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ABSTRACT — In the vast research field of intelligent 

transportation systems, the problem of detection (and 
recognition) of environment objects, for example pedestrians 
and vehicles, is indispensable but challenging. The research 
work presented in this paper is devoted to stereo-vision based 
method with pedestrian detection as its application (a sub-part 
of the French national project “LOVe”: Logiciels 
d’Observation des Vulnerables). With a prospect of benefiting 
from an innovative method i.e. the genetic evolutionary “flies” 
method proposed by former researchers on continuous data 
updating and asynchronous data reading, we have carried on 
the “flies” method through the task of pedestrian detection 
affiliated with the “LOVe” project. Compared with former 
work of the “flies” method, two main contributions have been 
incorporated into the architecture of the “flies” method: first, 
an improved fitness function has been proposed instead of the 
original one; second, a technique coined “concentrating” has 
been integrated into the evolution procedure. The improved 
“flies” method is used to offer range information of possible 
objects in the detection field. The integrate scheme of 
pedestrian detection is presented as well. Some experimental 
results are given for validating the performance improvements 
brought by the improved “flies” method and for validating the 
pedestrian detection method based on the improved “flies” 
method.  

I. INTRODUCTION 
 Research works on intelligent transportation systems 
have progressed rapidly around the world and have been 
showing more and more promising results for enhancing 
urban traffic safety and efficiency. The problem of detection 
(and recognition) of environment objects, for example 
pedestrians and vehicles, is indispensable but challenging. 
Many research works have been devoted to the problem; take 
pedestrian detection as an example, mono-vision based 
methods have been introduced in [1][2] while laser-scanner 
based methods in [3]. Experiences show that methods based 
on single on-vehicle sensor have considerable limitations due 
to the limited capability of the sensor itself. Therefore, the 
fusion strategy among multiple on-vehicle sensors has been 
exploited to achieve either faster computation or more 

desirable detection results. The method using fusion between 
laser scanner and mono-camera has been discussed in [4]. The 
method based on stereo-vision (i.e. the fusion between two 
mono-cameras) has long since been researched for indoor 
applications [5] and has later been extended to outdoor 
applications as well [6][7]. The research work presented in 
this paper is devoted to stereo-vision based method with 
pedestrian detection as its application (a sub-part of the 
multi-participants French national project “LOVe” (
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Logiciels 
d’Observation des Vulnerables) which aims at localization of 
vulnerable objects, e.g. pedestrians, in a traffic scenario [8].   
 Stereo-vision techniques enable the process of 
recovering the range information of the environment from a 
pair of image views. This process often involves establishing 
correspondence between both images, either by finding 
corresponding pixels i.e. the so-called disparity map (dense 
correspondence) [7] or by finding corresponding edges 
(sparse correspondence) [6][9]. The methods based on edge 
correspondence inevitably incur the problem of edge 
extraction which itself is challenging and susceptible to 
environment conditions; while the methods based on 
disparity map show robust detection result but the 
computational demand is forbidding for real-time 
applications. Besides these commonly used stereo-vision 
techniques, Louchet et al have put forward an innovative 
method which they label as the “flies” method [10][11]. 
Instead of establishing correspondence between 2-D images, 
the “flies” method directly evaluate the fitness (defined in 
certain way) of a group of 3-D points i.e. “flies”, and use 
genetic evolutionary techniques to converge these flies to 
places with high fitness values (which correspond to real 3-D 
objects). With a prospect of benefiting from the “flies” 
method on continuous data updating and asynchronous data 
reading, we have carried on the “flies” method through the 
task of pedestrian detection affiliated with the “LOVe” 
project. 
 Compared with former work of the “flies” method, two 
main contributions have been incorporated into the 
architecture of the “flies” method: first, an improved fitness 
function has been proposed instead of the original one; 
second, a technique coined “concentrating” has been 
integrated into the evolution procedure. The improved “flies” 
method is used to offer range information of objects in the 
detection field (latter referred to as “OOI”, Objects Of 
Interest). The paper is organized as follows: The basic 
philosophy of the “flies” method is briefly reviewed and the 
limitation of the original fitness function is analyzed in 
section 2; An improved fitness function as well as a 



“concentrating” technique is proposed in section 3; The 
integrate scheme of pedestrian detection is described in 
section 4 while experimental results are presented in section 5, 
followed by a conclusion in section 6. 

II. THE FLIES METHOD 

A. Review of the philosophy of the flies method [11] 
 A fly is defined as 3-D point (x , y , z); its projection on 
the left image is denoted as (uL , vL) and latter referred to as 
“left projection” while its projection on the right image is 
denoted as (uR , vR) and referred to as “right projection”; The 
(uL , vL) and (uR , vR) can be easily computed from (x , y , z) 
with calibrated camera parameter. If a fly is situated on an 
opaque object, the neighborhoods of its left projection and 
right projection are almost identical; otherwise, there is large 
difference between the neighborhoods of its two projections. 
Based on this heuristic observation, a fitness function can be 
defined to evaluate the degree of similarity between the 
neighborhoods of a fly’s left projection and right projection. 
In other words, the fitness function is defined in a way that a 
high fitness value is generally computed for a fly on an object 
but a low fitness value for a fly off an object. The fitness 
function used in former research [11] is re-written here; see 
Eq.(1): 
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Where the denominator means the summed square of the 
grey-level difference between corresponding pixels in the two 
neighborhoods of the fly’s left and right projections; the 
numerator ‘G’ is “defined as the square root of an image 
gradient norm” [11].  
 The philosophy of the flies method is to detect 
environment objects by searching more and more flies with 
high fitness value through genetic evolution. Genetic 
evolution techniques are used to evolve a group of randomly 
initialized flies so that they may converge onto visible objects. 
The genetic evolution techniques [11] include 1) selection: 
retaining those best individuals; 2) sharing: reducing the 
fitness values of flies located in crowded areas; 3) mutation: 
adding random variances to the flies; 4) crossover: bearing 
new fly which is randomly located on the line segment of its 
parent flies. After a certain number of evolutionary iterations, 
the flies are expected to gather onto the surfaces of visible 
objects in the detection field.  

B. The limitation of the original fitness function 
 Consider the fitness function Eq.(1); the inverse of the 
denominator gives high fitness values to flies whose left and 
right projections have similar neighborhoods; the numerator 
‘G’, as explained in [10], is a normalizing factor that is 
adopted so as to reduce the fitness values of flies over 
insignificant regions, especially uniform regions. The fitness 
function Eq.(1) seems plausibly effective. However, it is 

susceptible to quasi-uniform regions with small variances of 
high spatial frequencies.   
 A piece of synthetic “uniform” patch is composed for 
showing the limitation of Eq.(1), as shown at the left side in 
Fig.1 (a). There is small grey-level variance (difficult to see 
by naked eye) within it; the variance is indicated by a 
white-black alternating pattern on its immediate right side. 
Consider the fly ‘A’, the neighborhoods of its left and right 
projections are exactly the same, resulting in the denominator 
in Eq.(1) being zero. Although the numerator ‘G’ is small (but 
non-zero), the fitness value computed via Eq.(1) is high 
(infinite). As a consequence, the fly ‘A’ may be mistaken as 

being situated on the patch. 

  
(a)        (b) 

Fig.1. (a) the quasi-uniform pattern; (b) a real patch of road surface

 Above synthetic example is a bit exaggerated; in real 
situations, however, the problem of marking high fitness 
value to flies with wrong depth due to Eq.(1) still exists. This 
often happens where flies are in front of some quasi-uniform 
regions such as road surfaces; see Fig.1 (b). A simple tactic of 
adding a positive constant to the denominator so as to avoid it 
being zero does not help much.   

III. AN IMPROVED FITNESS FUNCTION AND A 
“CONCENTRATING” TECHNIQUE 

 The original flies method has been briefly reviewed and 
the limitation of the original fitness function has been 
analyzed in the previous section. In this section, we are 
going to propose first an improved fitness function and then 
a concentrating technique. 

A. The improved fitness function  
 Before any fitness function is constructed, it’s better to 
consider which features deserve high fitness value (called 
“desirable features”). As described in former work [11], 
desirable features are considered from two aspects: a) 
similarity and b) informativeness. “Similarity” means the 
similarity between the two neighborhoods of a fly’s left and 
right projections; the more similar the two neighborhoods are, 
the higher the fitness value is. “Informativeness” means the 
extent of variance within the neighborhoods. The more 
informative the neighborhoods are (like those with a lot of 
textures and contrasts), the higher the fitness value is. In the 
original fitness function Eq.(1), the “similarity” is measured 
by the summed square difference (SSD), i.e. the summed 
square of the grey-level difference between corresponding 
pixels in the two neighborhoods; while the “informativeness” 
is measured by the square root of an image gradient norm.   
 The limitation of the original fitness function has 
already been analyzed. Besides, using the SSD to measure the 
similarity (though it is simple and direct) between the two 



neighborhoods has another limitation. Because of the 
limitation of camera calibration and image rectification and 
because of the influence of quantization process, even a fly is 
right on an object, the neighborhoods of its two projections 
still have some differences which are often likely to be 
increased in proportional to the extent of contrast within the 
neighborhoods. In other words, the more and larger the 
variations are there in an area, the more difficult it is for this 
area’s projections on both images to be the same. As a result, 
the SSD tends to mark lower scores for informative regions 
than non-informative regions, which is not desirable.      

The to-be-proposed fitness function is also constructed 
based on considerations from the two aspects “similarity” and 
“informativeness”. Instead of the SSD which takes into 
account strictly the pixel-to-pixel difference between the two 
neighborhoods, a new fitness function based on covariance 
and the difference of grey-level mean is proposed, shown in 
Eq.(2):  
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Where (uL , vL) and (uR , vR) are respectively the left and right 
projections of the fly; their neighborhoods are respectively 
L(uL+i , vL+j) (called “left neighborhood”) and R(uL+i , vL+j) 
(called “right neighborhood”) for i=-uSz, … , +uSz; 
j=-vSz, … , +vSz; Lj(fly) is the grey-level mean of row j in the 
left neighborhood while Rj(fly) is the grey-level mean of row j 
in the right neighborhood. It is worth noting that the objects 
concerned (pedestrians) are normally vertical for our camera 
configuration; thus horizontal variances are more useful than 
vertical variances. This is why the new fitness function is 
constructed in a “row-by-row” manner. 
 The Cj(fly) is constructed in accordance with standard 
definition of covariance; the Dj(fly) is the exponential 
function in terms of the absolute difference of the grey-level 
means of two corresponding rows. The considerations for 
“similarity” and “informativeness” are integrated 
comprehensively in the new fitness function. If the two 
neighborhoods have similar grey-levels on general (then 
Dj(fly) is large) and they are informative and similar (then 
Cj(fly) is large), a high fitness value is computed via Eq.(2). 
Otherwise, either Cj(fly) or Dj(fly) might be small, resulting in 
a low fitness value. More words hovering around the 
“similarity” aspect, the criterion of measuring similarity by 
the difference of grey-level mean and the covariance is a bit 
“loose” compared with the SSD. It is this “looseness” that 
gives some tolerance to the inaccuracy of camera calibration 
and image rectification and the influence of quantization 
process. The performance improvements brought by the new 

fitness function are demonstrated in latter sections. 

B. The concentrating technique 
 After the evolution process, the result is a group of 
cloud-like flies which gather roughly around OOI. These 
fly-clouds are difficult to be used directly; a technique labeled 
“concentrating technique” is proposed for “concentrating” 
these fly-clouds (with thousands of flies) to several points 
which correspond to the position of OOI. The concentrating 
technique is incorporated into the flies method because of two 
reasons: first, it is used to output meaningful localization 
results of OOI; second, its output can be used to guide the 
re-generation of new fly population in the genetic evolution 
process. It is worth noting that a simple tactic of localize OOI 
by finding flies with local maximum fitness value is not 
practical because few flies which are far away from real 
objects might have high fitness value due to coincidental 
similarity between its backgrounds on both images.  

The principle of the proposed concentrating method is to 
localize OOI by finding points with local maximum fitness 
value density. This process is similar to that of finding the 
modes presented in [12], where a mean-shift method is 
described. Here, the mean-shift method is borrowed from [12]. 
Besides, a step of “histogram based sampling” is used as a 
fast procedure to generate some sampling points which can be 
served as proper starting points for the mean-shift process. 
The proposed concentrating technique consists of two steps: 1) 
histogram based sampling; 2) mean-shift. 
1) Histogram based sampling: 

Several narrow view-angles which cover the detection 
field are chosen. This step is to locate a sample point for each 
narrow view-angle chosen; the sample point is the place with 
largest vote of the fitness value histogram within the 
view-angle. For a narrow view-angle, if there is OOI inside 
(Fig.3 (a)), the area around OOI is likely to be the area with 
highest fitness value density in it (Fig.3 (b)). Therefore, the 
sample point of this view-angle is normally close to the OOI. 
Then, starting mean-shift process from the sample point will 
facilitate convergence to the position of OOI. The detailed 
procedures of “histogram based sampling” are described 
below in this sub-part while the mean-shift process described 
in the following sub-part.   
[i] Choose several narrow view-angles which cover the 

detection field.   
[ii] For each view-angle, compute a histogram (Fig.3 (c)) 

from the flies within the view angle according to the 
distance, i.e. the longitudinal coordinate ‘x’; the vote is 
weighted by the fitness value of the fly.   

[iii] For each view-angle (denote its direction angle generally 
as tan-1ki), find the distance interval with the largest vote 
(suppose it to be [xk xk+1]); then the sample point of this 
view-angle is computed via (let all sample points be 
situated on the ground surface, i.e. z = 0): 

;2/)();0,,(),,( 1++=⋅= kkiiiiiii xxdkddzyx  
2) Mean-shift: 
 The sample points obtained from the previous step are 



served as starting points for the mean-shift process described 
below.  
[i] Imagine all the flies are temporarily situated on ground, 

i.e. let their ‘z’ coordinate be temporarily 0; then project 
all the flies onto the left image (or right image). Latter, 
the mean-shift process is carried out in the left image 
coordinate instead of directly in the world coordinates; 
and the bandwidth matrix can be assigned uniformly to 
be the identity matrix, i.e. H = h2I. Otherwise, different 
bandwidth matrixes have to be assigned to the flies 
according to their depth because same pixel length 
means different physical length at different depth. This 
will not only increase the complexity of the bandwidth 
matrixes assignment itself but also increase 
computational burden.    

[ii] The algorithm for mean-shift is derived from the general 
case introduced in [12]:  
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Where {pi | i = 1, 2, … , n} are the positions of all the 
flies on the left image; f(pi) is the fitness value of fly pi; 
pold is the old position of the sample point while pnew is 
the new position of it. For each sample point, repeat 
mean-shift for few times. 

[iii] Cluster the sample points using a simple distance 
criterion; the distance threshold is chosen to be h. 
Compute the geometric center of each cluster, which is 
referred to as “candidate point”. 

[iv] Discard those candidate points with low fitness value 
density; fitness value density is computed via (also 
derived from the general case introduced in [12]): 
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For simplicity, the normalizing constant can be omitted.  
[v] Re-project each candidate point from the left image onto 

the ground surface; the positions of these candidate 
points in the world coordinates are regarded as the 
positions of OOI and are the output of the proposed 
concentrating technique. 

IV. THE INTEGRATE SCHEME OF PEDESTRIAN DETECTION 
 The improved flies method which can offer range 
information of OOI has been introduced in previous sections. 
In combination with learning-based classifier, it has been 
applied to pedestrian detection as a sub-part of the French 
national project “LOVe”. 
 The range information of OOI offered by the improved 
flies method can be used to extract some ROI (Region Of 
Interest) boxes on the image. For each box (its size is 48x96 
pixels after normalization), a feature vector based on HOG 
(Histogram of Oriented Gradient) [13] is computed and then 
fed to a SVM for classification; the SVM has been pre-trained 

off-line with the HOG-based feature vectors computed from 
10000 pedestrian examples (normalized boxes which contain 
pedestrians) and 18000 non-pedestrian examples (normalized 
boxes which do not contain pedestrians). 

 

 
(a) 

 
(b) 

Fig.2. (a) fitness values of the flies indicated by different colors 
(results by the improved fitness function); (b) comparison between the 
performances of the improved fitness function and the original fitness 
function 

V. RESULTS 

A. The evaluation of the improved fitness function and 
comparison with the original one 

 3000 flies are initialized randomly in the detection field. 
The fitness values of the flies are computed via the improved 
fitness function Eq.(2). All the flies are displayed in the image 
coordinates (Fig.2 (a)) and in the world coordinates (the left 
part of Fig.2 (b), in bird-eye view); the fitness value of each 
fly is indicated by its color: the higher the fitness value is, the 
warmer the color is (the maximum and minimum fitness 
value are respectively indicated by pure red color and pure 
blue color). See areas marked by red circles, on the whole the 
color of flies around real objects (pedestrians, cars, poles) are 
apparently warmer than that of flies at non-object area. This 
shows that the improved fitness function is effective in 
distinguishing flies at object area from those at non-object 
area. 
 Fitness values are computed for the same flies via the 
original fitness function Eq.(1) (a constant is added to the 
denominator to avoid it being zero). Fitness values computed 
via Eq.(1) are also indicated by different colors like before; 



see the right part of Fig.2 (b). Compare the left part (results by 
the improved fitness function) with the right part (results by 
the original fitness function) of Fig.2 (b); qualitatively 
speaking, the color differences between flies at object area 
and flies at non-object area are more prominent in the left part 
than in the right part of Fig.2 (b). In other words, the 
improved fitness function is more effective than the original 
fitness function in distinguishing flies at object area from 
those at non-object area.  

For quantitative comparison, a view-angle which 
contains a pedestrian is chosen; see Fig.3 (a). For this 
view-angle, compute a histogram from the flies within it 
according to the distance; the vote is weighted by the fitness 
value of the fly. First, fitness value is computed via the 
improved fitness function and the histogram obtained is 
displayed in the left part of Fig.3 (c); then fitness value is 
computed via the original fitness function and the histogram 
obtained is displayed in the right part of Fig.3 (c). The 
ground-truth position of the pedestrian is (15.52, -1.10, 0), i.e. 
15.52 meters ahead of the vehicle. It can be seen that the 
votes of histogram in the left part of Fig.3 (c) are more 
concentrated to where the pedestrian is than in the right part 
of Fig.3 (c).    

The root mean square distance (weighted by the fitness 
value of each fly) from each fly within the view-angle to the 
pedestrian is computed to be 2.94 meter if the improved 
fitness function is used while 6.86 meter if the original 
fitness function is used. The root mean square distance 
associated with the improved fitness function is noticeably 
smaller than that associated with the original fitness function. 
This quantitative result also shows that the improved fitness 
function is more effective than the original fitness function in 

distinguishing flies at object area from those at non-object 
area. 
 

 
Fig.4. the process of the concentrating technique and its application to 
pedestrian detection 

 
(a) 

 
(b) 

 
(c) 

Fig.3. (a) a view-angle which contains a pedestrian; (b) fitness values 
of the flies indicated by different colors; (c) histograms according to 
distance 

B. The performance of the concentrating technique 
 The concentrating technique consists of two steps: 
histogram based sampling and mean-shift. See the example 
shown before (Fig.3), the histogram based sampling step can 
have a rough localization result of OOI, i.e. (14.50, -0.94, 0) 
which is close to the ground-truth value (15.52, -1.10, 0) and 
can be served as good starting point for the mean-shift step. 
Nevertheless, this localization result still has considerable 
error; thus the mean-shift step is needed to advance the 
localization result to more accurate one. For this example, the 
localization result after mean-shift is (15.43, -1.13, 0) which 
is much closer to the ground-truth value. 
 For the whole image, see Fig.4 for example. As shown 
in the top-left part, a group of sample points generated by the 
histogram sampling step are marked by green circles. Some of 
these sample points are close to OOI, some are not. During 
the mean-shift step, these sample points either converge to 
OOI (with high fitness value density) or converge to 
somewhere with low fitness value density; those sample 
points which converge to the latter case are discarded while 
others are kept. The final outputs of the mean-shift step are 
marked by red crosses as shown in the top-right part of Fig.4; 
the positions of these red crosses are consistent with the 
positions of OOI like the pedestrian, the cars and the poles in 
the environment. This shows the effectiveness of the 
concentrating technique in localizing OOI.  

C. Pedestrian detection 
 The outputs of the improved flies method are the 3D 
positions of several OOI, which can be used then to generate 
several ROI on the image; see the down-left part of Fig.4, the 
cars on both side, the poles on the right side and the pedestrian 
in the middle are detected by the improved flies method and 
several ROI boxes are generated around them. A HOG-based 
feature vector is computed for each box and then fed to a 
pre-trained SVM for classification; positive results are 
regarded as pedestrians, as shown in the down-right part of 



Fig.4. More results are demonstrated in Fig.5. 

D. Computational efficiency 
 The whole work is implemented in C++ in windows 
operating system; the CPU is 2.0GHz and the RAM is 2.0GB. 
The step of classification takes almost no time (<10ms) 
because the SVM classifier only has to deal with few ROI. 
The evolution part consumes most computational time which 
depends on the number of evolutionary iterations. It is true 
that more evolutionary iterations will drive flies onto more 
detailed 3-D structures (useful for 3-D construction) and also 
take more computational time. But for our application, two or 
three evolutionary iterations are normally enough for locating 
OOI, which take no more than 150ms. This computational 
efficiency can satisfy real-time demand. 

VI. CONCLUSION 
 This paper presents an improved version of the genetic 
evolutionary “flies” method. An improved fitness function is 
proposed instead of the original one; a concentrating 
technique is incorporated into the architecture of the flies 
method. Experimental results are given for validating the 
improved performance brought by the proposed fitness 
function and for showing the effectiveness of the improved 
flies method in localizing OOI. In combination with a SVM 
classifier, the improved flies method is applied to pedestrian 
detection as a sub-part of the French national project “LOVe”. 

 The strategy of using the fusion between camera and 
laser scanner for pedestrian detection has been showing 
promising results [4]. One merit of this strategy is that the 
laser scanner can be used to offer reliable localization results 
of OOI and reliable ROI on the image. The improved flies 
method presented in this paper, if considered from its function, 

can be regarded as a laser scanner, while the device 
(stereo-vision) needed for it is considerably cheaper than a 
laser scanner. On the other hand, there are still spaces for 
improvements. By so far, size information of OOI located can 
not be offered; besides, occasionally few objects in the 
detection field will be missed, without being detected as OOI. 
To be able to offer size information of OOI and to reduce the 
rate of relevant objects undetected are the direction for further 
research. 
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