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A Cohen-Kaplansky domain (CK domain) R is an integral domain where every nonzero nonunit element of R is a finite product of irreducible elements and such that R has only finitely many nonassociate irreducible elements. In this paper, we investigate seminormal CK domains and obtain the form of their irreducible elements. The solutions of a system of diophantine equations allow us to give a formula for the number of distinct factorizations of a nonzero nonunit element of R, with an asymptotic formula for this number.

Introduction

Let R be an atomic integral domain, that is, each nonzero nonunit element of R can be written as a finite product of irreducible elements (or atoms). The simplest situation is when R has only a finite number of (nonassociate) atoms. Such a domain R was called a Cohen-Kaplansky domain (CK domain) by D.D. Anderson and J.L. Mott in [START_REF] Anderson | Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements[END_REF] who obtained many conditions equivalent to R being a CK domain, after I.S. Cohen and I. Kaplansky [START_REF] Cohen | Rings with a finite number of primes I[END_REF] inaugurated the study of CK domains. In Section 2 we recall and give basic results on CK domains.

An atomic domain R is called a half-factorial domain (HFD) if each factorization of a nonzero nonunit element of R into a product of atoms has the same length (Zaks [15]). A ring R is called seminormal if whenever x, y ∈ R satisfy x 3 = y 2 , there is a ∈ R with x = a 2 , y = a 3 [START_REF] Swan | On seminormality[END_REF]. Section 3 is devoted to the study of seminormal CK domains. In particular, we show that a seminormal CK domain is half-factorial and obtain some equivalent conditions for a CK domain to be seminormal. As factorization properties of CK domains and seminormality are preserved by localization, we consider a local seminormal CK domain R. Let R be its integral closure. Then R is a DVR with maximal ideal Rp, which is also the maximal ideal of R. Moreover the atoms of R are of the form vp, where v is a unit of R. If U ( R) (resp. U (R)) is the group of units of R (resp. R), the factor group U ( R)/U (R) is a finite cyclic group. Let ū be a generator of U ( R)/U (R) and n the order of ū. If x = vp k is a nonzero nonunit element of R with v = ūr , r ∈ {0, . . . , n -1}, in U ( R)/U (R), the distinct factorizations of x in R into atoms are deduced from the system of diophantine equations in (a 1 , . . . , a n ) ∈ n : (S)

             n i=1 a i = k n i=1 ia i = r in ¡ /n¡
The calculation of the number of solutions of this system is the object of Section 4. If we denote by η(x) the number of non-associated irreducible factorizations of x into atoms, we get that η(x) is the number of solutions of the system (S).

Section 5 ends this paper with the asymptotic behaviour of the function η where we use the following result by F. Halter-Koch : Theorem 1.1. [6, Theorem 1]. Let H be an atomic monoid such that each nonunit x has finitely many non-associated factorizations into irreducibles. Suppose that there are only finitely many irreducible elements of H which divide some power of x. There exists two constants A ∈ ¢ and d ∈ , A > 0 such that η(x n ) = An d + O(n d-1 ).

An explicit value for A and d is obtained for a local seminormal CK domain.

For a ring R, we denote by Max(R) the set of maximal ideals of R and by U (R) its group of units. Let x, y ∈ R. We say that x and y are associates (x ∼ y) if there exists u ∈ U (R) such that x = uy. For an integral domain R, we denote by R its integral closure. The conductor [R : R] of an integral domain R in its integral closure is called the conductor of R. For a finite set S, we denote by |S| the number of elements of S. For x ∈ £ , we set [x] = sup{n ∈ ¡ | n ≤ x}.

Basic results on CK domains

We first recall some of useful results concerning CK domains.

Theorem 2.1. [2, Theorem 4.3] For an integral domain R, the following statements are equivalent.

1. R is a CK domain. 2. R is a semilocal PID with R/[R : R] finite and | Max(R)| = | Max( R)|. 3. R is a one-dimensional semilocal domain with R/M finite for each nonprin- cipal maximal ideal M of R, R is a finitely generated R-module (equivalently, [R : R] = 0), and | Max(R)| = | Max( R)|.
This theorem implies the following properties. 

∈ R. 2. U ( R)/U (R) is a finite group. 3. R M is a CK domain for each maximal ideal M of R.
In particular, RM is a DVR. 4. Let T be an overring of R. Then T is also a CK domain. 5. The atoms of R are primary. D.D. Anderson and J.L. Mott [START_REF] Anderson | Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements[END_REF] say that a pair of rings R ⊂ S is a root extension if for each s ∈ S, there exists an n = n(s) ∈ ¤ * with s n ∈ R. For such an extension we have Since D/I is finite, there are finitely many subrings of D/I, and so finitely many R ∈ E. Let R and S ∈ E and set T = R ∩ S. By Proposition 2.3, T is a CK domain with conductor J ⊃ I. But T ⊂ R implies J ⊂ I, so that J = I and T ∈ E. Therefore the intersection of all elements of E is a CK domain with conductor I and integral closure D and is the least element of E.

| Max(R)| = | Max(S)|. Hence R ⊂ R is a root extension when R is a CK domain. Proposition 2.3. Let R 1 and R 2 be two CK domains with the same integral closure R . Then R = R 1 ∩ R 2 is a CK domain with integral closure R . Proof. Set R = R 1 ∩ R 2 . Define I 1 = [R 1 : R ], I 2 = [

Characterization of seminormal CK domains

Let R be an integral domain with quotient field K. We say that R is t-closed if whenever x ∈ K and x 2rx, x 3rx 2 ∈ R for some r ∈ R, then x ∈ R [START_REF] Picavet | Anneaux t-clos[END_REF]. A t-closed integral domain is seminormal. Recall that an integral domain R is said to be a pseudo-valuation domain (PVD) if there exists a valuation overring V of R such that Spec(R) = Spec(V ) [START_REF] Hedstrom | Pseudo-valuation domains[END_REF] and an integral domain R is said to be a locally pseudo-valuation domain (locally PVD) if each of its localizations at a prime ideal is a PVD [START_REF] Dobbs | Locally pseudo-valuation domains[END_REF]. Proposition 3.1. Let R be a one-dimensional Noetherian integral domain such that its integral closure R is a finitely generated R-module. The following conditions are equivalent :

1. R is seminormal and the canonical map Spec( R) → Spec(R) is bijective.

2. R is t-closed. 3. R is a locally PVD. 4. The conductor I of R is a radical ideal in R and | Max(R)| = | Max( R)|.
In 

( R)p ⊂ R. Proof. Assume that R is seminormal. By Proposition 3.1 (4), Rp is the conductor of R, so that U ( R)p ⊂ Rp ⊂ R.
Conversely, if U ( R)p ⊂ R, we get that U ( R)p n ⊂ R for any integer n and Rp ⊂ R gives that Rp is the conductor of R so that R is seminormal.

In the nonlocal case, this condition is not fulfilled : Proof. Let R be a seminormal proper underring of D. Since its conductor is a radical ideal of D, it has to be M , a maximal ideal in R so that R/M is a subfield of the finite field D/M . But the set of subfields of D/M is linearly ordered.

Corollary 3.3. Let R be a CK domain with integral closure R = R. Let Rp i , i = 1, . . . , n, be the maximal ideals of R. Then U ( R)p i ⊂ R for any i = 1, . . . , n, implies that R is seminormal and n = 1. Proof. The case n = 1 is the previous Corollary. Assume n > 1. Any nonunit of R is in R. Moreover, Rp 1 and Rp 2 are comaximal ideals of R. For any u ∈ U ( R), there exists v, w ∈ R such that u = vp 1 + wp 2 ∈ R. Then R = R, a contradiction.
Let R 1 , R 2 be two seminormal proper underrings of D with integral closure D. Their conductor is M and we have, for instance,

R 1 /M ⊂ R 2 /M , which gives R 1 ⊂ R 2 .
Here is a fundamental link between seminormal CK domains and factorization. The following theorem gives the additional condition necessary for a CK halffactorial domain to be seminormal.

Theorem 3.6. Let R be a CK domain with integral closure R. Let Rp i , i = 1, . . . , n, be the maximal ideals of R. Then R is seminormal if and only if R is a HFD and U ( R)p 1 • • • p n ⊂ R. Moreover, if these conditions are satisfied, we can choose p i ∈ R for each i = 1, . . . , n.
Proof. We can assume R = R (the case R = R is trivial).

Let R be a seminormal CK domain. Then R is a HFD by the previous Proposition and the conductor I of R is a product of some of the Rp i . It follows that

U ( R)p 1 • • • p n ⊂ R.
Conversely, assume that R is a HFD and U ( R)p 1 • • • p n ⊂ R and let I be the conductor of R. For each i = 1, . . . , n, set

P i = R ∩ Rp i , R i = R Pi and R i = R Pi = RPi .
First, we show that we may assume p i ∈ R for each i = 1, . . . , n.

-

If P i is comaximal with I, then R i = R i and p i /1 is an atom in R i [2, Theorem 2.1 (2)].
Then there exists a P i -primary atom p ∈ R and s ∈ R \ P i such that sp i = p, which implies s ∈ U ( R), so that Rp i = Rp.

-Let P i be non comaximal with I and let x be a P i -primary atom in R. There exist u ∈ U ( R) and an integer k such that x = up k i since x ∈ P j for any j = i. But R i is a HFD, which implies that x/1 p i /1 in R i [2, Theorem 6.3] and so k = 1. Then x p i in R.

The assumption can be rewritten

U ( R)p 1 • • • p n ⊂ R with p i ∈ R for each i = 1, . . . , n. This gives finally Rp 1 • • • p n ⊂ I ⊂ R and I is a radical ideal in R. Moreover, R being a CK domain, we get | Max(R)| = | Max( R)| and thus R is seminormal by Proposition 3.1 (4).
In the local case, we obtain another characterization for a CK half-factorial domain to be seminormal. Proof. We can assume R = R (the case R = R is trivial).

Let R be seminormal. Then R is a HFD by the previous Theorem. Let Rp be the maximal ideal of R and let a 1 , . . . , a n be the nonassociate atoms of R. They are of the form a i = u i p, u i ∈ U ( R) by [START_REF] Anderson | Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements[END_REF]Theorem 6.3 (3)]. But since R is seminormal, its conductor is Rp. It follows that up ∈ R for any u ∈ U ( R). Let up, vp be two atoms of R, where u, v ∈ U ( R). Then up and vp are associates in R if and only if there exists w ∈ U (R) such that up = wvp, which is equivalent to ū = v in U ( R)/U (R). Hence two atoms up, vp of R, with u, v ∈ U ( R), are nonassociates in R if and only if ū = v in U ( R)/U (R). Then R has |U ( R)/U (R)| nonassociate atoms (see also [START_REF] Anderson | Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements[END_REF]Corollary 5.6]).

Conversely, let R be a HFD with n = |U ( R)/U (R)| nonassociate atoms. They are of the form a i = u i p, u i ∈ U ( R), i = 1, . . . , n and {ū 1 , . . . , ūn } = U ( R)/U (R). It follows that up ∈ R for any u ∈ U ( R). In particular, p ∈ R so that p n ∈ R for any integer n > 0 and we get that Rp ⊂ R. Then Rp is the conductor of R and R is seminormal.

A seminormal CK domain has a property which is not too far from unique factorization. In [START_REF] Chapman | Inside factorial monoids and integral domains[END_REF], S.T. Chapman, F. Halter-Koch and U. Krause defined an integral domain R to be inside factorial with Cale basis Q, if, for every nonzero nonunit x ∈ R, there exists some n ∈ ¥ * such that x n has a unique factorization, up to units, into elements of Q. Proposition 3.8. Let R be a seminormal CK domain with integral closure R. Then R is inside factorial with Cale basis {p 1 , . . . , p n }, where the Rp i are the maximal ideals of R with p i ∈ R for i = 1, . . . , n.

Proof. We have seen in Theorem 3.6 that we can choose p i in R, where the Rp i are the maximal ideals of R. The atoms of R are of the form u ij p i , with

u ij ∈ U ( R), i = 1, . . . , n [2, Theorem 2.1 (2)]. Let r = |U ( R)/U (R)|. Then u r ∈ R for any u ∈ U ( R). Let x be a nonzero nonunit of R.
As an element of R, it can be written x = u p αi i , u ∈ U ( R). Then x r = u r p rαi i with u r ∈ U (R) and this factorization into the p i is obviously unique.

Remark 3.9. Under assumptions of the previous Proposition, let e be the exponent of the factor group U ( R)/U (R). Then e is the least integer r such that x r has a unique factorization, up to units, into elements of {p 1 , . . . , p n }, for every nonzero nonunit x ∈ R. Indeed, e is the least integer r such that u r ∈ U (R) for any u ∈ U ( R).

We can calculate this exponent. D.D. Anderson, D.F Anderson and M. Zafrullah call in [START_REF] Anderson | Atomic domains in which almost all atoms are prime[END_REF] an atomic domain with almost all atoms prime a generalized CK domain. A CK domain is obviously a generalized CK domain. We can still assume R = R. Then, if I is the conductor of R, we have the isomorphism U ( R)/U (R) U ( R/I)/U (R/I) by [START_REF] Picavet-L'hermitte | Factorization in some orders with a PID as integral closure, Algebraic Number Theory and Diophantine Analysis[END_REF]Theorem 2] (the result was obtained for algebraic orders but a generalization to one-dimensional Noetherian domains R with integral closure which are finitely generated R-modules can be easily made). Since R is seminormal,

I is a radical ideal in R. After a reordering, write I = m i=1 Rp i . Then U ( R)/U (R) m i=1 U ( R/ Rp i )/U (R/P i ) , where P i = R ∩ Rp i since I = m i=1 P i as an ideal of R.
Set q i = |R/P i | and k i = [ R/ Rp i : R/P i ]. Then e i = (q ki i -1)/(q i -1) is the order (and the exponent) of the finite cyclic group U ( R/ Rp i )/U (R/P i ) and e = lcm(e 1 , . . . , e m ).

We are now able to obtain all the factorizations into atoms of a nonzero nonunit element of a seminormal CK domain with the number of distinct factorizations into atoms. We can restrict to the local case by the following proposition. Proposition 3.10. Let R be a CK domain with maximal ideals P 1 , . . . , P n . Set R i = R Pi and define η i (z) to be the number of distinct factorizations into atoms of

R i of a nonzero z ∈ R i . Then η(x) = n i=1 η i (x/1) for a nonzero x ∈ R.
Proof. By [2, Theorem 2.1 (2)], the atoms of R are primary and the atoms of R i are the P i -primary atoms of R. Moreover, if x is a nonzero nonunit element of R, then x is written in a unique way x = x 1 • • • x n , where x i is a P i -primary element of R for each i = 1, . . . , n [7, Corollary 1.7]. Indeed, by [1, Corollary 5], a CK domain is weakly factorial (such that every nonunit is a product of primary elements), and a weakly factorial domain is a weakly factorial monoid for the multiplicative structure. So, we get η(x) = n i=1 η(x i ) and η(x i ) = η i (x i /1) for each i by [2, Theorem 2.1 (2)] since a factorization of x i into atoms of R leads to a factorization of x i /1 into atoms of R i and conversely.

To end, we give the form of atoms in a local seminormal CK domain.

Theorem 3.11. Let R be a local seminormal CK domain with integral closure R. Let Rp be the maximal ideal of R, with p ∈ R. Set n = |U ( R)/U (R)| and choose u ∈ U ( R) such that ū is a generator of the cyclic group U ( R)/U (R). Then

1. A set of all nonassociate atoms of R is {u i p | i = 0, . . . , n -1}. 2. Let x = vp k , k ∈ ¦ * , v ∈ U ( R). Let r ∈ {0, . . . , n -1} be such that v = ūr .
The number of nonassociated factorizations of x into atoms of R is equal to the number of solutions (a 1 , . . . , a n ) ∈ ¦ n of the system of diophantine equations :

(S)

             n i=1 a i = k n i=1 ia i = r in § /n § Proof.
As above, we can assume R = R. Then Rp is the conductor of R so that R/ Rp is a finite field by Theorem 2.1 (3) and U ( R/ Rp) is a finite cyclic group. It follows that U ( R)/U (R) U ( R/ Rp)/U (R/ Rp) (Remark 3.9) is also a finite cyclic group. Let u ∈ U ( R) be such that ū is a generator of U ( R)/U (R).

(1) In view of Proposition 3.7, we can choose A = {u i p}, i = 1, . . . , n, as a set of nonassociate atoms of R since the u i are the representatives of the elements of U ( R)/U (R) and u n p is an associate of p in R.

(2) Set p i = u i p, i = 1, . . . , n, and let x be a nonzero nonunit element of R which is not an atom. Then x = vp k , k > 1 with a unique v ∈ U ( R). A factorization of ia i in § /n § . Then (a 1 , . . . , a n ) ∈ ¦ n is a solution of the system (S). Conversely, let (a 1 , . . . , a n ) ∈ ¦ n satisfying (S).

Set x = n i=1 p a i i = n i=1 (u i p) a i = u a 1 +2a 2 +•••+na n p a 1 +a 2 +•••+a n . But n i=1 ia i = r + sn, s ∈ ¨, gives x = u r (u n ) s p k and v = ūr implies u r = w v,
where w ∈ U (R). So we get x = w (u n ) s vp k = w (u n ) s x, with w (u n ) s ∈ U (R) and x ∼ x in R. We deduce that two distinct solutions of (S) give two distinct factorizations of x into atoms of R and the number of nonassociated factorizations of x into atoms of R is equal to the number of solutions (a 1 , . . . , a n ) ∈ © n of (S).

We are going to calculate the number of solutions of such a system in the next section.

On the number of solutions of a system of two special diophantine equations

In this section, we use the following notation. Let n, r ∈ © , k, s ∈ ¨with n > 0 and 0 ≤ r ≤ n -1. We consider the following systems of diophantine equations in (a 1 , . . . , a n ) ∈ © n :

S(n, k, r)              n i=1 a i = k n i=1 ia i = r in ¨/n ¨and S (n, k, s)              n i=1 a i = k n i=1 ia i = s
We denote respectively by N (n, k, r) and p(n, k, s) the numbers of solutions (a 1 , . . . , a n ) ∈ © n of S(n, k, r) and S (n, k, s). Obviously, we have N (n, k, r) = p(n, k, r) = 0 for k < 0. It is easy to see that

N (n, k, r) = i≥0 p(n, k, r + in) = [k-r n ] i=[ k-r n ]
p(n, k, r + in)

At last, for n, k ∈ © , k > 0, we set :

F (n, k, x) = x k (1 -x n+k-1 )(1 -x n+k-2 ) • • • (1 -x n ) (1 -x)(1 -x 2 ) • • • (1 -x k )
where x is a variable. 

b j ∈ © such that 1 ≤ b 1 ≤ • • • ≤ b k ≤ n.
Proposition 4.2. With the previous notation, for k > 0, we have

F (n, k, x) = s≥0 p(n, k, s)x s . Moreover, F (n, k, x) is a polynomial in x.
Proof. The generating function for the numbers p(n, k, s) is the two-variable series

ϕ(x, y) = s,k≥0 p(n, k, s)x s y k = 1 (1 -yx)(1 -yx 2 ) • • • (1 -yx n ) because of 1 (1 -yx)(1 -yx 2 ) • • • (1 -yx n ) = n i=1   ai≥0 y ai x iai   = a1≥0,... ,an≥0 y a1+•••+an x a1+2a2+•••+nan = k≥0,s≥0 p(n, k, s)y k x s
We can write ϕ(x, y)

= k≥0 ϕ k (x)y k with ϕ k (x) = s≥0 p(n, k, s)x s , for all k ≥ 0.
We can easily check that (1

-yx n+1 )ϕ(x, xy) = (1 -yx)ϕ(x, y), which implies (1 -x k )ϕ k (x) = (x -x n+k )ϕ k-1 (x) for k > 0, so that ϕ k (x) = (x -x n+k )(x -x n+k-1 ) • • • (x -x n+1 ) (1 -x k )(1 -x k-1 ) • • • (1 -x) ϕ 0 (x), for k > 0. But ϕ 0 (x) = 1. Hence ϕ k (x) = F (n, k, x) for k > 0.
To end, F is a polynomial in x since p(n, k, s) = 0 for large s.

We can now calculate N (n, k, r).

Theorem 4.3. With the previous notation, for k > 0, let F 0 , . . . , F n-1 be the n-

components of F (n, k, x), i.e. F (n, k, x) = n-1 r=0 x r F r (x n ). Then N (n, k, r) = F r (1). Proof. Write F (n, k, x) = j≥0 f j x j , f j ∈ . Then F r (x n ) = i≥0 f r+in x ni = i≥0 p(n, k, r + in)x ni and F r (1) = i≥0 p(n, k, r + in) = N (n, k, r).
The value of F r (1) gives then the value of N (n, k, r). Then

N (n, k, r) = 1 n n + k -1 k + 1 k d-1 l=1   cos 2lrπ d 1≤j≤k-1,d|jl n + j j   In particular, N (n, k, r) = 1 n n + k -1 k for any r ∈ {0, . . . , n -1} when d = 1.
Proof. We use the relation

F (n, k, x) = n-1 t=0 x t F t (x n ). We set α = e 2iπ n . For all r, m ∈ {0, . . . , n -1}, we have α -rm F (n, k, α m ) = n-1 t=0 α tm-rm F t (α nm ) = n-1 t=0 α (t-r)m F t (1). 
Summing on m we get

n-1 m=0 α -rm F (n, k, α m ) = n-1 m=0 n-1 t=0 α (t-r)m F t (1) = n-1 t=0 n-1 m=0 α (t-r)m F t (1) = n-1 t=0 F t (1) n-1 m=0 α (t-r)m = n-1 t=0 F t (1)nδ rt = nF r (1) So we obtain F r (1) = 1 n n-1 m=0 α -rm F (n, k, α m ).
Now, we have to calculate u m = F (n, k, α m ) , where

F (n, k, x) = x k (1 -x n+k-1 )(1 -x n+k-2 ) • • • (1 -x n+1 )(1 -x n ) (1 -x k-1 )(1 -x k-2 ) • • • (1 -x)(1 -x k ) = x k x n -1 x k -1 k-1 j=1 x n+j -1 x j -1
which is a polynomial in x, so that F (n, k, α m ) has a sense.

Using L'Hopital's rule, we are going to calculate the values of x n -1

x k -1 and

x n+j -1 x j -1 for j = 1, . . . , k -1, at x = α m , m = 0, 1, . . . , n -1. • If n | mk, then α mn -1 α mk -1 = 0. If n|mk, then x n -1 x k -1 x=α m = lim x→α m nx n-1 kx k-1 = n k
. Moreover, in this case,

α mk = 1. Let j ∈ {1, . . . , k -1}. • If n | mj, then α m(n+j) -1 α mj -1 = 1. If n|mj, then x n+j -1 x j -1 x=α m = lim x→α m (n + j)x n+j-1 jx j-1 = n + j j .
To sum up, we obtain u m = 0 if n |mk and

u m = n k 1≤j≤k-1,n|jm n + j j if n|mk.
In particular,

u 0 = n k k-1 j=1 n + j j = n(n + 1) • • • (n + k -1) 1 • • • (k -1)k = n + k -1 k . Set d = gcd(n, k) and n = n d, k = k d so that gcd(n , k ) = 1. Then n|mk ⇔ n |mk ⇔ n |m. If n |m, then u m = 0 If n |m, set m = ln .
Then n|mj ⇔ n d|ln j ⇔ d|lj so that u ln = n k 1≤j≤k-1,d|lj n + j j .

This implies

N (n, k, r) = 1 n n + k -1 k + 1 n d-1 l=1 α -rln u ln = 1 n n + k -1 k + 1 n n k d-1 l=1   α -rln 1≤j≤k-1,d|jl n + j j   = 1 n n + k -1 k + 1 k d-1 l=1   e -2iπrln n 1≤j≤k-1,d|jl n + j j   which is a real number. So, we get N (n, k, r) = 1 n n + k -1 k + 1 k d-1 l=1   cos 2lrπ d 1≤j≤k-1,d|jl n + j j   .
In particular, if d = 1, we get N (n, k, r) = 1 n n + k -1 k since we have an empty sum.

By the way, keeping the same notation, the following corollary results : Proof. We use the formula of Theorem 4.4

N (n, k, r) = 1 n n + k -1 k + 1 k d-1 l=1   cos 2lrπ d 1≤j≤k-1,d|jl n + j j  
where d = gcd(n, k). If n = k, there is nothing to prove. So, assume n = k.

• It is easily seen that

1 n n + k -1 k = 1 k k + n -1 n .
• The result is gotten if we prove that

1 k 1≤j≤k-1,d|jl n + j j = 1 n 1≤j≤n-1,d|jl k + j j for any l ∈ such that 1 ≤ l ≤ d -1.
For such an l and a, b ∈ , set A(a, b) = {j ∈ | a ≤ j ≤ b and d|jl}. We may assume n > k. Then

1 n 1≤j≤n-1,d|jl k + j j = 1 n j∈A(1,n-1) k + j j = 1 n j∈A(1,n-1) (k + j) j∈A(1,n-1) j But A(1, n -1) = A(1, n -k -1) ∪ A(n -k + 1, n -1) ∪ {n -k} = A(k + 1, n -1) ∪ A(1, k -1) ∪ {k} It follows that j∈A(1,n-1) (k + j) = n   j∈A(1,n-k-1) (k + j)     j∈A(n-k+1,n-1) (k + j)   and j∈A(1,n-1) j = k   j∈A(k+1,n-1) j     j∈A(1,k-1) j   Moreover, j ∈ A(1, n -k -1) ⇔ k + j ∈ A(k + 1, n -1) since d|jl ⇔ d|(k + j)l.

So we get

j∈A(1,n-k-1)

(k + j) = j∈A(k+1,n-1)
j.

In the same way, we have j ∈ A(n

-k + 1, n -1) ⇔ t = k + j -n ∈ A(1, k -1) since d|jl ⇔ d|(k + j -n)l.
So we get j∈A(n-k+1,n-1)

(k + j) = t∈A(1,k-1) (n + t) = j∈A(1,k -1) 
(n + j).

It follows that

1 n j∈A(1,n-1) k + j j = n   j∈A(k+1,n-1) j     j∈A(n-k+1,n-1) (k + j)   nk   j∈A(k+1,n-1) j     j∈A(1,k-1) j   = 1 k j∈A(n-k+1,n-1) (k + j) j∈A(1,k-1) j = 1 k j∈A(1,k-1) (n + j) j∈A(1,k-1) j = 1 k j∈A(1,k-1)
n + j j and we are done.

When gcd(n, k) > 1, we obtain a simpler evaluation for N (n, k, r). Then

N (n, k, r) = 1 n n + k -1 k + 1 k 1<δ≤d,δ|d ϕ(δ)µ(δ/ gcd(r, d)) ϕ(δ/ gcd(r, d)) n δ + k δ -1 n δ
where ϕ and µ are respectively the Euler function and the Möbius function.

In particular, we have 5. On the asymptotic behaviour of the number of distinct factorizations into atoms in a seminormal CK domain

N (n, k, 0) = 1 n n + k -1 k + 1 k 1<δ≤d,δ|d ϕ(δ) n δ + k δ -1 n δ and N (n, k, r) = 1 n n + k -1 n + 1 k 1<δ≤d,δ|d µ(δ) n δ + k δ -1
≤ j ≤ k ⇔ d δ divides j l δ and 1 ≤ j ≤ k ⇔ δ divides j and 1 ≤ j ≤ k ⇔ j = iδ and 1 ≤ i ≤ k δ . It follows that 1≤j≤k-1,d|jl n + j j = 1≤i≤ k δ -1 n δ + i i = n δ + k δ -1 n δ and σ δ = n δ + k δ -1 n δ 1≤l≤d - 
As we saw in Section 3, we can restrict to the local case to evaluate the number of distinct factorizations into atoms of an element of a CK domain. To calculate this number for some special elements, we use results of Section 4. In particular, if x is an atom of R, then η(x m ) = 1 n! m n-1 + O(m n-2 ).

Proof. We can use Theorem 1.1 since its assumptions are satisfied by a CK domain. So η(x m ) is of the form η(x m ) = Am d + O(m d-1 ) for m ∈ * , where A ∈ , d ∈ , A > 0. Then, it is enough to find an equivalent of η(x m ). For any m ∈ n , we have v m ∈ U (R) and x m is associated to p mk , so that we can assume that n divides m to get A and d. In view of Theorem 3.11, we are led to calculate the number N (n, km, 0) = η(x m ) of solutions (a 1 , . . . , a n ) ∈ n of the system gotten in Theorem 4.4 :

(S) Because of l ≤ n -1 < n, we cannot have n|l, so that j = 1 and we have at most n -2 factors in the product.

             n i=1 a i = km (1) 

It follows that

1≤j≤n-1,n|jl mk + j j ≤ (mk + n) n-2 = O(m n-2 ). As we have a sum of n -1 terms, we get that η(x m ) ∼ k n-1 n! m n-1 .

R 2 :

 2 R ] and I = [R : R ]. Then I 1 ∩ I 2 is a common ideal of R and R contained in I so that I = 0. Let a, b ∈ R with b = 0 and i a nonzero element of I. Then ia and ib are in R and hence a/b = ia/ib shows that R has the same quotient field as R . Moreover, R ⊂ R is a root extension. Then R is obviously the integral closure of R and is a semilocal PID. Since R /I 1 and R /I 2 are finite, this gives that R /(I 1 ∩ I 2 ) is also finite because isomorphic to a subring of R /I 1 × R /I 2 , so that R /I is finite. Moreover, we have | Max(R)| = | Max(R )| because R ⊂ R is a root extension. Applying Theorem 2.1, (2), we get that R is a CK domain with integral closure R . Corollary 2.4. Let D be a DVR with maximal ideal M such that D/M is finite. Let I be a nonzero ideal of D. The set of underrings of D with integral closure D and with conductor I has a least element and all these underrings are CK domains. Proof. Set E = {R underring of D | R = D, [R : D] = I}. Since D/M is finite, so is D/I. Indeed, if M = Dp for some atom p ∈ D, then I = Dp n , for some integer n and an obvious induction shows that |D/I| = |D/M | n . Consider R ∈ E. Then the finiteness of D/I implies the finiteness of R/I. So D is a finitely generated R-module because D/I is a finitely generated R/I-module. It follows that | Max(R)| = 1 and R is a CK domain by Theorem 2.1, (2).

Corollary 2 .

 2 4 has a new formulation in the seminormal case. Corollary 3.4. Let D be a DVR with maximal ideal M such that D/M is finite. The set of seminormal underrings of D with integral closure D is linearly ordered.

Proposition 3 . 5 .

 35 A seminormal CK domain is half-factorial. Proof. Let R be a seminormal CK domain and P ∈ Max(R). Then R P is a PVD by Proposition 3.1 and a CK domain by Proposition 2.2 (3). So R P is a HFD for any P ∈ Max(R) [2, Theorem 6.2]. The same holds for R [2, Theorem 6.1].

Proposition 3 . 7 .

 37 Let R be a local CK domain with integral closure R. Then R is seminormal if and only if R is a HFD and has |U ( R)/U (R)| nonassociate atoms.

xiu

  into elements of A is of the form x = w n i=1 p ai i , w ∈ U (R), a i ∈ ¦ . This gives x = w n i=1(u i p) ai = vp k ( * ), which implies, by identification in R, the equalities , w ∈ U (R), a i ∈ ¦ . We get then ia i . These two factorizations coincide if and only if a i = a i for each i. In this case, we have w = w .In U ( R)/U (R) we have the relation v = n i=1 ūiai = ūr where r ∈ {0, . . . , n -1} by ( * * ), that is r ≡ n i=1 ia i (mod n), or equivalently, r = n i=1

Remark 4 . 1 .

 41 It follows that p(n, k, s) is also the number of partitions of s into k summands

Theorem 4 . 4 .

 44 With the previous notation, set d = gcd(n, k) for k, n > 0.

Corollary 4 . 5 . 1 r=0NF

 451 With the previous notation, we haven-(n, k, r) = n + k -1 k .Proof. It is enough to sum the formula of Theorem 4.4. We can also get it in viewof r (1) = F (n, k, 1) = n + k -1 k . Remark 4.6. N (n, k, r) is a d-periodic function in r.Corollary 4.7. With the previous notation, we have N (n, k, r) = N (k, n, r).

Theorem 4 . 8 .

 48 With the previous notation, set d = gcd(n, k) for k, n > 0 and assume d > 1.



  For δ = gcd(l, d), we have d|jl and 1

  τ δ is also the real part of the Ramanujan sum c(r, δ) = 1≤l ≤δ-1,gcd(l ,δ)=1 e 2il rπ δ We have an explicite representation for c(r, δ) due to Hölder (see [13, Theorem 7.37, chapter 7, page 464]) by c(r, δ) = ϕ(δ)µ(m) ϕ(m) , where ϕ and µ are respectively the Euler function and the Möbius function, and where m = d/ gcd(d, rδ ) = δ/ gcd(r, δ).Since c(r, δ) is a real number, we obtain τ δ = c(r, δ) and the result is gotten.In particular, we have the following two special cases • r = 0 gives τ δ = ϕ(δ) and • gcd(r, d) = 1 with r > 0 gives τ δ = µ(δ).

Example 4 . 9 .

 49 We are going to find the distinct factorizations into atoms of an element of a local seminormal CK domain. Let ω = (1 + √ 5)/2 and consider the PID [ω]. Since 2 is inert in [ω], the ring S = [2ω] is weakly factorial and t-closed, and so is a generalized CK domain with conductor 2 [ω], a maximal ideal in [ω] [11, Theorem 2] and [12, Example (2), page 177]. Set R = S 2 [ω] , which is a local seminormal CK domain and 2 is an atom in R and R. In view of [12, Theorem 1.2, Proposition 2.1 and Proposition 3.1], we have |U ( R)/U (R)| = 3. Set x = 32 = 2 5 . By Theorems 3.11 and 4.4, we get ηgcd(3, 5) = 1. As ω is the fundamental unit of [ω], its class generates the cyclic group U ( R)/U (R). We can choose p = 2, p = 2ω, p = 2ω 2 for the nonassociate atoms of R. The different nonassociated factorizations of x into atoms of R are the following: x = p 5 = ω -3 p 3 p p = ω -3 p 2 p 3 = ω -6 p 2 p 3 = ω -6 pp 2 p 2 = ω -6 p 4 p = ω -9 p p 4 .

Theorem 5 . 1 .

 51 Let R be a local seminormal CK domain with integral closure R. Let Rp be the maximal ideal of R, with p ∈ R. Set n = |U ( R)/U (R)|. Let x = vp k , k ∈ * , v ∈ U ( R). The number of nonassociated factorizations of x m , m ∈ * into atoms of R is of the form η(x m ) = k n-1 n! m n-1 + O(m n-2 ).

  But, by Corollary 4.7, we have, since n = gcd(n, mk) N (n, km, 0) = N (km, n,

  particular, a CK domain R is seminormal if and only if R is t-closed. Let R be a local CK domain with integral closure R = R. Let Rp be the maximal ideal of R. Then R is seminormal if and only if U

	Proof. (1) ⇔ (2) is [9, Proposition 3.7]. (2) ⇔ (3) is [10, Corollary 3.4]. (2) ⇔ (4) comes from [9, Corollary 3.8 and Proposition 2.8]. Indeed, for any P ∈ Max(R), the conductor of R P is I P .
	We obtain as a corollary a first characterization of local seminormal (or t-closed)
	CK domains.
	Corollary 3.2.