
            

SOME DIOPHANTINE EQUATIONS ASSOCIATED TO

SEMINORMAL COHEN-KAPLANSKY DOMAINS

ABDALLAH BADRA AND MARTINE PICAVET-L’HERMITTE

Abstract. A Cohen-Kaplansky domain (CK domain) R is an integral domain

where every nonzero nonunit element of R is a finite product of irreducible
elements and such that R has only finitely many nonassociate irreducible ele-
ments. In this paper, we investigate seminormal CK domains and obtain the

form of their irreducible elements. The solutions of a system of diophantine
equations allow us to give a formula for the number of distinct factorizations of

a nonzero nonunit element of R, with an asymptotic formula for this number.

1. Introduction

Let R be an atomic integral domain, that is, each nonzero nonunit element of R
can be written as a finite product of irreducible elements (or atoms). The simplest
situation is whenR has only a finite number of (nonassociate) atoms. Such a domain
R was called a Cohen-Kaplansky domain (CK domain) by D.D. Anderson and J.L.
Mott in [2] who obtained many conditions equivalent to R being a CK domain,
after I.S. Cohen and I. Kaplansky [4] inaugurated the study of CK domains. In
Section 2 we recall and give basic results on CK domains.

An atomic domain R is called a half-factorial domain (HFD) if each factorization
of a nonzero nonunit element of R into a product of atoms has the same length
(Zaks [15]). A ring R is called seminormal if whenever x, y ∈ R satisfy x3 = y2,
there is a ∈ R with x = a2, y = a3 [14]. Section 3 is devoted to the study of
seminormal CK domains. In particular, we show that a seminormal CK domain
is half-factorial and obtain some equivalent conditions for a CK domain to be
seminormal. As factorization properties of CK domains and seminormality are
preserved by localization, we consider a local seminormal CK domain R. Let R̄ be
its integral closure. Then R̄ is a DVR with maximal ideal R̄p, which is also the
maximal ideal of R. Moreover the atoms of R are of the form vp, where v is a
unit of R̄. If U(R̄) (resp. U(R)) is the group of units of R̄ (resp. R), the factor
group U(R̄)/U(R) is a finite cyclic group. Let ū be a generator of U(R̄)/U(R) and
n the order of ū. If x = vpk is a nonzero nonunit element of R with v̄ = ūr, r ∈
{0, . . . , n− 1}, in U(R̄)/U(R), the distinct factorizations of x in R into atoms are
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deduced from the system of diophantine equations in (a1, . . . , an) ∈ � n :

(S)





n∑

i=1

ai = k

n∑

i=1

iai = r̄ in � /n �

The calculation of the number of solutions of this system is the object of Section
4. If we denote by η(x) the number of non-associated irreducible factorizations of
x into atoms, we get that η(x) is the number of solutions of the system (S).

Section 5 ends this paper with the asymptotic behaviour of the function η where
we use the following result by F. Halter-Koch :

Theorem 1.1. [6, Theorem 1]. Let H be an atomic monoid such that each nonunit
x has finitely many non-associated factorizations into irreducibles. Suppose that
there are only finitely many irreducible elements of H which divide some power
of x. There exists two constants A ∈ � and d ∈ �

, A > 0 such that η(xn) =
And +O(nd−1).

An explicit value for A and d is obtained for a local seminormal CK domain.

For a ring R, we denote by Max(R) the set of maximal ideals of R and by U(R)
its group of units. Let x, y ∈ R. We say that x and y are associates (x ∼ y) if
there exists u ∈ U(R) such that x = uy. For an integral domain R, we denote by R̄
its integral closure. The conductor [R : R̄] of an integral domain R in its integral
closure is called the conductor of R. For a finite set S, we denote by |S| the number
of elements of S. For x ∈ � , we set [x] = sup{n ∈ � | n ≤ x}.

2. Basic results on CK domains

We first recall some of useful results concerning CK domains.

Theorem 2.1. [2, Theorem 4.3] For an integral domain R, the following state-
ments are equivalent.

1. R is a CK domain.
2. R̄ is a semilocal PID with R̄/[R : R̄] finite and |Max(R)| = |Max(R̄)|.
3. R is a one-dimensional semilocal domain with R/M finite for each nonprin-

cipal maximal ideal M of R, R̄ is a finitely generated R-module (equivalently,
[R : R̄] 6= 0), and |Max(R)| = |Max(R̄)|.

This theorem implies the following properties.

Proposition 2.2. [2, Theorem 4.3, Theorem 3.1, Theorem 2.1 and Corollary 2.5 ]
Let R be a CK domain. Then

1. R is Noetherian and for each x ∈ R̄, there exists an n ∈ � ∗ with xn ∈ R.
2. U(R̄)/U(R) is a finite group.
3. RM is a CK domain for each maximal ideal M of R. In particular, R̄M is a

DVR.
4. Let T be an overring of R. Then T is also a CK domain.
5. The atoms of R are primary.
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D.D. Anderson and J.L. Mott [2] say that a pair of rings R ⊂ S is a root extension
if for each s ∈ S, there exists an n = n(s) ∈ � ∗ with sn ∈ R. For such an extension
we have |Max(R)| = |Max(S)|. Hence R ⊂ R̄ is a root extension when R is a CK
domain.

Proposition 2.3. Let R1 and R2 be two CK domains with the same integral closure
R′. Then R = R1 ∩R2 is a CK domain with integral closure R′.

Proof. Set R = R1 ∩ R2. Define I1 = [R1 : R′], I2 = [R2 : R′] and I = [R : R′].
Then I1 ∩ I2 is a common ideal of R′ and R contained in I so that I 6= 0. Let
a, b ∈ R′ with b 6= 0 and i a nonzero element of I. Then ia and ib are in R and
hence a/b = ia/ib shows that R has the same quotient field as R′. Moreover,
R ⊂ R′ is a root extension. Then R′ is obviously the integral closure of R and is a
semilocal PID. Since R′/I1 and R′/I2 are finite, this gives that R′/(I1 ∩ I2) is also
finite because isomorphic to a subring of R′/I1 ×R′/I2, so that R′/I is finite.

Moreover, we have |Max(R)| = |Max(R′)| because R ⊂ R′ is a root extension.
Applying Theorem 2.1, (2), we get that R is a CK domain with integral closure
R′.

Corollary 2.4. Let D be a DVR with maximal ideal M such that D/M is finite.
Let I be a nonzero ideal of D. The set of underrings of D with integral closure D
and with conductor I has a least element and all these underrings are CK domains.

Proof. Set E = {R underring of D | R̄ = D, [R : D] = I}. Since D/M is finite, so
is D/I. Indeed, if M = Dp for some atom p ∈ D, then I = Dpn, for some integer n
and an obvious induction shows that |D/I| = |D/M |n. Consider R ∈ E . Then the
finiteness ofD/I implies the finiteness ofR/I. SoD is a finitely generated R-module
because D/I is a finitely generated R/I-module. It follows that |Max(R)| = 1 and
R is a CK domain by Theorem 2.1, (2).

Since D/I is finite, there are finitely many subrings of D/I, and so finitely many
R ∈ E . Let R and S ∈ E and set T = R ∩ S. By Proposition 2.3, T is a CK
domain with conductor J ⊃ I. But T ⊂ R implies J ⊂ I, so that J = I and T ∈ E .
Therefore the intersection of all elements of E is a CK domain with conductor I
and integral closure D and is the least element of E .

3. Characterization of seminormal CK domains

Let R be an integral domain with quotient field K. We say that R is t-closed
if whenever x ∈ K and x2 − rx, x3 − rx2 ∈ R for some r ∈ R, then x ∈ R [9]. A
t-closed integral domain is seminormal. Recall that an integral domain R is said
to be a pseudo-valuation domain (PVD) if there exists a valuation overring V of R
such that Spec(R) = Spec(V ) [8] and an integral domain R is said to be a locally
pseudo-valuation domain (locally PVD) if each of its localizations at a prime ideal
is a PVD [5].

Proposition 3.1. Let R be a one-dimensional Noetherian integral domain such
that its integral closure R̄ is a finitely generated R-module. The following conditions
are equivalent :

1. R is seminormal and the canonical map Spec(R̄)→ Spec(R) is bijective.
2. R is t-closed.
3. R is a locally PVD.
4. The conductor I of R is a radical ideal in R̄ and |Max(R)| = |Max(R̄)|.



       

4 ABDALLAH BADRA AND MARTINE PICAVET-L’HERMITTE

In particular, a CK domain R is seminormal if and only if R is t-closed.

Proof. (1) ⇔ (2) is [9, Proposition 3.7].
(2) ⇔ (3) is [10, Corollary 3.4].
(2) ⇔ (4) comes from [9, Corollary 3.8 and Proposition 2.8]. Indeed, for any

P ∈ Max(R), the conductor of RP is IP .

We obtain as a corollary a first characterization of local seminormal (or t-closed)
CK domains.

Corollary 3.2. Let R be a local CK domain with integral closure R̄ 6= R. Let R̄p
be the maximal ideal of R̄. Then R is seminormal if and only if U(R̄)p ⊂ R.

Proof. Assume that R is seminormal. By Proposition 3.1 (4), R̄p is the conductor
of R, so that U(R̄)p ⊂ R̄p ⊂ R.

Conversely, if U(R̄)p ⊂ R, we get that U(R̄)pn ⊂ R for any integer n and R̄p ⊂ R
gives that R̄p is the conductor of R so that R is seminormal.

In the nonlocal case, this condition is not fulfilled :

Corollary 3.3. Let R be a CK domain with integral closure R̄ 6= R.
Let R̄pi, i = 1, . . . , n, be the maximal ideals of R̄.

Then U(R̄)pi ⊂ R for any i = 1, . . . , n, implies that R is seminormal and n = 1.

Proof. The case n = 1 is the previous Corollary. Assume n > 1. Any nonunit of R̄
is in R. Moreover, R̄p1 and R̄p2 are comaximal ideals of R̄. For any u ∈ U(R̄), there
exists v, w ∈ R̄ such that u = vp1 + wp2 ∈ R. Then R̄ = R, a contradiction.

Corollary 2.4 has a new formulation in the seminormal case.

Corollary 3.4. Let D be a DVR with maximal ideal M such that D/M is finite.
The set of seminormal underrings of D with integral closure D is linearly ordered.

Proof. Let R be a seminormal proper underring of D. Since its conductor is a
radical ideal of D, it has to be M , a maximal ideal in R so that R/M is a subfield
of the finite field D/M . But the set of subfields of D/M is linearly ordered.

Let R1, R2 be two seminormal proper underrings of D with integral closure D.
Their conductor is M and we have, for instance, R1/M ⊂ R2/M , which gives
R1 ⊂ R2.

Here is a fundamental link between seminormal CK domains and factorization.

Proposition 3.5. A seminormal CK domain is half-factorial.

Proof. Let R be a seminormal CK domain and P ∈ Max(R). Then RP is a PVD
by Proposition 3.1 and a CK domain by Proposition 2.2 (3). So RP is a HFD for
any P ∈ Max(R) [2, Theorem 6.2]. The same holds for R [2, Theorem 6.1].

The following theorem gives the additional condition necessary for a CK half-
factorial domain to be seminormal.

Theorem 3.6. Let R be a CK domain with integral closure R̄.
Let R̄pi, i = 1, . . . , n, be the maximal ideals of R̄. Then R is seminormal if and
only if R is a HFD and U(R̄)p1 · · · pn ⊂ R. Moreover, if these conditions are
satisfied, we can choose pi ∈ R for each i = 1, . . . , n.
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Proof. We can assume R 6= R̄ (the case R = R̄ is trivial).
Let R be a seminormal CK domain. Then R is a HFD by the previous Propo-

sition and the conductor I of R is a product of some of the R̄pi. It follows that
U(R̄)p1 · · · pn ⊂ R.

Conversely, assume that R is a HFD and U(R̄)p1 · · · pn ⊂ R and let I be the
conductor of R. For each i = 1, . . . , n, set Pi = R∩ R̄pi, Ri = RPi and Ri = RPi =
R̄Pi .

First, we show that we may assume pi ∈ R for each i = 1, . . . , n.
- If Pi is comaximal with I, then Ri = Ri and pi/1 is an atom in Ri [2, Theorem

2.1 (2)]. Then there exists a Pi-primary atom p ∈ R and s ∈ R \ Pi such that
spi = p, which implies s ∈ U(R̄), so that R̄pi = R̄p.

- Let Pi be non comaximal with I and let x be a Pi-primary atom in R. There
exist u ∈ U(R̄) and an integer k such that x = upki since x 6∈ Pj for any j 6= i. But

Ri is a HFD, which implies that x/1 ' pi/1 in Ri [2, Theorem 6.3] and so k = 1.
Then x ' pi in R̄.

The assumption can be rewritten U(R̄)p1 · · · pn ⊂ R with pi ∈ R for each
i = 1, . . . , n. This gives finally R̄p1 · · · pn ⊂ I ⊂ R and I is a radical ideal in
R̄. Moreover, R being a CK domain, we get |Max(R)| = |Max(R̄)| and thus R is
seminormal by Proposition 3.1 (4).

In the local case, we obtain another characterization for a CK half-factorial
domain to be seminormal.

Proposition 3.7. Let R be a local CK domain with integral closure R̄. Then R is
seminormal if and only if R is a HFD and has |U(R̄)/U(R)| nonassociate atoms.

Proof. We can assume R 6= R̄ (the case R = R̄ is trivial).
Let R be seminormal. Then R is a HFD by the previous Theorem. Let R̄p be

the maximal ideal of R̄ and let a1, . . . , an be the nonassociate atoms of R. They
are of the form ai = uip, ui ∈ U(R̄) by [2, Theorem 6.3 (3)]. But since R is
seminormal, its conductor is R̄p. It follows that up ∈ R for any u ∈ U(R̄). Let
up, vp be two atoms of R, where u, v ∈ U(R̄). Then up and vp are associates in R if
and only if there exists w ∈ U(R) such that up = wvp, which is equivalent to ū = v̄
in U(R̄)/U(R). Hence two atoms up, vp of R, with u, v ∈ U(R̄), are nonassociates
in R if and only if ū 6= v̄ in U(R̄)/U(R). Then R has |U(R̄)/U(R)| nonassociate
atoms (see also [2, Corollary 5.6]).

Conversely, let R be a HFD with n = |U(R̄)/U(R)| nonassociate atoms. They
are of the form ai = uip, ui ∈ U(R̄), i = 1, . . . , n and {ū1, . . . , ūn} = U(R̄)/U(R).
It follows that up ∈ R for any u ∈ U(R̄). In particular, p ∈ R so that pn ∈ R for
any integer n > 0 and we get that R̄p ⊂ R. Then R̄p is the conductor of R and R
is seminormal.

A seminormal CK domain has a property which is not too far from unique
factorization. In [3], S.T. Chapman, F. Halter-Koch and U. Krause defined an
integral domain R to be inside factorial with Cale basis Q, if, for every nonzero
nonunit x ∈ R, there exists some n ∈ � ∗ such that xn has a unique factorization,
up to units, into elements of Q.

Proposition 3.8. Let R be a seminormal CK domain with integral closure R̄.
Then R is inside factorial with Cale basis {p1, . . . , pn}, where the R̄pi are the
maximal ideals of R̄ with pi ∈ R for i = 1, . . . , n.
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Proof. We have seen in Theorem 3.6 that we can choose pi in R, where the R̄pi are
the maximal ideals of R̄.
The atoms of R are of the form uijpi, with uij ∈ U(R̄), i = 1, . . . , n [2, Theorem
2.1 (2)]. Let r = |U(R̄)/U(R)|. Then ur ∈ R for any u ∈ U(R̄). Let x be a nonzero
nonunit of R. As an element of R̄, it can be written x = u

∏
pαii , u ∈ U(R̄).

Then xr = ur
∏
prαii with ur ∈ U(R) and this factorization into the pi is obviously

unique.

Remark 3.9. Under assumptions of the previous Proposition, let e be the expo-
nent of the factor group U(R̄)/U(R). Then e is the least integer r such that xr

has a unique factorization, up to units, into elements of {p1, . . . , pn}, for every
nonzero nonunit x ∈ R. Indeed, e is the least integer r such that ur ∈ U(R) for
any u ∈ U(R̄).

We can calculate this exponent. D.D. Anderson, D.F Anderson and M. Zafrullah
call in [1] an atomic domain with almost all atoms prime a generalized CK domain.
A CK domain is obviously a generalized CK domain. We can still assume R 6=
R̄. Then, if I is the conductor of R, we have the isomorphism U(R̄)/U(R) '
U(R̄/I)/U(R/I) by [11, Theorem 2] (the result was obtained for algebraic orders
but a generalization to one-dimensional Noetherian domains R with integral closure
which are finitely generated R-modules can be easily made). Since R is seminormal,

I is a radical ideal in R̄. After a reordering, write I =
m∏

i=1

R̄pi.

Then U(R̄)/U(R) '
m∏

i=1

[
U(R̄/R̄pi)/U(R/Pi)

]
, where Pi = R ∩ R̄pi since I =

m∏

i=1

Pi as an ideal of R.

Set qi = |R/Pi| and ki = [R̄/R̄pi : R/Pi]. Then ei = (qkii − 1)/(qi − 1) is the
order (and the exponent) of the finite cyclic group U(R̄/R̄pi)/U(R/Pi) and e =
lcm(e1, . . . , em).

We are now able to obtain all the factorizations into atoms of a nonzero nonunit
element of a seminormal CK domain with the number of distinct factorizations into
atoms. We can restrict to the local case by the following proposition.

Proposition 3.10. Let R be a CK domain with maximal ideals P1, . . . , Pn. Set
Ri = RPi and define ηi(z) to be the number of distinct factorizations into atoms of

Ri of a nonzero z ∈ Ri. Then η(x) =

n∏

i=1

ηi(x/1) for a nonzero x ∈ R.

Proof. By [2, Theorem 2.1 (2)], the atoms of R are primary and the atoms of Ri are
the Pi-primary atoms of R. Moreover, if x is a nonzero nonunit element of R, then
x is written in a unique way x = x1 · · ·xn, where xi is a Pi-primary element of R
for each i = 1, . . . , n [7, Corollary 1.7]. Indeed, by [1, Corollary 5], a CK domain is
weakly factorial (such that every nonunit is a product of primary elements), and a
weakly factorial domain is a weakly factorial monoid for the multiplicative structure.

So, we get η(x) =

n∏

i=1

η(xi) and η(xi) = ηi(xi/1) for each i by [2, Theorem 2.1 (2)]

since a factorization of xi into atoms of R leads to a factorization of xi/1 into atoms
of Ri and conversely.
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To end, we give the form of atoms in a local seminormal CK domain.

Theorem 3.11. Let R be a local seminormal CK domain with integral closure R̄.
Let R̄p be the maximal ideal of R̄, with p ∈ R. Set n = |U(R̄)/U(R)| and choose
u ∈ U(R̄) such that ū is a generator of the cyclic group U(R̄)/U(R). Then

1. A set of all nonassociate atoms of R is {uip | i = 0, . . . , n− 1}.
2. Let x = vpk, k ∈ � ∗, v ∈ U(R̄). Let r ∈ {0, . . . , n− 1} be such that v̄ = ūr.

The number of nonassociated factorizations of x into atoms of R is equal
to the number of solutions (a1, . . . , an) ∈ � n of the system of diophantine
equations :

(S)





n∑

i=1

ai = k

n∑

i=1

iai = r̄ in � /n �

Proof. As above, we can assume R 6= R̄. Then R̄p is the conductor of R so that
R̄/R̄p is a finite field by Theorem 2.1 (3) and U(R̄/R̄p) is a finite cyclic group. It
follows that U(R̄)/U(R) ' U(R̄/R̄p)/U(R/R̄p) (Remark 3.9) is also a finite cyclic
group. Let u ∈ U(R̄) be such that ū is a generator of U(R̄)/U(R).

(1) In view of Proposition 3.7, we can choose A = {uip}, i = 1, . . . , n, as a set
of nonassociate atoms of R since the ui are the representatives of the elements of
U(R̄)/U(R) and unp is an associate of p in R.

(2) Set pi = uip, i = 1, . . . , n, and let x be a nonzero nonunit element of R which
is not an atom. Then x = vpk, k > 1 with a unique v ∈ U(R̄). A factorization of

x into elements of A is of the form x = w

n∏

i=1

paii , w ∈ U(R), ai ∈ � . This gives

x = w

n∏

i=1

(uip)ai = vpk (∗), which implies, by identification in R̄, the equalities

v = w

n∏

i=1

uiai and k =

n∑

i=1

ai (∗∗)

Consider another factorization x = w′
n∏

i=1

p
a′i
i , w

′ ∈ U(R), a′i ∈ � . We get then

k =

n∑

i=1

ai =

n∑

i=1

a′i and v = w
n∏

i=1

uiai = w′
n∏

i=1

uia
′
i . These two factorizations

coincide if and only if ai = a′i for each i. In this case, we have w = w′.

In U(R̄)/U(R) we have the relation v̄ =

n∏

i=1

ūiai = ūr where r ∈ {0, . . . , n − 1}

by (∗∗), that is r ≡
n∑

i=1

iai (mod n), or equivalently, r̄ =
n∑

i=1

iai in � /n � . Then

(a1, . . . , an) ∈ � n is a solution of the system (S).
Conversely, let (a′1, . . . , a

′
n) ∈ � n satisfying (S).

Set x′ =

n∏

i=1

p
a′i
i =

n∏

i=1

(uip)a
′
i = ua

′
1+2a′2+···+na′npa

′
1+a′2+···+a′n .
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But

n∑

i=1

ia′i = r + sn, s ∈ � , gives x′ = ur(un)spk and v̄ = ūr implies ur = w′v,

where w′ ∈ U(R). So we get x′ = w′(un)svpk = w′(un)sx, with w′(un)s ∈ U(R)
and x ∼ x′ in R. We deduce that two distinct solutions of (S) give two distinct
factorizations of x into atoms of R and the number of nonassociated factorizations
of x into atoms of R is equal to the number of solutions (a1, . . . , an) ∈ 	 n of
(S).

We are going to calculate the number of solutions of such a system in the next
section.

4. On the number of solutions of a system of two special
diophantine equations

In this section, we use the following notation. Let n, r ∈ 	 , k, s ∈ � with n > 0
and 0 ≤ r ≤ n− 1. We consider the following systems of diophantine equations in
(a1, . . . , an) ∈ 	 n:

S(n, k, r)





n∑

i=1

ai = k

n∑

i=1

iai = r̄ in � /n �
and S′(n, k, s)





n∑

i=1

ai = k

n∑

i=1

iai = s

We denote respectively by N(n, k, r) and p(n, k, s) the numbers of solutions
(a1, . . . , an) ∈ 	 n of S(n, k, r) and S′(n, k, s). Obviously, we have N(n, k, r) =
p(n, k, r) = 0 for k < 0. It is easy to see that

N(n, k, r) =
∑

i≥0

p(n, k, r + in) =

[k− r
n ]∑

i=[ k−rn ]

p(n, k, r + in)

At last, for n, k ∈ 	 , k > 0, we set :

F (n, k, x) =
xk(1− xn+k−1)(1− xn+k−2) · · · (1− xn)

(1− x)(1− x2) · · · (1− xk)

where x is a variable.

Remark 4.1. It follows that p(n, k, s) is also the number of partitions of s into k
summands bj ∈ 	 such that 1 ≤ b1 ≤ · · · ≤ bk ≤ n.

Proposition 4.2. With the previous notation, for k > 0, we have F (n, k, x) =∑

s≥0

p(n, k, s)xs. Moreover, F (n, k, x) is a polynomial in x.

Proof. The generating function for the numbers p(n, k, s) is the two-variable series

ϕ(x, y) =
∑

s,k≥0

p(n, k, s)xsyk =
1

(1− yx)(1− yx2) · · · (1− yxn)
because of

1

(1− yx)(1− yx2) · · · (1− yxn)
=

n∏

i=1


∑

ai≥0

yaixiai


 =
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∑

a1≥0,... ,an≥0

ya1+···+anxa1+2a2+···+nan =
∑

k≥0,s≥0

p(n, k, s)ykxs

We can write ϕ(x, y) =
∑

k≥0

ϕk(x)yk with ϕk(x) =
∑

s≥0

p(n, k, s)xs, for all k ≥ 0.

We can easily check that (1 − yxn+1)ϕ(x, xy) = (1 − yx)ϕ(x, y), which implies
(1− xk)ϕk(x) = (x− xn+k)ϕk−1(x) for k > 0, so that

ϕk(x) =
(x− xn+k)(x− xn+k−1) · · · (x− xn+1)

(1− xk)(1− xk−1) · · · (1− x)
ϕ0(x), for k > 0.

But ϕ0(x) = 1. Hence ϕk(x) = F (n, k, x) for k > 0.

To end, F is a polynomial in x since p(n, k, s) = 0 for large s.

We can now calculate N(n, k, r).

Theorem 4.3. With the previous notation, for k > 0, let F0, . . . , Fn−1 be the n-

components of F (n, k, x), i.e. F (n, k, x) =

n−1∑

r=0

xrFr(x
n). Then N(n, k, r) = Fr(1).

Proof. Write F (n, k, x) =
∑

j≥0

fjx
j , fj ∈ 
 . Then

Fr(x
n) =

∑

i≥0

fr+inx
ni =

∑

i≥0

p(n, k, r + in)xni and Fr(1) =
∑

i≥0

p(n, k, r + in) =

N(n, k, r).

The value of Fr(1) gives then the value of N(n, k, r).

Theorem 4.4. With the previous notation, set d = gcd(n, k) for k, n > 0. Then

N(n, k, r) =
1

n

(
n+ k − 1

k

)
+

1

k

d−1∑

l=1


cos

(
2lrπ

d

) ∏

1≤j≤k−1,d|jl

(
n+ j

j

)


In particular, N(n, k, r) =
1

n

(
n+ k − 1

k

)
for any r ∈ {0, . . . , n− 1} when d = 1.

Proof. We use the relation F (n, k, x) =
n−1∑

t=0

xtFt(x
n). We set α = e

2iπ
n . For

all r,m ∈ {0, . . . , n − 1}, we have α−rmF (n, k, αm) =

n−1∑

t=0

αtm−rmFt(α
nm) =

n−1∑

t=0

α(t−r)mFt(1).

Summing on m we get

n−1∑

m=0

α−rmF (n, k, αm) =

n−1∑

m=0

(
n−1∑

t=0

α(t−r)mFt(1)

)
=

n−1∑

t=0

(
n−1∑

m=0

α(t−r)mFt(1)

)
=

n−1∑

t=0

Ft(1)

(
n−1∑

m=0

α(t−r)m
)

=

n−1∑

t=0

Ft(1)nδrt = nFr(1)
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So we obtain Fr(1) =
1

n

n−1∑

m=0

α−rmF (n, k, αm).

Now, we have to calculate um = F (n, k, αm) , where

F (n, k, x) = xk
(1− xn+k−1)(1− xn+k−2) · · · (1− xn+1)(1− xn)

(1− xk−1)(1− xk−2) · · · (1− x)(1− xk)

= xk
xn − 1

xk − 1

k−1∏

j=1

(
xn+j − 1

xj − 1

)

which is a polynomial in x, so that F (n, k, αm) has a sense.

Using L’Hopital’s rule, we are going to calculate the values of
xn − 1

xk − 1
and

xn+j − 1

xj − 1
for j = 1, . . . , k − 1, at x = αm, m = 0, 1, . . . , n− 1.

• If n 6 | mk, then
αmn − 1

αmk − 1
= 0.

If n|mk, then

[
xn − 1

xk − 1

]

x=αm
= lim

x→αm
nxn−1

kxk−1
=

n

k
. Moreover, in this case,

αmk = 1.

Let j ∈ {1, . . . , k − 1}.
• If n 6 | mj, then

αm(n+j) − 1

αmj − 1
= 1.

If n|mj, then

[
xn+j − 1

xj − 1

]

x=αm
= lim
x→αm

(n+ j)xn+j−1

jxj−1
=
n+ j

j
.

To sum up, we obtain um = 0 if n 6 |mk and um =
n

k

∏

1≤j≤k−1,n|jm

n+ j

j
if n|mk.

In particular, u0 =
n

k

k−1∏

j=1

n+ j

j
=
n(n+ 1) · · · (n+ k − 1)

1 · · · (k − 1)k
=

(
n+ k − 1

k

)
.

Set d = gcd(n, k) and n = n′d, k = k′d so that gcd(n′, k′) = 1.
Then n|mk ⇔ n′|mk′ ⇔ n′|m.

If n′ 6 |m, then um = 0
If n′|m, set m = ln′.

Then n|mj ⇔ n′d|ln′j ⇔ d|lj so that uln′ =
n

k

∏

1≤j≤k−1,d|lj

n+ j

j
.

This implies

N(n, k, r) =
1

n

(
n+ k − 1

k

)
+

1

n

d−1∑

l=1

α−rln
′
uln′

=
1

n

(
n+ k − 1

k

)
+

1

n

n

k

d−1∑

l=1


α−rln′

∏

1≤j≤k−1,d|jl

n+ j

j




=
1

n

(
n+ k − 1

k

)
+

1

k

d−1∑

l=1


e−2iπrln′

n

∏

1≤j≤k−1,d|jl

n+ j

j




which is a real number.
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So, we get N(n, k, r) =
1

n

(
n+ k − 1

k

)
+

1

k

d−1∑

l=1


cos

(
2lrπ

d

) ∏

1≤j≤k−1,d|jl

n+ j

j


.

In particular, if d = 1, we get N(n, k, r) =
1

n

(
n+ k − 1

k

)
since we have an

empty sum.

By the way, keeping the same notation, the following corollary results :

Corollary 4.5. With the previous notation, we have

n−1∑

r=0

N(n, k, r) =

(
n+ k − 1

k

)
.

Proof. It is enough to sum the formula of Theorem 4.4. We can also get it in view

of

n−1∑

r=0

N(n, k, r) =

n−1∑

r=0

Fr(1) = F (n, k, 1) =

(
n+ k − 1

k

)
.

Remark 4.6. N(n, k, r) is a d-periodic function in r.

Corollary 4.7. With the previous notation, we have N(n, k, r) = N(k, n, r).

Proof. We use the formula of Theorem 4.4

N(n, k, r) =
1

n

(
n+ k − 1

k

)
+

1

k

d−1∑

l=1


cos

(
2lrπ

d

) ∏

1≤j≤k−1,d|jl

(
n+ j

j

)


where d = gcd(n, k). If n = k, there is nothing to prove. So, assume n 6= k.

• It is easily seen that
1

n

(
n+ k − 1

k

)
=

1

k

(
k + n− 1

n

)
.

• The result is gotten if we prove that

1

k

∏

1≤j≤k−1,d|jl

(
n+ j

j

)
=

1

n

∏

1≤j≤n−1,d|jl

(
k + j

j

)

for any l ∈ � such that 1 ≤ l ≤ d− 1.
For such an l and a, b ∈ � , set A(a, b) = {j ∈ � | a ≤ j ≤ b and d|jl}. We may

assume n > k. Then

1

n

∏

1≤j≤n−1,d|jl

(
k + j

j

)
=

1

n

∏

j∈A(1,n−1)

(
k + j

j

)
=

1

n

∏

j∈A(1,n−1)

(k + j)

∏

j∈A(1,n−1)

j

But

A(1, n− 1) = A(1, n− k − 1) ∪A(n− k + 1, n− 1) ∪ {n− k}
= A(k + 1, n− 1) ∪A(1, k − 1) ∪ {k}

It follows that

∏

j∈A(1,n−1)

(k + j) = n


 ∏

j∈A(1,n−k−1)

(k + j)




 ∏

j∈A(n−k+1,n−1)

(k + j)
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and

∏

j∈A(1,n−1)

j = k


 ∏

j∈A(k+1,n−1)

j




 ∏

j∈A(1,k−1)

j




Moreover, j ∈ A(1, n− k − 1)⇔ k + j ∈ A(k + 1, n− 1) since d|jl⇔ d|(k + j)l.

So we get
∏

j∈A(1,n−k−1)

(k + j) =
∏

j∈A(k+1,n−1)

j.

In the same way, we have j ∈ A(n − k + 1, n − 1) ⇔ t = k + j − n ∈ A(1, k − 1)
since d|jl⇔ d|(k + j − n)l.

So we get
∏

j∈A(n−k+1,n−1)

(k + j) =
∏

t∈A(1,k−1)

(n+ t) =
∏

j∈A(1,k−1)

(n+ j).

It follows that

1

n

∏

j∈A(1,n−1)

(
k + j

j

)
=

n


 ∏

j∈A(k+1,n−1)

j




 ∏

j∈A(n−k+1,n−1)

(k + j)




nk


 ∏

j∈A(k+1,n−1)

j




 ∏

j∈A(1,k−1)

j




=
1

k

∏

j∈A(n−k+1,n−1)

(k + j)

∏

j∈A(1,k−1)

j
=

1

k

∏

j∈A(1,k−1)

(n+ j)

∏

j∈A(1,k−1)

j

=
1

k

∏

j∈A(1,k−1)

(
n+ j

j

)

and we are done.

When gcd(n, k) > 1, we obtain a simpler evaluation for N(n, k, r).

Theorem 4.8. With the previous notation, set d = gcd(n, k) for k, n > 0 and
assume d > 1. Then

N(n, k, r) =
1

n

(
n+ k − 1

k

)
+

1

k

∑

1<δ≤d,δ|d

ϕ(δ)µ(δ/ gcd(r, d))

ϕ(δ/ gcd(r, d))

(n
δ + k

δ − 1
n
δ

)

where ϕ and µ are respectively the Euler function and the Möbius function.
In particular, we have

N(n, k, 0) =
1

n

(
n+ k − 1

k

)
+

1

k

∑

1<δ≤d,δ|d
ϕ(δ)

(n
δ + k

δ − 1
n
δ

)

and

N(n, k, r) =
1

n

(
n+ k − 1

n

)
+

1

k

∑

1<δ≤d,δ|d
µ(δ)

(n
δ + k

δ − 1
n
δ

)

when r > 0 and gcd(r, d) = 1.
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Proof. Set S =

d−1∑

l=1


cos

(
2lrπ

d

) ∏

1≤j≤k−1,d|jl

(
n+ j

j

)
 with the notation of The-

orem 4.4. We can write

S =
∑

1≤δ′≤d−1,δ′|d


 ∑

1≤l≤d−1,gcd(l,d)=δ′


cos

(
2lrπ

d

) ∏

1≤j≤k−1,d|jl

(
n+ j

j

)




=
∑

1<δ≤d,δ|d
σδ

where δ =
d

δ′
and

σδ =
∑

1≤l≤d−1,gcd(l,d)=δ′


cos

(
2lrπ

d

) ∏

1≤j≤k−1,d|jl

(
n+ j

j

)


For δ′ = gcd(l, d), we have d|jl and 1 ≤ j ≤ k ⇔ d

δ′
divides j

l

δ′
and 1 ≤ j ≤ k

⇔ δ divides j and 1 ≤ j ≤ k ⇔ j = iδ and 1 ≤ i ≤ k

δ
.

It follows that
∏

1≤j≤k−1,d|jl

(
n+ j

j

)
=

∏

1≤i≤ kδ−1

( n
δ + i

i

)
=

(n
δ + k

δ − 1
n
δ

)

and

σδ =

(n
δ + k

δ − 1
n
δ

) ∑

1≤l≤d−1,gcd(l,d)=δ′

cos

(
2lrπ

d

)

Consider

τδ =
∑

1≤l≤d−1,gcd(l,d)=δ′

cos

(
2lrπ

d

)
=

∑

1≤l≤d−1,gcd(l,d)=δ′

cos

(
2rπ( lδ′ )

δ

)

=
∑

1≤l′≤δ−1,gcd(l′,δ)=1

cos

(
2l′rπ
δ

)

where l′ =
l

δ′
.

But τδ is also the real part of the Ramanujan sum

c(r, δ) =
∑

1≤l′≤δ−1,gcd(l′,δ)=1

e
2il′rπ
δ

We have an explicite representation for c(r, δ) due to Hölder (see [13, Theorem 7.37,

chapter 7, page 464]) by c(r, δ) =
ϕ(δ)µ(m)

ϕ(m)
, where ϕ and µ are respectively the Eu-

ler function and the Möbius function, and where m = d/ gcd(d, rδ′) = δ/ gcd(r, δ).
Since c(r, δ) is a real number, we obtain τδ = c(r, δ) and the result is gotten.

In particular, we have the following two special cases
• r = 0 gives τδ = ϕ(δ)

and
• gcd(r, d) = 1 with r > 0 gives τδ = µ(δ).
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Example 4.9. We are going to find the distinct factorizations into atoms of an
element of a local seminormal CK domain.

Let ω = (1 +
√

5)/2 and consider the PID � [ω]. Since 2 is inert in � [ω], the
ring S = � [2ω] is weakly factorial and t-closed, and so is a generalized CK domain
with conductor 2� [ω], a maximal ideal in � [ω] [11, Theorem 2] and [12, Example
(2), page 177]. Set R = S2 [ω], which is a local seminormal CK domain and 2 is

an atom in R̄ and R. In view of [12, Theorem 1.2, Proposition 2.1 and Proposition
3.1], we have |U(R̄)/U(R)| = 3. Set x = 32 = 25. By Theorems 3.11 and 4.4, we get

η(x) =
1

3

(
7

5

)
= 7 since gcd(3, 5) = 1. As ω is the fundamental unit of � [ω], its class

generates the cyclic group U(R̄)/U(R). We can choose p = 2, p′ = 2ω, p′′ = 2ω2

for the nonassociate atoms of R. The different nonassociated factorizations of x
into atoms of R are the following:

x = p5 = ω−3p3p′p′′ = ω−3p2p′3 = ω−6p2p′′3 = ω−6pp′2p′′2 = ω−6p′4p′′ =

ω−9p′p′′4.

5. On the asymptotic behaviour of the number of distinct
factorizations into atoms in a seminormal CK domain

As we saw in Section 3, we can restrict to the local case to evaluate the number
of distinct factorizations into atoms of an element of a CK domain. To calculate
this number for some special elements, we use results of Section 4.

Theorem 5.1. Let R be a local seminormal CK domain with integral closure R̄.
Let R̄p be the maximal ideal of R̄, with p ∈ R. Set n = |U(R̄)/U(R)|.
Let x = vpk, k ∈ � ∗, v ∈ U(R̄). The number of nonassociated factorizations of

xm, m ∈ � ∗ into atoms of R is of the form η(xm) =
kn−1

n!
mn−1 +O(mn−2).

In particular, if x is an atom of R, then η(xm) =
1

n!
mn−1 +O(mn−2).

Proof. We can use Theorem 1.1 since its assumptions are satisfied by a CK domain.
So η(xm) is of the form η(xm) = Amd + O(md−1) for m ∈ � ∗, where A ∈ � ,
d ∈ � , A > 0. Then, it is enough to find an equivalent of η(xm). For any m ∈ n � ,
we have vm ∈ U(R) and xm is associated to pmk, so that we can assume that n
divides m to get A and d. In view of Theorem 3.11, we are led to calculate the
number N(n, km, 0) = η(xm) of solutions (a1, . . . , an) ∈ � n of the system gotten
in Theorem 4.4 :

(S)





n∑

i=1

ai = km (1)

n∑

i=1

iai = 0̄ (2) in � /n �

But, by Corollary 4.7, we have, since n = gcd(n,mk)

N(n, km, 0) = N(km, n, 0) =

1

mk

(
mk + n− 1

n

)
+

1

n

n−1∑

l=1


cos

(
2lrπ

n

) ∏

1≤j≤n−1,n|jl

(
mk + j

j

)


where r = 0.
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First, we have
1

mk

(
mk + n− 1

n

)
=

(mk + n− 1) · · · (mk + 1)

n!
∼ (mk)n−1

n!
= mn−1 k

n−1

n!
.

Now, consider
1

n

n−1∑

l=1


 ∏

1≤j≤n−1,n|jl

(
mk + j

j

)
 since r = 0.

Because of l ≤ n − 1 < n, we cannot have n|l, so that j 6= 1 and we have at most
n− 2 factors in the product.

It follows that
∏

1≤j≤n−1,n|jl

(
mk + j

j

)
≤ (mk + n)n−2 = O(mn−2). As we have a

sum of n− 1 terms, we get that η(xm) ∼ kn−1

n!
mn−1.
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