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FROBENIUS NUMBER OF A LINEAR DIOPHANTINE EQUATION

We denote by N0 the set of nonnegative integers. Let d ≥ 1 and A = {a1, . . . , a d } a set of positive integers. For every n ∈ N0, we write s(n) for the number of solutions (x1, . . . ,

the Frobenius number of A. Let S(A) be the subsemigroup of (N0, +) generated by A. We set S ′ (A) = N0\S(A), N ′ (A) = CardS ′ (A) and N (A) = Card S(A)∩{0, 1, .., g(A)}. Let p be a multiple of lcm(A) and Fp(t) = d i=1 p a i -1 j=0 t ja i . We give an upper bound for g(A) and reduction formulas for g(A), N ′ (A) and N (A). Characterizations of these invariants as well as numerical symmetric and pseudo-symmetric semigroups in terms of Fp(t), are also obtained.

INTRODUCTION

We denote by N 0 (resp. N) the set of nonnegative (resp. positive) integers. Let d ∈ N and A = {a 1 , . . . , a d } ⊂ N. We set ρ = gcd(A) and l =lcm(A). For every n ∈ N 0 , we write s(n) for the number of solutions (x 1 , . . . , x d ) ∈ N d 0 of the equation a 1 x 1 +• • •+a d x d = n. We set g(A) = sup{n | s(n) = 0}∪{-1} the Frobenius number of A. Let S(A) be the subsemigroup of (N 0 , +) generated by A, S ′ (A) = N 0 \ S(A), N ′ (A) = Card S ′ (A) and N (A) = Card S(A) ∩ {0, 1, .., g(A)}. We say that S(A) is symmetric (resp. pseudo-symmetric) if gcd(A) = 1 and N ′ (A) = N (A) (resp. N ′ (A) = N (A) + 1). The generating function of the s(n) is

Φ(t) = 1 d i=1 (1 -t ai )
.

Indeed, we have

1 d i=1 (1 -t ai ) = d i=1 j≥0 t jai = n∈S(A) s(n)t n .
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For p ∈ lN, we define the Frobenius polynomial

F p (t) = d i=1 p a i -1 j=0 t jai = (1 -t p ) d d i=1 (1 -t ai )
and we write

Φ(t) = F p (t) (1 -t p ) d . (1) 
In theorem 3.1 we give formulas for g(A), N ′ (A) and N (A) in terms of F p (t). As a consequence we obtain an upper bound for the Frobenius number (corollary 3.2) which improves the upper bound given by Chrzastowski-Wachtel and mentioned in [START_REF] Raczunas | A Diophantine problem of Frobenius in terms of the least common multiple[END_REF]. A characterization of numerical symmetric and pseudo-symmetric semigroups (corollary 3.4) is also obtained. In theorem 3.7 we prove reduction formulas for g(A), N ′ (A) and N (A). The first one generalizes a Raczunas and Chrzastowski-Wachtel theorem [START_REF] Raczunas | A Diophantine problem of Frobenius in terms of the least common multiple[END_REF]. As a consequence (corollary 3.10) we obtain a generalization of a Rödseth formula [START_REF] Rödseth | On a linear Diophantine problem of Frobenius[END_REF]. It is known that the Hilbert function of a graded module over a polynomial graded ring as well as s(n) are numerical quasi-polynomial functions. In examples 4.9 and 4.10 we give a description of these functions in terms of the Frobenius polynomial.

PRELIMINARIES

Given Q(t) = j q j t j ∈ Q[t, t -1 ] and an integer p ≥ 1, there exists a unique sequence Q

0 , . . . , Q p-1 ∈ Q[t, t -1 ] such that Q(t) = p-1 r=0 t r Q r (t p ). Namely, Q r (t) =
k q r+pk t k . The Q r are called the p-components of Q. We denote by ω(Q) = inf{j | q j = 0} the valuation of Q and deg(Q) = sup{j | q j = 0} the degree of Q, with ω(0) = +∞ and deg(0) = -∞. The following invariants will be associated with

Q ω p (Q) = sup{ω(t r Q r (t p )) | 0 ≤ r ≤ p -1} the p-valuation of Q. δ p (Q) = inf{deg(t r Q r (t p )) | 0 ≤ r ≤ p -1} the p-degree of Q. Ω p (Q) = p-1 r=0 ω(Q r ). ∆ p (Q) = p-1 r=0 deg(Q r ).

Thus we have

ω p (Q) = +∞ = Ω p (Q) and δ p (Q) = -∞ = ∆ p (Q) if Q r = 0 for some r.
We fix an integer n ∈ Z and we set

Q(t) = t n Q(t -1 ). So we have Q = Q and deg(Q) + ω( Q) = n = deg( Q) + ω(Q) if Q = 0. ( 2 
)
The p-components Q r of Q can be deduced from the p-components of Q. Namely, we write n = pλ + γ with 0 ≤ γ < p, so we get

Q(t) = p-1 r=0 t pλ+γ-r Q r (t -p ) = γ r=0 t γ-r (t p ) λ Q r (t -p ) + p-1 r=γ+1 t p+γ-r (t p ) λ-1 Q r (t -p ).
It follows from the uniqueness of the p-components that

Q r (t) = t λ Q γ-r (t -1 ) for 0 ≤ r ≤ γ (3) and Q r (t) = t λ-1 Q p+γ-r (t -1 ) for r > γ. (4) 
So we obtain

Q r = 0 ⇔ Q γ-r = 0 for 0 ≤ r ≤ γ (5) 
and

Q r = 0 ⇔ Q p+γ-r = 0 for r > γ. (6) 
If Q r = 0, we also deduce from ( 2)-( 4) that

λ = deg( Q r ) + ω(Q γ-r ) when 0 ≤ r ≤ γ (7) 
and

λ -1 = deg( Q r ) + ω(Q p+γ-r ) when r > γ. (8) 
Moreover, writing

n = pλ + r + (γ -r) = p(λ -1) + r + (p + γ -r) we get n = deg(t r Q r (t p )) + ω(t γ-r Q γ-r (t p )) for 0 ≤ r ≤ γ and n = deg(t r Q r (t p )) + ω(t p+γ-r Q p+γ-r (t p )) for r > γ. Hence n = δ p ( Q) + ω p (Q) = δ p (Q) + ω p ( Q). (9) 
Furthermore, using [START_REF] Fröberg | The Frobenius number of some semigroups[END_REF] and ( 8) we get

γ r=0 deg( Q r ) + ω(Q γ-r ) + p-1 r=γ+1 deg( Q r ) + ω(Q p+γ-r ) = (γ + 1)λ + (p -γ -1)(λ -1) = n -p + 1.
It follows that

∆ p ( Q) + Ω p (Q) = n -p + 1 = ∆ p (Q) + Ω p ( Q). (10) 
Given m, j ∈ Z, we consider the following polynomials

N m,j (t) = 1 (m -1)! m-1 i=1 (t -j + i) if m > 1, N m,j (t) = 0 if m ≤ 0 and N 1,j (t) = 1. For Q(t) = j q j t j ∈ Q[t, t -1 ] such that Q(1) = 0, we define V m (Q, t) = j q j N m,j (t). Furthermore, let Q 0 , . . . , Q p-1 ∈ Q[t, t -1 ]
be the p-components of Q. We consider the polynomials U 0 , . . . , U p-1 ∈ Q[t, t -1 ] defined as follows U r = 0 if Q r = 0 and Q r (t) = (1t) ir U r (t) with U r (1) = 0 otherwise. For all 0 ≤ r ≤ p -1, we put m r = mi r and we define the function

H m (Q, .) : Z → Q by H m (Q, r + pk) = V mr (U r , k).
In order to illustrate these definitions we give the following examples. 

EXAMPLE 2.1 Let Q(t) = F 12 = (1-t 12 ) 2 (1-t 2 )(1-t 3 ) = 1 + t 2 +
(t) = Q 2 (t) = Q 3 (t) = Q 4 (t) = Q 5 (t) = Q 7 (t) = (1 + t), Q 1 (t) = 2t and Q 6 (t) = Q 8 (t) = Q 9 (t) = Q 10 (t) = Q 11 (t) = 2.
We also have

Q(t) = t 19 Q(t -1 ) = Q(t). ω 12 (Q) = 13, δ 12 (Q) = 6, Ω 12 (Q) = 1, ∆ 12 (Q) = 7. N 2,0 (t) = t + 1, N 2,1 (t) = t. U r = Q r for all r.
V 2 (U r , t) = 2t + 1 for r ∈ {0, 2, 3, 4, 5, 7}, V 2 (U 1 , t) = 2t and V 2 (U r , t) = 2(t + 1) for r ∈ {6, 8, 9, 10, 11}. We obtain H 2 (Q, 12k + r) = 2k + 1 for r ∈ {0, 2, 3, 4, 5, 7}, H 2 (Q, 12k + 1) = 2k and H 2 (Q, 12k + r) = 2(k + 1) for r ∈ {6, 8, 9, 10, 11}.

EXAMPLE 2.2 Let Q(t) = F 6 (t) = 1 + t 2 + t 3 + t 4 + t 5 + t 7 = (1-t 6 ) 2
(1-t 2 )(1-t 3 ) . We take p = 6, n = 7 and m = 2. We obtain

ω 6 (Q) = 7, δ 6 (Q) = 0, Ω 6 (Q) = 1, ∆ 6 (Q) = 1. U r = Q r for all r. N 2,0 (t) = t + 1, N 2,1 (t) = t. V 2 (U r , t) = t + 1 for r ∈ {0, 2, 3, 4, 5} and V 2 (U 1 , t) = t. H 2 (Q, 6k + r) = k + 1 for r ∈ {0, 2, 3, 4, 5} and H 2 (Q, 6k + 1) = k. We observe that H 2 (F 6 , .) = H 2 (F 12 , .). Given Φ(t) ∈ Q[[t, t -1 ]], we write Φ(t) = n ϕ(n)t n and we introduce g(Φ) = sup{n | φ(n) = 0}. S ′ (Φ) = {n ≥ 0 | ϕ(n) = 0}. S(Φ) = {0 ≤ n ≤ g(Φ) | ϕ(n) = 0}. N ′ (Φ) = Card S ′ (Φ). N (Φ) = Card S(Φ). LEMMA 2.3 Given m ∈ Z and Q(t) = j q j t j ∈ Q[t, t -1 ] such that Q(1) = 0, we consider Φ(t) = n ϕ(n)t n the expansion of (1 -t) -m Q(t)
as a formal power series. Then, the following conditions hold

1. ϕ(n) = V m (Q, n) for all n > deg(Q) -m.
2. We suppose that m > 0 and Q(t) has nonnegative coefficients. Then,

(a) ϕ(n) = 0 ⇔ n < ω(Q). (b) g(Φ) = ω(Q) -1. (c) N ′ (Φ) = max{ω(Q), 0}. In particular, N ′ (Φ) = ω(Q) if Q(t) ∈ Q[t]. PROOF. 1. Suppose m > 0. We have Φ(t) = (1-t) -m Q(t) = ( j q j t j ) j≥0 j+m-1 m-1 t j . So ϕ(n) = n j=ω(Q) q j n-j+m-1 m-1
. Moreover, we have

n -j + m -1 m -1 = 1 (m -1)! m-1 i=1 (n -j + i) if n ≥ j. Hence ϕ(n) = V m (Q, n) if n ≥ deg(Q), in particular, the statement is true for m = 1. Now, suppose m > 1 and deg(Q) -m < n < deg(Q) then -m < n -deg(Q) ≤ n-j < 0 for all j such that n < j ≤ deg(Q). It follows that there exists 1 ≤ i ≤ m-1 such that n -j + i = 0 thus N m,j (n) = 0. So we can write V m (Q, n) = n j=ω(Q) q j N m,j (n) = n j=ω(Q) q j n -j + m -1 m -1 = ϕ(n). Furthermore, if m ≤ 0 then ϕ(n) = 0 for n > deg(Q) -m because Φ(t) ∈ Q[t, t -1 ] and deg(Q) -m = deg Φ(t). 2. Follows from the fact that ϕ(n) = n j=ω(Q) q j n-j+m-1 m-1 > 0 if n ≥ ω(Q) and ϕ(n) = 0 if n < ω(Q) THEOREM 2.4 Let m ∈ Z and p ∈ N. Given Q(t) = j q j t j ∈ Q[t, t -1 ] such that Q(1) = 0, we consider Φ(t) = n ϕ(n)t n the expansion of (1 -t p ) -m Q(t)
as a formal power series. Then the following conditions hold

1. ϕ(n) = H m (Q, n) for all n > deg(Q) -mp.
2. We suppose that m > 0 and Q(t) has nonnegative coefficients. Then,

(a) ϕ(pk + r) = 0 ⇔ k < ω(Q r ). (b) g(Φ) = ω p (Q) -p = deg(Q) -p -δ p ( Q) where Q(t) = t deg(Q) Q(t -1 ). (c) N ′ (Φ) = p-1 r=0 max{ω(Q r ), 0}. In particular, N ′ (Φ) = Ω p (Q) if Q(t) ∈ Q[t]. PROOF. We write Φ(t) = p-1 r=0 t r (1 -t p ) -m Q r (t p ) = p-1 r=0 t r (1 -t p ) -mr U r (t p ) = p-1 r=0 t r Φ r (t p ) where Φ r (t) = (1 -t p ) -mr U r (t p ) = k ϕ r (k)t k . It follows from lemma 2.3.1, that ϕ(pk + r) = ϕ r (k) = V mr (U r , k) for all k > deg(U r ) -m r . There- fore, ϕ(n) = H m (Q, n) for n > deg(Q) -pm because n = pk + r > deg(Q) -pm ≥ p(deg(Q r ) -m) + r ⇒ k > deg(Q r ) -m = deg(U r ) -m r . 2 (a) follows from lemma 2.3.2 (a). b) We have g(Φ) = max{pg(Φ r ) + r | 0 ≤ r ≤ p -1} = max{p(ω(Q r ) -1) + r | 0 ≤ r ≤ p -1} = ω p (Q) -p. Moreover, if Q r = 0 for all r we have ω p (Q) -p = deg(Q) -p -δ p ( Q) by (9). Since ω p (Q) = +∞ = -δ p ( Q) if Q r =
0 for some r, the equality is still true in this case. c) Follows from lemma 2.3.2 (c) LEMMA 2.5 Let ξ = e 2iπ p be a primitive p-th root of unity and

Q(t) = p-1 r=0 t r Q r (t p ) ∈ Q[t, t -1 ].
Then, the following conditions are equivalent

1. Q(ξ j ) = 0 for 0 < j < p. 2. Q(1) = pQ r (1) for 0 ≤ r ≤ p -1. PROOF. By successive substitutions of 1, ξ, . . . , ξ p-1 for t in Q(t) = p-1 r=0 t r Q r (t p ) we obtain a Vandermonde linear system p-1 r=0 ξ rj Q r (1) = Q(ξ j ) for j = 0, . . . , p-1. If Q(ξ) = • • • = Q(ξ p-1 ) = 0, the unique solution is Q r (1) = 1 p Q(1) for ev- ery 0 ≤ r ≤ p -1. Conversely, if Q(1) p is the common value of the Q r (1) then Q(1) p p-1 r=0 ξ rj = 0 = Q(ξ j ) for j = 1, . . . , p -1 LEMMA 2.
6 Let p, q, u be positive integers and

Q(t), K(t) ∈ Q[t, t -1 ] such that p = qu and K(t u ) = Q(t).
We denote by Q r (resp. K s ) the p-components of Q (resp. the q-components of K). Then,

1. Q su = K s and Q r = 0 for all r / ∈ uZ.
2. We set ξ = e 2iπ p , then the following conditions are equivalent (a) Q(ξ j ) = 0 for 0 < j < q.

(b) Q(ξ q ) = qQ r (1) = K(1) for all r ∈ uZ.

PROOF. We can write

Q(t) = K(t u ) = q-1 s=0 t us K s (t p ). It follows from the unique- ness of the Q r that Q su = K s for 0 ≤ s < q. Now, Q(ξ q ) = K(1) and Q(ξ j ) = K(α j ) with α = e 2iπ q
= ξ u . We apply lemma 2.5

For every p ∈ lN, we set

F p (t) = d i=1 p a i -1
j=0 t jai the Frobenius polynomial of A. We write F p,r for the p-components of F p . It is easy to see that for n = deg

(F p ) = pd - d i=1 a i , we have F p (t) = t n F p (t -1 ) = F p (t).
Let us write p = qρ and a i = b i ρ for all 1 ≤ i ≤ d, where ρ = gcd(A). So we can write F p (t) = K(t ρ ) with

K(t) = (1 -t q ) d d i=1 (1 -t bi )
.

Moreover, for 0 < j < q the number ξ j = e 2ijπ q is a root of d i=1 (1t bi ) of multiplicity < d because gcd(b 1 , .., b d ) = 1 whereas ξ j is a root of (1t q ) d of multiplicity = d, then K(ξ j ) = 0. It follows from lemma 2.6 that F p,r = K r ρ if r ∈ ρZ and F p,r = 0 otherwise. We also deduce that F p,r (1) = 1 q K(1)

= ρp d-1 d i=1 ai if r ∈ ρZ

FROBENIUS NUMBER AND NUMERICAL SEMIGROUPS

In the case of the Frobenius polynomial

F p we set ω p (F p ) = ω p (A), δ p (F p ) = δ p (A), Ω p (F p ) = Ω p (A), ∆ p (F ) = ∆ p (A).
THEOREM 3.1 For every p ∈ lN, we have

1. g(A) = ω p (A) -p = p(d -1) - d i=1 a i -δ p (A) = l(d -1) - d i=1 a i -δ l (A). 2. N ′ (A) = Ω p (A) = Ω l (A). 3. N (A) = ∆ p (A) -δ p (A) = ∆ l (A) -δ l (A).
PROOF. We see that for every p ∈ lN, the function proved by Chrzastowski-Wachtel and mentioned in [START_REF] Raczunas | A Diophantine problem of Frobenius in terms of the least common multiple[END_REF]. COROLLARY 3.4 Suppose gcd(A) = 1. Then the following conditions hold

Φ(t) = (1 -t p ) -d F p (t) = n s(n)t n is the generating function of the s(n) so g(A) = g(Φ).
1. S(A) is symmetric ⇔ ∆ p (A) = Ω p (A) + δ p (A) for some p ∈ lN ⇔ ∆ p (A) = Ω p (A) + δ p (A) for all p ∈ lN. 2. S(A) is peudo-symmetric ⇔ ∆ p (A) + 1 = Ω p (A) + δ p (A) for some p ∈ lN ⇔ ∆ p (A) + 1 = Ω p (A) + δ p (A) for all p ∈ lN.
We suppose gcd(A) = 1. Let q 1 , .., q d be positive integers such that for all 1 ≤ i ≤ d, q i is a divisor of gcd(a 1 , .., a i-1 , a i+1 , .., a d ). So gcd(q i , q j ) = 1 for i = j because gcd(A) = 1. We set q = d j=1 q j , qi = j =i q j , a i = b i qi and B = {b 1 , .., b d }. We have gcd(B) = 1 and l = lcm(A) = qlcm(B). For p ∈ lN, we write p = qu with u ∈ lcm(B)N. THEOREM 3.5 The following formulas hold

1. δ p (A) = qδ u (B). 2. ω p (A) = qω u (B) + d i=1 (q i -1)a i . 3. Ω p (A) = qΩ u (B) + 1 2 d i=1 (q i -1)a i -q + 1 . 4. ∆ p (A) = q∆ u (B) + 1 2 d i=1 (q i -1)a i -q + 1 .
In order to prove this theorem we need a lemma. LEMMA 3.6 Let q and c be two positive integers, B = {b 1 , .., b d-1 , c}, and A = {a 1 , .., a d-1 , c} where a 1 = qb 1 , .., a d-1 = qb d-1 . Suppose gcd(A) = 1 and choose p ∈ lcm(B)N so gcd(q, c) = 1 and qp ∈ lcm(A)N. Then, the following formulas hold

1. δ qp (A) = qδ p (B).
2. ω qp (A) = qω p (B) + (q -1)c. [START_REF] Bourbaki | Algèbre commutative. Chapitre[END_REF]. Ω qp (A) = qΩ p (B) + 1 2 (q -1)(c -1). 4. ∆ qp (A) = q∆ p (B) + 1 2 (q -1)(c -1).

PROOF. We denote by

F (t) = F p (t) = (1 -t p ) d (1 -t c ) d-1 i=1 (1 -t bi ) = p-1 r=0 t r F r (t p )
the Frobenius polynomial associated with B and

G(t) = G qp (t) = (1 -t qp ) d (1 -t c ) d-1 i=1 (1 -t ai ) = qp-1 s=0 t s G s (t qp )
the Frobenius polynomial associated with A. We see that

G(t) = (1 + t c + .. + t (q-1)c )F (t q ) = (1 + t c + .. + t (q-1)c ) p-1 r=0 t q r F r (t qp ).
So we obtain

G(t) = k=ic+jq 0≤i≤q-1 t k F j (t qp ) = 0≤k=ic+jq≤qp-1 0≤i≤q-1 t k F j (t qp ) + k>qp-1 0≤i≤q-1 t k-qp t qp F j (t qp )
By identification we deduce that G s (t qp ) = F j (t qp ) when s = ic + jq and G s (t qp ) = t qp F j (t qp ) when s = ic + jqqp = ic -(pj)q. In particular, we have deg(G s ) = deg(F j ) and ω(G s ) = ω(F j ) when s = ic + jq and deg(G s ) = 1 + deg(F j ) and ω(G s ) = 1 + ω(F j ) when s = ic + jqqp. Therefore, for all s which can be written in the form s = ic + jq we get deg(t s G s (t qp )) = ic + jq + qp deg(F j ) and ω(t s G s (t qp )) = ic + jq + qpω(F j ). For all s which can be written in the form s = ic + jqqp, we get deg

(t s G s (t qp )) = ic + jq -qp + qp(1 + deg(F j )) = ic + jq + qp deg(F j ) and ω(t s G s (t qp )) = ic + jq -qp + qp(1 + ω(F j ). It follows that δ qp (G) = min{ic + jq + qp deg(F j )} = q min{j + p deg(F j )} = qδ p (F ) and ω qp (G) = max{ic+jq+qpω(F j ) } = (q-1)c+q max{j+pω(F j ) } = qω p (F )+(q-1)c.
We also have

Ω qp (G) = s=ic+jq ω(G s ) + s=ic+jq-qp ω(G s ) = s=ic+jq ω(F j ) + s=ic-jq (ω(F j ) + 1) = qΩ p (F ) + N ′ (c, q) = qΩ p (F ) + 1 2 (q -1)(c -1). It follows that ∆ qp (G) = Ω qp (G) + δ qp (G) = q(Ω p (F ) + δ p (F )) + 1 2 (q -1)(c -1)
PROOF OF THEOREM 3.5. By induction on the number h = dk + 1 such q 1 = q 2 = .. = q k-1 = 1. If h = 1 the result is given by lemma 3.6. Suppose that the result is true when q 1 = q 2 = .. = q k-1 = 1. We choose p ∈lcm(A)N and we set v = p q k , t i = q i for i = k and t k = 1. Then, we get ti = qi q k for all i = k, tk = qk and t = q q k . We also have ai q k = bi qi q k = b i ti for all i = k and a k = b k tk . We put c i = b i ti for all i and C = {c 1 , .., c d }, thus a i = q k c i for all i = k and a k = c k . It follows from lemma 3.6 and the induction hypothesis that 1)

δ p (A) = q k δ v (C) = q k tδ u (B) = qδ u (B). 2) ω p (A) = q k ω v (C) + (q k -1)c k = q k { tω u (B) + d i=1 (t i -1)c i } + (q k -1)c k = qω u (B) + d i=1 (q i -1)a i . 3)Ω p (A) = q k Ω v (C) + 1 2 (q k -1)(a k -1) = q k { tΩ u (B) + 1 2 ( d i=1 (t i -1)c i -t + 1)} + 1 2 (q k -1)(a k -1) = qΩ u (B) + 1 2 d i=1 (q i -1)a i -q + 1 . 4) ∆ p (A) = Ω p (A) + δ p (A) = q∆ u (B) + 1 2 d i=1 (q i -1)a i -q + 1 THEOREM 3.7
The following formulas hold

1. g(A) = qg(B) + d i=1 (q i -1)a i . 2. N ′ (A) = qN ′ (B) + 1 2 d i=1 (q i -1)a i -q + 1 . 3. N (A) = qN (B) + 1 2 d i=1 (q i -1)a i -q + 1 .
REMARK 3.8 In formula 1) if we take q 1 = .. = q d-1 = 1 then we obtain a Brauer and Shockley formula [START_REF] Brauer | On a problem of Frobenius[END_REF] and if we take q i = gcd(A\{a i }) for all i, we obtain a Raczunas and Chrzastowski-Wachtel formula [START_REF] Raczunas | A Diophantine problem of Frobenius in terms of the least common multiple[END_REF]. Moreover formula 2) is a generalization of a Rödseth formula [START_REF] Rödseth | On a linear Diophantine problem of Frobenius[END_REF] which is obtained for q 1 = .. = q d-1 = 1. THEOREM 3.9 The following conditions hold 1. S(A) is symmetric if and only if S(B) is symmetric.

2. If q > 1 then S(A) is not pseudo-symmetric. COROLLARY 3.10 Suppose there exists i such that b i = 1 (i.e. a i = qi ). Then, S(A) is symmetric and we have

1. (a) g(A) = d i=1 (q i -1)a i -q. (b) N (A) = N ′ (A) = 1 2 ( d i=1
(q i -1)a iq + 1). 2. Suppose, in addition, that b i = 1 (i.e. a i = qi ) for all i. Then, we have

(a) g(A) = l(d -1) -d i=1 a i . (b) N (A) = N ′ (A) = 1 2 (l(d -1) - d i=1 a i + 1). PROOF. Since 1 ∈ B, we have S(B) = N 0 then g(B) = -1 and N (B) = N ′ (B) = 0. So 1.
follows from theorem 3.7. To prove 2., we observe that q i a i = q = l = lcm(A) if a i = qi for all i

COROLLARY 3.11 Let b, d, h, v be positive integers such that b ≥ d ≥ 2 and gcd(b, v) = 1. Let B = {b, hb + v, .., hb + (i -1)v, .., hb + (d -1)v}, ((b 1 , .., b d ) is called an "almost" arithmetic sequence). Then, S(A) is symmetric ⇔ S(B) is symmetric ⇔ d = 2 or b ≡ 2 mod(d -1).
PROOF. We write b -1 = β(d -1) + α with 0 ≤ α < d -1, and we use the following known formulas g 

(B) = h b-2 d-1 + h -1 b + bv -v [8] and N ′ (B) = 1 2 {(b -1)(hβ + v + h -1) + hα(β + 1)} [11]
P r ∈ Q[t] such that d = sup{deg(P r ) | 0 ≤ r ≤ p -1}.
A quasi-polynomial P is said to be uniform if all the P r have the same degree d and the same leading coefficient c(P ). Given a function h : Z → Q and r ∈ Z, we define h r : Z → Q, k → h(pk + r). We say that h is a quasi-polynomial function if there exists a quasi-polynomial P = (P 0 , . . . , P p-1 ) such that h r (k) = P r (k) for all k ≫ 0 and 0 ≤ r ≤ p. We also say that h is P -quasi-polynomial. It is easily seen that a quasi-polynomial function h has a minimal period and every period of h is a multiple of this minimal period. Furthermore, for a fixed period p, h is a P -quasi-polynomial for a unique sequence P = (P 0 , . . . , P p-1 ). A P -quasipolynomial h is said to be uniform if P is uniform. We write deg(h) = deg(P ) and c(h) = c(P ). We denote by F (Z) the set of all functions h : Z → Q. For every integer i ≥ 0 we consider the operators E i and ∆ i , which act as follows:

(E i h)(n) = h(n + i), (∆ i h)(n) = h(n + i) -h(n).
We set E 0 = I, E 1 = E and ∆ 1 = ∆ so ∆ = E -I, ∆ 0 = 0 and ∆ i = E i -I. For a ≥ 0 and n ≥ 1, we have

(I + E a + • • • + E (n-1)a ) • (E a -I) = E na -I = ∆ na .
LEMMA 4.2 Given h ∈ F (Z), then the following identities hold

1. (E pi h) r = E i h r for i ≥ 0. 2. (∆ m p h) r = ∆ m h r for m ≥ 0. PROOF. 1. We write (E pi h) r (k) = (E pi h)(pk + r) = h(p(k + i) + r) = h r (k + i) = (E i h r )(k). 2. We have ∆ m p = (E p -I) m = m i=0 (-1) m-i m i E pi . Therefore, (∆ m p h) r = m i=0 (-1) m-i m i (E pi h) r = m i=0 (-1) m-i m i E i h r = (E -I) m h r = ∆ m h r PROPOSITION 4.3 A function h ∈ F (Z)
is quasi-polynomial of period p and degree d if and only if there exists (c 0 , . . . , c p-1 ) = (0, . . . , 0) such that (∆ d p h) r (k) = c r for all k ≫ 0 and 0 ≤ r ≤ p -1.

PROOF. Follows from lemma 4.2 and [6, lemma 4.

1.2] COROLLARY 4.4 For h ∈ F (Z) , if d i=1 (E ai -I)(h)(n) = 0 for n ≫ 0, then h is quasi-polynomial of period p ∈ lN and degree < d. PROOF. Follows from ∆ d p = (E p -I) d = ( d i=1 ( p a i -1 j=0 E jai )) • ( d i=1 (E ai -I) EXAMPLE 4.5 Given m ∈ Z and Q(t) ∈ Q[t, t -1 ] such that Q(1) = 0. The function H m (Q, .
) associated with Q is a P -quasi-polynomial of period p, where P = (P 0 , .., P p-1 ) is given by P r = V mr (U r , .).

REMARK 4.6 Suppose m > 0. Then, we have

1. deg(H m (Q, .)) = m -1.
2. m r > 0 ⇒ deg(P r ) = m r -1 and c(P r ) = Ur(1) (mr-1)! .

If

Q(1) = pQ r (1) = 0 for all 0 ≤ r ≤ p -1, then H m (Q, .) is uniform of degree m -1 and its leading coefficient is c(H m (Q, .)) = Qr (1) (d-1)! = Q(1) p(d-1)! .
4. Suppose p = qu and there exists

K(t) ∈ Q[t, t -1 ] such that K(t u ) = Q(t), we set ξ = e 2iπ p .
If Q(ξ j ) = 0 for 0 < j < q and Q(ξ q ) = 0. Then, the following conditions hold (a) P r = 0 if r / ∈ uZ.

(b) deg(P r ) = m -1 and c(P r ) = Qr (1) (m-1)! = Q(ξ q ) p(m-1)! if r ∈ uZ.
PROPOSITION 4.7 Let m > 0 be an integer and h ∈ F (Z) be a function satisfying h(n) = 0 for n ≪ 0. We consider Φ(t) = n h(n)t n . Then, the following conditions are equivalent 1. h is quasi-polynomial of period p and of degree m -1.

(1t

p ) m Φ(t) = Q(t) ∈ Z[t, t -1 ] and there exists a p-component Q r of Q such that Q r (1) = 0.
3. There exists a unique

Q(t) ∈ Z[t, t -1 ] such that degH m (Q, .) = m -1 and H m (Q, n) = h(n) for n > deg(Q) -pm.
In particular, h is a uniform quasi-polynomial function of period p and degree m-1 if and only if there exists a unique For instance, the number of solutions of the equation 2x 1 + 3x 2 = n is s(n) = H 2 (F 6 , n) (see example 2.2). EXAMPLE 4.10 Let R 0 be a commutative ring and R = R 0 [t 1 , . . . , t d ]. Suppose that R is Z-graded in such a way that every element of R 0 is homogeneous of degree zero and each t i is homogeneous of degree a i . Let M = ⊕ n∈Z M n be a finitely generated graded R-module such that the length l R0 (M n ) of each M n as an R 0 -module is finite. The numerical function H 0 (M, .) : Z → Z, n → l R0 (M n ) is called the Hilbert function of M . The iterated cumulative Hilbert functions are defined by H j+1 (M, n) = n i=0 H j (M, i). The Poincaré series of M is denoted by P M (t) = n H 0 (M, n)t n . By the Hilbert-Samuel theorem [3, 4.2 Theorem 1] there exists Q M (t) ∈ Z[t, t -1 ] such that Q M (1) = 0 and P M (t) = QM (t) d i=1 (1-t a i ) . Moreover, it is known that H 0 (M, .) is quasi-polynomial [START_REF] Bavula | Identification of the Hilbert function and Poincaré series, and the dimension of modules over filtred rings[END_REF]. Given p ∈ lN and j ≥ 1 we set a d+1 = • • • = a d+j = 1. So the generating function of the H j (M, .) is

Q(t) ∈ Z[t, t -1 ] such that Q(1) = 0, Q(e j 2iπ p ) = 0 for all 0 < j < p and H m (Q, n) = h(n) for n > deg(Q) -pm. In this case, the leading coefficient is c(h) = Q(1) p(m-1)! . PROOF. Assume 1. and set Φ r (t) = n h r (n)t n for all 0 ≤ r ≤ p -1. It follows from [6, 4.1.7] that (1 -t) m Φ r (t) = Q r (t) ∈ Z[t, t -1 ]. Since deg(h) = m -1 ≥ 0, there exists 0 ≤ r ≤ p -1 such that Q r (1) = 0. Setting Q(t) = p-1 r=0 t r Q r (t p )
n H j (M, n)t n = P M (t) (1 -t) j = Q M (t) d+j i=1 (1 -t ai )
.

It follows from corollary 4.8 that H j (M, n) = H d+j (Q M F p , n) for all j ≥ 0 and n > deg(Q M )a i . Moreover, if j > 0 or j = 0 and gcd(A) = 1 then H j (M, .) is a uniform quasi-polynomial function of degree d + j -1 and of leading coefficient c(H j (M, n)) = QM (1)p d+j-1

(d+j-1)! d i=1 ai .

1 . 3 . 4 .

 134 1. follows from theorem 2.4.2 (b). 2. follows from theorem 2.4.2 (c). 3. is a consequence of (10) COROLLARY 3.2 For every p ∈ lN, we haveg(A) = p(d -1) -d i=1 a i if and only if δ p (A) = 0.2. g(A) = +∞ if and only if ρ > 1. If ρ = 1, we have the following upper bound for the Frobenius number g(A) ≤ l(d -1) -If there exists h such that 1 ≤ h ≤ d and gcd(a 1 , . . . , a h ) = 1 then g(A) ≤lcm(a 1 , . . . , a h )(h -1) -h i=1 a i . REMARK 3.3 The upper bound we give in 3) improves the following inequality g(A) ≤ l(d -1)

EXAMPLE 3 .

 3 12 Let A = {150, 462, 840, 1365} = {5(2 × 3 × 5), 11(2 × 3 × 7), 12(2 × 5 × 7), 13(3 × 5 × 7)}. We set q 1 = 7, q 2 = 5, q 3 = 3, q 4 = 2 and B = {5, 11, 12, 13}. This is an almost arithmetic sequence with b = 5, v = 1, h = 2, d = 4. We see that b ≡ 2 mod(d -1) hence S(B) is symmetric and we have g(B) = 19, N ′ (B) = N (B) = 10. Moreover, it follows from theorem 3.9 that S(A) is symmetric. Using theorem 3.7 we obtain g(A) = 210 × 19 + 6 × 150 + 4 × 462 + 2 × 840 + 1365 = 9783. N ′ (A) = N (A) = 210 × 10 + 1 2 (6 × 150 + 4 × 462 + 2 × 840 + 1365 -210 + 1) = 4892. 4 QUASI-POLYNOMIALS DEFINITION 4.1 A quasi-polynomial P of period p and degree d is a sequence P = (P 0 , . . . , P p-1 ) with

d i=1 ( 1 -

 1 t ai ) = (1t p ) -d N (t)F p (t)as a formal Laurent series. Then,h(n) = H d (N F p , n) for n > deg(N ) -d i=1 a i . Moreover, if in addition gcd(A) = 1, then h = H d (N F p , .) is uniform of degree d -1and its leading coefficient is c(h) = N (1)p d-1 (d-1)! d i=1 ai . EXAMPLE 4.9 We write s(n) for the number of solutions of the equation a 1 x 1 + .. + a d x d = n in nonnegative integers we get s(n) = H d (F p , n) for all n ≥ 0 where p ∈ lN. In particular, if gcd(A) = 1 then n → s(n) is a uniform quasi-polynomial function of degree d -1 and of leading coefficient c(s) = p d-1 (d-1)! d i=1 ai .

  t 3 + t 4 + t 5 + 2t 6 + t 7 + 2t 8 + 2t 9 + 2t 10 + 2t 11 + t 12 + 2t 13 + t 14 + t 15 + t 16 + t 17 + t 19 . We take p = 12, n = 19 and m = 2. We write Q(t) = (1 + t 12 ) + t(2t 12 ) + t 2 (1 + t 12 ) + t 3 (1 + t 12 ) + t 4 (1 + t 12 ) + t 5 (1 + t 12 ) + 2t 6 + t 7 (1 + t 12 ) + 2t 8 + 2t 9 + 2t 10 + 2t 11 . We see that the 12-components of Q(t) are Q 0

  we deduce 2. 2. ⇒ 3. follows from theorem 2.4. 3. ⇒ 1. follows from the definition of H m . The particular case follows from lemma 2.6 and remark 4.6 COROLLARY 4.8 Let N (t) be an element of Z[t, t -1 ] such that N (1) = 0 and p ∈ lN. We set Φ(t) = n h(n)t n the expansion of

	N (t)