SOME DIOPHANTINE EQUATIONS ASSOCIATED TO SEMINORMAL COHEN-KAPLANSKY DOMAINS

ABDALLAH BADRA AND MARTINE PICAVET-L'HERMITTE

Abstract

A Cohen-Kaplansky domain (CK domain) R is an integral domain where every nonzero nonunit element of R is a finite product of irreducible elements and such that R has only finitely many nonassociate irreducible elements. In this paper, we investigate seminormal CK domains and obtain the form of their irreducible elements. The solutions of a system of diophantine equations allow us to give a formula for the number of distinct factorizations of a nonzero nonunit element of R, with an asymptotic formula for this number.

1. Introduction

Let R be an atomic integral domain, that is, each nonzero nonunit element of R can be written as a finite product of irreducible elements (or atoms). The simplest situation is when R has only a finite number of (nonassociate) atoms. Such a domain R was called a Cohen-Kaplansky domain (CK domain) by D.D. Anderson and J.L. Mott in [2] who obtained many conditions equivalent to R being a CK domain, after I.S. Cohen and I. Kaplansky [4] inaugurated the study of CK domains. In Section 2 we recall and give basic results on CK domains.

An atomic domain R is called a half-factorial domain (HFD) if each factorization of a nonzero nonunit element of R into a product of atoms has the same length (Zaks [15]). A ring R is called seminormal if whenever $x, y \in R$ satisfy $x^{3}=y^{2}$, there is $a \in R$ with $x=a^{2}, y=a^{3}$ [14]. Section 3 is devoted to the study of seminormal CK domains. In particular, we show that a seminormal CK domain is half-factorial and obtain some equivalent conditions for a CK domain to be seminormal. As factorization properties of CK domains and seminormality are preserved by localization, we consider a local seminormal CK domain R. Let \bar{R} be its integral closure. Then \bar{R} is a DVR with maximal ideal $\bar{R} p$, which is also the maximal ideal of R. Moreover the atoms of R are of the form $v p$, where v is a unit of \bar{R}. If $\mathcal{U}(\bar{R})$ (resp. $\mathcal{U}(R))$ is the group of units of \bar{R} (resp. R), the factor $\operatorname{group} \mathcal{U}(\bar{R}) / \mathcal{U}(R)$ is a finite cyclic group. Let \bar{u} be a generator of $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$ and n the order of \bar{u}. If $x=v p^{k}$ is a nonzero nonunit element of R with $\bar{v}=\bar{u}^{r}, r \in$ $\{0, \ldots, n-1\}$, in $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$, the distinct factorizations of x in R into atoms are

[^0]deduced from the system of diophantine equations in $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$:
\[

(S)\left\{$$
\begin{array}{l}
\sum_{i=1}^{n} a_{i}=k \\
\sum_{i=1}^{n} \overline{i a_{i}}=\bar{r} \text { in } \mathbb{Z} / n \mathbb{Z}
\end{array}
$$\right.
\]

The calculation of the number of solutions of this system is the object of Section 4. If we denote by $\eta(x)$ the number of non-associated irreducible factorizations of x into atoms, we get that $\eta(x)$ is the number of solutions of the system (S).

Section 5 ends this paper with the asymptotic behaviour of the function η where we use the following result by F. Halter-Koch :

Theorem 1.1. [6, Theorem 1]. Let H be an atomic monoid such that each nonunit x has finitely many non-associated factorizations into irreducibles. Suppose that there are only finitely many irreducible elements of H which divide some power of x. There exists two constants $A \in \mathbb{Q}$ and $d \in \mathbb{N}, A>0$ such that $\eta\left(x^{n}\right)=$ $A n^{d}+O\left(n^{d-1}\right)$.

An explicit value for A and d is obtained for a local seminormal CK domain.
For a ring R, we denote by $\operatorname{Max}(R)$ the set of maximal ideals of R and by $\mathcal{U}(R)$ its group of units. Let $x, y \in R$. We say that x and y are associates $(x \sim y)$ if there exists $u \in \mathcal{U}(R)$ such that $x=u y$. For an integral domain R, we denote by \bar{R} its integral closure. The conductor $[R: \bar{R}]$ of an integral domain R in its integral closure is called the conductor of R. For a finite set S, we denote by $|S|$ the number of elements of S. For $x \in \mathbb{R}$, we set $[x]=\sup \{n \in \mathbb{Z} \mid n \leq x\}$.

2. Basic results on CK domains

We first recall some of useful results concerning CK domains.
Theorem 2.1. [2, Theorem 4.3] For an integral domain R, the following statements are equivalent.

1. R is a $C K$ domain.
2. \bar{R} is a semilocal PID with $\bar{R} /[R: \bar{R}]$ finite and $|\operatorname{Max}(R)|=|\operatorname{Max}(\bar{R})|$.
3. R is a one-dimensional semilocal domain with R / M finite for each nonprincipal maximal ideal M of R, \bar{R} is a finitely generated R-module (equivalently, $[R: \bar{R}] \neq 0)$, and $|\operatorname{Max}(R)|=|\operatorname{Max}(\bar{R})|$.
This theorem implies the following properties.
Proposition 2.2. [2, Theorem 4.3, Theorem 3.1, Theorem 2.1 and Corollary 2.5] Let R be a CK domain. Then
4. R is Noetherian and for each $x \in \bar{R}$, there exists an $n \in \mathbb{N}^{*}$ with $x^{n} \in R$.
5. $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$ is a finite group.
6. R_{M} is a $C K$ domain for each maximal ideal M of R. In particular, \bar{R}_{M} is a $D V R$.
7. Let T be an overring of R. Then T is also a CK domain.
8. The atoms of R are primary.
D.D. Anderson and J.L. Mott [2] say that a pair of rings $R \subset S$ is a root extension if for each $s \in S$, there exists an $n=n(s) \in \mathbb{N}^{*}$ with $s^{n} \in R$. For such an extension we have $|\operatorname{Max}(R)|=|\operatorname{Max}(S)|$. Hence $R \subset \bar{R}$ is a root extension when R is a CK domain.
Proposition 2.3. Let R_{1} and R_{2} be two $C K$ domains with the same integral closure R^{\prime}. Then $R=R_{1} \cap R_{2}$ is a CK domain with integral closure R^{\prime}.

Proof. Set $R=R_{1} \cap R_{2}$. Define $I_{1}=\left[R_{1}: R^{\prime}\right], I_{2}=\left[R_{2}: R^{\prime}\right]$ and $I=\left[R: R^{\prime}\right]$. Then $I_{1} \cap I_{2}$ is a common ideal of R^{\prime} and R contained in I so that $I \neq 0$. Let $a, b \in R^{\prime}$ with $b \neq 0$ and i a nonzero element of I. Then $i a$ and $i b$ are in R and hence $a / b=i a / i b$ shows that R has the same quotient field as R^{\prime}. Moreover, $R \subset R^{\prime}$ is a root extension. Then R^{\prime} is obviously the integral closure of R and is a semilocal PID. Since R^{\prime} / I_{1} and R^{\prime} / I_{2} are finite, this gives that $R^{\prime} /\left(I_{1} \cap I_{2}\right)$ is also finite because isomorphic to a subring of $R^{\prime} / I_{1} \times R^{\prime} / I_{2}$, so that R^{\prime} / I is finite.

Moreover, we have $|\operatorname{Max}(R)|=\left|\operatorname{Max}\left(R^{\prime}\right)\right|$ because $R \subset R^{\prime}$ is a root extension. Applying Theorem 2.1, (2), we get that R is a CK domain with integral closure R^{\prime}.

Corollary 2.4. Let D be a $D V R$ with maximal ideal M such that D / M is finite. Let I be a nonzero ideal of D. The set of underrings of D with integral closure D and with conductor I has a least element and all these underrings are CK domains.

Proof. Set $\mathcal{E}=\{R$ underring of $D \mid \bar{R}=D,[R: D]=I\}$. Since D / M is finite, so is D / I. Indeed, if $M=D p$ for some atom $p \in D$, then $I=D p^{n}$, for some integer n and an obvious induction shows that $|D / I|=|D / M|^{n}$. Consider $R \in \mathcal{E}$. Then the finiteness of D / I implies the finiteness of R / I. So D is a finitely generated R-module because D / I is a finitely generated R / I-module. It follows that $|\operatorname{Max}(R)|=1$ and R is a CK domain by Theorem 2.1, (2).

Since D / I is finite, there are finitely many subrings of D / I, and so finitely many $R \in \mathcal{E}$. Let R and $S \in \mathcal{E}$ and set $T=R \cap S$. By Proposition 2.3, T is a CK domain with conductor $J \supset I$. But $T \subset R$ implies $J \subset I$, so that $J=I$ and $T \in \mathcal{E}$. Therefore the intersection of all elements of \mathcal{E} is a CK domain with conductor I and integral closure D and is the least element of \mathcal{E}.

3. Characterization of seminormal CK domains

Let R be an integral domain with quotient field K. We say that R is t-closed if whenever $x \in K$ and $x^{2}-r x, x^{3}-r x^{2} \in R$ for some $r \in R$, then $x \in R$ [9]. A t-closed integral domain is seminormal. Recall that an integral domain R is said to be a pseudo-valuation domain (PVD) if there exists a valuation overring V of R such that $\operatorname{Spec}(R)=\operatorname{Spec}(V)$ [8] and an integral domain R is said to be a locally pseudo-valuation domain (locally PVD) if each of its localizations at a prime ideal is a PVD [5].
Proposition 3.1. Let R be a one-dimensional Noetherian integral domain such that its integral closure \bar{R} is a finitely generated R-module. The following conditions are equivalent :

1. R is seminormal and the canonical map $\operatorname{Spec}(\bar{R}) \rightarrow \operatorname{Spec}(R)$ is bijective.
2. R is t-closed.
3. R is a locally PVD.
4. The conductor I of R is a radical ideal in \bar{R} and $|\operatorname{Max}(R)|=|\operatorname{Max}(\bar{R})|$.

In particular, a CK domain R is seminormal if and only if R is t-closed.
Proof. (1) $\Leftrightarrow(2)$ is [9, Proposition 3.7].
$(2) \Leftrightarrow(3)$ is [10, Corollary 3.4].
(2) $\Leftrightarrow(4)$ comes from [9, Corollary 3.8 and Proposition 2.8]. Indeed, for any $P \in \operatorname{Max}(R)$, the conductor of R_{P} is I_{P}.

We obtain as a corollary a first characterization of local seminormal (or t-closed) CK domains.

Corollary 3.2. Let R be a local $C K$ domain with integral closure $\bar{R} \neq R$. Let $\bar{R} p$ be the maximal ideal of \bar{R}. Then R is seminormal if and only if $\mathcal{U}(\bar{R}) p \subset R$.

Proof. Assume that R is seminormal. By Proposition 3.1 (4), $\bar{R} p$ is the conductor of R, so that $\mathcal{U}(\bar{R}) p \subset \bar{R} p \subset R$.

Conversely, if $\mathcal{U}(\bar{R}) p \subset R$, we get that $\mathcal{U}(\bar{R}) p^{n} \subset R$ for any integer n and $\bar{R} p \subset R$ gives that $\bar{R} p$ is the conductor of R so that R is seminormal.

In the nonlocal case, this condition is not fulfilled :
Corollary 3.3. Let R be a CK domain with integral closure $\bar{R} \neq R$.
Let $\bar{R} p_{i}, i=1, \ldots, n$, be the maximal ideals of \bar{R}.
Then $\mathcal{U}(\bar{R}) p_{i} \subset R$ for any $i=1, \ldots, n$, implies that R is seminormal and $n=1$.
Proof. The case $n=1$ is the previous Corollary. Assume $n>1$. Any nonunit of \bar{R} is in R. Moreover, $\bar{R} p_{1}$ and $\bar{R} p_{2}$ are comaximal ideals of \bar{R}. For any $u \in \mathcal{U}(\bar{R})$, there exists $v, w \in \bar{R}$ such that $u=v p_{1}+w p_{2} \in R$. Then $\bar{R}=R$, a contradiction.

Corollary 2.4 has a new formulation in the seminormal case.
Corollary 3.4. Let D be a $D V R$ with maximal ideal M such that D / M is finite. The set of seminormal underrings of D with integral closure D is linearly ordered.

Proof. Let R be a seminormal proper underring of D. Since its conductor is a radical ideal of D, it has to be M, a maximal ideal in R so that R / M is a subfield of the finite field D / M. But the set of subfields of D / M is linearly ordered.

Let R_{1}, R_{2} be two seminormal proper underrings of D with integral closure D. Their conductor is M and we have, for instance, $R_{1} / M \subset R_{2} / M$, which gives $R_{1} \subset R_{2}$.

Here is a fundamental link between seminormal CK domains and factorization.
Proposition 3.5. A seminormal CK domain is half-factorial.
Proof. Let R be a seminormal CK domain and $P \in \operatorname{Max}(R)$. Then R_{P} is a PVD by Proposition 3.1 and a CK domain by Proposition 2.2 (3). So R_{P} is a HFD for any $P \in \operatorname{Max}(R)[2$, Theorem 6.2]. The same holds for $R[2$, Theorem 6.1].

The following theorem gives the additional condition necessary for a CK halffactorial domain to be seminormal.

Theorem 3.6. Let R be a CK domain with integral closure \bar{R}.
Let $\bar{R} p_{i}, i=1, \ldots, n$, be the maximal ideals of \bar{R}. Then R is seminormal if and only if R is a HFD and $\mathcal{U}(\bar{R}) p_{1} \cdots p_{n} \subset R$. Moreover, if these conditions are satisfied, we can choose $p_{i} \in R$ for each $i=1, \ldots, n$.

Proof. We can assume $R \neq \bar{R}$ (the case $R=\bar{R}$ is trivial).
Let R be a seminormal CK domain. Then R is a HFD by the previous Proposition and the conductor I of R is a product of some of the $\bar{R} p_{i}$. It follows that $\mathcal{U}(\bar{R}) p_{1} \cdots p_{n} \subset R$.

Conversely, assume that R is a HFD and $\mathcal{U}(\bar{R}) p_{1} \cdots p_{n} \subset R$ and let I be the conductor of R. For each $i=1, \ldots, n$, set $P_{i}=R \cap \bar{R} p_{i}, R_{i}=R_{P_{i}}$ and $\overline{R_{i}}=\overline{R_{P_{i}}}=$ $\bar{R}_{P_{i}}$.

First, we show that we may assume $p_{i} \in R$ for each $i=1, \ldots, n$.

- If P_{i} is comaximal with I, then $R_{i}=\overline{R_{i}}$ and $p_{i} / 1$ is an atom in R_{i} [2, Theorem 2.1 (2)]. Then there exists a P_{i}-primary atom $p \in R$ and $s \in R \backslash P_{i}$ such that $s p_{i}=p$, which implies $s \in \mathcal{U}(\bar{R})$, so that $\bar{R} p_{i}=\bar{R} p$.
- Let P_{i} be non comaximal with I and let x be a P_{i}-primary atom in R. There exist $u \in \mathcal{U}(\bar{R})$ and an integer k such that $x=u p_{i}^{k}$ since $x \notin P_{j}$ for any $j \neq i$. But R_{i} is a HFD, which implies that $x / 1 \simeq p_{i} / 1$ in $\overline{R_{i}}[2$, Theorem 6.3] and so $k=1$. Then $x \simeq p_{i}$ in \bar{R}.

The assumption can be rewritten $\mathcal{U}(\bar{R}) p_{1} \cdots p_{n} \subset R$ with $p_{i} \in R$ for each $i=1, \ldots, n$. This gives finally $\bar{R} p_{1} \cdots p_{n} \subset I \subset R$ and I is a radical ideal in \bar{R}. Moreover, R being a CK domain, we get $|\operatorname{Max}(R)|=|\operatorname{Max}(\bar{R})|$ and thus R is seminormal by Proposition 3.1 (4).

In the local case, we obtain another characterization for a CK half-factorial domain to be seminormal.

Proposition 3.7. Let R be a local CK domain with integral closure \bar{R}. Then R is seminormal if and only if R is a HFD and has $|\mathcal{U}(\bar{R}) / \mathcal{U}(R)|$ nonassociate atoms.
Proof. We can assume $R \neq \bar{R}$ (the case $R=\bar{R}$ is trivial).
Let R be seminormal. Then R is a HFD by the previous Theorem. Let $\bar{R} p$ be the maximal ideal of \bar{R} and let a_{1}, \ldots, a_{n} be the nonassociate atoms of R. They are of the form $a_{i}=u_{i} p, u_{i} \in \mathcal{U}(\bar{R})$ by [2, Theorem 6.3 (3)]. But since R is seminormal, its conductor is $\bar{R} p$. It follows that $u p \in R$ for any $u \in \mathcal{U}(\bar{R})$. Let $u p, v p$ be two atoms of R, where $u, v \in \mathcal{U}(\bar{R})$. Then $u p$ and $v p$ are associates in R if and only if there exists $w \in \mathcal{U}(R)$ such that $u p=w v p$, which is equivalent to $\bar{u}=\bar{v}$ in $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$. Hence two atoms $u p, v p$ of R, with $u, v \in \mathcal{U}(\bar{R})$, are nonassociates in R if and only if $\bar{u} \neq \bar{v}$ in $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$. Then R has $|\mathcal{U}(\bar{R}) / \mathcal{U}(R)|$ nonassociate atoms (see also [2, Corollary 5.6]).

Conversely, let R be a HFD with $n=|\mathcal{U}(\bar{R}) / \mathcal{U}(R)|$ nonassociate atoms. They are of the form $a_{i}=u_{i} p, u_{i} \in \mathcal{U}(\bar{R}), i=1, \ldots, n$ and $\left\{\bar{u}_{1}, \ldots, \bar{u}_{n}\right\}=\mathcal{U}(\bar{R}) / \mathcal{U}(R)$. It follows that $u p \in R$ for any $u \in \mathcal{U}(\bar{R})$. In particular, $p \in R$ so that $p^{n} \in R$ for any integer $n>0$ and we get that $\bar{R} p \subset R$. Then $\bar{R} p$ is the conductor of R and R is seminormal.

A seminormal CK domain has a property which is not too far from unique factorization. In [3], S.T. Chapman, F. Halter-Koch and U. Krause defined an integral domain R to be inside factorial with Cale basis \mathcal{Q}, if, for every nonzero nonunit $x \in R$, there exists some $n \in \mathbb{N}^{*}$ such that x^{n} has a unique factorization, up to units, into elements of \mathcal{Q}.

Proposition 3.8. Let R be a seminormal CK domain with integral closure \bar{R}. Then R is inside factorial with Cale basis $\left\{p_{1}, \ldots, p_{n}\right\}$, where the $\bar{R} p_{i}$ are the maximal ideals of \bar{R} with $p_{i} \in R$ for $i=1, \ldots, n$.

Proof. We have seen in Theorem 3.6 that we can choose p_{i} in R, where the $\bar{R} p_{i}$ are the maximal ideals of \bar{R}.
The atoms of R are of the form $u_{i j} p_{i}$, with $u_{i j} \in \mathcal{U}(\bar{R}), i=1, \ldots, n$ [2, Theorem 2.1 (2)]. Let $r=|\mathcal{U}(\bar{R}) / \mathcal{U}(R)|$. Then $u^{r} \in R$ for any $u \in \mathcal{U}(\bar{R})$. Let x be a nonzero nonunit of R. As an element of \bar{R}, it can be written $x=u \prod p_{i}^{\alpha_{i}}, u \in \mathcal{U}(\bar{R})$. Then $x^{r}=u^{r} \prod p_{i}^{r \alpha_{i}}$ with $u^{r} \in \mathcal{U}(R)$ and this factorization into the p_{i} is obviously unique.

Remark 3.9. Under assumptions of the previous Proposition, let e be the exponent of the factor group $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$. Then e is the least integer r such that x^{r} has a unique factorization, up to units, into elements of $\left\{p_{1}, \ldots, p_{n}\right\}$, for every nonzero nonunit $x \in R$. Indeed, e is the least integer r such that $u^{r} \in \mathcal{U}(R)$ for any $u \in \mathcal{U}(\bar{R})$.

We can calculate this exponent. D.D. Anderson, D.F Anderson and M. Zafrullah call in [1] an atomic domain with almost all atoms prime a generalized CK domain. A CK domain is obviously a generalized CK domain. We can still assume $R \neq$ \bar{R}. Then, if I is the conductor of R, we have the isomorphism $\mathcal{U}(\bar{R}) / \mathcal{U}(R) \simeq$ $\mathcal{U}(\bar{R} / I) / \mathcal{U}(R / I)$ by [11, Theorem 2] (the result was obtained for algebraic orders but a generalization to one-dimensional Noetherian domains R with integral closure which are finitely generated R-modules can be easily made). Since R is seminormal, I is a radical ideal in \bar{R}. After a reordering, write $I=\prod_{i=1}^{m} \bar{R} p_{i}$.

Then $\mathcal{U}(\bar{R}) / \mathcal{U}(R) \simeq \prod_{i=1}^{m}\left[\mathcal{U}\left(\bar{R} / \bar{R} p_{i}\right) / \mathcal{U}\left(R / P_{i}\right)\right]$, where $P_{i}=R \cap \bar{R} p_{i}$ since $I=$ $\prod_{i=1}^{m} P_{i}$ as an ideal of R.
Set $q_{i}=\left|R / P_{i}\right|$ and $k_{i}=\left[\bar{R} / \bar{R} p_{i}: R / P_{i}\right]$. Then $e_{i}=\left(q_{i}^{k_{i}}-1\right) /\left(q_{i}-1\right)$ is the order (and the exponent) of the finite cyclic group $\mathcal{U}\left(\bar{R} / \bar{R} p_{i}\right) / \mathcal{U}\left(R / P_{i}\right)$ and $e=$ $\operatorname{lcm}\left(e_{1}, \ldots, e_{m}\right)$.

We are now able to obtain all the factorizations into atoms of a nonzero nonunit element of a seminormal CK domain with the number of distinct factorizations into atoms. We can restrict to the local case by the following proposition.
Proposition 3.10. Let R be a $C K$ domain with maximal ideals P_{1}, \ldots, P_{n}. Set $R_{i}=R_{P_{i}}$ and define $\eta_{i}(z)$ to be the number of distinct factorizations into atoms of R_{i} of a nonzero $z \in R_{i}$. Then $\eta(x)=\prod_{i=1}^{n} \eta_{i}(x / 1)$ for a nonzero $x \in R$.
Proof. By [2, Theorem 2.1 (2)], the atoms of R are primary and the atoms of R_{i} are the P_{i}-primary atoms of R. Moreover, if x is a nonzero nonunit element of R, then x is written in a unique way $x=x_{1} \cdots x_{n}$, where x_{i} is a P_{i}-primary element of R for each $i=1, \ldots, n$ [7, Corollary 1.7]. Indeed, by [1, Corollary 5], a CK domain is weakly factorial (such that every nonunit is a product of primary elements), and a weakly factorial domain is a weakly factorial monoid for the multiplicative structure. So, we get $\eta(x)=\prod_{i=1}^{n} \eta\left(x_{i}\right)$ and $\eta\left(x_{i}\right)=\eta_{i}\left(x_{i} / 1\right)$ for each i by [2, Theorem 2.1 (2)] since a factorization of x_{i} into atoms of R leads to a factorization of $x_{i} / 1$ into atoms of R_{i} and conversely.

To end, we give the form of atoms in a local seminormal CK domain.
Theorem 3.11. Let R be a local seminormal $C K$ domain with integral closure \bar{R}. Let $\bar{R} p$ be the maximal ideal of \bar{R}, with $p \in R$. Set $n=|\mathcal{U}(\bar{R}) / \mathcal{U}(R)|$ and choose $u \in \mathcal{U}(\bar{R})$ such that \bar{u} is a generator of the cyclic group $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$. Then

1. A set of all nonassociate atoms of R is $\left\{u^{i} p \mid i=0, \ldots, n-1\right\}$.
2. Let $x=v p^{k}, k \in \mathbb{N}^{*}, v \in \mathcal{U}(\bar{R})$. Let $r \in\{0, \ldots, n-1\}$ be such that $\bar{v}=\bar{u}^{r}$. The number of nonassociated factorizations of x into atoms of R is equal to the number of solutions $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ of the system of diophantine equations :

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} a_{i}=k \tag{S}\\
\sum_{i=1}^{n} \overline{i a_{i}}=\bar{r} \text { in } \mathbb{Z} / n \mathbb{Z}
\end{array}\right.
$$

Proof. As above, we can assume $R \neq \bar{R}$. Then $\bar{R} p$ is the conductor of R so that $\bar{R} / \bar{R} p$ is a finite field by Theorem $2.1(3)$ and $\mathcal{U}(\bar{R} / \bar{R} p)$ is a finite cyclic group. It follows that $\mathcal{U}(\bar{R}) / \mathcal{U}(R) \simeq \mathcal{U}(\bar{R} / \bar{R} p) / \mathcal{U}(R / \bar{R} p)$ (Remark 3.9) is also a finite cyclic group. Let $u \in \mathcal{U}(\bar{R})$ be such that \bar{u} is a generator of $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$.
(1) In view of Proposition 3.7, we can choose $\mathcal{A}=\left\{u^{i} p\right\}, i=1, \ldots, n$, as a set of nonassociate atoms of R since the u^{i} are the representatives of the elements of $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$ and $u^{n} p$ is an associate of p in R.
(2) Set $p_{i}=u^{i} p, i=1, \ldots, n$, and let x be a nonzero nonunit element of R which is not an atom. Then $x=v p^{k}, k>1$ with a unique $v \in \mathcal{U}(\bar{R})$. A factorization of x into elements of \mathcal{A} is of the form $x=w \prod_{i=1}^{n} p_{i}^{a_{i}}, w \in \mathcal{U}(R), a_{i} \in \mathbb{N}$. This gives $x=w \prod_{i=1}^{n}\left(u^{i} p\right)^{a_{i}}=v p^{k}(*)$, which implies, by identification in \bar{R}, the equalities

$$
\begin{equation*}
v=w \prod_{i=1}^{n} u^{i a_{i}} \text { and } k=\sum_{i=1}^{n} a_{i} \tag{**}
\end{equation*}
$$

Consider another factorization $x=w^{\prime} \prod_{i=1}^{n} p_{i}^{a_{i}^{\prime}}, w^{\prime} \in \mathcal{U}(R), a_{i}^{\prime} \in \mathbb{N}$. We get then $k=\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} a_{i}^{\prime}$ and $v=w \prod_{i=1}^{n} u^{i a_{i}}=w^{\prime} \prod_{i=1}^{n} u^{i a_{i}^{\prime}}$. These two factorizations coincide if and only if $a_{i}=a_{i}^{\prime}$ for each i. In this case, we have $w=w^{\prime}$.

In $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$ we have the relation $\bar{v}=\prod_{i=1}^{n} \bar{u}^{i a_{i}}=\bar{u}^{r}$ where $r \in\{0, \ldots, n-1\}$ by $(* *)$, that is $r \equiv \sum_{i=1}^{n} i a_{i}(\bmod n)$, or equivalently, $\bar{r}=\sum_{i=1}^{n} \overline{i a_{i}}$ in $\mathbb{Z} / n \mathbb{Z}$. Then $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ is a solution of the system (S).

Conversely, let $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \in \mathbb{N}^{n}$ satisfying (S).
Set $x^{\prime}=\prod_{i=1}^{n} p_{i}^{a_{i}^{\prime}}=\prod_{i=1}^{n}\left(u^{i} p\right)^{a_{i}^{\prime}}=u^{a_{1}^{\prime}+2 a_{2}^{\prime}+\cdots+n a_{n}^{\prime}} p^{a_{1}^{\prime}+a_{2}^{\prime}+\cdots+a_{n}^{\prime}}$.

But $\sum_{i=1}^{n} i a_{i}^{\prime}=r+s n, s \in \mathscr{Z}$, gives $x^{\prime}=u^{r}\left(u^{n}\right)^{s} p^{k}$ and $\bar{v}=\bar{u}^{r}$ implies $u^{r}=w^{\prime} v$, where $w^{\prime} \in \mathcal{U}(R)$. So we get $x^{\prime}=w^{\prime}\left(u^{n}\right)^{s} v p^{k}=w^{\prime}\left(u^{n}\right)^{s} x$, with $w^{\prime}\left(u^{n}\right)^{s} \in \mathcal{U}(R)$ and $x \sim x^{\prime}$ in R. We deduce that two distinct solutions of (S) give two distinct factorizations of x into atoms of R and the number of nonassociated factorizations of x into atoms of R is equal to the number of solutions $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ of (S).

We are going to calculate the number of solutions of such a system in the next section.

4. On the number of solutions of a system of two special dIophantine Equations

In this section, we use the following notation. Let $n, r \in \mathbb{N}, k, s \in \mathbb{Z}$ with $n>0$ and $0 \leq r \leq n-1$. We consider the following systems of diophantine equations in $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}:$

$$
S(n, k, r)\left\{\begin{array} { l }
{ \sum _ { i = 1 } ^ { n } a _ { i } = k } \\
{ \sum _ { i = 1 } ^ { n } \overline { \overline { i a _ { i } } } = \overline { r } \text { in } \mathbb { Z } / n \mathbb { Z } }
\end{array} \quad \text { and } \quad S ^ { \prime } (n , k , s) \left\{\begin{array}{l}
\sum_{i=1}^{n} a_{i}=k \\
\sum_{i=1}^{n} i a_{i}=s
\end{array}\right.\right.
$$

We denote respectively by $N(n, k, r)$ and $p(n, k, s)$ the numbers of solutions $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ of $S(n, k, r)$ and $S^{\prime}(n, k, s)$. Obviously, we have $N(n, k, r)=$ $p(n, k, r)=0$ for $k<0$. It is easy to see that

$$
N(n, k, r)=\sum_{i \geq 0} p(n, k, r+i n)=\sum_{i=\left[\frac{k-r}{n}\right]}^{\left[k-\frac{r}{n}\right]} p(n, k, r+i n)
$$

At last, for $n, k \in \mathbb{N}, k>0$, we set :

$$
F(n, k, x)=\frac{x^{k}\left(1-x^{n+k-1}\right)\left(1-x^{n+k-2}\right) \cdots\left(1-x^{n}\right)}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{k}\right)}
$$

where x is a variable.
Remark 4.1. It follows that $p(n, k, s)$ is also the number of partitions of s into k summands $b_{j} \in \mathbb{N}$ such that $1 \leq b_{1} \leq \cdots \leq b_{k} \leq n$.
Proposition 4.2. With the previous notation, for $k>0$, we have $F(n, k, x)=$ $\sum_{s \geq 0} p(n, k, s) x^{s}$. Moreover, $F(n, k, x)$ is a polynomial in x.

Proof. The generating function for the numbers $p(n, k, s)$ is the two-variable series $\varphi(x, y)=\sum_{s, k \geq 0} p(n, k, s) x^{s} y^{k}=\frac{1}{(1-y x)\left(1-y x^{2}\right) \cdots\left(1-y x^{n}\right)}$ because of

$$
\frac{1}{(1-y x)\left(1-y x^{2}\right) \cdots\left(1-y x^{n}\right)}=\prod_{i=1}^{n}\left(\sum_{a_{i} \geq 0} y^{a_{i}} x^{i a_{i}}\right)=
$$

$$
\sum_{a_{1} \geq 0, \ldots, a_{n} \geq 0} y^{a_{1}+\cdots+a_{n}} x^{a_{1}+2 a_{2}+\cdots+n a_{n}}=\sum_{k \geq 0, s \geq 0} p(n, k, s) y^{k} x^{s}
$$

We can write $\varphi(x, y)=\sum_{k \geq 0} \varphi_{k}(x) y^{k}$ with $\varphi_{k}(x)=\sum_{s \geq 0} p(n, k, s) x^{s}$, for all $k \geq 0$.
We can easily check that $\left(1-y x^{n+1}\right) \varphi(x, x y)=(1-y x) \varphi(x, y)$, which implies $\left(1-x^{k}\right) \varphi_{k}(x)=\left(x-x^{n+k}\right) \varphi_{k-1}(x)$ for $k>0$, so that

$$
\varphi_{k}(x)=\frac{\left(x-x^{n+k}\right)\left(x-x^{n+k-1}\right) \cdots\left(x-x^{n+1}\right)}{\left(1-x^{k}\right)\left(1-x^{k-1}\right) \cdots(1-x)} \varphi_{0}(x), \text { for } k>0
$$

But $\varphi_{0}(x)=1$. Hence $\varphi_{k}(x)=F(n, k, x)$ for $k>0$.
To end, F is a polynomial in x since $p(n, k, s)=0$ for large s.
We can now calculate $N(n, k, r)$.
Theorem 4.3. With the previous notation, for $k>0$, let F_{0}, \ldots, F_{n-1} be the n components of $F(n, k, x)$, i.e. $F(n, k, x)=\sum_{r=0}^{n-1} x^{r} F_{r}\left(x^{n}\right)$. Then $N(n, k, r)=F_{r}(1)$. Proof. Write $F(n, k, x)=\sum_{j \geq 0} f_{j} x^{j}, f_{j} \in \mathbb{Q}$. Then
$F_{r}\left(x^{n}\right)=\sum_{i \geq 0} f_{r+i n} x^{n i}=\sum_{i \geq 0} p(n, k, r+i n) x^{n i}$ and $F_{r}(1)=\sum_{i \geq 0} p(n, k, r+i n)=$ $N(n, k, r)$.

The value of $F_{r}(1)$ gives then the value of $N(n, k, r)$.
Theorem 4.4. With the previous notation, set $d=\operatorname{gcd}(n, k)$ for $k, n>0$. Then

$$
N(n, k, r)=\frac{1}{n}\binom{n+k-1}{k}+\frac{1}{k} \sum_{l=1}^{d-1}\left(\cos \left(\frac{2 l r \pi}{d}\right) \prod_{1 \leq j \leq k-1, d \mid j l}\left(\frac{n+j}{j}\right)\right)
$$

In particular, $N(n, k, r)=\frac{1}{n}\binom{n+k-1}{k}$ for any $r \in\{0, \ldots, n-1\}$ when $d=1$.
Proof. We use the relation $F(n, k, x)=\sum_{t=0}^{n-1} x^{t} F_{t}\left(x^{n}\right)$. We set $\alpha=e^{\frac{2 i \pi}{n}}$. For all $r, m \in\{0, \ldots, n-1\}$, we have $\alpha^{-r m} F\left(n, k, \alpha^{m}\right)=\sum_{t=0}^{n-1} \alpha^{t m-r m} F_{t}\left(\alpha^{n m}\right)=$ $\sum_{t=0}^{n-1} \alpha^{(t-r) m} F_{t}(1)$.
Summing on m we get

$$
\begin{gathered}
\sum_{m=0}^{n-1} \alpha^{-r m} F\left(n, k, \alpha^{m}\right)=\sum_{m=0}^{n-1}\left(\sum_{t=0}^{n-1} \alpha^{(t-r) m} F_{t}(1)\right)= \\
\sum_{t=0}^{n-1}\left(\sum_{m=0}^{n-1} \alpha^{(t-r) m} F_{t}(1)\right)=\sum_{t=0}^{n-1} F_{t}(1)\left(\sum_{m=0}^{n-1} \alpha^{(t-r) m}\right)=\sum_{t=0}^{n-1} F_{t}(1) n \delta_{r t}=n F_{r}(1)
\end{gathered}
$$

So we obtain $F_{r}(1)=\frac{1}{n} \sum_{m=0}^{n-1} \alpha^{-r m} F\left(n, k, \alpha^{m}\right)$.
Now, we have to calculate $u_{m}=F\left(n, k, \alpha^{m}\right)$, where

$$
\begin{aligned}
F(n, k, x) & =x^{k} \frac{\left(1-x^{n+k-1}\right)\left(1-x^{n+k-2}\right) \cdots\left(1-x^{n+1}\right)\left(1-x^{n}\right)}{\left(1-x^{k-1}\right)\left(1-x^{k-2}\right) \cdots(1-x)\left(1-x^{k}\right)} \\
& =x^{k} \frac{x^{n}-1}{x^{k}-1} \prod_{j=1}^{k-1}\left(\frac{x^{n+j}-1}{x^{j}-1}\right)
\end{aligned}
$$

which is a polynomial in x, so that $F\left(n, k, \alpha^{m}\right)$ has a sense.
Using L'Hopital's rule, we are going to calculate the values of $\frac{x^{n}-1}{x^{k}-1}$ and $\frac{x^{n+j}-1}{x^{j}-1}$ for $j=1, \ldots, k-1$, at $x=\alpha^{m}, m=0,1, \ldots, n-1$.

- If $n \nmid m k$, then $\frac{\alpha^{m n}-1}{\alpha^{m k}-1}=0$.

If $n \mid m k$, then $\left[\frac{x^{n}-1}{x^{k}-1}\right]_{x=\alpha^{m}}=\lim _{x \rightarrow \alpha^{m}} \frac{n x^{n-1}}{k x^{k-1}}=\frac{n}{k}$. Moreover, in this case, $\alpha^{m k}=1$.

Let $j \in\{1, \ldots, k-1\}$.

- If $n \nmid m j$, then $\frac{\alpha^{m(n+j)}-1}{\alpha^{m j}-1}=1$.

If $n \mid m j$, then $\left[\frac{x^{n+j}-1}{x^{j}-1}\right]_{x=\alpha^{m}}=\lim _{x \rightarrow \alpha^{m}} \frac{(n+j) x^{n+j-1}}{j x^{j-1}}=\frac{n+j}{j}$.
To sum up, we obtain $u_{m}=0$ if $n \nmid m k$ and $u_{m}=\frac{n}{k} \prod_{1 \leq j \leq k-1, n \mid j m} \frac{n+j}{j}$ if $n \mid m k$.
In particular, $u_{0}=\frac{n}{k} \prod_{j=1}^{k-1} \frac{n+j}{j}=\frac{n(n+1) \cdots(n+k-1)}{1 \cdots(k-1) k}=\binom{n+k-1}{k}$.
Set $d=\operatorname{gcd}(n, k)$ and $n=n^{\prime} d, k=k^{\prime} d$ so that $\operatorname{gcd}\left(n^{\prime}, k^{\prime}\right)=1$.
Then $n\left|m k \Leftrightarrow n^{\prime}\right| m k^{\prime} \Leftrightarrow n^{\prime} \mid m$.
If $n^{\prime} \nmid m$, then $u_{m}=0$
If $n^{\prime} \mid m$, set $m=l n^{\prime}$.
Then $n\left|m j \Leftrightarrow n^{\prime} d\right| l n^{\prime} j \Leftrightarrow d \mid l j$ so that $u_{l n^{\prime}}=\frac{n}{k} \prod_{1 \leq j \leq k-1, d \mid l j} \frac{n+j}{j}$.
This implies

$$
\begin{aligned}
N(n, k, r) & =\frac{1}{n}\binom{n+k-1}{k}+\frac{1}{n} \sum_{l=1}^{d-1} \alpha^{-r l n^{\prime}} u_{l n^{\prime}} \\
& =\frac{1}{n}\binom{n+k-1}{k}+\frac{1}{n} \frac{n}{k} \sum_{l=1}^{d-1}\left(\alpha^{-r l n^{\prime}} \prod_{1 \leq j \leq k-1, d \mid j l} \frac{n+j}{j}\right) \\
& =\frac{1}{n}\binom{n+k-1}{k}+\frac{1}{k} \sum_{l=1}^{d-1}\left(e^{\frac{-2 i \pi n l n^{\prime}}{n}} \prod_{1 \leq j \leq k-1, d \mid j l} \frac{n+j}{j}\right)
\end{aligned}
$$

which is a real number.

So, we get $N(n, k, r)=\frac{1}{n}\binom{n+k-1}{k}+\frac{1}{k} \sum_{l=1}^{d-1}\left(\cos \left(\frac{2 l r \pi}{d}\right) \prod_{1 \leq j \leq k-1, d \mid j l} \frac{n+j}{j}\right)$.
In particular, if $d=1$, we get $N(n, k, r)=\frac{1}{n}\binom{n+k-1}{k}$ since we have an empty sum.

By the way, keeping the same notation, the following corollary results :
Corollary 4.5. With the previous notation, we have $\sum_{r=0}^{n-1} N(n, k, r)=\binom{n+k-1}{k}$.
Proof. It is enough to sum the formula of Theorem 4.4. We can also get it in view of $\sum_{r=0}^{n-1} N(n, k, r)=\sum_{r=0}^{n-1} F_{r}(1)=F(n, k, 1)=\binom{n+k-1}{k}$.

Remark 4.6. $N(n, k, r)$ is a d-periodic function in r.
Corollary 4.7. With the previous notation, we have $N(n, k, r)=N(k, n, r)$.
Proof. We use the formula of Theorem 4.4

$$
N(n, k, r)=\frac{1}{n}\binom{n+k-1}{k}+\frac{1}{k} \sum_{l=1}^{d-1}\left(\cos \left(\frac{2 l r \pi}{d}\right)_{1 \leq j \leq k-1, d \mid j l} \prod_{1}\left(\frac{n+j}{j}\right)\right)
$$

where $d=\operatorname{gcd}(n, k)$. If $n=k$, there is nothing to prove. So, assume $n \neq k$.

- It is easily seen that $\frac{1}{n}\binom{n+k-1}{k}=\frac{1}{k}\binom{k+n-1}{n}$.
- The result is gotten if we prove that

$$
\frac{1}{k} \prod_{1 \leq j \leq k-1, d \mid j l}\left(\frac{n+j}{j}\right)=\frac{1}{n} \prod_{1 \leq j \leq n-1, d \mid j l}\left(\frac{k+j}{j}\right)
$$

for any $l \in \mathbb{N}$ such that $1 \leq l \leq d-1$.
For such an l and $a, b \in \mathbb{N}$, set $A(a, b)=\{j \in \mathbb{N} \mid a \leq j \leq b$ and $d \mid j l\}$. We may assume $n>k$. Then

$$
\frac{1}{n} \prod_{1 \leq j \leq n-1, d \mid j l}\left(\frac{k+j}{j}\right)=\frac{1}{n} \prod_{j \in A(1, n-1)}\left(\frac{k+j}{j}\right)=\frac{1}{n} \frac{\prod_{j \in A(1, n-1)}(k+j)}{\prod_{j \in A(1, n-1)} j}
$$

But

$$
\begin{aligned}
A(1, n-1) & =A(1, n-k-1) \cup A(n-k+1, n-1) \cup\{n-k\} \\
& =A(k+1, n-1) \cup A(1, k-1) \cup\{k\}
\end{aligned}
$$

It follows that

$$
\prod_{j \in A(1, n-1)}(k+j)=n\left(\prod_{j \in A(1, n-k-1)}(k+j)\right)\left(\prod_{j \in A(n-k+1, n-1)}(k+j)\right)
$$

and

$$
\prod_{j \in A(1, n-1)} j=k\left(\prod_{j \in A(k+1, n-1)} j\right)\left(\prod_{j \in A(1, k-1)} j\right)
$$

Moreover, $j \in A(1, n-k-1) \Leftrightarrow k+j \in A(k+1, n-1)$ since $d|j l \Leftrightarrow d|(k+j) l$.
So we get $\prod_{j \in A(1, n-k-1)}(k+j)=\prod_{j \in A(k+1, n-1)} j$.
In the same way, we have $j \in A(n-k+1, n-1) \Leftrightarrow t=k+j-n \in A(1, k-1)$
since $d|j l \Leftrightarrow d|(k+j-n) l$.
So we get $\prod_{j \in A(n-k+1, n-1)}(k+j)=\prod_{t \in A(1, k-1)}(n+t)=\prod_{j \in A(1, k-1)}(n+j)$.
It follows that

$$
\begin{aligned}
\frac{1}{n} \prod_{j \in A(1, n-1)}\left(\frac{k+j}{j}\right) & =\frac{n\left(\prod_{j \in A(k+1, n-1)} j\right)\left(\prod_{j \in A(n-k+1, n-1)}(k+j)\right)}{n k\left(\prod_{j \in A(k+1, n-1)} j\right)\left(\prod_{j \in A(1, k-1)} j\right)} \\
& =\frac{1}{k} \frac{\prod_{j \in A(n-k+1, n-1)}(k+j)}{\prod_{j \in A(1, k-1)} j}=\frac{1}{k} \frac{\prod_{j \in A(1, k-1)}(n+j)}{\prod_{j \in A(1, k-1)} j} \\
& =\frac{1}{k} \prod_{j \in A(1, k-1)}\left(\frac{n+j}{j}\right)
\end{aligned}
$$

and we are done.

When $\operatorname{gcd}(n, k)>1$, we obtain a simpler evaluation for $N(n, k, r)$.
Theorem 4.8. With the previous notation, set $d=\operatorname{gcd}(n, k)$ for $k, n>0$ and assume $d>1$. Then

$$
N(n, k, r)=\frac{1}{n}\binom{n+k-1}{k}+\frac{1}{k} \sum_{1<\delta \leq d, \delta \mid d} \frac{\varphi(\delta) \mu(\delta / \operatorname{gcd}(r, d))}{\varphi(\delta / \operatorname{gcd}(r, d))}\binom{\frac{n}{\delta}+\frac{k}{\delta}-1}{\frac{n}{\delta}}
$$

where φ and μ are respectively the Euler function and the Möbius function.
In particular, we have

$$
N(n, k, 0)=\frac{1}{n}\binom{n+k-1}{k}+\frac{1}{k} \sum_{1<\delta \leq d, \delta \mid d} \varphi(\delta)\binom{\frac{n}{\delta}+\frac{k}{\delta}-1}{\frac{n}{\delta}}
$$

and

$$
N(n, k, r)=\frac{1}{n}\binom{n+k-1}{n}+\frac{1}{k} \sum_{1<\delta \leq d, \delta \mid d} \mu(\delta)\binom{\frac{n}{\delta}+\frac{k}{\delta}-1}{\frac{n}{\delta}}
$$

when $r>0$ and $\operatorname{gcd}(r, d)=1$.

Proof. Set $S=\sum_{l=1}^{d-1}\left(\cos \left(\frac{2 l r \pi}{d}\right) \prod_{1 \leq j \leq k-1, d \mid j l}\left(\frac{n+j}{j}\right)\right)$ with the notation of Theorem 4.4. We can write

$$
\begin{aligned}
S & =\sum_{1 \leq \delta^{\prime} \leq d-1, \delta^{\prime} \mid d}\left(\sum_{1 \leq l \leq d-1, \operatorname{gcd}(l, d)=\delta^{\prime}}\left(\cos \left(\frac{2 l r \pi}{d}\right) \prod_{1 \leq j \leq k-1, d \mid j l}\left(\frac{n+j}{j}\right)\right)\right) \\
& =\sum_{1<\delta \leq d, \delta \mid d} \sigma_{\delta}
\end{aligned}
$$

where $\delta=\frac{d}{\delta^{\prime}}$ and

$$
\sigma_{\delta}=\sum_{1 \leq l \leq d-1, \mathrm{gcd}(l, d)=\delta^{\prime}}\left(\cos \left(\frac{2 l r \pi}{d}\right) \prod_{1 \leq j \leq k-1, d \mid j l}\left(\frac{n+j}{j}\right)\right)
$$

For $\delta^{\prime}=\operatorname{gcd}(l, d)$, we have $d \mid j l$ and $1 \leq j \leq k \Leftrightarrow \frac{d}{\delta^{\prime}}$ divides $j \frac{l}{\delta^{\prime}}$ and $1 \leq j \leq k$ $\Leftrightarrow \delta$ divides j and $1 \leq j \leq k \Leftrightarrow j=i \delta$ and $1 \leq i \leq \frac{k}{\delta}$.

It follows that

$$
\prod_{1 \leq j \leq k-1, d \mid j l}\left(\frac{n+j}{j}\right)=\prod_{1 \leq i \leq \frac{k}{\delta}-1}\left(\frac{\frac{n}{\delta}+i}{i}\right)=\binom{\frac{n}{\delta}+\frac{k}{\delta}-1}{\frac{n}{\delta}}
$$

and

$$
\sigma_{\delta}=\binom{\frac{n}{\delta}+\frac{k}{\delta}-1}{\frac{n}{\delta}} \sum_{1 \leq l \leq d-1, \operatorname{gcd}(l, d)=\delta^{\prime}} \cos \left(\frac{2 l r \pi}{d}\right)
$$

Consider

$$
\begin{aligned}
\tau_{\delta} & =\sum_{1 \leq l \leq d-1, \operatorname{gcd}(l, d)=\delta^{\prime}} \cos \left(\frac{2 l r \pi}{d}\right)=\sum_{1 \leq l \leq d-1, \operatorname{gcd}(l, d)=\delta^{\prime}} \cos \left(\frac{2 r \pi\left(\frac{l}{\delta^{\prime}}\right)}{\delta}\right) \\
& =\sum_{1 \leq l^{\prime} \leq \delta-1, \operatorname{gcd}\left(l^{\prime}, \delta\right)=1} \cos \left(\frac{2 l^{\prime} r \pi}{\delta}\right)
\end{aligned}
$$

where $l^{\prime}=\frac{l}{\delta^{\prime}}$.
But τ_{δ} is also the real part of the Ramanujan sum

$$
c(r, \delta)=\sum_{1 \leq l^{\prime} \leq \delta-1, \operatorname{gcd}\left(l^{\prime}, \delta\right)=1} e^{\frac{2 i l^{\prime} r \pi}{\delta}}
$$

We have an explicite representation for $c(r, \delta)$ due to Hölder (see [13, Theorem 7.37, chapter 7, page 464]) by $c(r, \delta)=\frac{\varphi(\delta) \mu(m)}{\varphi(m)}$, where φ and μ are respectively the Euler function and the Möbius function, and where $m=d / \operatorname{gcd}\left(d, r \delta^{\prime}\right)=\delta / \operatorname{gcd}(r, \delta)$. Since $c(r, \delta)$ is a real number, we obtain $\tau_{\delta}=c(r, \delta)$ and the result is gotten.

In particular, we have the following two special cases

- $r=0$ gives $\tau_{\delta}=\varphi(\delta)$
and
- $\operatorname{gcd}(r, d)=1$ with $r>0$ gives $\tau_{\delta}=\mu(\delta)$.

Example 4.9. We are going to find the distinct factorizations into atoms of an element of a local seminormal CK domain.

Let $\omega=(1+\sqrt{5}) / 2$ and consider the PID $\mathbb{Z}[\omega]$. Since 2 is inert in $\mathbb{Z}[\omega]$, the ring $S=\mathbb{Z}[2 \omega]$ is weakly factorial and t-closed, and so is a generalized CK domain with conductor $2 \mathbb{Z}[\omega]$, a maximal ideal in $\mathbb{Z}[\omega]$ [11, Theorem 2] and [12, Example (2), page 177]. Set $R=S_{2 \mathbb{Z}[\omega]}$, which is a local seminormal CK domain and 2 is an atom in \bar{R} and R. In view of [12, Theorem 1.2, Proposition 2.1 and Proposition 3.1], we have $|\mathcal{U}(\bar{R}) / \mathcal{U}(R)|=3$. Set $x=32=2^{5}$. By Theorems 3.11 and 4.4 , we get $\eta(x)=\frac{1}{3}\binom{7}{5}=7$ since $\operatorname{gcd}(3,5)=1$. As ω is the fundamental unit of $\mathbb{Z}[\omega]$, its class generates the cyclic group $\mathcal{U}(\bar{R}) / \mathcal{U}(R)$. We can choose $p=2, p^{\prime}=2 \omega, p^{\prime \prime}=2 \omega^{2}$ for the nonassociate atoms of R. The different nonassociated factorizations of x into atoms of R are the following:
$x=p^{5}=\omega^{-3} p^{3} p^{\prime} p^{\prime \prime}=\omega^{-3} p^{2} p^{\prime 3}=\omega^{-6} p^{2} p^{\prime \prime 3}=\omega^{-6} p p^{\prime 2} p^{\prime \prime}=\omega^{-6} p^{\prime 4} p^{\prime \prime}=$ $\omega^{-9} p^{\prime} p^{\prime \prime}{ }^{4}$.

5. On the asymptotic behaviour of the number of distinct factorizations into atoms in a seminormal CK domain

As we saw in Section 3, we can restrict to the local case to evaluate the number of distinct factorizations into atoms of an element of a CK domain. To calculate this number for some special elements, we use results of Section 4.

Theorem 5.1. Let R be a local seminormal CK domain with integral closure \bar{R}. Let $\bar{R} p$ be the maximal ideal of \bar{R}, with $p \in R$. Set $n=|\mathcal{U}(\bar{R}) / \mathcal{U}(R)|$.
Let $x=v p^{k}, k \in \mathbb{N}^{*}, v \in \mathcal{U}(\bar{R})$. The number of nonassociated factorizations of $x^{m}, m \in \mathbb{N}^{*}$ into atoms of R is of the form $\eta\left(x^{m}\right)=\frac{k^{n-1}}{n!} m^{n-1}+O\left(m^{n-2}\right)$.

In particular, if x is an atom of R, then $\eta\left(x^{m}\right)=\frac{1}{n!} m^{n-1}+O\left(m^{n-2}\right)$.
Proof. We can use Theorem 1.1 since its assumptions are satisfied by a CK domain. So $\eta\left(x^{m}\right)$ is of the form $\eta\left(x^{m}\right)=A m^{d}+O\left(m^{d-1}\right)$ for $m \in \mathbb{N}^{*}$, where $A \in \mathbb{Q}$, $d \in \mathbb{N}, A>0$. Then, it is enough to find an equivalent of $\eta\left(x^{m}\right)$. For any $m \in n \mathbb{N}$, we have $v^{m} \in \mathcal{U}(R)$ and x^{m} is associated to $p^{m k}$, so that we can assume that n divides m to get A and d. In view of Theorem 3.11, we are led to calculate the number $N(n, k m, 0)=\eta\left(x^{m}\right)$ of solutions $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ of the system gotten in Theorem 4.4 :

$$
(S) \begin{cases}\sum_{i=1}^{n} a_{i}=k m & (1) \tag{1}\\ \sum_{i=1}^{n} \overline{i a_{i}}=\overline{0} \quad(2) \quad \text { in } \mathscr{Z} / n \mathbb{Z}\end{cases}
$$

But, by Corollary 4.7, we have, since $n=\operatorname{gcd}(n, m k)$

$$
\begin{gathered}
N(n, k m, 0)=N(k m, n, 0)= \\
\frac{1}{m k}\binom{m k+n-1}{n}+\frac{1}{n} \sum_{l=1}^{n-1}\left(\cos \left(\frac{2 l r \pi}{n}\right) \prod_{1 \leq j \leq n-1, n \mid j l}\left(\frac{m k+j}{j}\right)\right)
\end{gathered}
$$

where $r=0$.

First, we have
$\frac{1}{m k}\binom{m k+n-1}{n}=\frac{(m k+n-1) \cdots(m k+1)}{n!} \sim \frac{(m k)^{n-1}}{n!}=m^{n-1} \frac{k^{n-1}}{n!}$.
Now, consider $\frac{1}{n} \sum_{l=1}^{n-1}\left(\prod_{1 \leq j \leq n-1, n \mid j l}\left(\frac{m k+j}{j}\right)\right)$ since $r=0$.
Because of $l \leq n-1<n$, we cannot have $n \mid l$, so that $j \neq 1$ and we have at most $n-2$ factors in the product.
It follows that $\prod_{1 \leq j \leq n-1, n \mid j l}\left(\frac{m k+j}{j}\right) \leq(m k+n)^{n-2}=O\left(m^{n-2}\right)$. As we have a sum of $n-1$ terms, we get that $\eta\left(x^{m}\right) \sim \frac{k^{n-1}}{n!} m^{n-1}$.

References

[1] D.D. Anderson, D.F. Anderson and M. Zafrullah, Atomic domains in which almost all atoms are prime, Comm. Algebra 20 (1992), 1447-1462.
[2] D.D. Anderson and J.L. Mott, Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements, J. Algebra 148 (1992), 17-41.
[3] S.T. Chapman, F. Halter-Koch and U. Krause, Inside factorial monoids and integral domains, J. Algebra, 252 (2002), 350-375.
[4] I.S. Cohen and I. Kaplansky, Rings with a finite number of primes I, Trans. Amer. Math. Soc. 60 (1946), 468-477.
[5] D.E. Dobbs and M. Fontana, Locally pseudo-valuation domains, Annali Mat. Pura Appl. 134 (1983), 147-168.
[6] F. Halter-Koch, On the asymptotic behaviour of the number of distinct factorizations into irreducibles, Ark. Mat. 31 (1993), 297-305.
[7] F. Halter-Koch, Divisor theories with primary elements and weakly Krull domains, Boll. UMI, 9-B (1995), 417-441.
[8] J.R. Hedstrom and E.G. Houston, Pseudo-valuation domains, Pac. J. Math. 75 (1) (1978), 137-147.
[9] G. Picavet and M. Picavet-L'Hermitte, Anneaux t-clos, Comm. Algebra 23 (1995), 26432677.
[10] M. Picavet-L'Hermitte, t-closed pairs, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York 185 (1997), 401-415.
[11] M. Picavet-L'Hermitte, Factorization in some orders with a PID as integral closure, Algebraic Number Theory and Diophantine Analysis, de Gruyter, New York (2000), 365-390.
[12] M. Picavet-L'Hermitte, Weakly factorial quadratic orders, Arab. J. Sci. Eng. 26 (2001), 171-186.
[13] D. Redmond, Number Theory, Marcel Dekker, New York (1996).
[14] R.G. Swan, On seminormality, J. Algebra 67 (1980), 210-229.
[15] A. Zaks, Half-factorial domains, Bull. Amer. Math. Soc. 82 (1976), 721-724.
Laboratoire de Mathématiques Pures, Université Blaise Pascal, 63177 Aubière-Cedex, France

E-mail address: Abdallah.Badra@math.univ-bpclermont.fr
Laboratoire de Mathématiques Pures, Université Blaise Pascal, 63177 Aubière-Cedex, France

E-mail address: Martine.Picavet@math.univ-bpclermont.fr

[^0]: 2000 Mathematics Subject Classification. Primary 11D04, 1315; Secondary 13A05, 20 M 14.
 Key words and phrases. CK domain, half-factorial, seminormal, t-closed, diophantine equations.

