N

N

Frobenius number of a linear Diophantine equation
Abdallah Badra

» To cite this version:

Abdallah Badra. Frobenius number of a linear Diophantine equation. Lecture Notes in Pure and
Applied Mathematics, 2003, 231, pp.23-36. hal-00477434

HAL Id: hal-00477434
https://hal.science/hal-00477434
Submitted on 30 Apr 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00477434
https://hal.archives-ouvertes.fr

FROBENIUS NUMBER OF A LINEAR DIOPHANTINE
EQUATION

ABDALLAH BADRA, Université Blaise Pascal, Laboratoire de mathématiques
pures, Les Cézeaux, F 63177 Aubiere.
e-mail: abdallah.badra@math.univ-bpclermont.fr

ABSTRACT. We denote by Ny the set of nonnegative integers. Let d > 1 and A =
{a1,...,aq} a set of positive integers. For every n € Ny, we write s(n) for the number
of solutions (z1,...,24) € N of the equation aiz1 + -+ + aqzq = n. We set g(A) =
sup{n | s(n) = 0} U {—1} the Frobenius number of A. Let S(A) be the subsemigroup of
(No, +) generated by A. We set S"(A) = No\S(A4), N'(A) = CardS’(A) and N( ) = Card
S(A)N{0,1,..,g(A)}. Let p be a multiple of lem(A) and Fy,(t) = [T, Jal(; 7. We give
an upper bound for g(A) and reduction formulas for g(A), N'(A) and N(A). Characteriza-
tions of these invariants as well as numerical symmetric and pseudo-symmetric semigroups
in terms of Fj(¢), are also obtained.

1 INTRODUCTION

We denote by Ny (resp. N) the set of nonnegative (resp. positive) integers. Let
de Nand A = {a1,...,aq) C N. We set p = gcd(A) and [ =lem(A). For every
n € Np, we write s(n) for the number of solutions (z1,...,74) € N& of the equation
a1+ +agrqg = n. Weset g(A) = sup{n | s(n) = 0}U{—1} the Frobenius number
of A. Let S(A) be the subsemigroup of (Ny,+) generated by A4, S"(A) = Ng\ S(A),
N'(A) = Card S'(A) and N(A) = Card S(A) N {0,1,..,g(A)}. We say that S(A)
is symmetric (resp. pseudo-symmetric) if ged(A) = 1 and N'(4) = N(A) (resp.
N'(A) = N(A) + 1). The generating function of the s(n) is
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For p € IN, we define the Frobenius polynomial

d
. (1—r)?
Fy(t) = 79 =
" ;131: =0 [T, (1 —t)
and we write o (t)
°) = Ty _ptp)d. (1)

In theorem 3.1 we give formulas for g(A), N'(A) and N(A) in terms of F,(t). As
a consequence we obtain an upper bound for the Frobenius number (corollary 3.2)
which improves the upper bound given by Chrzastowski-Wachtel and mentioned in
[9]. A characterization of numerical symmetric and pseudo-symmetric semigroups
(corollary 3.4) is also obtained. In theorem 3.7 we prove reduction formulas for
g(A), N'(A) and N(A). The first one generalizes a Raczunas and Chrzastowski-
Wachtel theorem [9]. As a consequence (corollary 3.10) we obtain a generalization
of a Rédseth formula [10]. It is known that the Hilbert function of a graded module
over a polynomial graded ring as well as s(n) are numerical quasi-polynomial func-
tions. In examples 4.9 and 4.10 we give a description of these functions in terms of
the Frobenius polynomial.

2 PRELIMINARIES
Given Q(t) = Zj ¢;t! € Q[t,t7'] and an integer p > 1, there exists a unique
sequence Qo,...,Qp—1 € Q[t,t71] such that Q(¢f) = pré t'Q,(t?). Namely,

r=

Qr(t) = X1 dr4pkt™. The Q, are called the p-components of Q. We denote by

w(Q) = inf{j | ¢; # 0} the valuation of @ and deg(Q) = sup{j | ¢; # 0} the
degree of Q, with w(0) = 400 and deg(0) = —oo. The following invariants will be
associated with )

wp(Q) = sup{w(t"@Q,(t")) | 0 <r < p— 1} the p-valuation of Q.
5,(Q) = inf{deg(t"@Q,(t*)) | 0 <r <p— 1} the p-degree of Q.

Q) = D w(@)
r=0

Ap(Q) = ) deg(Qy).
r=0

Thus we have
wp(Q) = 400 = Q,(Q) and §,(Q) = —o0 = AL(Q) if @, =0 for some 7.

We fix an integer n € Z and we set
Q) =1"Q(t™).
So we have @ =@ and

deg(Q) + w(Q) = n = deg(Q) + w(Q) if Q # 0. (2)



The p-components @T of @ can be deduced from the p-components of ). Namely,

we write n = pA + v with 0 <~ < p, so we get

p—1 vy p—1

r=0 r=0 r=vy+1

It follows from the uniqueness of the p-components that
Op(t) = 2 Qy_r(t™Y) for 0 < r <

and R
Qr(t) = t)\_lQp-i-v—r(t_l) for r > 7.

So we obtain R
Qr=0Q,,=0for0<r <4y

and R
QT:0<:>QP+7_T:0fOI'7">’y.

If Q, # 0, we also deduce from (2)-(4) that
A= deg(@r) + w(Qy—r) when 0 <7 <~

and R
A—1=deg(Qr) +w(Qpty—r) when r > ~.

Moreover, writing n =pA+r+ (y—r)=pA—1)+7r+ (p+v—1) we get
n = deg(t"Qr (1)) + w(t'TQy—r (7)) for 0 < r <y

and
n = deg(t" G, (1)) + (P Qi (7)) for 1 > 7.
Hence

n = 6,(Q) +wp(Q) = 0,(Q) + wp(Q).
Furthermore, using (7) and (8) we get

i (deg(@r) + w(Qwo)) + pi (deg(@,«) + w(QpH,T))
r=0 r=y+1

=Y+ A+p—-v-1)(A—-1)=n—p+1.
It follows that
Ap(@Q) +2(Q) =n—p+1=21,(Q) +2(Q).
Given m, j € Z, we consider the following polynomials

m—1

- (m—1)! bl

Qt) = thAJr'yerT(fp) — Zt”f’“(tp)AQT(t*p) + Z tp+vfr(tp)x\leT(tfp)_

(10)

=+ iEm > 1, N (6) = 0if m <0 and Ny () = 1.



For Q(t) = 3, ¢;t/ € Q[t,t~'] such that Q(1) # 0, we define

Vm(Qa t) = Z Qij7j(t)-

Furthermore, let Qo,...,Qp—1 € Q[t,t™!] be the p-components of Q. We consider
the polynomials Uy, ...,Up—1 € Q[t,t™!] defined as follows U, = 0 if Q, = 0 and
Qr(t) = (1 — )" U,(t) with U.(1) # 0 otherwise. For all 0 < r < p — 1, we put
m, = m — 1, and we define the function

H,,(Q,.):Z— Qby Hpn(Q,r + pk) = Vi, (U, k).
In order to illustrate these definitions we give the following examples.

1_¢12)2

EXAMPLE 2.1 Let Q(t) = Fis = glmmemy = 1+ + 3 +t4 45+ 266 +
7 1948 109 4 910 | op11 4 412 4 op18 4 414 4 415 4 416 4 417 4 419,

We take p =12,n =19 and m = 2.

We write Q(t) = (1 +t'2) +#(2t12) + #2(1 +¢12) + 3(1 + 12) + 4 (1 + t12) +t5(1 +
t12) + 265 + 17(1 + 12) + 268 + 2¢° + 2410 4 2¢11,

We see that the 12-components of Q(t) are Qo(t) = Q2(t) = Qs(t) = Qu(t) =
Qs(t) = Q7(t) = (1 +1),Q1(t) = 2t and Qg(t) = Qs(t) = Qo(t) = Quo(t) =
Q11(t) = 2.

We also have

Q) =t1Q(t™") = Q).

wi2(Q) =13, 012(Q) =6, 212(Q) =1, A12(Q) =T7.

Noo(t)=t+1,Na1(t) =t

U, = Q, for all .

Va(U,,t) = 2t +1 for r € {0,2,3,4,5,7}, Va(Uy, t) = 2t and Va(U,.,t) = 2(t + 1) for
r€{6,8,9,10,11}.

We obtain Hz(Q,12k+17) = 2k+1 for r € {0,2,3,4,5,7}, H2(Q,12k+ 1) = 2k and
Hy(Q,12k + 1) = 2(k + 1) for r € {6,8,9,10,11}.

EXAMPLE 2.2 Let Q(t) = Fy(t) = 1+ 12 + 5 + t* + 5 + 17 = Uzt

We take p =6,n =7 and m = 2.

We obtain

WS(Q) - 75 56(@) = 07 QG(Q) - 17 AS(Q) =1L

U, = Q, for all r.

N270(t) =t+1, N271(t) =t.

Vo(Uy,t) =t+1 for r € {0,2,3,4,5} and Va(Uy,t) =t.
Hy(Q,6k+7r)=k+1forre{0,2,3,4,5} and H2(Q,6k+1) = k.

We observe that Ha(Fs,.) = Ha(Fia,.).

Given ®(t) € Q[[t,t']], we write ®(t) = >, ¢(n)t" and we introduce

]
(@) = sup{n|¢(n) =0}

(@) = {n=0]¢(n) =0}

S(@) = {0<n<g(®)]p(n)#0}
(®?) = Card S'(®).

(®) = Card S(9).



LEMMA 2.3 Given m € Z and Q(t) = 3_; q;t? € Qt,t71] such that Q(1) # 0,
we consider ®(t) =Y p(n)t" the expansion of (1 —1t)~™Q(t) as a formal power
series. Then, the following conditions hold

1. ¢(n) = Vi (Q,n) for all n > deg(Q) —m.

2. We suppose that m > 0 and Q(t) has nonnegative coefficients. Then,

() o(n) =05 n < w(Q).

(b) 9(®) =w(@) - 1.

(¢) N'(®) = max{w(Q),0}. In particular, N'(®) = w(Q) if Q(t) € Q[¢].
PROOF. 1. Supposem > 0. We have ®(t) = (1-1)"™Q(t) = (3, ¢;t) >;50 ((F 7)1,
So ¢(n) = Z?:W(Q) q; ("7~ Moreover, we have

m—1

. m—1

n—j+m-—1 1 . .

= — fn>j.

() = ez
Hence ¢(n) = Vi, (Q,n) if n > deg(Q), in particular, the statement is true for m = 1.
Now, suppose m > 1 and deg(Q) —m < n < deg(Q) then —m < n — deg(Q) <
n—j < 0 for all j such that n < j < deg(Q). It follows that there exists 1 < < m—1

such that n — j + 4 = 0 thus N,, j(n) = 0. So we can write

- _ N - (n—j+m—1Y\
> = Y "I <t
J=w(Q) Jj=w(Q)
Furthermore, if m < 0 then ¢(n) = 0 for n > deg(Q) — m because ®(t) € Q[t,t™}]
and deg(Q) — m = deg ®(¢). ‘
2. Follows from the fact that p(n) = Z?:w(Q) g ("7 S 0 if n > w(Q) and
pn)=0ifn<w(@) O

THEOREM 2.4 Let m € Z and p € N. Given Q(t) =3, q;it! € Q[t,t71] such
that Q(1) # 0, we consider ®(t) = >, @(n)t" the expansion of (1 —t)~"Q(t)
as a formal power series. Then the following conditions hold

1. ¢(n) = Hyn(Q,n) for all n > deg(Q) — mp.

2. We suppose that m > 0 and Q(t) has nonnegative coefficients. Then,

(a) ppk+7r) =0k <w(Qr).
(b) 9(P) = wy(Q) —p = deg(Q) —p = 6,(Q)  where Q(t) = t9EDQ(t™).
(c) N'(®) = 372, max{w(Q,),0}.
In particular, N'(®) = Q,(Q) if Q(t) € Q[t].
PROOF. We write ®(t) = S P_ (1 —t?) " Q. (t?) = YL 7 (1—2) ™ U, (1) =
SPT D, (tP) where B, (t) = (1 — 7)™ U (") = 3, o (k)t*. Tt follows from

1emma 2.3.1, that o(pk+r) = p.(k) = V. (U, k) for all k > deg(U,.) —m,.. There-
fore, ¢(n) = Hy,(Q,n) for n > deg(Q) — pm because n = pk + r > deg(Q) — pm >



p(deg(Qr) —m) +1r =k > deg(Q,) — m = deg(U,) — m,.

2 (a) follows from lemma 2.3.2 (a).

b) We have g(®) = max{pg(®,) +7 | 0 <r < p—1} = max{p(w(Q,) — 1) + 7 |
0<r<p-1} = wy(Q) — p. Moreover, if @, # 0 for all r we have w,(Q) —p =
deg(Q) — p — 6,(Q) by (9). Since w,(Q) = +00 = —,(Q) if Q, = 0 for some 7, the
equality is still true in this case.

¢) Follows from lemma 2.3.2 (¢) O

LEMMA 2.5 Let & = e bea primitive p-th root of unity and Q(t) = Zf;é Q. (tP) €
Qlt,t71]. Then, the following conditions are equivalent

1. Q&) =0 for 0<j<np.
2. Q1) =pQ.(1) for 0 <r<p-—1.

PROOF. By successive substitutions of 1,¢,...,&P~! for t in Q(¢) = Zf;(l) " Q(t7)
we obtain a Vandermonde linear system Zf;é €Q,(1)= Q&) for j=0,...,p—1.
If Q&) = -+ = Q(&~1) = 0, the unique solution is Q,.(1) = %Q(l) for ev-
if <)
P

ery 0 < r < p—1. Conversely, is the common value of the Q. (1) then

%Ef;égj:on(gj)forjzl,--wP—lD

LEMMA 2.6 Let p,q,u be positive integers and Q(t), K(t) € Q[t,t~1] such that
p=qu and K(*) = Q(t). We denote by Q, (resp. Ks) the p-components of Q
(resp. the g-components of K ). Then,

1. Qsu = Ks and Q. =0 for all r ¢ uZ.

2im

2. We set £ = e » , then the following conditions are equivalent
(a) Q(¢) =0 for 0<j<q.
(b) QUET) = 4@ (1) = K(1) for all v € uZ.
PROOF. We can write Q(t) = K (t*) = Zg;é t“s K4 (tP). It follows from the unique-

ness of the @, that Qs, = K, for 0 < s < ¢. Now, Q(£7) = K (1) and Q(&7) = K (o)
with @ = e = &*. We apply lemma 2.5 [J

For every p € IN, we set F),(t) = H?Zl > ito ! tJ% the Frobenius polynomial of A.
We write F), » for the p-components of F),. It is easy to see that for n = deg(F),) =
pd — 2?21 a;, we have ﬁp(t) =1"F,(t™') = F,(t). Let us write p = gp and a; = bip
for all 1 <4 <d, where p = gcd(A4). So we can write Fj,(¢t) = K(t*) with

(1—t1)?
[T (=)
Moreover, for 0 < j < ¢ the number & = e @ is a root of Hle(l — thi) of

multiplicity < d because gcd(by, ..,bg) = 1 whereas &7 is a root of (1 — )¢ of mul-
tiplicity = d, then K (&) = 0. It follows from lemma 2.6 that F,, = K- ifr e pZ

and F, , = 0 otherwise. We also deduce that F),, (1) = %K(l) = lf[’SdA ifrepzO
i=1 @i

K(t) =




3 FROBENIUS NUMBER AND NUMERICAL SEMIGROUPS

In the case of the Frobenius polynomial F}, we set wy(Fp) = wp(A), 6p(Fp) = 6p(A),
Qp(Fp) = Qp(A), Ap(F) = Ap(A).

THEOREM 3.1 For every p € IN, we have
L g(A) = wp(A) —p = p(d = 1) = iy ai = §,(A) = 1(d — 1) = 30, a; — Gi(A).
2. N'(A) = Q,(A) = Q(A).
3. N(A) = A, (A) — 6,(A) = A(A) — §,(A).

PROOF. We see that for every p € IN, the function ®(t) = (1 — t*)~¢F,(t) =
>, s(n)t™ is the generating function of the s(n) so g(A4) = g(®).

1. follows from theorem 2.4.2 (b).

2. follows from theorem 2.4.2 (c).

3. is a consequence of (10)0

COROLLARY 3.2
1. For every p € IN, we have
d
g(A)=pd-1)— Zai if and only if §,(A) = 0.
i=1
2. g(A) = 400 if and only if p > 1.
3. If p=1, we have the following upper bound for the Frobenius number

d

g(A) <Ud—1) =Y a;

i=1

4. If there exists h such that 1 < h <d and ged(aq,...,ap) =1 then
g(A) <lem(ay,...,an)(h —1) = X1 a;.

REMARK 3.3 The upper bound we give in 3) improves the following inequality
g9(A) <i(d—1)
proved by Chrzastowski-Wachtel and mentioned in [9].

COROLLARY 3.4 Suppose ged(A) = 1. Then the following conditions hold

1. S(A) is symmetric < Ap(A) = Q,(A) + §,(A) for some p € IN & AL(A) =
Q,(A) + 6,(A) for all p € IN.

2. S(A) is peudo-symmetric < Ap(A) +1=Q,(A) + §,(A) for some p € IN &
Ap(A) +1=Q,(A) +6,(A) for all p € IN.



We suppose ged(4) = 1. Let ¢1,..,qq be positive integers such that for all
1 < i <d, ¢ is a divisor of ged(a, .., ai—1,it1,..,aq). So ged(gi,q;) = 1 for
i # j because ged(A) = 1. We set § = H;l:l 45,0 = Hj ;@i a; = big; and
B = {by,..,bq}. We have ged(B) =1 and I = lem(4) = (jlcmzﬁB). For p € IN, we
write p = gu with u € lem(B)N.
THEOREM 3.5 The following formulas hold

1. 0p(A) = §6u(B).

2. wp(A4) = quu(B) + ity (@i — o

8. Q(4) = @2 (B)+ 4 (Ti(e — Dai— 4+1).

4 Ay(4) = aAu(B) + 4 (S (6 - Dai - §+1).

In order to prove this theorem we need a lemma.

LEMMA 3.6 Let g and c be two positive integers, B = {b1,..,bq—1,¢}, and A =
{a1,..,aq—1,c} where ay = qby,..,aq-1 = gbg—1. Suppose gcd(A) = 1 and choose
p € lem(B)N so0 ged(g,¢) = 1 and gp € lem(A)N. Then, the following formulas
hold

L. 0gp(A) = q0,(B).
p(A) = qup(B) + (¢ —1)c.
w(A) = qQp(B) + %(q —1)(c—1).

Q
Agp(A) = qAp(B) + %(q —1)(c—1).

L

PROOF. We denote by

Ft) = Fy(t) = (1) zpiﬂF ()
T a-eIa-ty o

the Frobenius polynomial associated with B and

(1 — tar)d iy

G(t) = qu(t) =

oo =

i=1
the Frobenius polynomial associated with A. We see that
p—1
G(t) = (L+t+ .. +tD)PY) = (1414 .. + 070 Y g7 F(297).
r=0
So we obtain
Gty= > tRemy = > R+ Yt mew )

k=ic+jq 0<k=ic+jq<qp—1 k>qp—1
0<i<qg—1 0<i<q—1 0<i<q—1



By identification we deduce that G,(t%) = F;(t9) when s = ic+ jg and G,(t?) =
t? F;(t%) when s = ic+ jq — gp = ic — (p — j)g. In particular, we have deg(G;) =
deg(F;) and w(Gs) = w(F;) when s = ic + jg and deg(Gs) = 1 + deg(F;) and
w(Gs) = 1+ w(F;) when s = ic + jq — gp. Therefore, for all s which can be
written in the form s = ic + jq we get deg(t*Gs(t™)) = ic + jq + gpdeg(F;)
and w(t°G4(t?)) = ic + jg + gpw(F;). For all s which can be written in the
form s = ic+ jq — gp, we get deg(t*G,(t%)) = ic + jqg — qp + gp(1 + deg(F})) =
ic + jq + qpdeg(Fy) and w(t*Gs(t%)) = ic + jq — qp + qp(1 + w(F}). Tt follows
that d4,(G) = min{ic + jq + qpdeg(F;)} = gmin{j + pdeg(F})} = ¢6,(F) and
wep(G) = max{ic+jq+apo(E5) } = (g—V)e-+qmax{j+po(Ey) } = qwp(F) +g—1)e.
We also have

Qp(@) = Y w(@)+ D w@)= DY wFE)+ Y (WFE)+1)
s=ic+jq s=ic+jq—qp s=ic+jq s=ic—jq
= q¢Q,(F) + N'(c,q) = ¢(F) + (g — 1)(c — 1). It follows that
Agp(G) = Qgp(G) + 6gp(G) = (2 (F) + 0,(F)) + %(q —1)(e—1)0

PROOF OF THEOREM 3.5. By induction on the number h = d — k + 1 such
g1 =q2=. =qp—1 = 1. If h =1 the result is given by lemma 3.6. Suppose that
the result is true when ¢1 = g2 = .. = gx—1 = 1. We choose p €lem(A)N and we set
v = %, t; = q; for i # k and t;, = 1. Then, we get ¢; = g—;foralli;«ék,fk = g and
= qik. We also have % = % = b;t; for all i # k and aj, = byty. We put ¢; = b;t;
for all ¢ and C = {eq,..,cq}, thus a; = gge; for all i # k and ay, = ¢i. It follows

from lemma 3.6 and the induction hypothesis that

1) 6,(A) = q16,(C) = qrtdu(B) = §0u(B).

2) wp(4) = @uwo(C) + (q — Dew = qr{twa(B) + Sy (ti — Vet + (g — Ve =
Qwu(B) + 3 (4 — Vas.

3)02(4) = 6620 (C) + $(ar — 1)(ax — 1) = u{IQu(B) + 3(ZL, (i — Dei =i+ 1)} +
Lo — D — 1) = 42u(B) + § (X1 (0~ Dai — 4 +1).

1) By(4) = Q(A) + 8,(4) = 48, (B) + (S (i~ Vai =4 +1) O
THEOREM 3.7 The following formulas hold

1. g(A) = 4g(B) + X (4 — Das.

2. N'(4) = aN'(B) + § (T, (¢ — Das — g+ 1).

3. N(4)=aN(B) +§ (T (a — Dai g +1).

REMARK 3.8 In formula 1) if we take ¢ = .. = g4—1 = 1 then we obtain a Brauer
and Shockley formula [5] and if we take ¢; = ged(A\{a;}) for all i, we obtain a
Raczunas and Chrzastowski-Wachtel formula [9]. Moreover formula 2) is a general-
ization of a Rodseth formula [10] which is obtained for ¢; = .. = ¢4—1 = 1.

THEOREM 3.9 The following conditions hold

1. S(A) is symmetric if and only if S(B) is symmetric.



2. If G>1 then S(A) is not pseudo-symmetric.

COROLLARY 3.10 Suppose there exists i such that b; =1 (i.e. a; = §;). Then,
S(A) is symmetric and we have

1 (a) g(4) =37 (¢ — Da; — §.
(b) N(A) =N'(A) = 3(XL (@ — Va; — G +1).

2. Suppose, in addition, that b; =1 (i.e. a; = §;) for all i. Then, we have

(2) g(A) =1d—1) X a:
(b) N(A) = N'(A) = L(i(d—1) = S0 a; +1).

PROOF. Since 1 € B, we have S(B) = Ny then g(B) = —1 and N(B) = N'(B) = 0.
So 1. follows from theorem 3.7. To prove 2., we observe that ¢;a; = § =1 = lem(A)
if a; = ¢; for all «0J

COROLLARY 3.11 Let b,d,h,v be positive integers such that b > d > 2 and
ged(b,v) =1. Let B={b,hb+v,..,hb+ (i — 1)v,..,hb+ (d — 1)v}, ((b1,..,ba) is
called an ”almost” arithmetic sequence). Then,

S(A) is symmetric < S(B) s symmetric < d =2 or b=2 mod(d — 1).

PROOF. We erteb—l—ﬁ(d—l with 0 < o < d — 1, and we use the
following known formulas g(B ( { J +h— 1) b+bv—wv [8 and N'(B) =

2{(b71)(hﬂ+v+h71)+ha(ﬂ+1}

EXAMPLE 3.12 Let A = {150, 462,840, 1365} = {5(2x 3 x 5), 11(2x 3 x 7), 12(2 x
5x7),133x5xT)}. Weset 1 =7,q2 =5,¢3 =3,q4 =2 and B = {5,11,12,13}.
This is an almost arithmetic sequence with b = 5,v = 1,h = 2,d = 4. We see
that b = 2 mod(d — 1) hence S(B) is symmetric and we have g(B) = 19, N'(B) =
N(B) = 10. Moreover, it follows from theorem 3.9 that S(A) is symmetric. Using
theorem 3.7 we obtain g(A) = 210 X 1946 x 15044 x 462 + 2 x 840 + 1365 = 9783.
N'(A) = N(A) = 210 x 10+ (6 x 150 + 4 x 462 + 2 x 840 4 1365 — 210+ 1) = 4892,

4 QUASI-POLYNOMIALS

DEFINITION 4.1 A quasi-polynomial P of period p and degree d is a sequence
P=(Py,...,Py_1) with P, € Q[t] such that d = sup{deg(P,) |0 <r <p—1}.

A quasi-polynomial P is said to be uniform if all the P, have the same degree d
and the same leading coefficient ¢(P). Given a function h : Z — Q and r € Z, we
define h, : Z — Q, k — h(pk + r). We say that h is a quasi-polynomial function
if there exists a quasi-polynomial P = (F,..., P,—1) such that h.(k) = P.(k) for
all k > 0 and 0 < r < p. We also say that h is P-quasi-polynomial. It is easily
seen that a quasi-polynomial function h has a minimal period and every period
of h is a multiple of this minimal period. Furthermore, for a fixed period p, h
is a P-quasi-polynomial for a unique sequence P = (F,...,P,—1). A P-quasi-
polynomial % is said to be uniform if P is uniform. We write deg(h) = deg(P)
and ¢(h) = ¢(P). We denote by F(Z) the set of all functions h : Z — Q. For
every integer i > 0 we consider the operators E* and A,;, which act as follows:



(E'h)(n) = h(n +1i), (A;h)(n) = h(n +i) — h(n). We set E° = I, B! = E and
Al=AsoA=E—-I Ag=0and A; = E* —I. For a > 0 and n > 1, we have
(I+E*4.-.-+ Em=Da)y o (B* —[) = E"® — [ = A,,.

LEMMA 4.2 Given h € F(Z), then the following identities hold
1. (EP'h), = E'h,. for i > 0.
2. (Aph)y = A™h,. for m > 0.

PROOF. 1. We write (EP'h),.(k) = (EP*h)(pk +1) = h(p(k + i) +7) = he(k+1i) =
(E'h)(k).

2. We have A7 = (EP — I)™ = Y7 (=1)™" (™) EP". Therefore, (AJ'h), =
S (=DM (M) (EPR), = X (1) (M) Elhy = (E — I)™h, = A™h, O

%

PROPOSITION 4.3 A function h € F(Z) is quasi-polynomial of period p and de-
gree d if and only if there exists (co,...,cp—1) # (0,...,0) such that (Agh)T(k:) =
cr forall k>0 and 0 <r <p-—1.

PROOF. Follows from lemma 4.2 and [6, lemma 4.1.2] O

COROLLARY 4.4 For h € F(Z) , if [, (E* — I)(h)(n) = 0 for n > 0,
then h is quasi-polynomial of period p € IN and degree < d.

d il d w
PROOF. Follows from A? = (EP — I)* = (]] (>t E*)) o ([[i=y(B* —1) O

i=1

EXAMPLE 4.5 Given m € Z and Q(t) € Q[t,t™!] such that Q(1) # 0. The
function H,,(Q,.) associated with @ is a P—quasi-polynomial of period p, where
P = (Py,..,Py,_1) is given by P, =V, (U, .).

REMARK 4.6 Suppose m > 0. Then, we have
1. deg(Hn(Q,.)) =m — 1.

2. my > 0= deg(P,) =m, — 1 and ¢(P;) o)

= (m,—1)!"

3. Q1) =pQ.(1) #0forall 0 <r < p-—1, then H,,(Q,.) is uniform of degree

m — 1 and its leading coefficient is ¢(H,,(Q, .)) = (%f(ll))! = %.

4. Suppose p = qu and there exists K (t) € Q[t,¢™'] such that K (t") = Q(t), we
set & = eF LIt Q(¢7) =0 for 0 < j < g and Q(£7) # 0. Then, the following
conditions hold

(a) P.=0if r ¢ uZ.
(b) deg(P,) =m —1 and ¢(P,) = 20 — _QED ¢, ¢ 7,

— (m-1)! p(m—1)!

PROPOSITION 4.7 Let m > 0 be an integer and h € F(Z) be a function
satisfying h(n) = 0 for n < 0. We consider ®(t) = > h(n)t". Then, the
following conditions are equivalent




1. h is quasi-polynomial of period p and of degree m — 1.

2. (1—tP)"®(t) = Q(t) € Z[t,t™] and there exists a p-component Q, of Q such
that @Qr(1) # 0.

3. There exists a unique Q(t) € Z[t,t™] such that degH,,(Q,.) = m — 1 and
Hon(Qum) = h(n) for n > deg(Q) — pm.

In particular, h is a uniform quasi-polynomial function of period p and degree m—1
if and only if there exists a unique Q(t) € Z[t,t~] such that Q(1) # 0, Q(ejmTﬂ) =0
for all 0 < j < pand Hp(Q,n) = h(n) for n > deg(Q) — pm. In this case, the

leading coefficient is c(h) = p(ffﬁ)l)!-

PROOF. Assume 1. and set ®,.(t) = >, hy(n)t" for all 0 < r < p — 1. It follows
from [6, 4.1.7] that (1 — )™®,.(t) = Q.(t) € Z[t,t™!]. Since deg(h) =m —1 > 0,
there exists 0 < r < p — 1 such that Q,(1) # 0. Setting Q(¢t) = Zf;é Q- (t7) we
deduce 2.

2. = 3. follows from theorem 2.4.

3. = 1. follows from the definition of H.,,.

The particular case follows from lemma 2.6 and remark 4.6 [J

COROLLARY 4.8 Let N(t) be an element of Z[t,t~!] such that N(1) # 0 and
p € IN. We set ®(t) =" h(n)t" the expansion of

N{(t)
d .
Hi:l(l - ta")
as a formal Laurent series. Then, h(n) = Hq(NFp,n) for n > deg(N) — Zle a;.
Moreover, if in addition ged(A) = 1, then h = Hy(NF,,.) is uniform of degree d —1

N@p?~!
(d-1)! ngl a;’

= (1—t") "IN F,(t)

and its leading coefficient is c(h) =

EXAMPLE 4.9 We write s(n) for the number of solutions of the equation a;x1 +
.. + agrqy = n in nonnegative integers we get s(n) = Hg(Fp,n) for all n > 0 where
p € IN. In particular, if gcd(A4) = 1 then n — s(n) is a uniform quasi-polynomial

d—1
p

T @) e
For instance, the number of solutions of the equation 2z + 3z2 = n is s(n) =
Hy(Fg,n) (see example 2.2).

function of degree d — 1 and of leading coefficient c(s)

EXAMPLE 4.10 Let Ry be a commutative ring and R = Rylt1,...,tq]. Suppose
that R is Z-graded in such a way that every element of Ry is homogeneous of
degree zero and each ¢; is homogeneous of degree a;. Let M = ®,ecz M, be a
finitely generated graded R-module such that the length [, (M,) of each M, as
an Ro- module is finite. The numerical function H°(M,.) : Z — Z,n + Ig,(M,)
is called the Hilbert function of M. The iterated cumulative Hilbert functions are
defined by H/*'(M,n) = > H?(M,i). The Poincaré series of M is denoted by
Py (t) =3, H(M, n)t". By the Hilbert-Samuel theorem [3, 4.2 Theorem 1] there

exists Qar(t) € Z[t,t71] such that Qar(1) # 0 and Py (t) = HdQ%ﬂa) Moreover,
i=1



it is known that H°(M,.) is quasi-polynomial [2]. Given p € IN and j > 1 we set
ag+1 =+ = ag+; = 1. So the generating function of the H7(M,.) is

i — 2@ Qu(?)
2O = G = )

It follows from corollary 4.8 that H7(M,n) = Hay;j(QumFE,,n) for all j > 0 and
n > deg(Qnr) — > a;. Moreover, if j > 0 or j = 0 and ged(A) = 1 then H7(M,.) is
a uniform quasi-polynomial function of degree d 4+ 7 — 1 and of leading coefficient

. 1)pd+i—1
e(HY (M, m)) = G
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