# COMPUTING THE FROBENIUS NUMBER 

Abdallah Badra

## To cite this version:

Abdallah Badra. COMPUTING THE FROBENIUS NUMBER. International Journal of Pure and Applied Mathematics, 2010, 60 (1), pp.89-105. hal-00477408

HAL Id: hal-00477408
https://hal.science/hal-00477408
Submitted on 30 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# COMPUTING THE FROBENIUS NUMBER 

Abdallah Badra<br>Laboratoire de Mathématiques, Université Blaise Pascal, Les Cézeaux, 63177 Aubière Cedex, France<br>E-mail : abdallah.badra@math.univ-bpclermont.fr


#### Abstract

The Frobenius number $g(A)$ of a finite subset $A \subset \mathbb{N}$ such that $\operatorname{gcd}(A)=1$ is the largest integer which cannot be expressed as $\sum_{a \in A} a x_{a}$ with non-negative integers $x_{a}$. We present an algorithm for the computation of $g(A)$. Without loss of generality we suppose that there exist $a, b \in A$ such that $\operatorname{gcd}(a, b)=1$. We give a formula for $g(A)$ in the particular case that for all $c, d \in A$, $c+d$ can be written in the form $c+d=x a+y b$ with $x, y \geq 0$ (e.g. $c+d>a b-a-b)$. Using Euler polynomials we give a formula for $g(A)$ in the case that $A=\{a, b, c\}$.


AMS subj. Classification: 11D04
Key Words: Frobenius number, linear diophantine equation.

## 1. Introduction and Statement of Results

Throughout this paper, small letters denote integers. We will set $\mathbb{N}=\{1,2,3 \ldots\}$ and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. We consider a finite subset $A \subset \mathbb{N}$ such that $\operatorname{gcd}(A)=1$. We define $S(A)$ the additive semigroup of $\mathbb{N}_{0}$ generated by $A$ i.e. $S(A)=\left\{\sum_{a \in A} x_{a} a \mid x_{a} \in \mathbb{N}_{0}\right\}$. The Frobenius number $g(A)$ is defined as the largest integer which does not belong to $S(A)$. We are interested in computing $g(A)$ and equivalently $f(A)=g(A)+\sum_{a \in A} a$ the largest integer which cannot be expressed as $\sum_{a \in A} a x_{a}$ with positive integers $x_{a}$. It is well known that $g(a, b)=a b-a-b$ if $\operatorname{gcd}(a, b)=1$, and $g(A)=-1$ if
and only if $1 \in A$.
For $\operatorname{card}(A) \geq 3$, no general formula for $g(A)$ is known, except in particular cases, see [6] and [8]. Algorithms are developed in [4] and [7] in the case $A=\{a, b, c\}$.
Without loss of generality, we can consider only sets $A$ containing two coprime integers $a, b$ (see section 2). We fix two integers $a>1$ and $b>1$ such that $\operatorname{gcd}(a, b)=1$, and $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$. Let $A=\left\{a, b, c_{1}, \ldots, c_{n}\right\}$.
For all $\mathbf{t}=\left(t_{1} \ldots, t_{n}\right) \in \mathbb{N}_{0}^{n}$, we set $\mathbf{t} . \mathbf{c}=\sum_{1}^{n} t_{i} c_{i}$.
For every $m \in \mathbb{Z}$, there exist unique integers $\hat{m}$ and $\check{m}$ such that $m=\hat{m} a-\check{m} b$ with $0 \leq_{\vee} \hat{m}<b$. We write $\mathbf{t} . \mathbf{c}=b(\mathbf{t}) a-a(\mathbf{t}) b$ where $b(\mathbf{t})=\mathbf{t} . \mathbf{c}$ and $a(\mathbf{t})=\mathbf{t} . \mathbf{c}$.
A finite subset $T$ of $\mathbb{N}_{0}^{n}$ is said to be appropriate if

$$
\begin{equation*}
S(A)=\bigcup_{\mathbf{t} \in T}(S(a, b)+\mathbf{t} . \mathbf{c}) . \tag{1}
\end{equation*}
$$

It is said to be pruned if $\mathbf{0} \in T$ and for $\mathbf{t} \in T \backslash\{\mathbf{0}\}$, we have $b(\mathbf{t})>0$ and $a(\mathbf{t})>0$.
Let $T$ be an appropriate and pruned subset of $\mathbb{N}_{0}^{n}$. We can write $T=\left\{\mathbf{0}=\mathbf{t}_{0}, \mathbf{t}_{1}, \ldots, \mathbf{t}_{l}\right\}$ with $0=b\left(\mathbf{t}_{0}\right)<b\left(\mathbf{t}_{1}\right) \leq b\left(\mathbf{t}_{2}\right) \leq \cdots \leq$ $b\left(\mathbf{t}_{l}\right)<b$. We set $b_{i}=b\left(\mathbf{t}_{i}\right), a_{i}=a\left(\mathbf{t}_{i}\right)$ for $0 \leq i \leq l, b_{l+1}=b$ and $a_{l+1}=a$.
We obtain the sequences

$$
0=b_{0}<b_{1} \leq b_{2} \leq \cdots \leq b_{l}<b_{l+1}=b
$$

and

$$
0=a_{0}<a_{1}, a_{2}, \ldots, a_{l}<a_{l+1}=a .
$$

For $0 \leq i \leq l$, we set $m_{i}=\max \left\{a_{j} \mid 0 \leq j \leq i\right\}$ and
$g_{i}=\left(b_{i+1}-1\right) a-\left(m_{i}+1\right) b$.
Our main result is the following

## Theorem 1.

$$
\begin{equation*}
g(A)=\max \left\{g_{i} \mid 0 \leq i \leq l\right\} \tag{2}
\end{equation*}
$$

A subset $M \subset \mathbb{N}_{0}$ is said to be trimmed if for all $m \in M \backslash$ $\{0\}, \check{m}>0$ and for all $m, d \in M$,

$$
\begin{equation*}
\hat{m}<\hat{d} \Leftrightarrow \check{m}<\check{d} \tag{3}
\end{equation*}
$$

We show that there exists an appropriate set $T$ such that $T . \mathbf{c}=\{\mathbf{t} . \mathbf{c} \mid \mathbf{t} \in T\}$ is trimmed.

Theorem 2. Let $T$ be an appropriate set. If T.c is trimmed then

$$
\begin{equation*}
g(A)=\max \left\{a\left(b_{i+1}-b_{i}\right)+\mathbf{t}_{i} . \mathbf{c} \mid 0 \leq i \leq l\right\}-(a+b) \tag{4}
\end{equation*}
$$

where $\mathbf{t}_{0}=\mathbf{0}$.
We give an algorithm for computing $g(A)$. We use Theorem 1 if we start with an arbitrary appropriate set $T$. And we use Theorem 2 if we start with an appropriate set $T$ such that $T . \mathbf{c}$ is trimmed.

In a particular case we derive a formula for $g(A)$ from Theorem 2 :
Theorem 3. If $\left\{c_{1}, \ldots, c_{n}\right\}$ is trimmed and for all $1 \leq i, j \leq n$, we have $c_{i}+c_{j} \in S(a, b)\left(e . g . c_{i}+c_{j}>a b-a-b\right)$ then

$$
\begin{equation*}
g(A)=\max \left\{a\left(b_{i+1}-b_{i}\right)+c_{i} \mid 0 \leq i \leq n\right\}-(a+b) \tag{5}
\end{equation*}
$$

where $b_{n+1}=b, b_{0}=0, c_{0}=0$ and for all $1 \leq i \leq n, b_{i}=\hat{c}_{i}$.
In the case $n=1$, i.e. $A=\{a, b, c\}$, we take $c \notin S(a, b)$ and we write $c=a u_{0}-b v_{0}$ with $0<u_{0}<b$ and $0<v_{0}<a$.
By successive Euclidean divisions we get:

$$
\left\{\begin{array}{l}
a=u_{-1}=p_{0} v_{0}+u_{1}, \ldots, u_{n-1}=p_{n} v_{n}+u_{n+1}, \ldots  \tag{6}\\
b=v_{-1}=q_{0} u_{0}+v_{1}, \ldots, v_{n-1}=q_{n} u_{n}+v_{n+1}, \ldots
\end{array}\right.
$$

The triplet $(a, b, c)$ is said to be of level $n=n(a, b, c)$ if

$$
p_{0}=q_{0}, p_{1}=q_{1}, \cdots, p_{n-1}=q_{n-1}
$$

and $\left(p_{n} \neq q_{n}\right.$ or $\left.v_{n+1}=0\right)$.
Let $(a, b, c)$ a triplet of level $n$. For all $0 \leq i \leq n$, we set $w_{i+1}=$ $u_{i-1}-q_{i} v_{i}$ so for $i \leq n, w_{i}=u_{i}$ and $w_{n+1}=\left(p_{n}-q_{n}\right) v_{n}+u_{n+1}$.
We denote by

$$
\begin{gathered}
L(a, b, c)=\left(L_{0}, L_{1}\right)= \begin{cases}\left(b v_{n}, b w_{n+1}\right) & \text { if } n \text { is even } \\
\left(a v_{n}, a w_{n+1}\right) & \text { if } n \text { is odd }\end{cases} \\
l(a, b, c)=\left(l_{0}, l_{1}\right)= \begin{cases}\left(a w_{n}, a v_{n+1}\right) & \text { if } n \text { is even } \\
\left(b w_{n}, b v_{n+1}\right) & \text { if } n \text { is odd }\end{cases}
\end{gathered}
$$

For an integer $n$ we denote by $k(n)=k=\left\lfloor\frac{n}{2}\right\rfloor$ and $h(n)=h=$ $\left\lfloor\frac{n+1}{2}\right\rfloor$ where $\lfloor x\rfloor$ is the greatest integer such that $\lfloor x\rfloor \leq x$.

## Theorem 4.

$$
\begin{align*}
f(a, b, c) & =a w_{2 h}+b w_{2 k+1}-\min \left\{b v_{2 h}, a v_{2 k+1}\right\}  \tag{7}\\
& =l_{0}+L_{1}-\min \left\{l_{1}, L_{0}\right\} .
\end{align*}
$$

In particular, when $p_{n}=q_{n}$ and $v_{n+1}=0$,

$$
f(a, b, c)= \begin{cases}a \operatorname{gcd}(b, c)+\operatorname{lcm}(b, c) & \text { if } n \text { is even }  \tag{8}\\ b \operatorname{gcd}(a, c)+\operatorname{lcm}(a, c) & \text { if } n \text { is odd }\end{cases}
$$

Theorem 5. Let $\left(x_{-1}, x_{0}, \ldots, x_{l+1}\right),\left(y_{-1}, y_{0}, \ldots, y_{m+1}\right),\left(d_{0}, d_{1}, \ldots, d_{l}\right)$ and $\left(e_{0}, e_{1}, \ldots, e_{m}\right)$ be sequences such that the following conditions

$$
\left\{\begin{array}{l}
x_{-1}=d_{0} x_{0}-x_{1}, \ldots, x_{l-1}=d_{l} x_{l}-x_{l+1}  \tag{9}\\
y_{-1}=e_{0} y_{0}-y_{1}, \ldots, y_{m-1}=e_{m} y_{m}-y_{m+1}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
a=x_{-1}>x_{0}>x_{1}>\cdots>x_{l}>x_{l+1}=0  \tag{10}\\
b=y_{-1}>y_{0}>y_{1}>\cdots>y_{m}>y_{m+1}=0
\end{array}\right.
$$

hold. Let $n$ be an integer such that

$$
\left\{\begin{array}{c}
d_{0}=e_{0}, d_{1}=e_{1}, \cdots, d_{n-1}=e_{n-1}  \tag{11}\\
\text { and }\left(d_{n} \neq e_{n} \text { or } x_{n+1}=0\right) .
\end{array}\right.
$$

Then,

$$
\begin{equation*}
f(a, b, c)=a y_{n+1}+b\left(x_{n-1}-e_{n} x_{n}\right)+\max \left\{a\left(y_{n}-y_{n+1}\right), b x_{n}\right\} . \tag{12}
\end{equation*}
$$

As a consequence of Theorem 5 we prove the following theorem see [7].
Theorem 6(Rodseth). Let $R_{i}$ polynomials defined by induction as follows: $R_{-1}=0, R_{0}=1$ and for all $i>0$,

$$
\begin{equation*}
R_{i+1}=e_{i} R_{i}-R_{i-1} \tag{13}
\end{equation*}
$$

Let $n$ be the unique integer such that

$$
\begin{equation*}
\frac{y_{n+1}}{R_{n+1}} \leq \frac{c}{a}<\frac{y_{i}}{R_{i}} \text { for all } 0 \leq i \leq n \tag{14}
\end{equation*}
$$

Then,

$$
\begin{equation*}
f(a, b, c)=c R_{n+1}+a y_{n}-\min \left\{a y_{n+1}, c R_{n}\right\} . \tag{15}
\end{equation*}
$$

## 2. Reduction to the case $\operatorname{gcd}(a, b)=1$

Let $A=\left\{b, c_{1}, \ldots, c_{n}\right\}$ be a subset of $\mathbb{N}$ such that $\operatorname{gcd}(A)=1$. We recall the following classical result: It is always possible to choose integers $x, x_{1} \ldots, x_{n}$ such that $1=x b+x_{1} c_{1}+\cdots+x_{n} c_{n}$. Then, for $k$ an integer sufficiently large, we get
$a=1+\left[k\left(c_{1}+\cdots+c_{n}\right)-x\right] b=\left(x_{1}+k b\right) c_{1}+\cdots+\left(x_{n}+k b\right) c_{n} \in S\left(c_{1}, \ldots, c_{n}\right)$.

Hence, $g(A)=g(A \cup\{a\})$ and $\operatorname{gcd}(a, b)=1$.
In the particular case that
$A=\left\{a, b, c_{1}, \ldots, c_{n}\right\}$ such that $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a, b, c_{1}, \ldots, c_{n-1}\right)=$ $d \geq 1$ we observe that $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$. Therefore, to compute $g(A)$ we can use Brauer's formula

$$
\begin{equation*}
f(A)=d f\left(\frac{a}{d}, \frac{b}{d}, \frac{c_{1}}{d}, \ldots, \frac{c_{n-1}}{d}, c_{n}\right) \tag{16}
\end{equation*}
$$

see [3].
From now on we suppose that $\operatorname{gcd}(a, b)=1$.

## 3. Case $n \geq 1$

We need some remarks.
R. If $m \geq 0$ then $a>\check{m}$.

Proof. Since $m=\hat{m} a-\check{m} b \geq 0$ we have $b a>\hat{m} a \geq \check{m} b$ hence $a>\check{m}$
R2. Let $m=x a-y b$. Then,

$$
0 \leq x<b \Leftrightarrow \hat{m}=x \Leftrightarrow \check{m}=y
$$

and

$$
-b \leq x<0 \Leftrightarrow \hat{m}=x+b \Leftrightarrow \check{m}=y+a .
$$

Proof. To prove the second claim we write $m=x a-y b=$ $(x+b) a-(y+a) b$ and we use the uniqueness of $\hat{m}$ and $\check{m}$
R. Let $m=x a-y b$. Then, there exists a unique integer $p \in \mathbb{Z}$ such that $x=p b+\hat{m}$ and $y=p a+\check{m}$.
Proof. We write $m=x a-y b=\hat{m} a-\check{m} b$ thus $(x-\hat{m}) a=(y-\check{m}) b$.
Since $\operatorname{gcd}(a, b)=1, p=\frac{x-\hat{m}}{b}=\frac{y-\check{m}}{a}$ is an integer
R4. We have $m \in S(a, b)$ if and only if $\check{m} \leq 0$.
Proof. Clearly $\check{m} \leq 0 \Rightarrow m=\hat{m} a-\check{m} b \in S(a, b)$. Conversely, if $m \in S(a, b)$ then $m=x a+y b$ with $x \geq 0$ and $y \geq 0$. By R3 there exists $p \in \mathbb{Z}$ such that $x=p b+\hat{m} \geq 0$ thus $p \geq 0$. We also have
$-y=p a+\check{m} \leq 0$ and so $\check{m}=-y-p a \leq 0$
R5. For $d \geq 0$ we set $G(d)=S(a, b) \bigcup(S(a, b)+d)$.
Then, we have

$$
m \notin G(d) \Leftrightarrow \check{m}>0 \text { and }(\hat{m}<\hat{d} \text { or } \check{m}>\check{d}) .
$$

Proof. Let $n=m-d$. Since $d \geq 0, \mathbf{R} 1$ shows that $a>\check{d}$. Hence, $\check{m}-\check{d}+a>\check{m}$. Moreover, we have $n=(\hat{m}-\hat{d}) a-(\check{m}-\check{d}) b$ and $-b<\hat{m}-\hat{d}<b$. It follows from $\mathbf{R 2}$ that $\check{n}=\check{m}-\check{d}$ if $\hat{m}-\hat{d} \geq 0$ and $\check{n}=\check{m}-\check{d}+a>\check{m}$ if $\hat{m}-\hat{d}<0$. We deduce that

$$
\begin{gathered}
\check{m}>0 \text { and }(\hat{m}<\hat{d} \text { or } \check{m}>\check{d}) \\
\Leftrightarrow \\
\check{m}>0 \text { and }(\hat{m}-\hat{d} \geq 0 \Rightarrow \check{m}-\check{d}>0) \\
\Leftrightarrow \\
\check{m}>0 \text { and } \check{n}>0 \\
\Leftrightarrow \\
m \notin S(a, b) \text { and } n=m-d \notin S(a, b) \\
\Leftrightarrow \\
m \notin G(d) \square
\end{gathered}
$$

As a consequence of R5 we obtain
R6. If $T$ is appropriate then

$$
m \notin S(A) \Leftrightarrow \check{m}>0 \text { and } \forall \mathbf{t} \in T, \hat{m}<b(\mathbf{t}) \text { or } \check{m}>a(\mathbf{t}) .
$$

Proof of Theorem 1. For $0 \leq i \leq l$, we set $F(i)=\left\{m \in \mathbb{Z} \mid \hat{m}<b_{i+1}\right.$ and $\left.\check{m}>m_{i}\right\}$.

## Step 1.

$$
\begin{equation*}
\mathbb{Z} \backslash S(A)=\bigcup_{i=0}^{l} F(i) \tag{17}
\end{equation*}
$$

Let $m \in F(i)$. For every $0 \leq j \leq l, \hat{m}<b_{i+1} \leq b_{j}$ if $j \geq i+1$ and $\check{m}>m_{i} \geq a_{j}$ if $j \leq i$. Hence, R6 shows that $m \notin S(A)$.
Conversely, let $m \notin S(A)$ then $\check{m}>0$ by R4. Since $b_{0}=0 \leq \hat{m}<$ $b=b_{l+1}$ and $0=b_{0}<b_{1} \leq b_{1} \leq \cdots \leq b_{l} \leq b_{l+1}=b$, there exists $0 \leq j \leq l$ such that $\hat{m}<b_{j+1}$. We put $i=\min \left\{j \mid \hat{m}<b_{j+1}\right\}$. We thus get for $0 \leq j \leq i, b_{j} \leq b_{i} \leq \hat{m}<b_{i+1}$ and $\check{m}>a_{j}$ by R6. Hence, $\check{m}>m_{i}$. We conclude that $m \in F(i)$.
Step 2. For $0 \leq i \leq l, g_{i}=\max F(i)$.
Since $0 \leq b_{i+1}-1<b$, we have $\hat{g}_{i}=b_{i+1}-1$ and $\check{g}_{i}=m_{i}+1>m_{i}$. We thus get $g_{i} \in F(i)$. Moreover, for all $m \in F(i), m=\hat{m} a-\check{m} b \leq$ $\left(b_{i+1}-1\right) a-\left(m_{i}+1\right) b$ then $g_{i}=\max F(i)$
In particular, when $T=\{\mathbf{0}\}$ i.e. when all $c_{i} \in S(a, b)$ we have
$b_{0}=0<b_{1}=b, a_{0}=0$ and $m_{0}=0$. Therefore, $g(A)=g_{0}=$ $\left(b_{1}-1\right) a-\left(m_{0}+1\right) b=a b-a-b=g(a, b)$.
Proof of Theorem 2. If T.c is trimmed then $0=b_{0}<b_{1}<b_{1}<$ $\cdots<b_{l}<b_{l+1}=b$ and thus $0=a_{0}<a_{1}<a_{1}<\cdots<a_{l}<a_{l+1}=$ $a$. In particular, $T$ is pruned and for all $0 \leq i \leq l, m_{i}=a_{i}$. We can write $g_{i}=a\left(b_{i+1}-b_{i}\right)+a b_{i}-b a_{i}-(a+b)=a\left(b_{i+1}-b_{i}\right)+\mathbf{t}_{i} \cdot \mathbf{c}-(a+b)$

## Algorithm.

1. For every $i$, we choose $\lambda_{i}>0$ such that $\lambda_{i} c_{i} \in S(a, b)$. Numbers $\lambda_{i}$ exist. Indeed, it is sufficient to take $\lambda_{i}>\frac{g(a, b)}{c_{i}}=$ $\frac{a b-a-b}{c_{i}}$. The following set

$$
U=\left\{\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{N}_{0}^{n} \mid t_{i}<\lambda_{i}, 1 \leq i \leq n\right\}
$$

is thus appropriate.
We remove from $U$ all elements $\mathbf{t} \neq \mathbf{0}$ such that $b(\mathbf{t})=0$ or $a(\mathbf{t}) \leq 0$. The set $T$ of all remainding elements is pruned and still appropriate.
We number the elements of $T=\left\{\mathbf{0}=\mathbf{t}_{0}, \mathbf{t}_{1}, \ldots, \mathbf{t}_{l}\right\}$ in such a
way that $0=b\left(\mathbf{t}_{0}\right)<b\left(\mathbf{t}_{1}\right) \leq b\left(\mathbf{t}_{2}\right) \leq \cdots \leq b\left(\mathbf{t}_{l}\right)$. We compute $m_{i}=\max \left\{a_{j} \mid 0 \leq j \leq i\right\}, g_{i}=\left(b_{i+1}-1\right) a-\left(m_{i}+1\right) b$ and $g(A)=\max \left\{g_{i} \mid 0 \leq i \leq l\right\}$ where $b_{i}=b\left(\mathbf{t}_{i}\right), a_{i}=a\left(\mathbf{t}_{i}\right)$ for $0 \leq i \leq l, b_{l+1}=b$ and $a_{l+1}=a$.
2. The algorithm can be modified as follows: For every $1 \leq i \leq$ $n$, we start removing from $A$ all elements $c_{j}$ such that $\hat{c}_{i} \leq \hat{c}_{j}$ and $\check{c}_{j} \leq \check{c}_{i}$. We choose an appropriate and pruned set $T=$ $\left\{\mathbf{0}=\mathbf{t}_{0}, \mathbf{t}_{1}, \ldots, \mathbf{t}_{l}\right\}$. We can suppose that $0=b\left(\mathbf{t}_{0}\right)<b\left(\mathbf{t}_{1}\right) \leq$ $b\left(\mathbf{t}_{2}\right) \leq \cdots \leq b\left(\mathbf{t}_{l}\right)<b$. For all $0 \leq i \leq l$, we remove from $T$ all $\mathbf{t}_{j}$ such that $\left(b\left(\mathbf{t}_{i}\right) \leq b\left(\mathbf{t}_{j}\right)\right.$ and $\left.a\left(\mathbf{t}_{j}\right) \leq a\left(\mathbf{t}_{i}\right)\right)$. Considering the set of the remainding elements we can suppose that T.c is trimmed. The Frobenius number can therefore be computed using Theorem 2.

## Proof.

1. For all $\mathbf{t} \in \mathbb{N}_{0}^{n}$, we have $G(\mathbf{t} . \mathbf{c})=S(a, b) \bigcup(S(a, b)+\mathbf{t} . \mathbf{c}) \subset$ $S(A)$ thus $\bigcup_{\mathbf{t} \in U} G(\mathbf{t} . \mathbf{c}) \subset S(A)$. Conversely, let $m \in S(A)$, then $m=x a+y b+\sum_{i=1}^{n} x_{i} c_{i}$ with $x \geq 0, y \geq 0$ and $x_{i} \geq 0$. By Euclidean division we write $x_{i}=q_{i} \lambda_{i}+t_{i}$. We thus get $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \in U$ and $m=x a+y b+\sum_{i=1}^{n} q_{i} \lambda_{i} c_{i}+\mathbf{t} . c$. Since $\lambda_{i} c_{i} \in S(a, b)$, we have $m \in G(\mathbf{t . c})$. The equality

$$
\begin{equation*}
S(A)=\bigcup_{\mathbf{t} \in U} G(\mathbf{t} . \mathbf{c}) \tag{18}
\end{equation*}
$$

follows. Therefore, $U$ is appropriate.
By construction $T$ is pruned and it is still appropriate. Indeed, for $\mathbf{t} \neq \mathbf{0}$, $\mathbf{t} . \mathbf{c} \notin S(a, b)\}$ if and only if $a(\mathbf{t})>0$ by $\mathbf{R} 4$. Therefore,

$$
\begin{equation*}
T=\{\mathbf{t} \in U \mid \mathbf{t}=\mathbf{0} \text { or } \mathbf{t} . \mathbf{c} \notin S(a, b)\} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
S(A)=\bigcup_{\mathbf{t} \in T} G(\mathbf{t} . \mathbf{c}) \tag{20}
\end{equation*}
$$

2. If $\hat{c}_{i} \leq \hat{c}_{j}$ and $\check{c}_{j} \leq \check{c}_{i}$ then $c_{j}=c_{i}+\left(\hat{c}_{j}-\hat{c}_{i}\right) a+\left(\check{c}_{i}-\check{c}_{j}\right) b \in$ $S\left(c_{i}, a, b\right)$. Therefore, $g(A)=g\left(A \backslash\left\{c_{j}\right\}\right)$. If $b\left(\mathbf{t}_{i}\right) \leq b\left(\mathbf{t}_{j}\right)$ and $a\left(\mathbf{t}_{j}\right) \leq a\left(\mathbf{t}_{i}\right)$ then $\mathbf{t}_{\mathbf{j}} \cdot \mathbf{c}=\mathbf{t}_{\mathbf{i}} \cdot \mathbf{c}+\left(b\left(\mathbf{t}_{j}\right)-b\left(\mathbf{t}_{i}\right)\right) a+\left(a\left(\mathbf{t}_{i}\right)-\right.$ $\left.a\left(\mathbf{t}_{j}\right)\right) b \in G\left(\mathbf{t}_{\mathbf{i}} \cdot \mathbf{c}\right)$ thus $G\left(\mathbf{t}_{\mathbf{j}} \cdot \mathbf{c}\right) \subset G\left(\mathbf{t}_{\mathbf{i}} \cdot \mathbf{c}\right)$. We see that (20) is not altered by removing $\mathbf{t}_{\mathbf{j}}$ from $T$

Proof of Theorem 3. Since $2 c_{i} \in S(a, b)$ for all $1 \leq i \leq n$, $U=\left\{\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{N}_{0}^{n} \mid 0 \leq t_{i} \leq 1,1 \leq i \leq n\right\}$ is appropriate. Furthermore, for $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \in U$, if $\mathbf{t} . \mathbf{c} \notin S(a, b)$ then there exists $c_{i}$ and $y \in S(a, b)$ such that t.c $=c_{i}+y \in G\left(c_{i}\right)$. Therefore, the set $T=\left\{\mathbf{0}=\mathbf{t}_{0}, \mathbf{t}_{1}, \ldots, \mathbf{t}_{n}\right\}$ where $\mathbf{t}_{i}=\left(0, \ldots, t_{i}, \ldots, 0\right)$ and $t_{i}=1$ is also appropriate. Moreover, T.c $=\left\{0, c_{1}, \ldots, c_{n}\right\}$ is trimmed and $b\left(\mathbf{t}_{i}\right)=\hat{c}_{i}$ for all $1 \leq i \leq n$

## 4. Case $n=1$

Let $E$ be a totally ordered set and $x \in E$. We call successor of $x$ in $E$, and we denote $x^{+}$, the smallest element of $E$ (if there exists any) such that $x<x^{+}$.

For an appropriate set $T$, we put $b(T)=\{b(\mathbf{t}) \mid \mathbf{t} \in T\}$ and $\mathcal{B}=$ $b(T) \cup\{b\}$. We equip $\mathcal{B}$ with the natural order $\leq$.
To apply Theorem 2 , in the case that $n=1$, it is convenient to formulate it as follows:
Theorem 2'. Let $T$ be an appropriate set such that $T . \mathbf{c}$ is trimmed. Then,

$$
\begin{equation*}
g(A)=\max \left\{a\left(b(\mathbf{t})^{+}-b(\mathbf{t})\right)+\mathbf{t . c} \mid \mathbf{t} \in T\right\}-(a+b) \tag{21}
\end{equation*}
$$

where $b(\mathbf{t})^{+}$is the successor of $b(\mathbf{t})$ in $\mathcal{B}$.
Suppose that there exists integers $\alpha_{1}, \ldots, \alpha_{q}$ and a partition $E_{1}, \ldots, E_{q}$ of $T$ such that $b(\mathbf{t})^{+}-b(\mathbf{t})=\alpha_{i}$ for all $\mathbf{t} \in E_{i}$ and for all $1 \leq i \leq q$.
Then,

$$
\begin{equation*}
g(A)=\max \left\{a \alpha_{i}+\beta_{i} \mid 1 \leq i \leq q\right\}-(a+b) \tag{22}
\end{equation*}
$$

where we put $\beta_{i}=\max E_{i} . \mathbf{c}$.
To compute such a partition, we are led to introduce what we call Euler order on $T$. We will use Euler polynomials.

## Euler polynomials

Let $\left(q_{0}, q_{1}, \ldots, q_{i}, \ldots\right)$ be a sequence of positive integers. We define Euler polynomials $Q_{i}$ by induction as follows: $Q_{-1}=0, Q_{0}=1$ and for $i \geq 0$,

$$
\begin{equation*}
Q_{i+1}\left(q_{0}, \ldots, q_{i}\right)=q_{i} Q_{i}\left(q_{0}, \ldots, q_{i-1}\right)+Q_{i-1}\left(q_{0}, \ldots, q_{i-2}\right) . \tag{23}
\end{equation*}
$$

We set $Q_{i+1}=Q_{i+1}\left(q_{0}, \ldots, q_{i}\right), Q_{i}^{1}=Q_{i}\left(q_{1}, \ldots, q_{i}\right), P_{i+1}=Q_{i}+$ $Q_{i+1}$ and $P_{i+1}^{1}=Q_{i}^{1}+Q_{i+1}^{1}$.
We deduce immediately that

$$
\begin{equation*}
Q_{n+1}=q_{n} Q_{n}+q_{n-2} Q_{n-2}+\ldots+q_{n-2 i} Q_{n-2 i}+Q_{n-2 i-1} \tag{24}
\end{equation*}
$$

for $0 \leq 2 i \leq n$.
Euler order $\leq_{e}$
Proposition 1. Every integer $t \in \mathbb{N}_{0}$ can be written uniquely in the form

$$
\begin{equation*}
t=t_{0} Q_{0}+t_{1} Q_{1}+\cdots+t_{n} Q_{n} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\min \left\{i \mid t_{i}>0\right\} \text { is even } \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
0 \leq t_{i} \leq q_{i} \text { for } 0 \leq i \leq n \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{i}=q_{i} \Rightarrow t_{i-1}=0 \text { for } 1 \leq i \leq n . \tag{28}
\end{equation*}
$$

Equality (25) is called Euler expansion of $t$.
Proof. There exists $n \in \mathbb{N}_{0}$ such that $t<Q_{n+1}$. By successive Euclidean divisions we can write
$t=t_{n} Q_{n}+s_{n}$ with $0 \leq s_{n}<Q_{n}$,
$s_{n}=t_{n-1} Q_{n-1}+s_{n-1}$ with $0 \leq s_{n-1}<Q_{n-1}$,
$\vdots$
$s_{2}=t_{1} Q_{1}+s_{1}$ with $0 \leq s_{1}<Q_{1}$,
$s_{1}=t_{0} Q_{0}$ with $t_{0}=s_{1}$.
We put $i=\min \left\{j \mid t_{j}>0\right\}$. If $i=2 e$ then $t=t_{2 e} Q_{2 e}+t_{2 e+1} Q_{2 e+1}+$ $\cdots+t_{n} Q_{n}$ is Euler expansion of $t$. If $i=2 e+1$, using (24) we take $t=q_{0} Q_{0}+\cdots+q_{2 e} Q_{2 e}+\left(t_{2 e+1}-1\right) Q_{2 e+1}+\cdots+t_{n} Q_{n}$ as Euler expansion of $t$. Conditions (27) and (28) follow from $s_{i+1}<Q_{i+1}=Q_{i-1}+q_{i} Q_{i}$. The uniqueness follows from the uniqueness of the Euclidean division and the fact that $\sum_{i=0}^{2 e} t_{i} Q_{i}<Q_{2 e+1}$ if and only if there exists $0 \leq j \leq e$ such that $t_{2 j}<q_{2 j}$

For $t, x \in \mathbb{N}_{0}$, let $n \in \mathbb{N}_{0}$ such that $t, x \leq Q_{n+1}$. We consider Euler expansions of $t$ and $x$ respectively
$t=t_{0} Q_{0}+t_{1} Q_{1}+\cdots+t_{n} Q_{n}$ and $x=x_{0} Q_{0}+x_{1} Q_{1}+\cdots+x_{n} Q_{n}$.
We define Euler order $\leq_{e}$ as follows: $t \leq_{e} x$ if
$\left(t_{0},-t_{1}, \ldots,(-1)^{i} t_{i}, \ldots,(-1)^{n} t_{n}\right) \leq_{l}\left(x_{0},-x_{1}, \ldots,(-1)^{i} x_{i}, \ldots,(-1)^{n} x_{n}\right)$
where $\leq_{l}$ is the lexicographic order on $\mathbb{Z}^{n}$.
Lemma. Let $n \in \mathbb{N}_{0}$. We consider $U_{n}=\left\{0,1, \ldots, Q_{n+1}-1\right\}$ and $V_{n}=\left\{0,1, \ldots, P_{n}-1\right\}$ equipped with induced Euler order $\leq_{e}$.

1. We define a partition of $U_{n}=F_{1} \cup F_{2}$ as follows:

$$
\begin{gathered}
F_{1}= \begin{cases}\left\{0,1, \ldots, Q_{2 k+1}-Q_{2 k}-1\right\} & \text { if } n=2 k \\
\left\{Q_{2 k+1}, \ldots, Q_{2 k+2}-1\right\} & \text { if } n=2 k+1\end{cases} \\
F_{2}= \begin{cases}\left\{Q_{2 k+1}-Q_{2 k}, \ldots, Q_{2 k+1}-1\right\} & \text { if } n=2 k \\
\left\{0,1, \ldots, Q_{2 k+1}-1\right\} & \text { if } n=2 k+1 .\end{cases}
\end{gathered}
$$

Then, the successor, in $U_{n}$, of all $t \in F_{1}$ (resp. $t \in F_{2}$ ) is $t^{+}=$ $t+(-1)^{n} Q_{n}$ (resp. $t^{+}=t+(-1)^{n}\left[Q_{n}-Q_{n+1}\right]$ ). In particular, if $q_{n}=1$ then for all $t \in F_{2}, t^{+}=t+(-1)^{n-1} Q_{n-1}$.
2. We define a partition of $V_{n}=E_{1} \cup E_{2}$ as follows: $E_{1}=$ $\left\{0, \ldots, Q_{2 h-1}-1\right\}, E_{2}=\left\{Q_{2 h-1}, \ldots, P_{n}-1\right\}$. Then, the successor, in $V_{n}$, of all $t \in E_{1}$ (resp. $t \in E_{2}$ ) is $t^{+}=t+Q_{2 k}$ (resp. $t^{+}=t-Q_{2 h-1}$ ).

Proof. Let $t=t_{0} Q_{0}+t_{1} Q_{1}+\cdots+t_{n} Q_{n}$ be Euler expansion of $t$.

1. (a) Suppose that $t \in F_{1}$. It is easily seen that $t_{n}>0$ if $n=2 k+1$ and $t_{n}<q_{n}-1$ or $\left(t_{n}=q_{n}-1\right.$ and $\left.t_{n-1}=0\right)$ if $n=2 k$. Therefore, $t^{+}=t+(-1)^{n} Q_{n}$.
(b) Suppose that $t \in F_{2}$, then $t=t_{0} Q_{0}+t_{1} Q_{1}+\cdots+t_{2 k} Q_{2 k}$. Since $t<Q_{2 k+1}$, there exists $j \leq k$ such that $t_{2 j}<$ $q_{2 j}$. Taking $i=\max \left\{j \mid t_{2 j}<q_{2 j}\right\}$ we can write $t=$ $t_{0} Q_{0}+t_{1} Q_{1}+\cdots+t_{2 i} Q_{2 i}+\left[q_{2 i+2} Q_{2 i+2}+\cdots+q_{2 k} Q_{2 k}\right]=$ $t_{0} Q_{0}+t_{1} Q_{1}+\cdots+t_{2 i} Q_{2 i}-Q_{2 i+1}+Q_{2 k+1}$. If $t_{2 i}<q_{2 i}-1$ or $\left(t_{2 i}=q_{2 i}-1\right.$ and $\left.t_{2 i-1}=0\right)$ then $t^{+}=t_{0} Q_{0}+t_{1} Q_{1}+\cdots+\left(t_{2 i}+1\right) Q_{2 i}+\left(q_{2 i+1}-1\right) Q_{2 i+1}+$ $\cdots+q_{2 h-1} Q_{2 h-1}=t+Q_{2 h}-Q_{2 k+1}$.
If $t_{2 i}=q_{2 i}-1$ and $t_{2 i-1}>0$ then $t^{+}=t_{0} Q_{0}+t_{1} Q_{1}+$ $\cdots+\left(t_{2 i-1}-1\right) Q_{2 i-1}+q_{2 i+1} Q_{2 i+1}+\cdots+q_{2 h-1} Q_{2 h-1}=$ $t+Q_{2 h}-Q_{2 k+1}$.
2. It is a particular case: Taking $q_{n}=1$ we get $P_{n}=Q_{n-1}+Q_{n}=$ $Q_{n+1}$ and $V_{n}=U_{n}$. Moreover, in this case we have $E_{1}=F_{2}$ and $E_{2}=F_{1}$ if $n=2 k$ and $E_{1}=F_{1}$ and $E_{2}=F_{2}$ if $n=2 k+1$

Let $\left(r=r_{-1}, r_{0}, \ldots, r_{n}\right)$ and $\left(q_{0}, q_{1}, \ldots, q_{n}\right)$ be sequences of positive integers and $r_{n+1} \geq 0$. We suppose that

$$
\begin{equation*}
r_{i-1}=q_{i} r_{i}+r_{i+1} \tag{29}
\end{equation*}
$$

for $0 \leq i \leq n$.
We thus have $r>r_{0}>r_{1}>\cdots>r_{n}>0$ and $r_{n-1}>r_{n+1} \geq 0$.
We prove by induction the following identities:

$$
\begin{equation*}
r=r_{i} Q_{i+1}+r_{i+1} Q_{i} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{0} Q_{i}=(-1)^{i} r_{i}+r Q_{i-1}^{1} . \tag{31}
\end{equation*}
$$

It follows from (31) that

$$
\begin{equation*}
r_{0} P_{i+1}=(-1)^{i}\left(r_{i}-r_{i+1}\right)+r P_{i}^{1} . \tag{32}
\end{equation*}
$$

Let $t \in \mathbb{N}_{0}$. Given $t=t_{0} Q_{0}+t_{1} Q_{1}+\cdots+t_{n} Q_{n}$ its Euler expansion, we associate with $t$ the following numbers: $r(t)=\sum_{i=0}^{n}(-1)^{i} t_{i} r_{i}$ and $E(t)=\sum_{i=0}^{n} t_{i} Q_{i-1}^{1}$. It follows from (31) that

$$
\begin{equation*}
t r_{0}=r(t)+r E(t) \tag{33}
\end{equation*}
$$

Moreover, if $0<t<Q_{n+1}$ then

$$
\begin{equation*}
r_{n} \leq r(t) \leq r-r_{n} \tag{34}
\end{equation*}
$$

and if $0<t<P_{n}$ then

$$
\begin{equation*}
r_{2 k} \leq r(t) \leq r-r_{2 h-1} \tag{35}
\end{equation*}
$$

Indeed, for $0<t<Q_{n+1}$, let $t=t_{0} Q_{0}+\cdots+t_{n} Q_{n}$ be Euler expansion of $t$. We can write $t=\sum_{i=e}^{k} t_{2 i} Q_{2 i}+\sum_{i=e}^{h-1} t_{2 i+1} Q_{2 i+1}$ with $t_{2 e}>0$. Hence, $r(t)=\sum_{i=e}^{k} t_{2 i} r_{2 i}-\sum_{i=e}^{h-1} t_{2 i+1} r_{2 i+1}$.
Using $r_{2 e}=\sum_{i=e}^{h-1} q_{2 i+1} r_{2 i+1}+r_{2 h}$ we get

$$
\begin{aligned}
r(t) & =\left(t_{2 e}-1\right) r_{2 e}+\sum_{i=e+1}^{k} t_{2 i} r_{2 i} \\
& +\sum_{i=e}^{h-1}\left(q_{2 i+1}-t_{2 i+1}\right) r_{2 i+1}+r_{2 h} .
\end{aligned}
$$

Now if $n=2 k+1$ we get

$$
\begin{equation*}
r_{2 h}+r_{2 k+1} \leq r(t) \leq \sum_{i=0}^{k} q_{2 i} r_{2 i}=r-r_{2 k+1}=r-r_{n} \tag{36}
\end{equation*}
$$

If $n=2 k$ there exists $j \leq k$ such that $t_{2 j}<q_{2 j}$ since otherwise $t=Q_{n+1}$. We then get

$$
\begin{equation*}
r_{n} \leq r(e) \leq r(t) \leq r-r_{2 j}-r_{2 k+1} \leq r-r_{2 k}-r_{2 k+1} . \tag{37}
\end{equation*}
$$

Hence, assumption (34) follows. In the particular case that $q_{n}=1$ we have $P_{n}=Q_{n+1}$ and $r_{n-1}=r_{n}+r_{n+1}$. In this case if $n=2 k$ we get $r_{n-1} \leq r(t) \leq r-r_{n}$ by (36) and if $n=2 k+1$ we get $r_{n} \leq r(t) \leq r-r_{n-1}$ by (37) thus assumption (35) follows
Proposition 2. We suppose that $r_{n+1}=0$. We equip $\{0,1, \ldots, r-$ $1\}$ with the natural order $\leq$ and $U_{n}=\left\{0,1, \ldots, Q_{n+1}-1\right\}$ with $E u$ ler order $\leq_{e}$. Then, the mapping $\left(U_{n}, \leq_{e}\right) \rightarrow(\{0,1, \ldots, r-1\}, \leq$ ), $t \mapsto r(t)$ is strictly increasing.
Proof. Given $t \leq_{e} x$ in $U_{n}$ we have $\left(t_{0},-t_{1}, \ldots,(-1)^{j} t_{j}, \ldots,(-1)^{n} t_{n}\right) \leq_{l}\left(x_{0},-x_{1}, \ldots,(-1)^{j} x_{j}, \ldots,(-1)^{n} x_{n}\right)$ and $r(x)-r(t)=(-1)^{j}\left(x_{j}-t_{j}\right) r_{j}+\sum_{i=j+1}^{n}(-1)^{i} x_{i} r_{i}-\sum_{i=j+1}^{n}(-1)^{i} t_{i} r_{i}$ where $j$ is the smallest integer such that $t_{j} \neq x_{j}$.

1. When $j=2 i$ we get $x_{2 i}>t_{2 i} \geq 0$ and $x_{2 i+1} \leq q_{2 i+1}-1$. Then,

$$
\begin{aligned}
& r(x)-r(t)=\left(x_{2 i}-t_{2 i}\right) r_{2 i}+\left[-x_{2 i+1} r_{2 i+1}+\cdots+(-1)^{n} x_{n} r_{n}\right]- \\
& {\left[-t_{2 i+1} r_{2 i+1}+\cdots+(-1)^{n} t_{n} r_{n}\right] \geq\left(x_{2 i}-t_{2 i}\right) r_{2 i}-\left[\left(q_{2 i+1}-\right.\right.} \\
& \text { 1) } \left.r_{2 i+1}+\cdots+q_{2 h-1} r_{2 h-1}\right]-\left[q_{2 i+2} r_{2 i+2}+\cdots+q_{2 k} r_{2 k}\right] \geq\left(x_{2 i}-\right. \\
& \left.t_{2 i}\right) r_{2 i}-r_{2 i}+r_{2 h}+r_{2 k+1}>0 .
\end{aligned}
$$

2. When $j=2 i-1$ we get $t_{2 i-1}>x_{2 i-1} \geq 0$ and $t_{2 i} \leq q_{2 i}-$ 1. Then, $r(x)-r(t)=\left(t_{2 i-1}-x_{2 i-1}\right) r_{2 i-1}+\left[x_{2 i} r_{2 i}+\cdots+\right.$ $\left.(-1)^{n} x_{n} r_{n}\right]-\left[t_{2 i} r_{2 i}+\cdots+(-)^{n} t_{n} r_{n}\right] \geq\left(t_{2 i-1}-x_{2 i-1}\right) r_{2 i-1}-$ $\left[q_{2 i+1} r_{2 i+1}+\cdots+q_{2 h-1} r_{2 h-1}\right]-\left[\left(q_{2 i}-1\right) r_{2 i}+\cdots+q_{2 k} r_{2 k}\right] \geq$ $\left(t_{2 i-1}-x_{2 i-1}\right) r_{2 i-1}+r_{2 h}-r_{2 i-1}+r_{2 k+1}>0$

Now we consider another sequence of positive integers $(s=$ $\left.s_{-1}, s_{0}, s_{1}, \ldots, s_{n}\right)$ and $s_{n+1} \geq 0$ such that $s_{i-1}=q_{i} s_{i}+s_{i+1}$ for $0 \leq i \leq n$.

We also define $s(t)=\sum_{i=0}^{n}(-1)^{i} t_{i} s_{i}$.
Using (31) we prove the following identity

$$
\begin{equation*}
\left(r s_{0}-s r_{0}\right) Q_{i}=(-1)^{i}\left(r s_{i}-s r_{i}\right) \tag{38}
\end{equation*}
$$

We derive

$$
\begin{equation*}
\left(r s_{0}-s r_{0}\right) P_{i+1}=(-1)^{i}\left[r\left(s_{i}-s_{i+1}\right)+s\left(r_{i+1}-r_{i}\right)\right] \tag{39}
\end{equation*}
$$

from (32) and

$$
\begin{equation*}
t\left(r s_{0}-s r_{0}\right)=r s(t)-s r(t) \tag{40}
\end{equation*}
$$

from (33).

## Proof of Theorem 4.

First step : Reduction to the case $n=2 k$.
Suppose that $n=n(a, b, c)=2 k+1$.
Since $g(a, b, c)=g(b, a, c)$, it suffices to show that $n(b, a, c)$ is even, $L(a, b, c)=L(b, a, c)$ and $l(a, b, c)=l(b, a, c)$.

We write $c=b\left(a-v_{0}\right)-a\left(b-u_{0}\right)$. We consider two cases:
If $p_{0}=q_{0}>1$ then we can write $a=\left(a-v_{0}\right)+v_{0}, a-v_{0}=$ $\left(q_{0}-1\right) v_{0}+v_{1}, b=\left(b-u_{0}\right)+u_{0}, b-u_{0}=\left(q_{0}-1\right) u_{0}+u_{1}$. Therefore, $n(b, a, c)=n(a, b, c)+1, L(b, a, c)=L(a, b, c)$ and $l(b, a, c)=$ $l(a, b, c)$.
If $p_{0}=q_{0}=1$ we get $a-v_{0}=u_{1}$ and $b-u_{0}=v_{1}$. We therefore get $a=\left(q_{1}+1\right)\left(a-v_{0}\right)+v_{2}$ and $b=\left(p_{1}+1\right)\left(b-u_{0}\right)+u_{2}$. It follows that $n(b, a, c)=n(a, b, c)-1$. Furthermore, we observe that if $n(a, b, c)>$ 1 then we have obviously $L(a, b, c)=L(b, a, c)$ and $l(a, b, c)=$ $l(b, a, c)$. If $n(a, b, c)=1$ we have $L(b, a, c)=\left(a v_{1}, a\left(b-\left(q_{1}+\right.\right.\right.$ 1) $\left.\left.v_{1}\right)\right)=\left(a v_{1}, a\left(u_{0}-q_{1} v_{1}\right)\right)=L(a, b, c)$ and $\left.l(b, a, c)=\left(b u_{1}, b v_{2}\right)\right)=$ $l(a, b, c)$. In both cases, $n(b, a, c)$ is even. Therefore, the assumption follows.
Moreover, we can write

$$
\begin{equation*}
c=w_{n} w_{n+1}-v_{n} v_{n+1} . \tag{41}
\end{equation*}
$$

Since $c>0$, we get $w_{n+1}=\left(p_{n}-q_{n}\right) v_{n}+u_{n+1}>0$ thus $p_{n}>q_{n}$ or $\left(p_{n}=q_{n}\right.$ and $\left.v_{n+1}=0\right)$. When $p_{n}=q_{n}$ and $v_{n+1}=0$ we then have

$$
\begin{equation*}
c=w_{n} w_{n+1}=u_{n} u_{n+1} . \tag{42}
\end{equation*}
$$

In the following steps we suppose that $n=2 k$.
Second step: Case $p_{n}>q_{n}$.
Taking $a=r, v_{0}=r_{0}, b=s$ and $u_{0}=w_{0}=s_{0}$ it follows from (39) that $c P_{n+1}=a\left(w_{n}-v_{n+1}\right)+b\left(w_{n+1}-v_{n}\right) \in S(a, b)$ because $w_{n+1}>v_{n}$ and $w_{n}>v_{n+1}$. Moreover, it follows from (40) and (35) that $s(t)=b(t)$ and $r(t)=a(t)$. Hence, for all $0<t<P_{n+1}$, $t c=a b(t)-b a(t) \notin S(a, b)$ by R4. We conclude that

$$
\begin{equation*}
P_{n+1}=\min \{t>0 \mid t c \in S(a, b)\} \tag{43}
\end{equation*}
$$

and by (19)-(20), that $V_{n}=\left\{0,1, \ldots, P_{n+1}-1\right\}$ is appropriate. Let us show that $V_{n}$.c is trimmed. Indeed, for $0<t<x<P_{n+1}$, since
$x-t<P_{n+1}$, we have $0<(x-t) c=(b(x)-b(t)) a-(a(x)-a(t)) b \notin$ $S(a, b)$. Then, $b(x)<b(t)$ if and only if $a(x)<a(t)$ by R4.
Furthermore, it follows from proposition 2 that $b(t)^{+}-b(t)=$ $b\left(t^{+}\right)-b(t)=b\left(t^{+}-t\right)$. Writing $V_{n}=E_{1} \cup E_{2}$ with the notation of the lemma, Theorem 2 and (22) show that $g(a, b, c)=$ $\max \left\{a \alpha_{1}+\beta_{1}, a \alpha_{2}+\beta_{2}\right\}-(a+b)$ where $\alpha_{1}=b\left(t^{+}\right)-b(t)=b\left(Q_{n}\right)$ for all $t \in E_{1}, \alpha_{2}=b\left(t^{+}\right)-b(t)=-b\left(Q_{n+1}\right)$ for all $t \in E_{2}$, and $\beta_{i}=\max E_{i} . c$.
It follows from (31) that $\alpha_{1}=w_{n}$, and $\alpha_{2}=v_{n+1}$. Moreover, we see that $\beta_{2}=c\left(P_{n+1}-1\right), \beta_{1}=c\left(Q_{n+1}-1\right)=-c Q_{n}+c P_{n+1}-c=$ $b v_{n}-a w_{n}+c P_{n+1}-c$ by (38). We therefore obtain the formula

$$
\begin{equation*}
g(a, b, c)=c P_{n+1}+\max \left\{a v_{n+1}, b v_{n}\right\}-(a+b+c) \tag{44}
\end{equation*}
$$

which can be written in the form

$$
\begin{equation*}
f(a, b, c)=a\left(w_{n}-v_{n+1}\right)+b\left(w_{n+1}-v_{n}\right)+\max \left\{a v_{n+1}, b v_{n}\right\} \tag{45}
\end{equation*}
$$

by (39). Finally,

$$
\begin{equation*}
f(a, b, c)=a w_{n}+b w_{n+1}-\min \left\{a v_{n+1}, b v_{n}\right\} . \tag{46}
\end{equation*}
$$

Third step: Case $p_{n}=q_{n}$ and $v_{n+1}=0$.
We have $c Q_{n+1}=b w_{n+1} \in S(a, b)$ by (38) and for all $0<t<Q_{n+1}$, $t c=a b(t)-b a(t) \notin S(a, b))$ by (34). We deduce that

$$
\begin{equation*}
Q_{n+1}=\min \{t>0 \mid t c \in S(a, b)\} . \tag{47}
\end{equation*}
$$

Using (19)-(20) we show by a similar argument that $U_{n}=\left\{0,1, \ldots, Q_{n+1}-\right.$ $1\}$ is appropriate and $U_{n} . c$ is trimmed. Furthermore, since $v_{n+1}=0$ the lemma show that $b\left(t^{+}\right)-b(t)=w_{n}$ for all $t \in U_{n}$. Therefore, by (21) $f(a, b, c)=a w_{n}+c Q_{n+1}=a w_{n}+b w_{n+1}$.
Moreover, since $v_{n+1}=0$, we get $w_{n}=\operatorname{gcd}\left(b, w_{0}\right)=\operatorname{gcd}(b, c)$ and
$b=w_{n} Q_{n+1}$ by (30). Using (42) we deduce that $\operatorname{lcm}(b, c)=b w_{n+1}$

Remark. The case that $\left(p_{n}=q_{n}\right.$ and $\left.v_{n+1}=0\right)$ can be deduced from Brauer's formula (16): We put $d=\operatorname{gcd}(b, c)=$ $\operatorname{gcd}\left(b, w_{0}\right)=w_{n}, c^{\prime}=\frac{c}{d}=w_{n+1}$ and $b^{\prime}=\frac{b}{d}=Q_{n+1}$. Using (30) we get $a=v_{n} Q_{n+1}+w_{n+1} Q_{n}>w_{n+1} Q_{n+1}=b^{\prime} c^{\prime}$. We thus have $f\left(a, b^{\prime}, c^{\prime}\right)=g\left(a, b^{\prime}, c^{\prime}\right)+a+b^{\prime}+c^{\prime}=b^{\prime} c^{\prime}+a$. Hence, (16) show that $f(a, b, c)=d f\left(a, b^{\prime}, c^{\prime}\right)=b c^{\prime}+d a=\operatorname{lcm}(b, c)+a \operatorname{gcd}(b, c)$
Proof of Theorem 5. We first prove by induction that polynomials $R_{i}$ satisfy the following properties: For $i \leq n$,

$$
\begin{equation*}
y_{-1}=y_{i} R_{i+1}\left(e_{0}, \ldots, e_{i}\right)-y_{i+1} R_{i}\left(e_{0}, \ldots, e_{i-1}\right) \tag{50}
\end{equation*}
$$

and for $j \leq i$,

$$
\begin{equation*}
y_{j-1}=y_{i} R_{i-j+1}\left(e_{j}, \ldots, e_{i}\right)-y_{i+1} R_{i-j}\left(e_{j}, \ldots, e_{i-1}\right) \tag{51}
\end{equation*}
$$

In the particular case that $e_{j}=e_{j+1}=\cdots=e_{i}=2$, we get

$$
\begin{equation*}
R_{i-j+1}\left(e_{j}, \ldots, e_{i}\right)=(i-j+2) \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{j-1}-y_{j}=y_{j}-y_{j+1}=\cdots=\left(y_{i}-y_{i+1}\right) \tag{53}
\end{equation*}
$$

so in this case (51) can be written in the form

$$
\begin{equation*}
y_{j-1}=(i-j+2)\left(y_{i}-y_{i+1}\right)+y_{i+1} . \tag{54}
\end{equation*}
$$

Now we consider the set
$K=\left\{e_{i} \mid i=0\right.$ or $\left(0<i<m\right.$ and $\left.\left.e_{i}>2\right)\right\}=\left\{e_{0}=e_{k_{0}}, e_{k_{1}}, \ldots, e_{k_{s-1}}\right\}$
and we set $k_{s}=m$. We can suppose that $0=k_{0}<k_{1}<\cdots<k_{s}=$ $m$.

We have

$$
\begin{equation*}
y_{-1}=\left(e_{0}-1\right) y_{0}+\left(y_{0}-y_{1}\right) \tag{55}
\end{equation*}
$$

and for $0<i \leq s$,

$$
\begin{equation*}
y_{k_{i}-1}-y_{k_{i}}=\left(e_{k_{i}}-2\right) y_{k_{i}}+\left(y_{k_{i}}-y_{k_{i}+1}\right) . \tag{56}
\end{equation*}
$$

Furthermore, (54) show that

$$
\begin{equation*}
y_{k_{(i-1)}}=\left(k_{i}-k_{(i-1)}\right)\left(y_{k_{i}-1}-y_{k_{i}}\right)+y_{k_{i}} \tag{57}
\end{equation*}
$$

and (53) that for $0<i<s$,

$$
\begin{equation*}
y_{k_{(i-1)}}-y_{k_{(i-1)}+1}=\cdots=y_{k_{i}-1}-y_{k_{i}}>y_{k_{i}} . \tag{58}
\end{equation*}
$$

To apply Theorem 4 we set

$$
v_{-1}=y_{-1}, u_{0}=y_{0}, v_{1}=\left(y_{0}-y_{1}\right), q_{0}=\left(e_{0}-1\right)
$$

and for $0<i<s$,

$$
v_{2 i-1}=y_{k_{i}-1}-y_{k_{i}}, u_{2 i}=y_{k_{i}}, q_{2 i}=\left(e_{k_{i}}-2\right), p_{2 i-1}=\left(k_{i}-k_{(i-1)}\right) .
$$

Furthermore, if $e_{m}>2$ we set
$v_{2 s-1}=\left(y_{m-1}-y_{m}\right), v_{2 s+1}=y_{m+1}=0, p_{2 s-1}=\left(m-k_{(s-1)}\right), u_{2 s}=y_{m}, q_{2 s}=\left(e_{m}-1\right)$
and if $e_{m}=2$ we set

$$
v_{2 s-1}=y_{m}, p_{2 s-1}=\left(m+1-k_{(s-1)}\right) \text { and } u_{2 s}=y_{m+1}=0 .
$$

We thus get

$$
v_{-1}>u_{0}>\cdots>v_{2 i-1}>u_{2 i}>v_{2 i+1}>\cdots
$$

and

$$
v_{2 i-1}=q_{2 i} u_{2 i}+v_{2 i+1} ; u_{2 i}=p_{2 i+1} v_{2 i+1}+u_{2 i+2}
$$

Using (11) we get $c=a y_{0}-b x_{0}=x_{n} y_{n}\left(d_{n}-e_{n}\right)+x_{n} y_{n+1}-y_{n} x_{n+1}>$ 0 . Then, $d_{n}>e_{n}$ or $\left(d_{n}=e_{n}\right.$ and $\left.x_{n+1}=0\right)$.
To prove (12) we consider two cases:
Case $n=0$.
We can write $a=\left(d_{0}-1\right) x_{0}+\left(x_{0}-x_{1}\right)$ and $b=\left(e_{0}-1\right) y_{0}+\left(y_{0}-y_{1}\right)$ with $d_{0}-1>e_{0}-1$ or $d_{0}-1=e_{0}-1$ and $x_{1}=0$. Then, $L(a, b, c)=$ $\left(b x_{0}, b\left(a-\left(e_{0}-1\right) x_{0}\right)\right), l(a, b, c)=\left(a y_{0}, a\left(y_{0}-y_{1}\right)\right)$. We conclude that $f(a, b, c)=a y_{0}+b\left(a-\left(e_{0}-1\right) x_{0}\right)-\min \left\{a\left(y_{0}-y_{1}\right), b x_{0}\right\}=$ $a y_{1}+b\left(a-e_{0} x_{0}\right)+\max \left\{a\left(y_{0}-y_{1}\right), b x_{0}\right\}$ by (7).
Case $n>0$.
Let $r=\max \left\{i \mid k_{i}<n\right\}$.

1. Suppose that $d_{n} \geq e_{n}>2$. We can write $x_{n-1}-x_{n}=\left(d_{n}-\right.$ 2) $x_{n}+\left(x_{n}-x_{n+1}\right)$ and $y_{n-1}-y_{n}=\left(e_{n}-2\right) y_{n}+\left(y_{n}-y_{n+1}\right)$ with $d_{n}-2>e_{n}-2$ or $d_{n}-2=e_{n}-2$ and $x_{n+1}=0$. It follows that the level of $(a, b, c)$ is even, $L(a, b, c)=\left(b x_{n}, b\left(x_{n-1}-\right.\right.$ $\left.\left(e_{n}-1\right) x_{n}\right)$ and $l(a, b, c)=\left(a y_{n}, a\left(y_{n}-y_{n+1}\right)\right)$. Therefore, $f(a, b, c)=a y_{n+1}+b\left(x_{n-1}-e_{n} x_{n}\right)+\max \left\{a\left(y_{n}-y_{n+1}\right), b x_{n}\right\}$ by (7).
2. Suppose that $d_{n}>e_{n}=2$. We thus have $k_{(r+1)}>n$. we can write $y_{k_{r}}=\left(k_{(r+1)}-k_{r}\right)\left(y_{k_{(r+1)}-1}-y_{k_{(r+1)}}\right)+y_{k_{(r+1)}}$ and $x_{k_{r}}=\left(n-k_{r}\right)\left(x_{n-1}-x_{n}\right)+x_{n}$ by (57). Moreover, we have $y_{k_{(r+1)}-1}-y_{k_{(r+1)}}=y_{n-1}-y_{n}=y_{n}-y_{n+1}$ by (53) and $y_{k_{r}}-(n-$ $\left.k_{r}\right)\left(y_{n-1}-y_{n}\right)=y_{n}$ by (54). Therefore, the level of $(a, b, c)$ is odd, $L=\left(a\left(y_{n}-y_{n+1}\right), a y_{n}\right)$ and $l=\left(b\left(x_{n-1}-x_{n}\right), b x_{n}\right)$. We deduce that $f(a, b, c)=a y_{n+1}+b\left(x_{n-1}-2 x_{n}\right)+\max \left\{a\left(y_{n}-\right.\right.$ $\left.\left.y_{n+1}\right), b x_{n}\right\}$ by (7).
3. Suppose that $d_{n}=e_{n}=2$ and $x_{n+1}=0$ then $k_{(r+1)} \geq n+$ 1. Using (57) we can write $y_{k_{r}}=\left(k_{(r+1)}-k_{r}\right)\left(y_{k_{(r+1)}-1}-\right.$ $\left.y_{k_{(r+1)}}\right)+y_{k_{(r+1)}}=\left(n+1-k_{r}\right)\left(y_{n}-y_{n+1}\right)+y_{n+1}$ and $x_{k_{r}}=$ $\left(n+1-k_{r}\right) x_{n}$. Hence, the level of $(a, b, c)$ is odd. Since $y_{k_{r}}-\left(n+1-k_{r}\right)\left(y_{n}-y_{n+1}\right)=y_{n+1}$, we get $L=\left(a\left(y_{n}-\right.\right.$ $\left.\left.y_{n+1}\right), a y_{n+1}\right)$ and $l=\left(b x_{n}, 0\right)$. Therefore, $f(a, b, c)=a y_{n+1}+$ $b x_{n}=a y_{n+1}+\max \left\{a\left(y_{n}-y_{n+1}\right), b x_{n}\right\}$ because, by (48), we have $b x_{n}-a y_{n}+a y_{n+1}=-c R_{n}+c R_{n+1}$ and it is easily seen that $-c R_{n}+c R_{n+1}<0$.

Finally we have proved that

$$
\begin{equation*}
f(a, b, c)=a y_{n+1}+b\left[x_{n-1}-e_{n} x_{n}\right]+\max \left\{a\left(y_{n}-y_{n+1}\right), b x_{n}\right\} \square \tag{59}
\end{equation*}
$$

To prove Theorem 6 we observe, using (48)-(49), that (11) and the following condition

$$
\begin{equation*}
\frac{y_{n+1}}{R_{n+1}} \leq \frac{c}{a}<\frac{y_{i}}{R_{i}} \text { for all } 0 \leq i \leq n . \tag{60}
\end{equation*}
$$

are equivalent. Taking account of (48)-(49) we obtain

$$
\begin{equation*}
f(a, b, c)=c R_{n+1}+a y_{n}-\min \left\{a y_{n+1}, c R_{n}\right\} \tag{61}
\end{equation*}
$$

## 5. Examples

1. $A=\{31,44,462,674,402,932,1214\}$.

We take $a=31, b=44$. We obtain

and $(462,674,402,932,1214)=(5,3,12,7,2)$.
We remove $674,932,1214$ from $A$ without altering $g(A)$. We consider $\left(a, b, c_{1}, c_{2}\right)=(31,44,462,402)$. Applying Theorem 3 we obtain $g(A)=761$.
2. $A=\{57,83,367,543,605\}$.

We take $a=57, b=83$. We have $(3 \hat{6} 7,5 \hat{4} 3,6 \hat{0} 5)=(21,27,31)$, $(367,543,6 \stackrel{\vee}{\vee} 5)=(10,12,14)$,
$\mathcal{B}=b(T) \cup\{b\}=\{21,27,31,42,48,52,58,62,63,69,73,79,83\}$,
$\mathcal{A}=a(T) \cup\{a\}=\{10,12,14,20,22,24,26,28,30,32,34,36,57\}$.
We obtain $g(A)=1603$.
3. $A=\{a, b, c\}=\{137,250,337\}$. We have $(\hat{c}, \check{c})=(101,54), l=$ 4, $\mathcal{B}=\{53,101,154,202,250\}, \mathcal{A}=\{25,54,79,108,137\}$.
Using Theorem 2 we obtain $g(137,250,337)=\max \left\{g_{1}, g_{2}, g_{3}\right\}=7537$.
Let us compute $g(A)$ by Theorem 5 . We get $n(a, b, c)=1$, $L(a, b, c)=(6576,7261), l(a, b, c)=(7250,6250)$. We obtain $g(a, b, c)=7250+7261-6250-137-250-337=7537$.

## References

[1] A. Brauer, On a problem of partitions, Amer. J. Math. 64, (1942), 299-312.
[2] A. Brauer, B. M. Seelbinder, On a problem of partitions II, Amer. J. Math. 76, (1954), 343-346.
[3] A. Brauer, J. E. Shockley, On a problem of Frobenius, J. reine angew. Math. 211, (1962), 215-220.
[4] J. L. Davison, On the linear diophantine problem of Frobenius, Journal of Number Theory 48, (1994), 353-363.
[5] P. Erdös, R. L. Graham, On a linear diophantine problem of Frobenius, Acta Arith. 21, (1972), 399-408.
[6] M. Raczunas, P. Chrstowski-Wachtel, A diophantine problem of Frobenius in terms of the least common multiple, Discrete Mathematics, 150, (1996), 347-357.
[7] O. J. Rodseth, On a linear diophantine problem of Frobenius,
J. reine angew. Math. 301, (1978),171-178.
[8] E.S. Selmer, On the linear diophantine problem of Frobenius, J. reine angew. Math. 293/294, (1977),1-17.

