− 1)−
∑d

i=1 ai − δl(A).

2. N ′(A) = Ωp(A) = Ωl(A).

3. N(A) = ∆p(A) − δp(A) = ∆l(A)− δl(A).

PROOF. We see that for every p ∈ lN, the function Φ(t) = (1 − tp)−dFp(t) =∑
n s(n)t

n is the generating function of the s(n) so g(A) = g(Φ).
1. follows from theorem 2.4.2 (b).
2. follows from theorem 2.4.2 (c).
3. is a consequence of (10)�

COROLLARY 3.2

1. For every p ∈ lN, we have

g(A) = p(d− 1)−

d∑

i=1

ai if and only if δp(A) = 0.

2. g(A) = +∞ if and only if ρ > 1.

3. If ρ = 1, we have the following upper bound for the Frobenius number

g(A) ≤ l(d− 1)−

d∑

i=1

ai.

4. If there exists h such that 1 ≤ h ≤ d and gcd(a1, . . . , ah) = 1 then

g(A) ≤lcm(a1, . . . , ah)(h− 1)−
∑h

i=1 ai.

REMARK 3.3 The upper bound we give in 3) improves the following inequality

g(A) ≤ l(d− 1)

proved by Chrzastowski-Wachtel and mentioned in [9].

COROLLARY 3.4 Suppose gcd(A) = 1. Then the following conditions hold

1. S(A) is symmetric ⇔ ∆p(A) = Ωp(A) + δp(A) for some p ∈ lN ⇔ ∆p(A) =
Ωp(A) + δp(A) for all p ∈ lN.

2. S(A) is peudo-symmetric ⇔ ∆p(A) + 1 = Ωp(A) + δp(A) for some p ∈ lN ⇔
∆p(A) + 1 = Ωp(A) + δp(A) for all p ∈ lN.



We suppose gcd(A) = 1. Let q1, .., qd be positive integers such that for all
1 ≤ i ≤ d, qi is a divisor of gcd(a1, .., ai−1, ai+1, .., ad). So gcd(qi, qj) = 1 for

i 6= j because gcd(A) = 1. We set q̂ =
∏d

j=1 qj , q̂i =
∏

j 6=i qj , ai = biq̂i and
B = {b1, .., bd}. We have gcd(B) = 1 and l = lcm(A) = q̂lcm(B). For p ∈ lN, we
write p = q̂u with u ∈ lcm(B)N.

THEOREM 3.5 The following formulas hold

1. δp(A) = q̂δu(B).

2. ωp(A) = q̂ωu(B) +
∑d

i=1(qi − 1)ai.

3. Ωp(A) = q̂Ωu(B) + 1
2

(∑d
i=1(qi − 1)ai − q̂ + 1

)
.

4. ∆p(A) = q̂∆u(B) + 1
2

(∑d
i=1(qi − 1)ai − q̂ + 1

)
.

In order to prove this theorem we need a lemma.

LEMMA 3.6 Let q and c be two positive integers, B = {b1, .., bd−1, c}, and A =
{a1, .., ad−1, c} where a1 = qb1, .., ad−1 = qbd−1. Suppose gcd(A) = 1 and choose
p ∈ lcm(B)N so gcd(q, c) = 1 and qp ∈ lcm(A)N. Then, the following formulas
hold

1. δqp(A) = qδp(B).

2. ωqp(A) = qωp(B) + (q − 1)c.

3. Ωqp(A) = qΩp(B) + 1
2 (q − 1)(c− 1).

4. ∆qp(A) = q∆p(B) + 1
2 (q − 1)(c− 1).

PROOF. We denote by

F (t) = Fp(t) =
(1− tp)d

(1− tc)
∏d−1

i=1 (1− tbi)
=

p−1∑

r=0

trFr(t
p)

the Frobenius polynomial associated with B and

G(t) = Gqp(t) =
(1 − tqp)d

(1 − tc)
∏d−1

i=1 (1− tai)
=

qp−1∑

s=0

tsGs(t
qp)

the Frobenius polynomial associated with A. We see that

G(t) = (1 + tc + ..+ t(q−1)c)F (tq) = (1 + tc + ..+ t(q−1)c)

p−1∑

r=0

tqrFr(t
qp).

So we obtain

G(t) =
∑

k=ic+jq

0≤i≤q−1

tkFj(t
qp) =

∑

0≤k=ic+jq≤qp−1

0≤i≤q−1

tkFj(t
qp) +

∑

k>qp−1

0≤i≤q−1

tk−qptqpFj(t
qp)



By identification we deduce that Gs(t
qp) = Fj(t

qp) when s = ic+ jq and Gs(t
qp) =

tqpFj(t
qp) when s = ic+ jq − qp = ic− (p− j)q. In particular, we have deg(Gs) =

deg(Fj) and ω(Gs) = ω(Fj) when s = ic + jq and deg(Gs) = 1 + deg(Fj) and
ω(Gs) = 1 + ω(Fj) when s = ic + jq − qp. Therefore, for all s which can be
written in the form s = ic + jq we get deg(tsGs(t

qp)) = ic + jq + qp deg(Fj)
and ω(tsGs(t

qp)) = ic + jq + qpω(Fj). For all s which can be written in the
form s = ic + jq − qp, we get deg(tsGs(t

qp)) = ic + jq − qp + qp(1 + deg(Fj)) =
ic + jq + qp deg(Fj) and ω(tsGs(t

qp)) = ic + jq − qp + qp(1 + ω(Fj). It follows
that δqp(G) = min{ic + jq + qp deg(Fj)} = qmin{j + p deg(Fj)} = qδp(F ) and
ωqp(G) = max{ic+jq+qpω(Fj) } = (q−1)c+qmax{j+pω(Fj) } = qωp(F )+(q−1)c.
We also have

Ωqp(G) =
∑

s=ic+jq

ω(Gs) +
∑

s=ic+jq−qp

ω(Gs) =
∑

s=ic+jq

ω(Fj) +
∑

s=ic−jq

(ω(Fj) + 1)

= qΩp(F ) +N ′(c, q) = qΩp(F ) + 1
2 (q − 1)(c− 1). It follows that

∆qp(G) = Ωqp(G) + δqp(G) = q(Ωp(F ) + δp(F )) + 1
2 (q − 1)(c− 1)�

PROOF OF THEOREM 3.5. By induction on the number h = d − k + 1 such
q1 = q2 = .. = qk−1 = 1. If h = 1 the result is given by lemma 3.6. Suppose that
the result is true when q1 = q2 = .. = qk−1 = 1. We choose p ∈lcm(A)N and we set
v = p

qk
, ti = qi for i 6= k and tk = 1. Then, we get t̂i =

q̂i
qk

for all i 6= k, t̂k = q̂k and

t̂ = q̂
qk
. We also have ai

qk
= bi q̂i

qk
= bi t̂i for all i 6= k and ak = bk t̂k. We put ci = bit̂i

for all i and C = {c1, .., cd}, thus ai = qkci for all i 6= k and ak = ck. It follows
from lemma 3.6 and the induction hypothesis that
1) δp(A) = qkδv(C) = qk t̂δu(B) = q̂δu(B).

2) ωp(A) = qkωv(C) + (qk − 1)ck = qk{t̂ωu(B) +
∑d

i=1(ti − 1)ci} + (qk − 1)ck =

q̂ωu(B) +
∑d

i=1(qi − 1)ai.

3)Ωp(A) = qkΩv(C)+ 1
2 (qk − 1)(ak − 1) = qk{t̂Ωu(B)+ 1

2 (
∑d

i=1(ti− 1)ci− t̂+1)}+
1
2 (qk − 1)(ak − 1) = q̂Ωu(B) + 1

2

(∑d
i=1(qi − 1)ai − q̂ + 1

)
.

4) ∆p(A) = Ωp(A) + δp(A) = q̂∆u(B) + 1
2

(∑d
i=1(qi − 1)ai − q̂ + 1

)
�

THEOREM 3.7 The following formulas hold

1. g(A) = q̂g(B) +
∑d

i=1(qi − 1)ai.

2. N ′(A) = q̂N ′(B) + 1
2

(∑d
i=1(qi − 1)ai − q̂ + 1

)
.

3. N(A) = q̂N(B) + 1
2

(∑d
i=1(qi − 1)ai − q̂ + 1

)
.

REMARK 3.8 In formula 1) if we take q1 = .. = qd−1 = 1 then we obtain a Brauer
and Shockley formula [5] and if we take qi = gcd(A\{ai}) for all i, we obtain a
Raczunas and Chrzastowski-Wachtel formula [9]. Moreover formula 2) is a general-
ization of a Rödseth formula [10] which is obtained for q1 = .. = qd−1 = 1.

THEOREM 3.9 The following conditions hold

1. S(A) is symmetric if and only if S(B) is symmetric.



2. If q̂ > 1 then S(A) is not pseudo-symmetric.

COROLLARY 3.10 Suppose there exists i such that bi = 1 (i.e. ai = q̂i). Then,
S(A) is symmetric and we have

1. (a) g(A) =
∑d

i=1(qi − 1)ai − q̂.

(b) N(A) = N ′(A) = 1
2 (
∑d

i=1(qi − 1)ai − q̂ + 1).

2. Suppose, in addition, that bi = 1 (i.e. ai = q̂i) for all i. Then, we have

(a) g(A) = l(d− 1)−
∑d

i=1 ai.

(b) N(A) = N ′(A) = 1
2 (l(d− 1)−

∑d
i=1 ai + 1).

PROOF. Since 1 ∈ B, we have S(B) = N0 then g(B) = −1 and N(B) = N ′(B) = 0.
So 1. follows from theorem 3.7. To prove 2., we observe that qiai = q̂ = l = lcm(A)
if ai = q̂i for all i�

COROLLARY 3.11 Let b, d, h, v be positive integers such that b ≥ d ≥ 2 and
gcd(b, v) = 1. Let B = {b, hb+ v, .., hb+ (i − 1)v, .., hb + (d − 1)v}, ((b1, .., bd) is
called an ”almost” arithmetic sequence). Then,
S(A) is symmetric ⇔ S(B) is symmetric ⇔ d = 2 or b ≡ 2 mod(d− 1).

PROOF. We write b − 1 = β(d − 1) + α with 0 ≤ α < d − 1, and we use the

following known formulas g(B) =
(
h
⌊
b−2
d−1

⌋
+ h− 1

)
b + bv − v [8] and N ′(B) =

1
2{(b− 1)(hβ + v + h− 1) + hα(β + 1)} [11] �

EXAMPLE 3.12 Let A = {150, 462, 840, 1365}= {5(2× 3× 5), 11(2× 3× 7), 12(2×
5× 7), 13(3× 5× 7)}. We set q1 = 7, q2 = 5, q3 = 3, q4 = 2 and B = {5, 11, 12, 13}.
This is an almost arithmetic sequence with b = 5, v = 1, h = 2, d = 4. We see
that b ≡ 2 mod(d − 1) hence S(B) is symmetric and we have g(B) = 19, N ′(B) =
N(B) = 10. Moreover, it follows from theorem 3.9 that S(A) is symmetric. Using
theorem 3.7 we obtain g(A) = 210× 19+6× 150+4× 462+2× 840+1365 = 9783.
N ′(A) = N(A) = 210× 10+ 1

2 (6× 150+4× 462+2× 840+1365− 210+1) = 4892.

4 QUASI-POLYNOMIALS

DEFINITION 4.1 A quasi-polynomial P of period p and degree d is a sequence
P = (P0, . . . , Pp−1) with Pr ∈ Q[t] such that d = sup{deg(Pr) | 0 ≤ r ≤ p− 1}.
A quasi-polynomial P is said to be uniform if all the Pr have the same degree d
and the same leading coefficient c(P ). Given a function h : Z → Q and r ∈ Z, we
define hr : Z → Q, k 7→ h(pk + r). We say that h is a quasi-polynomial function
if there exists a quasi-polynomial P = (P0, . . . , Pp−1) such that hr(k) = Pr(k) for
all k ≫ 0 and 0 ≤ r ≤ p. We also say that h is P -quasi-polynomial. It is easily
seen that a quasi-polynomial function h has a minimal period and every period
of h is a multiple of this minimal period. Furthermore, for a fixed period p, h
is a P -quasi-polynomial for a unique sequence P = (P0, . . . , Pp−1). A P -quasi-
polynomial h is said to be uniform if P is uniform. We write deg(h) = deg(P )
and c(h) = c(P ). We denote by F (Z) the set of all functions h : Z → Q. For
every integer i ≥ 0 we consider the operators Ei and ∆i, which act as follows:



(Eih)(n) = h(n + i), (∆ih)(n) = h(n + i) − h(n). We set E0 = I, E1 = E and
∆1 = ∆ so ∆ = E − I, ∆0 = 0 and ∆i = Ei − I. For a ≥ 0 and n ≥ 1, we have
(I + Ea + · · ·+ E(n−1)a) ◦ (Ea − I) = Ena − I = ∆na.

LEMMA 4.2 Given h ∈ F (Z), then the following identities hold

1. (Epih)r = Eihr for i ≥ 0.

2. (∆m
p h)r = ∆mhr for m ≥ 0.

PROOF. 1. We write (Epih)r(k) = (Epih)(pk + r) = h(p(k + i) + r) = hr(k + i) =
(Eihr)(k).
2. We have ∆m

p = (Ep − I)m =
∑m

i=0(−1)m−i
(
m
i

)
Epi. Therefore, (∆m

p h)r =∑m
i=0(−1)m−i

(
m
i

)
(Epih)r =

∑m
i=0(−1)m−i

(
m
i

)
Eihr = (E − I)mhr = ∆mhr�

PROPOSITION 4.3 A function h ∈ F (Z) is quasi-polynomial of period p and de-
gree d if and only if there exists (c0, . . . , cp−1) 6= (0, . . . , 0) such that (∆d

ph)r(k) =
cr for all k ≫ 0 and 0 ≤ r ≤ p− 1.

PROOF. Follows from lemma 4.2 and [6, lemma 4.1.2] �

COROLLARY 4.4 For h ∈ F (Z) , if
∏d

i=1(E
ai − I)(h)(n) = 0 for n ≫ 0,

then h is quasi-polynomial of period p ∈ lN and degree < d.

PROOF. Follows from ∆d
p = (Ep − I)d = (

∏d
i=1(

∑ p
ai

−1

j=0 Ejai)) ◦ (
∏d

i=1(E
ai − I) �

EXAMPLE 4.5 Given m ∈ Z and Q(t) ∈ Q[t, t−1] such that Q(1) 6= 0. The
function Hm(Q, .) associated with Q is a P−quasi-polynomial of period p, where
P = (P0, .., Pp−1) is given by Pr = Vmr

(Ur, .).

REMARK 4.6 Suppose m > 0. Then, we have

1. deg(Hm(Q, .)) = m− 1.

2. mr > 0 ⇒ deg(Pr) = mr − 1 and c(Pr) =
Ur(1)

(mr−1)! .

3. If Q(1) = pQr(1) 6= 0 for all 0 ≤ r ≤ p− 1, then Hm(Q, .) is uniform of degree

m− 1 and its leading coefficient is c(Hm(Q, .)) = Qr(1)
(d−1)! =

Q(1)
p(d−1)! .

4. Suppose p = qu and there exists K(t) ∈ Q[t, t−1] such that K(tu) = Q(t), we

set ξ = e
2iπ
p . If Q(ξj) = 0 for 0 < j < q and Q(ξq) 6= 0. Then, the following

conditions hold

(a) Pr = 0 if r /∈ uZ.

(b) deg(Pr) = m− 1 and c(Pr) =
Qr(1)
(m−1)! =

Q(ξq)
p(m−1)! if r ∈ uZ.

PROPOSITION 4.7 Let m > 0 be an integer and h ∈ F (Z) be a function
satisfying h(n) = 0 for n ≪ 0. We consider Φ(t) =

∑
n h(n)t

n. Then, the
following conditions are equivalent



1. h is quasi-polynomial of period p and of degree m− 1.

2. (1− tp)mΦ(t) = Q(t) ∈ Z[t, t−1] and there exists a p-component Qr of Q such
that Qr(1) 6= 0.

3. There exists a unique Q(t) ∈ Z[t, t−1] such that degHm(Q, .) = m − 1 and
Hm(Q,n) = h(n) for n > deg(Q)− pm.

In particular, h is a uniform quasi-polynomial function of period p and degree m−1

if and only if there exists a unique Q(t) ∈ Z[t, t−1] such that Q(1) 6= 0, Q(ej
2iπ
p ) = 0

for all 0 < j < p and Hm(Q,n) = h(n) for n > deg(Q) − pm. In this case, the

leading coefficient is c(h) = Q(1)
p(m−1)! .

PROOF. Assume 1. and set Φr(t) =
∑

n hr(n)t
n for all 0 ≤ r ≤ p − 1. It follows

from [6, 4.1.7] that (1 − t)mΦr(t) = Qr(t) ∈ Z[t, t−1]. Since deg(h) = m − 1 ≥ 0,

there exists 0 ≤ r ≤ p− 1 such that Qr(1) 6= 0. Setting Q(t) =
∑p−1

r=0 t
rQr(t

p) we
deduce 2.
2. ⇒ 3. follows from theorem 2.4.
3. ⇒ 1. follows from the definition of Hm.
The particular case follows from lemma 2.6 and remark 4.6 �

COROLLARY 4.8 Let N(t) be an element of Z[t, t−1] such that N(1) 6= 0 and
p ∈ lN. We set Φ(t) =

∑
n h(n)t

n the expansion of

N(t)
∏d

i=1(1− tai)
= (1− tp)−dN(t)Fp(t)

as a formal Laurent series. Then, h(n) = Hd(NFp, n) for n > deg(N) −
∑d

i=1 ai.
Moreover, if in addition gcd(A) = 1, then h = Hd(NFp, .) is uniform of degree d−1

and its leading coefficient is c(h) = N(1)pd−1

(d−1)!
∏

d
i=1

ai
.

EXAMPLE 4.9 We write s(n) for the number of solutions of the equation a1x1 +
.. + adxd = n in nonnegative integers we get s(n) = Hd(Fp, n) for all n ≥ 0 where
p ∈ lN. In particular, if gcd(A) = 1 then n 7→ s(n) is a uniform quasi-polynomial

function of degree d− 1 and of leading coefficient c(s) = pd−1

(d−1)!
∏

d
i=1

ai
.

For instance, the number of solutions of the equation 2x1 + 3x2 = n is s(n) =
H2(F6, n) (see example 2.2).

EXAMPLE 4.10 Let R0 be a commutative ring and R = R0[t1, . . . , td]. Suppose
that R is Z-graded in such a way that every element of R0 is homogeneous of
degree zero and each ti is homogeneous of degree ai. Let M = ⊕n∈ZMn be a
finitely generated graded R-module such that the length lR0

(Mn) of each Mn as
an R0- module is finite. The numerical function H0(M, .) : Z → Z, n 7→ lR0

(Mn)
is called the Hilbert function of M . The iterated cumulative Hilbert functions are
defined by Hj+1(M,n) =

∑n
i=0 H

j(M, i). The Poincaré series of M is denoted by
PM (t) =

∑
n H

0(M,n)tn. By the Hilbert-Samuel theorem [3, 4.2 Theorem 1] there

exists QM (t) ∈ Z[t, t−1] such that QM (1) 6= 0 and PM (t) = QM (t)
∏

d
i=1

(1−tai )
. Moreover,



it is known that H0(M, .) is quasi-polynomial [2]. Given p ∈ lN and j ≥ 1 we set
ad+1 = · · · = ad+j = 1. So the generating function of the Hj(M, .) is

∑

n

Hj(M,n)tn =
PM (t)

(1− t)j
=

QM (t)
∏d+j

i=1 (1− tai)
.

It follows from corollary 4.8 that Hj(M,n) = Hd+j(QMFp, n) for all j ≥ 0 and
n > deg(QM )−

∑
ai. Moreover, if j > 0 or j = 0 and gcd(A) = 1 then Hj(M, .) is

a uniform quasi-polynomial function of degree d + j − 1 and of leading coefficient

c(Hj(M,n)) = QM (1)pd+j−1

(d+j−1)!
∏

d
i=1

ai
.
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