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Abstract. The Frobenius number g(A) of a finite subset
A C IN such that ged(A) = 1 is the largest integer which cannot be
expressed as ) ., ar, with non-negative integers z,. We present
an algorithm for the computation of g(A). Without loss of general-
ity we suppose that there exist a,b € A such that ged(a,b) = 1. We
give a formula for g(A) in the particular case that for all ¢,d € A,
¢+ d can be written in the form ¢+ d = za + yb with z,y > 0 (e.g.
c+d > ab—a—b). Using Euler polynomials we give a formula for
g(A) in the case that A = {a,b,c}.
AMS subj. Classification: 11D04

Key Words: Frobenius number, linear diophantine equation.

1. Introduction and Statement of Results

Throughout this paper, small letters denote integers. We will set
IN ={1,2,3...} and INg = INU {0}. We consider a finite subset
A C NN such that ged(A) = 1. We define S(A) the additive semi-
group of INg generated by A ie. S(A) = {d> ,c4%a | o € No}.
The Frobenius number g(A) is defined as the largest integer which
does not belong to S(A). We are interested in computing g(A) and
equivalently f(A) = g(A) + > ,c4 a the largest integer which can-
not be expressed as )., ax, with positive integers z,. It is well
known that g(a,b) = ab—a — b if ged(a,b) = 1, and g(A) = —1 if



and only if 1 € A.

For card(A) > 3, no general formula for g(A) is known, except in
particular cases, see [6] and [8]. Algorithms are developed in [4]
and [7] in the case A = {a, b, c}.

Without loss of generality, we can consider only sets A containing
two coprime integers a, b (see section 2). We fix two integers a > 1
and b > 1 such that ged(a,b) =1, and ¢ = (¢q, ... ,¢,) € IN". Let
A=Aabycy,... e}

For all t = (¢;...,t,) € INy, we set t.c = > | tic;.

For every m € Z, there exist unique integers m and rm such that
m = ma — mb with 0 < m < b. We write t.c = b(t)a — a(t)b where
b(t) = t.c and a(t) = b.c.

A finite subset 7" of INj is said to be appropriate if

(1) S(A) = J(S(a,b) + t.c).

teT
It is said to be prunedif 0 € T and for t € T'\ {0}, we have b(t) > 0
and a(t) > 0.
Let T be an appropriate and pruned subset of INy. We can write
T = {0 = to,t1,... ,t;} with 0 = b(tg) < b(ty) < b(ty) < -+ <
b(t;) < b. We set b; = b(t;),a; = a(t;) for 0 <7 <[, by = b and
ajy1 = a.

We obtain the sequences
O0=by<bi <by<---<b<by1=0b
and
0=ap <ay,as,...,aq < a1 = a.

For 0 <i <1, we set m; = max{a; | 0 < j <i} and

Our main result is the following



Theorem 1.
(2) g(A) =max{g; | 0 <i <}

A subset M C INy is said to be trimmed if for all m € M \
{0},m > 0 and for all m,d € M,

(3) m<dem<d.

We show that there exists an appropriate set T' such that
T.c={t.c|teT}is trimmed.
Theorem 2. LetT be an appropriate set. If T'.c is trimmed then

(4)  g(A) = max{a(biy1 —b;) +t;c|0<i<I} —(a+b)

where tg = 0.

We give an algorithm for computing g(A). We use Theorem 1 if we
start with an arbitrary appropriate set T. And we use Theorem 2
if we start with an appropriate set T' such that T'.c is trimmed.

In a particular case we derive a formula for g(A) from Theorem 2:
Theorem 3. If{cy,...,c,} is trimmed and for all 1 < i,j < n,we

have ¢; + ¢; € S(a,b) (e.g. ¢;+c¢; > ab—a—b) then
(5) g(A) = max{a(biy1 — b;) +¢; | 0<i<n}—(a+0)

where b, 1 = b,byp = 0,c9 =0 and for all 1 <1 < n, b; = ¢;.
In the case n = 1, i.e. A = {a,b,c}, we take ¢ € S(a,b) and we
write ¢ = aug — bvg with 0 < ug < b and 0 < vy < a.

By successive Euclidean divisions we get:

(6) { 4 =U_1 = PoVo + Ul,... ,Un—1 = PpUp + Upt1,- -

b=v_1=qoug+ V1, ,Un_1 = Qullyp + Unit,--.



The triplet (a, b, c) is said to be of level n = n(a, b, c) if
Po=4qo,P1 =41, " s Pn—1 = Qn-1

and (pn # qn Or Upyq = 0).

Let (a,b,c) a triplet of level n. For all 0 < i < n, we set w;41 =
w;—1 — q;v; so for i < n, w; = w; and wyi1 = (P — Gn)Vn + Uns1-
We denote by

b Tl?b n f 1
L<a7ba C) = (Lo,Ll) = { ( Un, OW +1) 1II 1 1s even

(avy, aw,y1) if nis odd

s n f 1
l(a,b,c) = (lo,l) = (atn, avpt1) 1 n %S even
(bwy, bvyyy)  ifnis odd .

For an integer n we denote by k(n) = k = [§] and h(n) = h =
|21 | where |z] is the greatest integer such that |z| < x.

Theorem 4.

fla,b,c) = awsp, + bwogy — min{bvay, Vo1 }

(7) .
= l() + L1 - mln{ll, L(]}

In particular, when p,, = q, and v, = 0,

aged(b, c) 4+ lem(b,¢)  if n is even
bged(a, c) 4+ lem(a,¢)  if n is odd.

(8) f(CL, b, C) = {

Theorem 5. Let (x_1,20, ... ,Z141), (Y=1,Y05 - - - s Ym+1), (do,d1, ... ,d})

and (eg, €1, ... ,€em) be sequences such that the following conditions
(9) r_1 =dorg — T1,... ,T_1 = i — T4,
Y-1==¢€Yo — Yi,--- s Ym—-1 = EmYm — Ym+1,

(10) a=T_1>Tog>T1 > >x1 > X141 =0,
b=y 1>y >y > > Yn > Ymi1 =0



hold. Let n be an integer such that

do = eg,dy = €1, ,dp1 = €,
(11) {0 €o, a1 €1, ) 1 €n—1

and (d,, # e, or x,.1 =0).
Then,

(12)
fla,b,¢) = aypi1 + b(xy_1 — epxy,) + max{a(y, — Yni1), bxn}.

As a consequence of Theorem 5 we prove the following theorem
see [7].

Theorem 6(Rodseth). Let R; polynomials defined by induction
as follows: R_1 =0,Ry =1 and for all i > 0,

(13) Ri+1 = GiRZ’ — Rifl.

Let n be the unique integer such that

(14) 2’::1 §§<%fora110§z’§n.
Then,
(15) f((l, b> C) = CRn+1 + ay, — min{ayn+1, CRn}

2. Reduction to the case ged(a,b) =1

Let A= {b,c1,...,c,} be asubset of IN such that ged(A) = 1.
We recall the following classical result: It is always possible to
choose integers x,xy ... ,x, such that 1 = b+ x1c1 + - - - + xpcp.

Then, for k an integer sufficiently large, we get

a = 1+[k(c1+- - +cn)—x]b = (x1+kb)er+- -+ (xp+kb)cn, € S(eq, ..., cn).



Hence, g(A) = g(AU {a}) and ged(a,b) = 1.

In the particular case that

A={a,b,cq,...,c,} such that ged(a,b) = ged(a, b, cq, ... ycnq) =
d > 1 we observe that ged(%,2) = 1. Therefore, to compute g(A)
we can use Brauer’s formula

&1 Cp—1

(16) f(A) = df(

see [3].

From now on we suppose that ged(a,b) = 1.

b
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3. Casen>1

We need some remarks.
R. If m > 0 then a > m.
Proof. Since m = ma — mb > 0 we have ba > ma > mb hence
a>m0O
R2. Let m = xa — yb. Then,

0<z<bem=cssSm=y

and

—b<zr<l0em=x+b&esm=y+a.

Proof. To prove the second claim we write m = za — yb =
(x +b)a — (y + a)b and we use the uniqueness of m and m O

R. Let m = xa — yb. Then, there exists a unique integer p € Z
such that x = pb+ m and y = pa + m.

Proof. We write m = za—yb = ma—1mb thus (x—m)a = (y—rm)b.
Since ged(a,b) =1, p = % = % is an integer O

R4. We have m € S(a,b) if and only if mm < 0.

Proof. Clearly m < 0 = m = ma — mb € S(a,b). Conversely, if
m € S(a,b) then m = xa + yb with x > 0 and y > 0. By R3 there
exists p € Z such that x = pb+ m > 0 thus p > 0. We also have



—y=pa+m<0andsom=—y—pa <00
R5. For d > 0 we set G(d) = S(a,b) J(S(a,b) + d).
Then, we have

m & G(d) < m > 0 and (i < d or 1 > d).

Proof. Let n = m — d. Since d > 0, R1 shows that a > d. Hence,
m —d + a > m. Moreover, we have n = (i — d)a — (1 — d)b and
~b <1 —d < b. It follows from R2 that i = 1 —d if o — d > 0
and 71 = 1 — d 4+ a > m if 1 — d < 0. We deduce that
m > 0 and (i < d or m > d)
=
m>0and (m—d>0=m—d>0)
=
m >0 and n >0
=
m & S(a,b) and n =m —d ¢ S(a,b)
=
m ¢ G(d)O

As a consequence of R5 we obtain

R6. If T is appropriate then
m & S(A) < m>0and Vt € T,m < b(t) or m > a(t).

Proof of Theorem 1. For 0 < i <[, we set
F@i)={me Z|m < by, and m > m;}.
Step 1.

l

(17) Z\ S(A) = JF().

=0



Let m € F(i). For every 0 < j <[, m < b1 <b;if j >i+1and
m > m; > a; if j <i. Hence, R6 shows that m ¢ S(A).
Conversely, let m € S(A) then 7 > 0 by R4. Since by =0 < m <
b="by1and 0 =by < by < by < --- < b < by = b, there exists
0 < j <l such that m < bj4;. We put ¢ = min{j | m < bj11}. We
thus get for 0 < j <4, b; < b; < m < by and m > a; by R6.
Hence, m > m;. We conclude that m € F(7).

Step 2. For 0 <i <[, g; = max F(i).

Since 0 < b;11 —1 < b, we have g; = b;11 —1 and §; = m; +1 > m,.
We thus get g; € F(i). Moreover, for all m € F(i),m = ma—mb <
(bit1 — 1)a — (m; + 1)b then g; = max F'(1) O

In particular, when 7' = {0} i.e. when all ¢; € S(a,b) we have

bp = 0 < by = b,ag =0 and mg = 0. Therefore, g(A) = go =
(by —a—(mo+1)b=ab—a—b=g(a,b).

Proof of Theorem 2. If T'.c is trimmed then 0 = by < by < by <
o<y <bypr=bandthus0=agp < a1 <a; <---<aq < =
a. In particular, T" is pruned and for all 0 < ¢ <[, m; = a;. We can
write g; = a(bir1—b;)+ab;—ba; — (a+b) = a(biy1 —b;)+t;.c— (a+D)
O

Algorithm.

1. For every i, we choose A; > 0 such that \;¢; € S(a,b). Num-

bers \; exist. Indeed, it is sufficient to take A\; > @ =

1

@. The following set

is thus appropriate.

We remove from U all elements t # 0 such that b(t) = 0 or
a(t) < 0. The set T of all remainding elements is pruned and
still appropriate.

We number the elements of T = {0 = tg,t1,... ,t;} in such a



way that 0 = b(tg) < b(t;) < b(ta) < --- < b(t;). We compute
m; = max{a; | 0 < j <i}, ¢; = (biy1 — 1)a — (m; + 1)b and
g(A) = max{g; | 0 < i <[} where b; = b(t;),a; = a(t;) for
0<:<1, by =band a1 = a.

2. The algorithm can be modified as follows: For every 1 <1 <
n, we start removing from A all elements ¢; such that ¢; < ¢;
and ¢; < ¢;. We choose an appropriate and pruned set T' =
{0 =to,tq,...,t;}. We can suppose that 0 = b(tg) < b(t;) <
b(ty) < -+ < b(t;) <b. Forall 0 < i <[, weremove from T’
all t; such that (b(t;) < b(t;) and a(t;) < a(t;)). Considering
the set of the remainding elements we can suppose that 7T'.c is
trimmed. The Frobenius number can therefore be computed

using Theorem 2.
Proof.

1. For all t € INjj, we have G(t.c) = S(a,b)|J(S(a,b) + t.c) C
S(A) thus (Jyep G(t.c) C S(A). Conversely, let m € S(A),
then m = za +yb+ Y ;' x;¢; with 2 > 0,y > 0 and x; > 0.
By Euclidean division we write x; = ¢;\; + t;. We thus get
t = (t1,...,t,) € Uand m = za+yb+ Y ., ¢;\ic; + t.c.
Since \;¢; € S(a,b), we have m € G(t.c). The equality

(18) S(A) = JG(te)

follows. Therefore, U is appropriate.
By construction 7" is pruned and it is still appropriate. Indeed,
for t # 0, t.c € S(a,b)} if and only if a(t) > 0 by RA4.

Therefore,

(19) T={teU|t=0ort.c¢S(a,b)}



and

(20) S(A) = JG(tc).
teT
2. If ¢; < ¢jand ¢; < ¢ then ¢; = ¢; + (¢ — &)a+ (¢ — ¢5)b €
S(ciya,b). Therefore, g(A) = g(A\ {¢;}). If b(t;) < b(t;)
and a(t;) < a(t;) then tj.c = ti.c+ (b(t;) — b(t;))a+ (alt;) —
a(t;))b € G(ti.c) thus G(tj.c) C G(t;.c). We see that (20) is

not altered by removing t; from 7' O

Proof of Theorem 3. Since 2¢; € S(a,b) for all 1 < i < n,
U={t=(t1,...,t,) e Ny |0<1t; <1,1<i<n}is appropriate.
Furthermore, for t = (¢4,... ,t,) € U, if t.c € S(a,b) then there
exists ¢; and y € S(a,b) such that t.c = ¢; +y € G(¢;). There-
fore, the set T'= {0 = to, ty,... ,t,} where t; = (0,... ,t;,...,0)
and t; = 1 is also appropriate. Moreover, T.c = {0,c1,... ,¢,} is
trimmed and b(t;) = ¢; for all 1 <i <n O

4. Casen=1

Let E be a totally ordered set and x € E. We call successor of
x in E, and we denote 2T, the smallest element of E (if there exists
any) such that x < a™.
For an appropriate set T, we put b(T) = {b(t) |t € T} and B =
b(T) U {b}. We equip B with the natural order <.
To apply Theorem 2, in the case that n = 1, it is convenient to
formulate it as follows:

Theorem 2'. Let T' be an appropriate set such that T.c is trimmed.
Then,

1)
g(A) = max{a(b(t)" —b(t)) +t.c|t €T} — (a+b)



where b(t)* is the successor of b(t) in B.

Suppose that there exists integers oy, . .. , o, and a partition £, ... , B,
of T such that b(t)* —b(t) = ; for all t € E; and for all 1 <i <g.
Then,

(22) g(A) = max{ac; + ;|1 <i<q}—(a+0)

where we put ; = max Fj;.c.

To compute such a partition, we are led to introduce what we call
Euler order on T'. We will use Euler polynomials.

Euler polynomials

Let (g0, q1,--- ,4i,---) be asequence of positive integers. We define
Euler polynomials ); by induction as follows: @)_1 = 0,Q = 1 and
for ¢ > 0,

(23)
Qi+1(q0s - 4) = 6:Qi(qo, - - ,qi—1) + Qi—1(qo, - - - , Gi—2)-
We set Qi1 = Qi+1(QO, e 7%’)76211 = Qi(%, cee >C]i), Py = Q; +

Qi1 and le+1 =Qi + Q}H-
We deduce immediately that

(24)
Qnt1 = @Qn + Gn—2Q@n-2+ ... + @n—2iQn—2i + Qn_2i_1

for 0 < 2i <n.

Euler order <,

Proposition 1. FEvery integer t € INg can be written uniquely in
the form

(25) t=1t0Qo + 1 Q1+ +t,Qn
where

(26) min{i | t; > 0} is even ,



(27) 0<t;<q for0<i<n
and

Equality (25) is called Euler expansion of .

Proof. There exists n € INy such that ¢ < @,,41. By successive
Euclidean divisions we can write

t = 1,Qn + 5, with 0 < s, < Q.

Sp = tp_1Qn_1 + Sp—1 With 0 < 5,1 < Qp—1,

Sy = 11Q1 + 51 with 0 < 51 < Qy,

s1 = tpQo with tg = s7.

We put ¢ = min{j | t; > 0}. If i = 2e then ¢ = to.Qoe +t2e4+1Q2e+1+
oo 4 t,Q,, is Euler expansion of ¢t. If i = 2e 4+ 1, using (24)
we take t = Qo + -+ + Q2 + (toer1 — 1)Qoer1 + -+ + 6,Qn
as Euler expansion of ¢. Conditions (27) and (28) follow from
Siv1 < Qir1 = Qi_1+¢;Q;. The uniqueness follows from the unique-
ness of the Euclidean division and the fact that Z?io 1,0 < Qoey1
if and only if there exists 0 < 7 < e such that ty; < ¢qo; O

For t,z € INg, let n € INg such that t,x < @, 1. We consider
Euler expansions of t and x respectively
t=1tQo+t1Q1+ - +t,Q, and x = x0Qy + v1Q1 + - - - + £,Q.
We define Euler order <, as follows: t <, z if
(to, —t1, - s (=Dt ..o, (=D)") < (To, =21, -+ (1), .o, (=1)"2y,)
where <; is the lexicographic order on Z".
Lemma. Let n € INg. We consider U, = {0,1,... ,Qn+1 — 1} and
Vo, ={0,1,..., P, — 1} equipped with induced Euler order <..



1. We define a partition of U, = Fy U F5 as follows:

ro— {0,1,..., Qo1 — Q. — 1} if n =2k
1— .
{Q2k415 -+, Qa2 — 1} ifn=2k+1

- { {Qois1 — Qoo Qopsr — 1} if n =2k
{0,1,..., Qo1 — 1} ifn=2k+1.
Then, the successor, in U,, of allt € Fy (resp. t € Fy) ist™ =
t+(—1)"Q, (resp. tT7 =t+(—1)"[Qn— Qni1]). In particular,
if ¢n =1 then for allt € Fy, t™ =1+ (=1)""'Q,_.

2. We define a partition of V,, = E; U Ey as follows: E; =
{0,...,Qon1 — 1}, By = {Q2n-1,-..,P, — 1}. Then, the
successor, in Vy,, of all t € Ey (resp. t € Ey) istT =1t + Qo
(resp. t7 =t — Qap_1).

Proof. Lett =1tQo+ 101+ -+ t,Q, be Euler expansion
of t.

1. (a) Suppose that t € Fj. It is easily seen that t, > 0 if
n=2k+1landt, <gqg,—1lor(t,=¢g,—1and t,; =0)
if n = 2k. Therefore, t* =t + (—1)"Q,.

(b) Suppose that t € Fy, then t = toQo+t1Q1+ -« - + torQag.
Since t < Qax41, there exists j < k such that ¢y <
q2j. Taking i = max{j | t2; < qo;} we can write ¢t =
toQo +11Q1 + -+ - +12iQ2 + [q2i12Q2i12 + - - + qarQan] =
toQo + t1Q1 + -+ + 12iQ2 — Qaip1 + Qory1-

If to; < qo; — 1 or (ty; = qo; — 1 and t9;_; = 0) then
tT =10Qo +11Q1 +- - -+ (tas + 1) Q2 + (q2ir1 — 1)Qai1 +
ot Gon-1Qan—1 =t + Qan — Qarta.

If ty; = qo; — 1 and ty;_; > 0 then t+ = t,Qo + Q1 +
o (taimr — 1)Qaim1 + q2ip1Q2igr + -+ qon1Qon1 =
t+ Qan — Qa1



2. Tt is a particular case: Taking q, = 1weget P, = Q,,_1+Q, =
@ny1 and V,, = U,. Moreover, in this case we have F; = F,
and E2 = F1 if n = 2k and E1 = F1 and E2 = F2 ifn= 2k+1
O

Let (r = r_q1,70,...,7,) and (qo,q1,-..,qs) be sequences of

positive integers and r,.1 > 0. We suppose that
(29) Ti—1 = ¢iTi + Tit1

for 0 <i<n.
We thus have r >rqg >ry >--->r, >0and r,_y > 1,01 > 0.

We prove by induction the following identities:

(30) r=71;Qit1 + riz1Q;
and
(31) roQi = (—1)'r; + rQ;_;.

It follows from (31) that
(32) roPpr = (=1)'(r; = riga) + 7B}

Let t € INy. Given t = tgQo+t1Q1+ - - - +1,Q,, its Euler expansion,
we associate with ¢ the following numbers: r(t) = Y7 (=1)%;r;
and E(t) = Y7  t:;Q}_,. It follows from (31) that

(33) tro =r(t) +rE().
Moreover, if 0 < t < @),,41 then

(34) rn <r(t)<r—rmr,
and if 0 < t < P, then

(35) Tor < 7(t) <1 —1ony



Indeed, for 0 < t < Qpni1, let t = t4Qo + -+ + t,Q, be Euler
expansion of t. We can write t = Zf:e to;(Qa; + Z;:el toir1Q2i11
with toe > 0. HGHCG, T(t) = Z?:e toiT9; — Z?:_el t9i+172i+1-

. h—1
Using roe = D . @oiq172i+1 + Ton We get

T(t) = (tZe - ]‘)TZC + Zf:e+1 Z521'7’21'
+ E?:_el((hiﬂ — t9i1)T2i41 + T2n.

Now if n = 2k 4+ 1 we get

(36)

Ton + o1 < 7(l) < Z QT2 =T — Togp1 =T — Tp.
i=0
If n = 2k there exists j < k such that ?5; < g9 since otherwise
t = Qni1- We then get

(37)

rn <r(e) <r(t) <r—ry — ropr1 < T — Tog — Topg1.

Hence, assumption (34) follows. In the particular case that ¢, = 1
we have P, = Q.41 and r,_1 = r, + 1. In this case if n = 2k
we get r,—1 < r(t) < r—r, by (36) and if n = 2k + 1 we get
rn <7r(t) <r—r,_1 by (37) thus assumption (35) follows O
Proposition 2. We suppose that r,11 = 0. We equip {0,1,... ,r—
1} with the natural order < and U, = {0,1,... ,Qn11— 1} with Eu-
ler order <.. Then, the mapping (U,,<.) — ({0,1,...,r—1},<
), t — r(t) is strictly increasing.

Proof. Given ¢t <, z in U,, we have

(to, —t1, ..., (=17t ..., (=1)"t) < (w0, =21, .., (=124, ..o, (—1)"2p)
and r(z)—r(t) = (_1)j(xj_tj)rj+2?:j+1(_1)ixz‘7"z‘_2?:j+1(_1)itz‘7"i
where j is the smallest integer such that t; # z;.



1. When 5 = 2¢ we get x9; > to; > 0 and 29,11 < @oi41 — 1. Then,
r(z) —r(t) = (v — to;)ro + [—Toip1r2ie1 + -+ (= 1)"xpry,] —
[—toiy1m2ie1 + - 4 (=1)"tarn] > (22 — tog)rei — [(qeis1 —
D)rgig1 + -+ an—172n—1] — [qeitoraize + - + qaiTor] > (T2 —

t9i)T2; — T + rop + Topr1 > 0.

2. When j = 2i — 1 we get ;1 > T2,1 > 0 and ty; < g9 —
L. Then, r(z) —r(t) = (tzic1 — Toi1)r2i1 + [T272 + -+ +
(_1>nxnrn] — [tQiTZi + -+ (_)ntnrn] Z (tgz'_l — x?i—l)TQi—l —

(q2it172i01 + -+ + Qn_17ron—1] — [(q2i — 1)re; + -+ - + qogrox] >

(toim1 — Toi—1)T2i—1 + Tap — T2i—1 + Topp1 > 0 O

Now we consider another sequence of positive integers (s =

$_1,80,81,--- ,5p) and s, > 0 such that s; 1 = ¢;8; + s;41 for
0<17<n.
We also define s(t) = > 1" (—1)%;s;.

Using (31) we prove the following identity

(38) (rsg — s10)Q; = (—1)"(rs; — sr;).

We derive

(39)  (rso—sro)Pix1 = (=1)'[r(si — sis1) + 8(ris1 — 13)]
from (32) and

(40) t(rsg — sro) = rs(t) — sr(t)

from (33).

Proof of Theorem 4.

First step : Reduction to the case n = 2k.

Suppose that n = n(a,b,c) = 2k + 1.

Since g(a, b, c) = g(b, a, c), it suffices to show that n(b, a, c) is even,
L(a,b,c) = L(b,a,c) and l(a,b,c) = 1(b,a,c).



We write ¢ = b(a — vg) — a(b — ug). We consider two cases:

If po = qo > 1 then we can write a = (a — vg) + vo,a — vg =
(go — 1)vg +v1,b = (b —ug) + up, b — ug = (qo — 1)ug + uq. There-
fore, n(b,a,c) = n(a,b,c¢) + 1, L(b,a,c) = L(a,b,c) and I(b,a,c) =
l(a,b,c).

If po = qo = 1 we get a — vy = u; and b —ug = v;. We therefore get
a=(q1+1)(a—vy)+vy and b = (p; +1)(b—ug) +usg. It follows that
n(b,a,c) = n(a,b,c)—1. Furthermore, we observe that if n(a, b, ¢) >
1 then we have obviously L(a,b,c¢) = L(b,a,c) and [(a,b,c) =
I(bya,c). If n(a,b,c) = 1 we have L(b,a,c) = (avi,a(b — (1 +
1Dwvy)) = (avy, a(ug — q1v1)) = L(a, b, ¢) and I(b, a, ¢) = (buy, bvy)) =
l(a,b,c). In both cases, n(b, a, c) is even. Therefore, the assumption
follows.

Moreover, we can write
(41) C = WpWpni1 — VpUpil-

Since ¢ > 0, we get wy1 = (P — Gn)Vn + Uny1 > 0 thus p, > g, or
(pn = ¢, and v,.1 = 0). When p,, = ¢,, and v,,; = 0 we then have

(42) C = WpWpi1 = Uplpiq-

In the following steps we suppose that n = 2k.

Second step: Case p, > qp.

Taking a = r,v9 = r9,b = s and uy = wy = s¢ it follows from
(39) that cPy1 = a(w, — Vpg1) + b(wpy1 — v,) € S(a,b) because
Wpy1 > U, and wy, > vy,41. Moreover, it follows from (40) and (35)
that s(f) = b(t) and r(t) = a(t). Hence, for all 0 < t < P4,
tc = ab(t) — ba(t) € S(a,b) by R4. We conclude that

(43) P,y =min{t >0 | tc € S(a,b)}

and by (19)-(20), that V,, = {0,1,... , P,.1 — 1} is appropriate. Let

us show that V,,.c is trimmed. Indeed, for 0 < t < z < P, 1, since



x—t < Ppy1, we have 0 < (x—t)c = (b(x) —b(t))a— (a(x)—a(t))b &
S(a,b). Then, b(x) < b(t) if and only if a(z) < a(t) by R4.
Furthermore, it follows from proposition 2 that b(t)* — b(t) =
b(tt) — b(t) = b(tT —¢). Writing V,, = E; U Ey with the no-
tation of the lemma, Theorem 2 and (22) show that g(a,b,c) =
max{aay + [y, aqs + f2} — (a+b) where ag = b(tT) — b(t) = b(Q»)
for all t € Ey, ag = b(tT) — b(t) = —b(Qny1) for all t € Ey, and
0; = max F;.c.

It follows from (31) that ay = w,, and as = v,4;. Moreover, we
see that By = ¢(Pyi1— 1), 1 = c(Qpi1 — 1) = —cQn+cPpiy —c =
bu, — aw,, + cP,1 — ¢ by (38). We therefore obtain the formula

(44) g(a7 b7 C) = CPn+1 + maX{aUnJrl, bUn} — ((I + b+ C)

which can be written in the form

(45)

f(a,b,c) = a(w, — vpy1) + b(wpe1 — vy,) + max{av,, 1, bv, }
by (39). Finally,
(46) f(a,b,¢) = aw, + bw,+1 — min{av, 1, bv, }.

Third step: Case p, = ¢, and v, = 0.
We have cQy+1 = bwy 1 € S(a,b) by (38) and for all 0 < t < Qp1,
tc = ab(t) — ba(t) € S(a,b)) by (34). We deduce that

(47) Qny1 = min{t > 0| tc € S(a,b)}.

Using (19)-(20) we show by a similar argument that U,, = {0,1,... , Q41—
1} is appropriate and U, .c is trimmed. Furthermore, since v, =0

the lemma show that b(t*) — b(t) = w,, for all t € U,, . Therefore,

by (21) f(a,b,c) = aw, + cQni1 = aw, + bw,,1.

Moreover, since v,41 = 0, we get w,, = ged (b, wp) = ged(b, ¢) and



b = w,Qni1 by (30). Using (42) we deduce that lem(b, ¢) = bw,,4q
O

Remark. The case that (p, = ¢, and v,,; = 0) can be
deduced from Brauer’s formula (16): We put d = ged(b,c) =
ged(b,wp) = wy, ¢ = £ = wyy1 and U = 2 = Q,41. Using (30)
we get a = v,Qni1 + Wp1Qn > Wy 1Qny1 = b'd. We thus have
fla,b,c)=g(a,V,d)+a+b+c = +a. Hence, (16) show that
fla,b,c) =df(a, b, ) =bd +da =lem(b, c) + aged(b,c) O

Proof of Theorem 5. We first prove by induction that polyno-

mials R; satisfy the following properties: For i < n,

(48) cR; = ay; — bx;,

(49) cRu1 = aypi1 — blepxy, — Tp1),

(50) Y1 =yilRii(eo, - €) — yirr1 Rileo, - ei1)
and for j <1,

(51)

Yi1 =yl ja(ej, ... e) — v Rij(ej, ... ei).

In the particular case that e; = €11 = -+ = ¢; = 2, we get
(52) Ri_jii(ej,...,e))=(i—j+2)

and

(53) Yi1 =Y =Yi — Y1 = = (¥ — Yir1)

so in this case (51) can be written in the form

(54) Yj—1 = (0 =7+ 2) (i — Yir1) + Yis1-



Now we consider the set

K={e;|i=0o0r (0<i<mande >2)} ={ep = e€xy,Chys--- €k .}
and we set k, = m. We can suppose that 0 = kg < k1 < --- < kg =

m.

We have

(55) y-1=(eo — L)yo + (yo — y1)
and for 0 < < s,
(56) Yri—1 — Yk = (r; — 2)Yn; + (Ui — Yri1)-
Furthermore, (54) show that
(57) Yk = (ki = Ki-1) (Uki—1 — Yr) + U,
and (53) that for 0 <i < s,
(58) Ykioty — Ykgon+1 = = Yki—1 — Yk > Yh,-
To apply Theorem 4 we set
V-1 =Y-1,U = Yo,V1 = (Yo — Y1), ¢0 = (€9 — 1)
and for 0 < i < s,
V2ic1 = Yky—1 — Yk U2i = Yhy> G2i = (€, — 2), P2ic1 = (ki — ko).
Furthermore, if e, > 2 we set
V251 = (Ym—-1—"Ym): V2s41 = Ymt1 = 0, P25—1 = (M—k(s_1)), U2s = Ym, G2s = (€m—1)
and if e,,, = 2 we set
Vas—1 = YmsD2s—1 = (M + 1 — k(s—1)) and ugs = Ym41 = 0.
We thus get

V_1 > Uy >+ > Vg1 > Ug; > Vi1 >



and

V2i—1 = Q2iU2; + V2115 Ui = P2i+1V2i+1 + U2it2.

Using (11) we get ¢ = ayo—bxo = TpYn(dn—€n) + TnYni1 — YnTni1 >
0. Then, d,, > e, or (d, = e, and x,,1 = 0).

To prove (12) we consider two cases:

Case n = 0.

We can write a = (dg—1)zo+ (20— 1) and b = (eg— 1)yo+ (Yo — 1)
withdg—1 > ey—1lordy—1 =ey—1and x; = 0. Then, L(a,b,c) =
(bzo,b(a — (eg — 1)xg)),l(a,b,c) = (ayo,a(yo — y1)). We conclude
that f(a,b,c) = ayo + b(a — (eg — 1)) — min{a(yo — v1),bxo} =
ayy + b(a — epxy) + max{a(yo — y1), bxo} by (7).

Case n > 0.

Let r = max{i | k; < n}.

1. Suppose that d,, > e, > 2. We can write x, 1 — z, = (d, —
2)Tn+ (2 —Tpi1) and Yp1—Yn = (€n—2)Yn+ (Yn —Yn+1) With
d,—2>e,—2ord, —2=e,—2and x,.; =0. It follows
that the level of (a,b,c) is even, L(a,b,c) = (bxp,b(x,—1 —
(e, — Dz,) and l(a,b,¢) = (ayn,a(yn — Yn+1)). Therefore,
fla,b,¢) = ayni1 + (w1 — €pzn) + max{a(yn — Yni1), bTn}
by (7).

2. Suppose that d, > e, = 2. We thus have k, 1) > n. we

can write g, = (ko) — h) W1 = Vi) + 9,y 20
xy, = (n — k) (xp—1 — x,) + x, by (57). Moreover, we have
Yk(sy -1~ Yhirir) = Yn—1—Yn = Yn—Yns1 by (53) and yr, —(n—
k) (Yn—1 — Yn) = yYn by (54). Therefore, the level of (a,b,c) is
odd, L = (a(yn — Yn+1), ay,) and | = (b(zp—1 — x,), bx,). We
deduce that f(a,b,c) = ayni1 + b(zp—1 — 2x,) + max{a(y, —

Ynt1), bzn} by (7).



3. Suppose that d,, = e, = 2 and 2,1 = 0 then k441 > n +
1. Using (57) we can write yg, = (kGt1) — k) (Un(ppy—1 —
yk(r+l)) + Yk(iry = (n +1- kr)(yn - yn+1) + Yn+1 and Tk, =
(n + 1 — k;)x,. Hence, the level of (a,b,c) is odd. Since
Uk, — (0 + 1 = k) (Yn — Yns1) = Yns1, We get L = (a(y, —
Ynt1), @Yns1) and | = (bz,,0). Therefore, f(a,b,c) = ayn1 +
br, = ayn+1 + max{a(y, — Ynt1), bz, } because, by (48), we
have bx,, — ay, + ayp+1 = —cR, + cR, 1 and it is easily seen

that —cR,, + cR,+1 < 0.

Finally we have proved that

(59)
f(aa b, C) = AYn+1 + b[mn—l - €nl‘n] + maX{CL(yn - yn-i—l)a bxn}D

To prove Theorem 6 we observe, using (48)-(49), that (11) and the
following condition

(60) ]?{znn—i§§<%f0ra110§i§n.

are equivalent. Taking account of (48)-(49) we obtain
(61) f(av b7 C) - CRn—H + ay, — min{ayn+1, CRn}D
5. Examples

1. A ={31,44, 462, 674,402, 932, 1214}.
We take a= 31 b= 44 We obtain
(462 674 402 932 1214) (22,26, 30, 40, 42)
and (462, 674,402,932, 1214) = (5,3,12,7, 2).
We remove 674, 932, 1214 from A without altering g(A). We
consider (a,b,c1,co) = (31,44,462,402). Applying Theorem
3 we obtain g(A) = 761.



9. A= {57,83,367, 543, 605}.
We take a = 57,b = 83. We have (3%7, 5?13, 665) = (21,27,31),
(367,543, 605) = (10,12, 14),
B = b(T)U{b} = {21, 27,31, 42,48, 52, 58, 62, 63, 69, 73, 79, 83},
A = a(T)U{a} = {10, 12, 14, 20, 22, 24, 26, 28, 30, 32, 34, 36, 57}.
We obtain g(A) = 1603.

3. A= {a,b,c} = {137,250,337}. We have (¢, ¢) = (101,54),1 =
4,
B = {53,101, 154, 202, 250}, A = {25, 54, 79, 108, 137}.
Using Theorem 2 we obtain
g(137,250,337) = max{g1, g2, g3} = 7537.
Let us compute g(A) by Theorem 5. We get n(a,b,c) = 1,
L(a,b,¢) = (6576,7261),1(a,b,c) = (7250,6250). We obtain
g(a,b,c) = 7250 + 7261 — 6250 — 137 — 250 — 337 = 7537.
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