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Abstract. The Frobenius number g(A) of a finite subset

A ⊂ IN such that gcd(A) = 1 is the largest integer which cannot be

expressed as
∑

a∈A axa with non-negative integers xa. We present

an algorithm for the computation of g(A). Without loss of general-

ity we suppose that there exist a, b ∈ A such that gcd(a, b) = 1. We

give a formula for g(A) in the particular case that for all c, d ∈ A,

c+ d can be written in the form c+ d = xa+ yb with x, y ≥ 0 (e.g.

c+ d > ab− a− b). Using Euler polynomials we give a formula for

g(A) in the case that A = {a, b, c}.
AMS subj. Classification: 11D04
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1. Introduction and Statement of Results

Throughout this paper, small letters denote integers. We will set

IN = {1, 2, 3 . . . } and IN0 = IN ∪ {0}. We consider a finite subset

A ⊂ IN such that gcd(A) = 1. We define S(A) the additive semi-

group of IN0 generated by A i.e. S(A) = {
∑

a∈A xaa | xa ∈ IN0}.
The Frobenius number g(A) is defined as the largest integer which

does not belong to S(A). We are interested in computing g(A) and

equivalently f(A) = g(A) +
∑

a∈A a the largest integer which can-

not be expressed as
∑

a∈A axa with positive integers xa. It is well

known that g(a, b) = ab − a − b if gcd(a, b) = 1, and g(A) = −1 if



and only if 1 ∈ A.

For card(A) ≥ 3, no general formula for g(A) is known, except in

particular cases, see [6] and [8]. Algorithms are developed in [4]

and [7] in the case A = {a, b, c}.
Without loss of generality, we can consider only sets A containing

two coprime integers a, b (see section 2). We fix two integers a > 1

and b > 1 such that gcd(a, b) = 1, and c = (c1, . . . , cn) ∈ INn. Let

A = {a, b, c1, . . . , cn}.
For all t = (t1 . . . , tn) ∈ INn

0 , we set t.c =
∑n

1 tici.

For every m ∈ ∠Z, there exist unique integers m̂ and m̌ such that

m = m̂a− m̌b with 0 ≤ m̂ < b. We write t.c = b(t)a− a(t)b where

b(t) =
∧

t.c and a(t) =
∨

t.c.

A finite subset T of INn
0 is said to be appropriate if

S(A) =
⋃
t∈T

(S(a, b) + t.c).(1)

It is said to be pruned if 0 ∈ T and for t ∈ T \{0}, we have b(t) > 0

and a(t) > 0.

Let T be an appropriate and pruned subset of INn
0 . We can write

T = {0 = t0, t1, . . . , tl} with 0 = b(t0) < b(t1) ≤ b(t2) ≤ · · · ≤
b(tl) < b. We set bi = b(ti), ai = a(ti) for 0 ≤ i ≤ l, bl+1 = b and

al+1 = a.

We obtain the sequences

0 = b0 < b1 ≤ b2 ≤ · · · ≤ bl < bl+1 = b

and

0 = a0 < a1, a2, . . . , al < al+1 = a.

For 0 ≤ i ≤ l, we set mi = max{aj | 0 ≤ j ≤ i} and

gi = (bi+1 − 1)a− (mi + 1)b.

Our main result is the following



Theorem 1.

g(A) = max{gi | 0 ≤ i ≤ l}.(2)

A subset M ⊂ IN0 is said to be trimmed if for all m ∈ M \
{0}, m̌ > 0 and for all m, d ∈M,

m̂ < d̂⇔ m̌ < ď.(3)

We show that there exists an appropriate set T such that

T.c = {t.c | t ∈ T} is trimmed.

Theorem 2. Let T be an appropriate set. If T.c is trimmed then

g(A) = max{a(bi+1 − bi) + ti.c | 0 ≤ i ≤ l} − (a+ b)(4)

where t0 = 0.

We give an algorithm for computing g(A). We use Theorem 1 if we

start with an arbitrary appropriate set T . And we use Theorem 2

if we start with an appropriate set T such that T.c is trimmed.

In a particular case we derive a formula for g(A) from Theorem 2:

Theorem 3. If {c1, . . . , cn} is trimmed and for all 1 ≤ i, j ≤ n,we

have ci + cj ∈ S(a, b) (e.g. ci + cj > ab− a− b) then

g(A) = max{a(bi+1 − bi) + ci | 0 ≤ i ≤ n} − (a+ b)(5)

where bn+1 = b, b0 = 0, c0 = 0 and for all 1 ≤ i ≤ n, bi = ĉi.

In the case n = 1, i.e. A = {a, b, c}, we take c 6∈ S(a, b) and we

write c = au0 − bv0 with 0 < u0 < b and 0 < v0 < a.

By successive Euclidean divisions we get:{
a = u−1 = p0v0 + u1, . . . , un−1 = pnvn + un+1, . . .

b = v−1 = q0u0 + v1, . . . , vn−1 = qnun + vn+1, . . .
(6)



The triplet (a, b, c) is said to be of level n = n(a, b, c) if

p0 = q0, p1 = q1, · · · , pn−1 = qn−1

and (pn 6= qn or vn+1 = 0).

Let (a, b, c) a triplet of level n. For all 0 ≤ i ≤ n, we set wi+1 =

ui−1 − qivi so for i ≤ n, wi = ui and wn+1 = (pn − qn)vn + un+1.

We denote by

L(a, b, c) = (L0, L1) =

{
(bvn, bwn+1) if n is even

(avn, awn+1) if n is odd ,

l(a, b, c) = (l0, l1) =

{
(awn, avn+1) if n is even

(bwn, bvn+1) if n is odd .

For an integer n we denote by k(n) = k = bn
2
c and h(n) = h =

bn+1
2
c where bxc is the greatest integer such that bxc ≤ x.

Theorem 4.

f(a, b, c) = aw2h + bw2k+1 −min{bv2h, av2k+1}
= l0 + L1 −min{l1, L0}.

(7)

In particular, when pn = qn and vn+1 = 0,

f(a, b, c) =

{
a gcd(b, c) + lcm(b, c) if n is even

b gcd(a, c) + lcm(a, c) if n is odd.
(8)

Theorem 5. Let (x−1, x0, . . . , xl+1), (y−1, y0, . . . , ym+1), (d0, d1, . . . , dl)

and (e0, e1, . . . , em) be sequences such that the following conditions{
x−1 = d0x0 − x1, . . . , xl−1 = dlxl − xl+1,

y−1 = e0y0 − y1, . . . , ym−1 = emym − ym+1,
(9)

{
a = x−1 > x0 > x1 > · · · > xl > xl+1 = 0,

b = y−1 > y0 > y1 > · · · > ym > ym+1 = 0
(10)



hold. Let n be an integer such that{
d0 = e0, d1 = e1, · · · , dn−1 = en−1

and (dn 6= en or xn+1 = 0).
(11)

Then,

f(a, b, c) = ayn+1 + b(xn−1 − enxn) + max{a(yn − yn+1), bxn}.
(12)

As a consequence of Theorem 5 we prove the following theorem

see [7].

Theorem 6(Rodseth). Let Ri polynomials defined by induction

as follows: R−1 = 0, R0 = 1 and for all i > 0,

Ri+1 = eiRi −Ri−1.(13)

Let n be the unique integer such that

yn+1

Rn+1

≤ c

a
<

yi

Ri

for all 0 ≤ i ≤ n.(14)

Then,

f(a, b, c) = cRn+1 + ayn −min{ayn+1, cRn}.(15)

2. Reduction to the case gcd(a, b) = 1

Let A = {b, c1, . . . , cn} be a subset of IN such that gcd(A) = 1.

We recall the following classical result: It is always possible to

choose integers x, x1 . . . , xn such that 1 = xb + x1c1 + · · · + xncn.

Then, for k an integer sufficiently large, we get

a = 1+[k(c1+· · ·+cn)−x]b = (x1+kb)c1+· · ·+(xn+kb)cn ∈ S(c1, . . . , cn).



Hence, g(A) = g(A ∪ {a}) and gcd(a, b) = 1.

In the particular case that

A = {a, b, c1, . . . , cn} such that gcd(a, b) = gcd(a, b, c1, . . . , cn−1) =

d ≥ 1 we observe that gcd(a
d
, b

d
) = 1. Therefore, to compute g(A)

we can use Brauer’s formula

f(A) = df(
a

d
,
b

d
,
c1

d
, . . . ,

cn−1

d
, cn),(16)

see [3].

From now on we suppose that gcd(a, b) = 1.

3. Case n ≥ 1

We need some remarks.

R. If m ≥ 0 then a > m̌.

Proof. Since m = m̂a − m̌b ≥ 0 we have ba > m̂a ≥ m̌b hence

a > m̌ 2

R2. Let m = xa− yb. Then,

0 ≤ x < b⇔ m̂ = x⇔ m̌ = y

and

−b ≤ x < 0⇔ m̂ = x+ b⇔ m̌ = y + a.

Proof. To prove the second claim we write m = xa − yb =

(x+ b)a− (y + a)b and we use the uniqueness of m̂ and m̌ 2

R. Let m = xa − yb. Then, there exists a unique integer p ∈ ∠Z

such that x = pb+ m̂ and y = pa+ m̌.

Proof. We write m = xa−yb = m̂a−m̌b thus (x−m̂)a = (y−m̌)b.

Since gcd(a, b) = 1, p = x−m̂
b

= y−m̌
a

is an integer 2

R4. We have m ∈ S(a, b) if and only if m̌ ≤ 0.

Proof. Clearly m̌ ≤ 0 ⇒ m = m̂a − m̌b ∈ S(a, b). Conversely, if

m ∈ S(a, b) then m = xa+ yb with x ≥ 0 and y ≥ 0. By R3 there

exists p ∈ ∠Z such that x = pb + m̂ ≥ 0 thus p ≥ 0. We also have



−y = pa+ m̌ ≤ 0 and so m̌ = −y − pa ≤ 0 2

R5. For d ≥ 0 we set G(d) = S(a, b)
⋃

(S(a, b) + d).

Then, we have

m 6∈ G(d)⇔ m̌ > 0 and (m̂ < d̂ or m̌ > ď).

Proof. Let n = m− d. Since d ≥ 0, R1 shows that a > ď. Hence,

m̌− ď + a > m̌. Moreover, we have n = (m̂− d̂)a− (m̌− ď)b and

−b < m̂− d̂ < b. It follows from R2 that ň = m̌− ď if m̂− d̂ ≥ 0

and ň = m̌− ď+ a > m̌ if m̂− d̂ < 0. We deduce that

m̌ > 0 and (m̂ < d̂ or m̌ > ď)

⇔

m̌ > 0 and (m̂− d̂ ≥ 0⇒ m̌− ď > 0)

⇔

m̌ > 0 and ň > 0

⇔

m 6∈ S(a, b) and n = m− d 6∈ S(a, b)

⇔

m 6∈ G(d)2

As a consequence of R5 we obtain

R6. If T is appropriate then

m 6∈ S(A)⇔ m̌ > 0 and ∀t ∈ T, m̂ < b(t) or m̌ > a(t).

Proof of Theorem 1. For 0 ≤ i ≤ l, we set

F (i) = {m ∈ ∠Z | m̂ < bi+1 and m̌ > mi}.
Step 1.

∠Z \ S(A) =
l⋃

i=0

F (i).(17)



Let m ∈ F (i). For every 0 ≤ j ≤ l, m̂ < bi+1 ≤ bj if j ≥ i + 1 and

m̌ > mi ≥ aj if j ≤ i. Hence, R6 shows that m 6∈ S(A).

Conversely, let m 6∈ S(A) then m̌ > 0 by R4. Since b0 = 0 ≤ m̂ <

b = bl+1 and 0 = b0 < b1 ≤ b1 ≤ · · · ≤ bl ≤ bl+1 = b, there exists

0 ≤ j ≤ l such that m̂ < bj+1. We put i = min{j | m̂ < bj+1}. We

thus get for 0 ≤ j ≤ i, bj ≤ bi ≤ m̂ < bi+1 and m̌ > aj by R6.

Hence, m̌ > mi. We conclude that m ∈ F (i).

Step 2. For 0 ≤ i ≤ l, gi = maxF (i).

Since 0 ≤ bi+1− 1 < b, we have ĝi = bi+1− 1 and ǧi = mi + 1 > mi.

We thus get gi ∈ F (i). Moreover, for all m ∈ F (i),m = m̂a− m̌b ≤
(bi+1 − 1)a− (mi + 1)b then gi = maxF (i) 2

In particular, when T = {0} i.e. when all ci ∈ S(a, b) we have

b0 = 0 < b1 = b, a0 = 0 and m0 = 0. Therefore, g(A) = g0 =

(b1 − 1)a− (m0 + 1)b = ab− a− b = g(a, b).

Proof of Theorem 2. If T .c is trimmed then 0 = b0 < b1 < b1 <

· · · < bl < bl+1 = b and thus 0 = a0 < a1 < a1 < · · · < al < al+1 =

a. In particular, T is pruned and for all 0 ≤ i ≤ l, mi = ai. We can

write gi = a(bi+1−bi)+abi−bai−(a+b) = a(bi+1−bi)+ti.c−(a+b)

2

Algorithm.

1. For every i, we choose λi > 0 such that λici ∈ S(a, b). Num-

bers λi exist. Indeed, it is sufficient to take λi >
g(a,b)

ci
=

ab−a−b
ci

. The following set

U = {t = (t1, . . . , tn) ∈ INn
0 | ti < λi, 1 ≤ i ≤ n}

is thus appropriate.

We remove from U all elements t 6= 0 such that b(t) = 0 or

a(t) ≤ 0. The set T of all remainding elements is pruned and

still appropriate.

We number the elements of T = {0 = t0, t1, . . . , tl} in such a



way that 0 = b(t0) < b(t1) ≤ b(t2) ≤ · · · ≤ b(tl). We compute

mi = max{aj | 0 ≤ j ≤ i}, gi = (bi+1 − 1)a − (mi + 1)b and

g(A) = max{gi | 0 ≤ i ≤ l} where bi = b(ti), ai = a(ti) for

0 ≤ i ≤ l, bl+1 = b and al+1 = a.

2. The algorithm can be modified as follows: For every 1 ≤ i ≤
n, we start removing from A all elements cj such that ĉi ≤ ĉj

and čj ≤ či. We choose an appropriate and pruned set T =

{0 = t0, t1, . . . , tl}. We can suppose that 0 = b(t0) < b(t1) ≤
b(t2) ≤ · · · ≤ b(tl) < b. For all 0 ≤ i ≤ l, we remove from T

all tj such that (b(ti) ≤ b(tj) and a(tj) ≤ a(ti)). Considering

the set of the remainding elements we can suppose that T.c is

trimmed. The Frobenius number can therefore be computed

using Theorem 2.

Proof.

1. For all t ∈ INn
0 , we have G(t.c) = S(a, b)

⋃
(S(a, b) + t.c) ⊂

S(A) thus
⋃

t∈U G(t.c) ⊂ S(A). Conversely, let m ∈ S(A),

then m = xa + yb +
∑n

i=1 xici with x ≥ 0, y ≥ 0 and xi ≥ 0.

By Euclidean division we write xi = qiλi + ti. We thus get

t = (t1, . . . , tn) ∈ U and m = xa + yb +
∑n

i=1 qiλici + t.c.

Since λici ∈ S(a, b), we have m ∈ G(t.c). The equality

S(A) =
⋃
t∈U

G(t.c)(18)

follows. Therefore, U is appropriate.

By construction T is pruned and it is still appropriate. Indeed,

for t 6= 0, t.c 6∈ S(a, b)} if and only if a(t) > 0 by R4.

Therefore,

T = {t ∈ U | t = 0 or t.c 6∈ S(a, b)}(19)



and

S(A) =
⋃
t∈T

G(t.c).(20)

2. If ĉi ≤ ĉj and čj ≤ či then cj = ci + (ĉj − ĉi)a + (či − čj)b ∈
S(ci, a, b). Therefore, g(A) = g(A \ {cj}). If b(ti) ≤ b(tj)

and a(tj) ≤ a(ti) then tj.c = ti.c + (b(tj)− b(ti))a+ (a(ti)−
a(tj))b ∈ G(ti.c) thus G(tj.c) ⊂ G(ti.c). We see that (20) is

not altered by removing tj from T 2

Proof of Theorem 3. Since 2ci ∈ S(a, b) for all 1 ≤ i ≤ n,

U = {t = (t1, . . . , tn) ∈ INn
0 | 0 ≤ ti ≤ 1, 1 ≤ i ≤ n} is appropriate.

Furthermore, for t = (t1, . . . , tn) ∈ U , if t.c 6∈ S(a, b) then there

exists ci and y ∈ S(a, b) such that t.c = ci + y ∈ G(ci). There-

fore, the set T = {0 = t0, t1, . . . , tn} where ti = (0, . . . , ti, . . . , 0)

and ti = 1 is also appropriate. Moreover, T .c = {0, c1, . . . , cn} is

trimmed and b(ti) = ĉi for all 1 ≤ i ≤ n 2

4. Case n = 1

Let E be a totally ordered set and x ∈ E. We call successor of

x in E, and we denote x+, the smallest element of E (if there exists

any) such that x < x+.

For an appropriate set T , we put b(T ) = {b(t) | t ∈ T} and B =

b(T ) ∪ {b}. We equip B with the natural order ≤.

To apply Theorem 2, in the case that n = 1, it is convenient to

formulate it as follows:

Theorem 2′. Let T be an appropriate set such that T .c is trimmed.

Then,

g(A) = max{a(b(t)+ − b(t)) + t.c | t ∈ T} − (a+ b)

(21)



where b(t)+ is the successor of b(t) in B.

Suppose that there exists integers α1, . . . , αq and a partition E1, . . . , Eq

of T such that b(t)+− b(t) = αi for all t ∈ Ei and for all 1 ≤ i ≤ q.

Then,

g(A) = max{aαi + βi | 1 ≤ i ≤ q} − (a+ b)(22)

where we put βi = maxEi.c.

To compute such a partition, we are led to introduce what we call

Euler order on T . We will use Euler polynomials.

Euler polynomials

Let (q0, q1, . . . , qi, . . . ) be a sequence of positive integers. We define

Euler polynomials Qi by induction as follows: Q−1 = 0, Q0 = 1 and

for i ≥ 0,

Qi+1(q0, . . . , qi) = qiQi(q0, . . . , qi−1) +Qi−1(q0, . . . , qi−2).

(23)

We set Qi+1 = Qi+1(q0, . . . , qi), Q
1
i = Qi(q1, . . . , qi), Pi+1 = Qi +

Qi+1 and P 1
i+1 = Q1

i +Q1
i+1.

We deduce immediately that

Qn+1 = qnQn + qn−2Qn−2 + . . .+ qn−2iQn−2i +Qn−2i−1

(24)

for 0 ≤ 2i ≤ n.

Euler order ≤e

Proposition 1. Every integer t ∈ IN0 can be written uniquely in

the form

t = t0Q0 + t1Q1 + · · ·+ tnQn(25)

where

min{i | ti > 0} is even ,(26)



0 ≤ ti ≤ qi for 0 ≤ i ≤ n(27)

and

ti = qi ⇒ ti−1 = 0 for 1 ≤ i ≤ n.(28)

Equality (25) is called Euler expansion of t.

Proof. There exists n ∈ IN0 such that t < Qn+1. By successive

Euclidean divisions we can write

t = tnQn + sn with 0 ≤ sn < Qn,

sn = tn−1Qn−1 + sn−1 with 0 ≤ sn−1 < Qn−1,
...

s2 = t1Q1 + s1 with 0 ≤ s1 < Q1,

s1 = t0Q0 with t0 = s1.

We put i = min{j | tj > 0}. If i = 2e then t = t2eQ2e+t2e+1Q2e+1 +

· · · + tnQn is Euler expansion of t. If i = 2e + 1, using (24)

we take t = q0Q0 + · · · + q2eQ2e + (t2e+1 − 1)Q2e+1 + · · · + tnQn

as Euler expansion of t. Conditions (27) and (28) follow from

si+1 < Qi+1 = Qi−1+qiQi. The uniqueness follows from the unique-

ness of the Euclidean division and the fact that
∑2e

i=0 tiQi < Q2e+1

if and only if there exists 0 ≤ j ≤ e such that t2j < q2j 2

For t, x ∈ IN0, let n ∈ IN0 such that t, x ≤ Qn+1. We consider

Euler expansions of t and x respectively

t = t0Q0 + t1Q1 + · · ·+ tnQn and x = x0Q0 + x1Q1 + · · ·+ xnQn.

We define Euler order ≤e as follows: t ≤e x if

(t0,−t1, . . . , (−1)iti, . . . , (−1)ntn) ≤l (x0,−x1, . . . , (−1)ixi, . . . , (−1)nxn)

where ≤l is the lexicographic order on ∠Zn.

Lemma. Let n ∈ IN0. We consider Un = {0, 1, . . . , Qn+1 − 1} and

Vn = {0, 1, . . . , Pn − 1} equipped with induced Euler order ≤e.



1. We define a partition of Un = F1 ∪ F2 as follows:

F1 =

{
{0, 1, . . . , Q2k+1 −Q2k − 1} if n = 2k

{Q2k+1, . . . , Q2k+2 − 1} if n = 2k + 1

F2 =

{
{Q2k+1 −Q2k, . . . , Q2k+1 − 1} if n = 2k

{0, 1, . . . , Q2k+1 − 1} if n = 2k + 1 .

Then, the successor, in Un, of all t ∈ F1 (resp. t ∈ F2) is t+ =

t+(−1)nQn (resp. t+ = t+(−1)n[Qn−Qn+1]). In particular,

if qn = 1 then for all t ∈ F2, t+ = t+ (−1)n−1Qn−1.

2. We define a partition of Vn = E1 ∪ E2 as follows: E1 =

{0, . . . , Q2h−1 − 1}, E2 = {Q2h−1, . . . , Pn − 1}. Then, the

successor, in Vn, of all t ∈ E1 (resp. t ∈ E2) is t+ = t + Q2k

(resp. t+ = t−Q2h−1).

Proof. Let t = t0Q0 + t1Q1 + · · · + tnQn be Euler expansion

of t.

1. (a) Suppose that t ∈ F1. It is easily seen that tn > 0 if

n = 2k+ 1 and tn < qn− 1 or (tn = qn− 1 and tn−1 = 0)

if n = 2k. Therefore, t+ = t+ (−1)nQn.

(b) Suppose that t ∈ F2, then t = t0Q0 + t1Q1 + · · ·+ t2kQ2k.

Since t < Q2k+1, there exists j ≤ k such that t2j <

q2j. Taking i = max{j | t2j < q2j} we can write t =

t0Q0 + t1Q1 + · · ·+ t2iQ2i + [q2i+2Q2i+2 + · · ·+ q2kQ2k] =

t0Q0 + t1Q1 + · · ·+ t2iQ2i −Q2i+1 +Q2k+1.

If t2i < q2i − 1 or (t2i = q2i − 1 and t2i−1 = 0) then

t+ = t0Q0 + t1Q1 + · · ·+ (t2i + 1)Q2i + (q2i+1− 1)Q2i+1 +

· · ·+ q2h−1Q2h−1 = t+Q2h −Q2k+1.

If t2i = q2i − 1 and t2i−1 > 0 then t+ = t0Q0 + t1Q1 +

· · ·+ (t2i−1 − 1)Q2i−1 + q2i+1Q2i+1 + · · ·+ q2h−1Q2h−1 =

t+Q2h −Q2k+1.



2. It is a particular case: Taking qn = 1 we get Pn = Qn−1+Qn =

Qn+1 and Vn = Un. Moreover, in this case we have E1 = F2

and E2 = F1 if n = 2k and E1 = F1 and E2 = F2 if n = 2k+1

2

Let (r = r−1, r0, . . . , rn) and (q0, q1, . . . , qn) be sequences of

positive integers and rn+1 ≥ 0. We suppose that

ri−1 = qiri + ri+1(29)

for 0 ≤ i ≤ n.

We thus have r > r0 > r1 > · · · > rn > 0 and rn−1 > rn+1 ≥ 0.

We prove by induction the following identities:

r = riQi+1 + ri+1Qi(30)

and

r0Qi = (−1)iri + rQ1
i−1.(31)

It follows from (31) that

r0Pi+1 = (−1)i(ri − ri+1) + rP 1
i .(32)

Let t ∈ IN0. Given t = t0Q0 + t1Q1 + · · ·+ tnQn its Euler expansion,

we associate with t the following numbers: r(t) =
∑n

i=0(−1)itiri

and E(t) =
∑n

i=0 tiQ
1
i−1. It follows from (31) that

tr0 = r(t) + rE(t).(33)

Moreover, if 0 < t < Qn+1 then

rn ≤ r(t) ≤ r − rn(34)

and if 0 < t < Pn then

r2k ≤ r(t) ≤ r − r2h−1(35)



Indeed, for 0 < t < Qn+1, let t = t0Q0 + · · · + tnQn be Euler

expansion of t. We can write t =
∑k

i=e t2iQ2i +
∑h−1

i=e t2i+1Q2i+1

with t2e > 0. Hence, r(t) =
∑k

i=e t2ir2i −
∑h−1

i=e t2i+1r2i+1.

Using r2e =
∑h−1

i=e q2i+1r2i+1 + r2h we get

r(t) = (t2e − 1)r2e +
∑k

i=e+1 t2ir2i

+
∑h−1

i=e (q2i+1 − t2i+1)r2i+1 + r2h.

Now if n = 2k + 1 we get

r2h + r2k+1 ≤ r(t) ≤
k∑

i=0

q2ir2i = r − r2k+1 = r − rn.

(36)

If n = 2k there exists j ≤ k such that t2j < q2j since otherwise

t = Qn+1. We then get

rn ≤ r(e) ≤ r(t) ≤ r − r2j − r2k+1 ≤ r − r2k − r2k+1.

(37)

Hence, assumption (34) follows. In the particular case that qn = 1

we have Pn = Qn+1 and rn−1 = rn + rn+1. In this case if n = 2k

we get rn−1 ≤ r(t) ≤ r − rn by (36) and if n = 2k + 1 we get

rn ≤ r(t) ≤ r − rn−1 by (37) thus assumption (35) follows 2

Proposition 2. We suppose that rn+1 = 0. We equip {0, 1, . . . , r−
1} with the natural order ≤ and Un = {0, 1, . . . , Qn+1−1} with Eu-

ler order ≤e. Then, the mapping (Un,≤e) → ({0, 1, . . . , r − 1},≤
), t 7→ r(t) is strictly increasing.

Proof. Given t ≤e x in Un we have

(t0,−t1, . . . , (−1)jtj, . . . , (−1)ntn) ≤l (x0,−x1, . . . , (−1)jxj, . . . , (−1)nxn)

and r(x)−r(t) = (−1)j(xj−tj)rj+
∑n

i=j+1(−1)ixiri−
∑n

i=j+1(−1)itiri

where j is the smallest integer such that tj 6= xj.



1. When j = 2i we get x2i > t2i ≥ 0 and x2i+1 ≤ q2i+1−1. Then,

r(x)− r(t) = (x2i− t2i)r2i + [−x2i+1r2i+1 + · · ·+ (−1)nxnrn]−
[−t2i+1r2i+1 + · · · + (−1)ntnrn] ≥ (x2i − t2i)r2i − [(q2i+1 −
1)r2i+1 + · · ·+ q2h−1r2h−1]− [q2i+2r2i+2 + · · ·+ q2kr2k] ≥ (x2i−
t2i)r2i − r2i + r2h + r2k+1 > 0.

2. When j = 2i − 1 we get t2i−1 > x2i−1 ≥ 0 and t2i ≤ q2i −
1. Then, r(x) − r(t) = (t2i−1 − x2i−1)r2i−1 + [x2ir2i + · · · +
(−1)nxnrn]− [t2ir2i + · · ·+ (−)ntnrn] ≥ (t2i−1 − x2i−1)r2i−1 −
[q2i+1r2i+1 + · · · + q2h−1r2h−1] − [(q2i − 1)r2i + · · · + q2kr2k] ≥
(t2i−1 − x2i−1)r2i−1 + r2h − r2i−1 + r2k+1 > 0 2

Now we consider another sequence of positive integers (s =

s−1, s0, s1, . . . , sn) and sn+1 ≥ 0 such that si−1 = qisi + si+1 for

0 ≤ i ≤ n.

We also define s(t) =
∑n

i=0(−1)itisi.

Using (31) we prove the following identity

(rs0 − sr0)Qi = (−1)i(rsi − sri).(38)

We derive

(rs0 − sr0)Pi+1 = (−1)i[r(si − si+1) + s(ri+1 − ri)](39)

from (32) and

t(rs0 − sr0) = rs(t)− sr(t)(40)

from (33).

Proof of Theorem 4.

First step : Reduction to the case n = 2k.

Suppose that n = n(a, b, c) = 2k + 1.

Since g(a, b, c) = g(b, a, c), it suffices to show that n(b, a, c) is even,

L(a, b, c) = L(b, a, c) and l(a, b, c) = l(b, a, c).



We write c = b(a− v0)− a(b− u0). We consider two cases:

If p0 = q0 > 1 then we can write a = (a − v0) + v0, a − v0 =

(q0 − 1)v0 + v1, b = (b− u0) + u0, b− u0 = (q0 − 1)u0 + u1. There-

fore, n(b, a, c) = n(a, b, c) + 1, L(b, a, c) = L(a, b, c) and l(b, a, c) =

l(a, b, c).

If p0 = q0 = 1 we get a− v0 = u1 and b−u0 = v1. We therefore get

a = (q1 +1)(a−v0)+v2 and b = (p1 +1)(b−u0)+u2. It follows that

n(b, a, c) = n(a, b, c)−1. Furthermore, we observe that if n(a, b, c) >

1 then we have obviously L(a, b, c) = L(b, a, c) and l(a, b, c) =

l(b, a, c). If n(a, b, c) = 1 we have L(b, a, c) = (av1, a(b − (q1 +

1)v1)) = (av1, a(u0− q1v1)) = L(a, b, c) and l(b, a, c) = (bu1, bv2)) =

l(a, b, c). In both cases, n(b, a, c) is even. Therefore, the assumption

follows.

Moreover, we can write

c = wnwn+1 − vnvn+1.(41)

Since c > 0, we get wn+1 = (pn − qn)vn + un+1 > 0 thus pn > qn or

(pn = qn and vn+1 = 0). When pn = qn and vn+1 = 0 we then have

c = wnwn+1 = unun+1.(42)

In the following steps we suppose that n = 2k.

Second step: Case pn > qn.

Taking a = r, v0 = r0, b = s and u0 = w0 = s0 it follows from

(39) that cPn+1 = a(wn − vn+1) + b(wn+1 − vn) ∈ S(a, b) because

wn+1 > vn and wn > vn+1. Moreover, it follows from (40) and (35)

that s(t) = b(t) and r(t) = a(t). Hence, for all 0 < t < Pn+1,

tc = ab(t)− ba(t) 6∈ S(a, b) by R4. We conclude that

Pn+1 = min{t > 0 | tc ∈ S(a, b)}(43)

and by (19)-(20), that Vn = {0, 1, . . . , Pn+1−1} is appropriate. Let

us show that Vn.c is trimmed. Indeed, for 0 < t < x < Pn+1, since



x−t < Pn+1, we have 0 < (x−t)c = (b(x)−b(t))a−(a(x)−a(t))b 6∈
S(a, b). Then, b(x) < b(t) if and only if a(x) < a(t) by R4.

Furthermore, it follows from proposition 2 that b(t)+ − b(t) =

b(t+) − b(t) = b(t+ − t). Writing Vn = E1 ∪ E2 with the no-

tation of the lemma, Theorem 2 and (22) show that g(a, b, c) =

max{aα1 + β1, aα2 + β2}− (a+ b) where α1 = b(t+)− b(t) = b(Qn)

for all t ∈ E1, α2 = b(t+) − b(t) = −b(Qn+1) for all t ∈ E2, and

βi = maxEi.c.

It follows from (31) that α1 = wn, and α2 = vn+1. Moreover, we

see that β2 = c(Pn+1− 1), β1 = c(Qn+1− 1) = −cQn + cPn+1− c =

bvn − awn + cPn+1 − c by (38). We therefore obtain the formula

g(a, b, c) = cPn+1 + max{avn+1, bvn} − (a+ b+ c)(44)

which can be written in the form

f(a, b, c) = a(wn − vn+1) + b(wn+1 − vn) + max{avn+1, bvn}
(45)

by (39). Finally,

f(a, b, c) = awn + bwn+1 −min{avn+1, bvn}.(46)

Third step: Case pn = qn and vn+1 = 0.

We have cQn+1 = bwn+1 ∈ S(a, b) by (38) and for all 0 < t < Qn+1,

tc = ab(t)− ba(t) 6∈ S(a, b)) by (34). We deduce that

Qn+1 = min{t > 0 | tc ∈ S(a, b)}.(47)

Using (19)-(20) we show by a similar argument that Un = {0, 1, . . . , Qn+1−
1} is appropriate and Un.c is trimmed. Furthermore, since vn+1 = 0

the lemma show that b(t+) − b(t) = wn for all t ∈ Un . Therefore,

by (21) f(a, b, c) = awn + cQn+1 = awn + bwn+1.

Moreover, since vn+1 = 0, we get wn = gcd(b, w0) = gcd(b, c) and



b = wnQn+1 by (30). Using (42) we deduce that lcm(b, c) = bwn+1

2

Remark. The case that (pn = qn and vn+1 = 0) can be

deduced from Brauer’s formula (16): We put d = gcd(b, c) =

gcd(b, w0) = wn, c′ = c
d

= wn+1 and b′ = b
d

= Qn+1. Using (30)

we get a = vnQn+1 + wn+1Qn > wn+1Qn+1 = b′c′. We thus have

f(a, b′, c′) = g(a, b′, c′)+a+ b′+ c′ = b′c′+a. Hence, (16) show that

f(a, b, c) = df(a, b′, c′) = bc′ + da = lcm(b, c) + a gcd(b, c) 2

Proof of Theorem 5. We first prove by induction that polyno-

mials Ri satisfy the following properties: For i ≤ n,

cRi = ayi − bxi,(48)

cRn+1 = ayn+1 − b(enxn − xn−1),(49)

y−1 = yiRi+1(e0, . . . , ei)− yi+1Ri(e0, . . . , ei−1)(50)

and for j ≤ i,

yj−1 = yiRi−j+1(ej, . . . , ei)− yi+1Ri−j(ej, . . . , ei−1).

(51)

In the particular case that ej = ej+1 = · · · = ei = 2, we get

Ri−j+1(ej, . . . , ei) = (i− j + 2)(52)

and

yj−1 − yj = yj − yj+1 = · · · = (yi − yi+1)(53)

so in this case (51) can be written in the form

yj−1 = (i− j + 2)(yi − yi+1) + yi+1.(54)



Now we consider the set

K = {ei | i = 0 or (0 < i < m and ei > 2)} = {e0 = ek0 , ek1 , . . . , eks−1}
and we set ks = m. We can suppose that 0 = k0 < k1 < · · · < ks =

m.

We have

y−1 = (e0 − 1)y0 + (y0 − y1)(55)

and for 0 < i ≤ s,

yki−1 − yki
= (eki

− 2)yki
+ (yki

− yki+1).(56)

Furthermore, (54) show that

yk(i−1)
= (ki − k(i−1))(yki−1 − yki

) + yki
(57)

and (53) that for 0 < i < s,

yk(i−1)
− yk(i−1)+1 = · · · = yki−1 − yki

> yki
.(58)

To apply Theorem 4 we set

v−1 = y−1, u0 = y0, v1 = (y0 − y1), q0 = (e0 − 1)

and for 0 < i < s,

v2i−1 = yki−1 − yki
, u2i = yki

, q2i = (eki
− 2), p2i−1 = (ki − k(i−1)).

Furthermore, if em > 2 we set

v2s−1 = (ym−1−ym), v2s+1 = ym+1 = 0, p2s−1 = (m−k(s−1)), u2s = ym, q2s = (em−1)

and if em = 2 we set

v2s−1 = ym, p2s−1 = (m+ 1− k(s−1)) and u2s = ym+1 = 0.

We thus get

v−1 > u0 > · · · > v2i−1 > u2i > v2i+1 > · · ·



and

v2i−1 = q2iu2i + v2i+1;u2i = p2i+1v2i+1 + u2i+2.

Using (11) we get c = ay0−bx0 = xnyn(dn−en)+xnyn+1−ynxn+1 >

0. Then, dn > en or (dn = en and xn+1 = 0).

To prove (12) we consider two cases:

Case n = 0.

We can write a = (d0−1)x0 +(x0−x1) and b = (e0−1)y0 +(y0−y1)

with d0−1 > e0−1 or d0−1 = e0−1 and x1 = 0. Then, L(a, b, c) =

(bx0, b(a − (e0 − 1)x0)), l(a, b, c) = (ay0, a(y0 − y1)). We conclude

that f(a, b, c) = ay0 + b(a − (e0 − 1)x0) − min{a(y0 − y1), bx0} =

ay1 + b(a− e0x0) + max{a(y0 − y1), bx0} by (7).

Case n > 0.

Let r = max{i | ki < n}.

1. Suppose that dn ≥ en > 2. We can write xn−1 − xn = (dn −
2)xn+(xn−xn+1) and yn−1−yn = (en−2)yn+(yn−yn+1) with

dn − 2 > en − 2 or dn − 2 = en − 2 and xn+1 = 0. It follows

that the level of (a, b, c) is even, L(a, b, c) = (bxn, b(xn−1 −
(en − 1)xn) and l(a, b, c) = (ayn, a(yn − yn+1)). Therefore,

f(a, b, c) = ayn+1 + b(xn−1 − enxn) + max{a(yn − yn+1), bxn}
by (7).

2. Suppose that dn > en = 2. We thus have k(r+1) > n. we

can write ykr = (k(r+1) − kr)(yk(r+1)−1 − yk(r+1)
) + yk(r+1)

and

xkr = (n − kr)(xn−1 − xn) + xn by (57). Moreover, we have

yk(r+1)−1−yk(r+1)
= yn−1−yn = yn−yn+1 by (53) and ykr−(n−

kr)(yn−1 − yn) = yn by (54). Therefore, the level of (a, b, c) is

odd, L = (a(yn − yn+1), ayn) and l = (b(xn−1 − xn), bxn). We

deduce that f(a, b, c) = ayn+1 + b(xn−1 − 2xn) + max{a(yn −
yn+1), bxn} by (7).



3. Suppose that dn = en = 2 and xn+1 = 0 then k(r+1) ≥ n +

1. Using (57) we can write ykr = (k(r+1) − kr)(yk(r+1)−1 −
yk(r+1)

) + yk(r+1)
= (n + 1 − kr)(yn − yn+1) + yn+1 and xkr =

(n + 1 − kr)xn. Hence, the level of (a, b, c) is odd. Since

ykr − (n + 1 − kr)(yn − yn+1) = yn+1, we get L = (a(yn −
yn+1), ayn+1) and l = (bxn, 0). Therefore, f(a, b, c) = ayn+1 +

bxn = ayn+1 + max{a(yn − yn+1), bxn} because, by (48), we

have bxn − ayn + ayn+1 = −cRn + cRn+1 and it is easily seen

that −cRn + cRn+1 < 0.

Finally we have proved that

f(a, b, c) = ayn+1 + b[xn−1 − enxn] + max{a(yn − yn+1), bxn}2
(59)

To prove Theorem 6 we observe, using (48)-(49), that (11) and the

following condition

yn+1

Rn+1

≤ c

a
<

yi

Ri

for all 0 ≤ i ≤ n.(60)

are equivalent. Taking account of (48)-(49) we obtain

f(a, b, c) = cRn+1 + ayn −min{ayn+1, cRn}2(61)

5. Examples

1. A = {31, 44, 462, 674, 402, 932, 1214}.
We take a = 31, b = 44. We obtain

(
∧

462,
∧

674,
∧

402,
∧

932,
∧

1214) = (22, 26, 30, 40, 42)

and (
∨

462,
∨

674,
∨

402,
∨

932,
∨

1214) = (5, 3, 12, 7, 2).

We remove 674, 932, 1214 from A without altering g(A). We

consider (a, b, c1, c2) = (31, 44, 462, 402). Applying Theorem

3 we obtain g(A) = 761.



2. A = {57, 83, 367, 543, 605}.
We take a = 57, b = 83. We have (

∧
367,

∧
543,

∧
605) = (21, 27, 31),

(
∨

367,
∨

543,
∨

605) = (10, 12, 14),

B = b(T )∪{b} = {21, 27, 31, 42, 48, 52, 58, 62, 63, 69, 73, 79, 83},
A = a(T )∪{a} = {10, 12, 14, 20, 22, 24, 26, 28, 30, 32, 34, 36, 57}.
We obtain g(A) = 1603.

3. A = {a, b, c} = {137, 250, 337}. We have (ĉ, č) = (101, 54), l =

4,

B = {53, 101, 154, 202, 250},A = {25, 54, 79, 108, 137}.
Using Theorem 2 we obtain

g(137, 250, 337) = max{g1, g2, g3} = 7537.

Let us compute g(A) by Theorem 5. We get n(a, b, c) = 1,

L(a, b, c) = (6576, 7261), l(a, b, c) = (7250, 6250). We obtain

g(a, b, c) = 7250 + 7261− 6250− 137− 250− 337 = 7537.
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