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&

CMAP, UMR CNRS 7641, École Polytechnique ,
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Abstract

The paper proposes a new approach to consistent stochastic utilities, also called forward

dynamic utilities, recently introduced by M. Musiela and T. Zariphopoulou [26]. These

utilities satisfy a property of consistency with a given incomplete financial market which

provides them properties similar to the function values of classical portfolio optimization.

The additional assumption of the existence of optimal wealth plays a key role in this paper.

Using Itô-Ventzel formula, we derive two forward non linear stochastic PDEs of HJB type

satisfied by consistent stochastic utilities processes of Itô type and their dual convex conju-

gates. We characterize the volatility of consistent utilities as an operator of the first and the

second order derivatives of the utility in terms of the optimal primal and dual policies. Mak-

ing the assumption that the SDEs, associated with the optimal policies, are solvable with
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†Keywords: Forward utility, performance criteria, horizon-unbiased utility, consistent utility, progressive util-

ity, portfolio optimization, optimal portfolio, duality, minimal martingale measure, stochastic flows, stochastic

partial differential equations.
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monotone solutions with respect to their initial conditions, we characterize all consistent

utilities for a given increasing optimal wealth process as the primitive of the composition of

the dual optimal process and the inverse of the optimal wealth. Also, we establish a connec-

tion between the fully nonlinear second order utility SPDE and two stochastic differential

equations associated with optimal policies, which allows us to reduce the resolution of the

utility HJB-SPDE to the existence of monotone solutions of the SDEs.

Introduction

Recently, the concept of forward dynamic utilities has been introduced by M. Musiela and T.

Zariphopoulou (2004-2007) [26, 29, 27, 30, 32, 34], to model possible changes over the time

of individual preferences of an agent. Such a concept has also been studied by F. Berrier,

M. Tehranchi and C.Rogers (2009) [10] and G. Zitkovic [46]. Further works related to this

problem are T. Choulli, C. Stricker and L. Jia (2007) [3], V. Henderson and D. Hobson

(2007) [13].

The economic agent will adjust its preferences based on the information that is revealed

over time and represented by a filtration (Ft, t ≥ 0), defined on the probability space

(Ω,P, (Ft, t ≥ 0)). In contrast to the classical literature, there is no pre-specified trad-

ing horizon at the end of which the utility datum is assigned. Rather, the agent starts

with today’s specification of its utility, U(0, x) = u(x), and then builds the process U(t, x)

for t > 0 in relation to the information flow given by (Ft, t ≥ 0). This, together with the

choice of a initial utility, distinguishes the forward dynamic utility from the recursive utility

for which the aggregator can be specified exogenously and the value function is recovered

backward in time.

Working with positive wealth processes Xπ in an incomplete market, we define a consistent

stochastic utility as a progressive non negative stochastic utility U(t, x), for which U(t,Xπ
t )

is a supermartingale, and a martingale for one optimal wealth. However we restrict our

study to forward utilities which are Itô-semimartingales with spatial parameter x, whose

local characteristics (β, γ) are such that

dU(t, x) = β(t, x)dt + γ(t, x).dWt.

The key tool is the Itô-Ventzel’s formula which we recall at the beginning of Section 2. As

in the classical Hamilton-Jacobi-Bellman framework, we proceed by verification to establish

the dynamics of consistent utilities. Assuming a sufficient constraint on the drift β of HJB
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type, we get the utility stochastic PDE that we investigate in this paper. In particular,

we study the role of the utility risk premium defined by ηUt (x) = γx/Ux(t, x). Section 3

goes into details on the question of duality and gives a characterization of the non linear

SPDE satisfied by the progressive convex conjugate Ũ of U . This allows us to obtain a

complete interpretation of the volatility γ. Unlike the backward case, we do not a priori give

a positive answer on the question of existence and uniqueness of solutions of the primal and

dual Hamilton-Jacobi-Bellman equations established in this work, but show the important

role of the volatility γ of the stochastic utility U and the strong analogy between the primal

and dual problem. The obstacles in the analysis come from the fact that the HJB equations

are forward in time and also without maximum principle. Therefore existing results of

existence, uniqueness and regularity of weak (viscosity) solutions are not directly applicable.

An additional difficulty comes from the fact that the volatility random field may depend

on higher order derivatives of U , in which case the SPDE can not be turned into a regular

PDE with random coefficients, using the method of stochastic characteristics. Moreover,

the concavity property can not be derived directly from the dynamics; this still an open

question in general, which we try to answer in Section 4. In Section 3, we focus on the

convex conjugate function Ũ(t, y) of U(t, x). We show that this conjugate random fields is

a solution of a dual Utility-SPDE and is consistent with the familly of state price density

processes, in particular, there exists an optimal choice Y ∗ which plays an important role in

this paper. In Section 3.3, we show the stability of the notion of consistent utility by change

of numeraire and then, without loss of generality, we can consider the martingale market

where the portfolios are simple local martingales and the stochastic PDE’s are easier to deal

with.

In Section 4, we establish the most original contribution of this paper, that is a new approach

to consistent dynamic utilities based on the stochastic flows associated with the optimal

wealth and the optimal state price process and their inverses. The idea is very simple and

natural: Suppose that the optimal portfolio denoted by X∗
t (x) is strictly increasing with

respect to the initial capital, and denote by (X (t, x)) the adapted inverse process, defined

by X∗
t (X (t, x)) = x. Then, using the dual identity Ux(t,X

∗
t (x)) = Y ∗

t (ux(x)), we can find

Ux(t, x) from Ux(t, x) = Y(t,X (t, x)) where (Y ∗
t (y)) is the optimal state price density process

and Y(t, x) := Y ∗
t (ux(x)). Finally we get U by integration. So, we are able to generate all

the consistent utilities with a given optimal portfolio.

The problem of recovering the utility function coherent with a given optimal portfolio is

known in the financial literature as the “inverse“ Merton problem; it has been considered by
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many authors in the past in particular by H.He and C.Huang (1992), [12]. In the classical

expected optimization problem, there are restrictions to put so that the portfolio is consistent

with a deterministic utility criterion at some fixed time horizon. These difficulties disappear

when the criterion is a progressive utility as we show in this paper.

The study provides a fine analysis of the utility volatility vector and its derivative in terms

of optimal allocation policy and optimal choice of state price density. In fact, given these

optimal policies, the volatility vector γ is interpreted as an operator Υ(x,Ux, Uxx) which is

linear in Uxx and depend on Ux (resp. x) as how the volatility of the flow Y (resp. X∗)

depends on Y (resp. X∗).

To the best of our knowledge, the fully non linear utility stochastic PDE’s established in

this paper and satisfied by forward utilities and their dual have not been established in a

general way. In [10] and [35] the authors study the case where the volatility vector of the

utility is zero. In [32], the authors derive a stochastic PDE and study examples where the

volatility of the utility is constant, proportional to U (case of change of probability) and the

case where the volatility is proportional to xUx which corresponds to a change of numeraire.

Furthermore, to our knowledge, there is no general consistent utilities construction proposed

in the literature, expect the case of power or exponential type, or decreasing utilities.

Another main contribution of this paper is a connection between two solvable SDEs and

the utility SPDEs early established. In particular, given a volatility vector γ such that

γx(t, x) = −xUxxκ
∗
t (x) + ν∗t (Ux(t, x)), we show the existence and uniqueness of a solution

to the fully nonlinear second order SPDE from that of a pair of SDE’s. In any case this

represents an interesting result in the theory of stochastic partial differential equations.

The paper is organized as follows, we give the definition of consistent dynamic utilities.

Then, in order to study the HJB Stochastic PDE, we give more precisions on the market

model. In Section 2, we introduce the useful Itô-Ventzel formula and we provide the dynamics

of consistent utilities and a closed form for the optimal policy and we give an example

of consistent utility obtained by combining a standard utility function with some positive

processes. In Section 3, we study the dual process and establish a duality identity. In Section

3.3, we show the stability of the notion of consistent utility by a change of numeraire. In

Section 4, we present our new approach and the main results of this work.
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1 Consistent Stochastic Utilities

We start by introducing the concept of a forward utility consistent with a given family of

portfolios. All stochastic processes are defined on a filtered probability space (Ω,Ft≥0,P)

with complete filtration (Ft)t≥0 satisfying the usual conditions. In general, F0 is assumed to

be trivial. In the Itô framework considered afterwards, (Ft)t≥0 will be usual an augmented

Brownian filtration.

1.1 Definition of Consistent Stochastic Utilities

A progressive utility U is a positive adapted continuous random field U(t, x), such that t ≥ 0,

x > 0 7→ U(t, x) is an increasing concave function (in short utility function).

Obviously, this very general definition has to be compelled to represent more realistically the

individual preferences of an investor in a given financial market, possibly changing over time.

The idea is to calibrate these utilities with regard to some convex class (in particular vector

space) of wealth processes, denoted by X , on which utilities may have more properties.

As classical utility function, a progressive stochastic utility measures the relative satisfaction

of any portfolio and gives a selection criterion which allows to identify an optimal choice

of investment at any time. In general, we will impose below the uniqueness of the optimal

process, to be as close as possible to the usual expectations of investors. Furthermore, the

satisfaction for the optimal choice is maximum and will be preserved at all futures times

which explains the martingale property in the definition below. On the other hand if the

strategy in X fails to be optimal then it is better not to make investment. The fact of

making a bad investment choice can be seen as a loss, compared with what he could won if

he had followed the optimal policy. From this, we suppose that the utility of any strategy is a

supermartingale and so the optimum represents the reference (benchmark) for the investor.

The class X is a test-class which only allows us to specify the stochastic utility. Once

his utility is defined, an investor can then turn to a portfolio optimization problem on the

general financial market to establish his optimal policy or to calculate indifference prices.

Now we are able to define the X -consistent stochastic utility as follows.

Definition 1.1 (X -consistent Utility). A X -consistent stochastic utility process U(t, x)

is a positive progressive utility with the following properties:

• Consistency with the test-class: For any admissible wealth process X ∈ X ,

E(U(t,Xt)) < +∞ and
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E(U(t,Xt)/Fs) ≤ U(s,Xs), ∀s ≤ t .a.s.

• Existence of optimal wealth: For any initial wealth x > 0, there exists an optimal

wealth process X∗ ∈ X , such that X∗
0 = x, and U(s,X∗

s ) = E(U(t,X∗
t )/Fs) ∀s ≤ t.

In short for any admissible wealth X ∈ X , U(t,Xt) is a positive supermartingale and a

martingale for the optimal-benchmark wealth X∗.

Our definition of consistent dynamic utilities differs from the one introduced by Musiela and

Zariphopoulou [26, 29, 27, 30, 32] or Barrier and al. [10] by the fact that we do not require

that the wealth processes X are discounted. This variation offers more options and allows

us to study the invariance of the class of stochastic utilities by change of numéraire. In any

case, there is no fixed horizon.

Remark A deterministic utility u is a X -consistent utility only when the test-portfolios

are local martingales. In this case, the optimal strategy is to do nothing.

The Market Model In this paragraph, we follow the presentation of Karatzas and

Shreve [19]. We consider a securities market which consists of d+1 assets, one riskless asset,

with price S0 given by dS0
t = S0

t rtdt and d risky assets. We model the price of the d risky

assets as a locally bounded positive semimartingale Si, i = 1, . . . , d defined on the filtered

probability space (Ω,Ft≥0,P).

A (self−financing) portfolio is defined as a pair (x, φ), where the constant x is the initial

value of the portfolio and the column vector φ = (φi)1≤i≤d is a predictable S-integrable

process specifying the amount of each asset held in the portfolio. The value process, also

called wealth process, Xφ = (Xφ
t )t≥0 of such portfolio φ is given by

Xφ
t

S0
t

=
x

S0
+

∫ t

0

φα
S0
α

.d(
Sα
S0
α

), t ≥ 0. (1)

Let us denote by X+ the set of non negative wealth processes. To facilitate the exposition

we only consider wealth processes in X+. This naturally leads us to characterize portfolios

by means of relative weights π in place of the amounts φ. The relation between these two

notions is easy since φt = (π1tX
φ
t (x), .., π

d
tX

φ
t (x))

T , where the transpose operator is denoted

by T . The advantage of the second formulation is that the assumption of positive wealth is

automatically satisfied, since the previous equation becomes with the notation Xπ in place

of Xφ,
dXπ

t

Xπ
t

= rtdt+ πt.
(dSt
St

− rt1dt), t ≥ 0 (2)
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where the d-dimensional vector denoted by 1 is such all components are equal to 1. Let us

now recall that a probability measure Q ∼ P is called an equivalent local martingale measure

if, for any X ∈ X+, X
S0 is a local martingale under Q. To ensure the absence of arbitrage

opportunities, we postulate that the family of equivalent local martingale measures is not

empty, (see [8], [6] for a precise statement and references). We stress that no assumption

concerning completeness is made and in particular, many equivalent martingale measures

may exist.

Itô’s Market: Let W = (W1,W2, ...,Wn)
T be a n-standard Brownian motion (n ≥ d),

defined on the filtered probability space (Ω,F ,P). The filtration (Ft)t≥0 is the P-augmented

filtration generated by the Brownian motion W .

The risky asset prices are continuous Itô’s semimartingales with the dynamics:

dSit
Sit

= bitdt+ σit.dWt, for 0 ≤ i ≤ d (3)

where the inner scalar product is denoted by ”.”. The coefficient bi represents the apprecia-

tion rate by time unit of the asset i and σi its volatility vector in Rn, considered as a n×1 ma-

trix. Denote by b the appreciation rate column vector n×1 (bi)i=1,...,d, and by σt the volatility

matrix n × d (n lines d columns), whose ith column is the vector σit for i = 1, . . . , d. The

processes b, σ and r are Ft non-anticipating processes and satisfy some minimal appropriate

integrability conditions. Using vector and matrix notation, we have dSt = St
(

btdt+σ
T
t dWt)

Moreover, equation (2) may be rewritten as, dXπ
t = Xπ

t

[(

rt + πt.(bt − rt)1
)

dt+ σtπt.dWt

]

.

As usual, the matrix (σσT )(t, ω) is assumed to be non singular. This assumption is equiv-

alent to suppose that, for any i ∈ 1..d, the asset Si can not be replicated by an admissible

portfolio. The existence of an equivalent local martingale measure in this framework implies

that the excess of return vector belongs to the range of volatility matrix: in other words,

there exists a F-progressively measurable process η ∈ Rn such that bt − rt1 = σTt ηt. Ad-

ditional integrability Assumptions are necessary to ensure that the exponential martingale

generated by η.W is the density of some probability measure.

We get that the dynamics of the portfolio becomes dXπ
t = Xπ

t

[

rtdt + σtπt.(dWt + ηtdt)
]

The key role is played by the volatility vector σπ. For this and in order to facilitate the

exposition, we denote it by κ := σπ. To fix the notation, we denote by Rσ
t ⊂ Rn the range

of σt, and by Rσ,⊥
t the orthogonal vector subspace. By assumption, κt is required to lie at

any time t in Rσ
t . Replacing X

π by Xκ, the above equation becomes

dXκ
t = Xκ

t

[

rtdt+ κt.(dWt + ηtdt)
]

, κt ∈ Rσ
t . (4)
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Note that under market assumptions (σTt σt non singular) there exists a unique vector πt

such that κt = σtπt.

The following short notation will be used extensively. Let Rσ be a vector subspace of Rn.

For any α ∈ Rn, ασ is the orthogonal projection of the vector α onto Rσ and α⊥ is the

orthogonal projection onto Rσ,⊥. To express the orthogonal projection onto Rσ, Musiela

and Zariphopoulou [32] use the generalized inverse of σ, known as the Moore-Penrose inverse

σ+, characterized by the following identities

σσ+ = (σσ+)T , σ+σ = (σ+σ)T , σσ+σ = σ, σ+σσ+ = σ+

Indeed σσ+ is the orthogonal projection matrix onto Rσ, and ασ = σσ+α.

Minimal Risk premium The market incompleteness is described through the family

of risk premium η. Since for any κ ∈ Rσ, κ.η = κ.ησ , we assume throughout this paper

and without further mention that η = ησ ∈ Rσ. ησ is often referred to as the minimal risk

premium.

2 Stochastic Partial Differential Equation

In this section, under some additional regularity assumptions, we focus on the Hamilton-

Jacobi-Bellman stochastic PDE satisfied by a X -consistent stochastic utility using essen-

tially Itô-Ventzel’s formula and techniques of dynamic programming established and de-

veloped in the classical theory of utility maximization (see for example H. Pham [14]).

Additional regularity assumptions are necessary to advance in the study. From now, X -

consistent stochastic utilities U(t, x)
(

U(0, .) = u(.)
)

are described as Itô’s semimartingales

with spatial parameter x > 0; in other words, U(t, x) is a continuous random field with

dynamics,

dU(t, x) = β(t, x)dt + γ(t, x).dWt, (5)

where, as in Kunita [25], the local characteristics (β, γ) of U and are assumed to be pro-

gressively random fields with values in R and Rn respectively.

We are concerned with the properties of the utility of admissible wealth processes. Before

that, we want to give precise definition of the progressive utility, assumed to be of class C2,

its derivatives and their dynamics properties.

8



2.1 Regular stochastic flows and Itô-Ventzel’s formula

Regular Stochastic flows There are several difficulties in the definition of semimartin-

gales depending on a parameter, as explained in H. Kunita [25] and R.A. Carmona et al.

[2], (see Appendix A).

First let us point out that in general equality (5) holds for any t except for a null set

Nx. Then the semimartingale U is well defined for (t, x) if ω ∈ (∪x∈R+
Nx)

c. However the

exceptional set (∪x∈R+
Nx) may not be a null set since it is an uncountable union of null sets.

However if we suppose that local characteristic (β, γ) of U are δ-Hölder, for some δ > 0 (see

appendix A), then according to H. Kunita [25] (Theorems 3.1.2 p.75) using Kolmogorov’s

criterion, U(t, x) has a continuous modification for which (5) holds almost surely.

A detailed discussion about these difficulties and their consequences in terms of dynamic

representation and differential rules are provided in H. Kunita [25] and R.A. Carmona et al.

[2]. The main results are also recalled in Appendix A. Here we only give a self-contained

definition of the regularity in the sense of Kunita [25]. In particular, albeit the process U

and its local characteristics (β, γ) are differentiable it is not enough as is shown in H. Kunita

[25], to get that the dynamics of the derivative ∂
∂x
U(t, x) is the derivative term by term of

that of U . Let m be a non-negative integer, β be a real function in Cm([0,+∞[×[0,+∞[)

and γ be a Cm([0,+∞[×[0,+∞[) vector. We define the following seminorms for any compact

K,

||β||m:K(t) = sup
x∈K

|β(t, x)|

1 + |x|
+

∑

1≤α≤m

sup
x∈K

|∂αxβ(t, x)|.

||γ||∼m:K(t) = sup
x,y∈K

|γT (t, x).γ(t, y)|

(1 + |x|)(1 + |y|)
+

∑

1≤α1,α2≤m

sup
x,y∈K

|∂α1

x ∂α2

y γT (t, x).γ(t, y)|

For simplicity if a random field (G(t, x))t≥0,x≥0 is of class C0,2([0,+∞[×[0,+∞[) we use the

notation Gx for ∂
∂x
G and Gxx for ∂2

∂x2
G.

Definition 2.1. Let m ≥ 2 and F be a random field with spatial parameter x defined on

R+ × R+ → R with local characteristics (β, γ),

F (t, x) = F (0, x) +

∫ t

0
β(s, x)ds +

∫ t

0
γ(s, x).dWs. (6)

According to Kunita [25], F is said to be C(m) regular in the sense of Kunita if

• F is continuous on the time and of class Cm(R+) on x.
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• β : R+ × R+ → R and the N -dimensional vector γ : R+ × R+ → RN are F-adapted

random field continuous on the time and are of class Cm−1(R+) on the spatial parameter

x such that ||β||m−1:K(t) and ||γ||∼m−1:K(t) are integrable with respect to t, for any

compact K ⊂ [0,+∞[.

Now we turn to the differential rules of semimartingales with spatial parameter. For this

some other notations are needed. Let 0 < δ ≤ 1 and K a compact of R+. For some random

fields f(t, x) and g(t, x, y) we set

||f ||δ:K := sup
x,y∈K
x 6=y

|∂αx f(x)− ∂αx f(y)|

|x− y|δ
, ||g||δ:K := sup

x,x′,y,y′∈K
x 6=x′,y 6=y′

|g(x, y) − g(x′, y)− g(x, y′) + g(x′, y′)|

|x− x′|δ|y − y′|δ
.

Using these notations and according to Kunita [25],(Theorem 3.3.3 p.95, recalled in Ap-

pendix A), we have the following differential rules.

Theorem 2.1 (Differential Rules). Let F be a random field of class C0,1([0,+∞[×[0,+∞[)

such that its local characteristics (β, γ) are of class C0,1([0,+∞[×[0,+∞[). Assume that the

derivative βx and γx are δ-Hölder, with 0 < δ ≤ 1 such that for any compact K of R+,

||β||δ:K(t) and ||aγ ||δ:K(t) are integrable with respect to t, with aγ(t, x, y) := γ(t, x)T .γ(t, y).

Then the derivative Fx of F with respect to the spatial parameter x satisfies, almost surely,

Fx(t, x) = Fx(0, x) +

∫ t

0
βx(s, x)ds +

∫ t

0
γx(s, x).dWs (7)

Furthermore, if F is of class C(m), m ≥ 2 in the sense of Kunita then Fx is of class C(m−1) in

the sense of Kunita with local characteristics (βx, γx) which are of class C0,m−2([0,+∞[×[0,+∞[).

Itô-Ventzel’s formula Now, we need to study the dynamics of U(t,Xκ
t ) (X

κ is a wealth

process). Itô-Ventzel’s formula is a generalization of classical Itô’s formula where the de-

terministic function is replaced by a stochastic process depending on a real or multivariate

parameter. This enables us to carry out computations in a stochastically modulated dynamic

framework.

Theorem 2.2 (Itô-Ventzel’s Formula). Consider a random field F : [0,+∞[×[0,+∞[→ R

which is of class C(2) in the sense of Kunita,

F (t, x) = F (0, x) +

∫ t

0
β(s, x)ds +

∫ t

0
γ(s, x).dWs, a.s. (8)

Furthermore, let X be a continuous semimartingale with decomposition

Xt = X0 +

∫ t

0
µXs ds+

∫ t

0
σXs .dWs

10



Then (F (t,Xt)) is also a continuous semimartingale with decomposition

F (t,Xt) = F (0,X0) +

∫ t

0
β(s,Xs)ds+

∫ t

0
γ(s,Xs).dWs

+

∫ t

0
Fx(s,Xs)dXs +

1

2

∫ t

0
Fxx(s,Xs)〈dXs〉

+

∫ t

0
γx(s,Xs).σ

X
s ds.

Let us now comment the dynamics of F (t,Xt). The first line of the right hand side of this

dynamic corresponds to the dynamics of the process (F (t, x))t≥0 taken on (Xt)t≥0, where

the second one is none other than the classical Itô formula, and the last one represents a

correction term which can be written γx(s,Xs).σ
X
s = 〈dFx(s, x), dXs〉|x=Xs

.

We refer to Kunita [25], (Theorem 3.3.1, p.92) for more details and the proof of this result.

In the following example, we illustrate this formula from the classical Itô’s formula.

Example: Itô’s Formula Let f(t, θ, x) be a deterministic function R+ × R × Rn → R

of class C1,2,2. Denote by ∇θ the gradient with respect to θ and by ∆θθ the Hessian matrix

with respect to θ where t and x are fixed.

Let Θ ∈ Rn be an Itô’s semimartingale dΘt = µΘt dt+ΣΘ,T
t dWt, with the diffusion generator

LΘ
t =

∂

∂t
f(t,Θt, x) + µΘt ∇θ +

1

2
trace[ΣΘ,T

t ΣΘ
t ∆θθ].

Denote by F the stochastic random field F (t, x)
def
= f(t,Θt, x). By the classical Itô’s formula

dF (t, x) = LΘ
t f(t,Θt, x)dt+ΣΘ

t ∇θf(t,Θt, x).dWt

such that F is a stochastic random field with local characteristics βF and γF given by

βF (t, x) = LΘ
t f(t,Θt, x), γF (t, x) = ΣΘ

t ∇θf(t,Θt, x).

Let now X be another real continuous semimartingale dXt = µXt dt + σXt .dWt and LX its

stochastic diffusion operator without the term on ∂
∂t
.

We now compute the dynamics of F (t,Xt) := f(t,Θt,Xt) by the classical Itô’s formula

applied to the vector (Θt,Xt), with diffusion generator LΘ,X , and compare it with the Itô-

Ventzel’s formula. We obtain

dF (t,Xt) = LΘ,X
t f(t,Θt,Xt)dt+

(

ΣΘ
t ∇θf(t,Θt,Xt) + fx(t,Θt,Xt)σ

X
t

)

.dWt

= βF (t,Xt)dt+ γF (t,Xt).dWt + γFx (t,Xt).σ
X
t dt+ LXt f(t,Θt,Xt)dt

+ fx(t,Θt,Xt)σ
X
t .dWt.
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Denoting ∆θ,xf := ∇θfx, L
Θ,X
t := LΘ

t (t, θ, x) + LXt (t, θ, x) + σXt .σ
Θ
t ∆θ,xf(t, θ, x), and then,

γFx (t,Xt).σ
X
t dt = ΣΘ

t ∇θfx(t,Θt,Xt).σ
X
t dt =

∑

j

fx,θj < dΘj
t , dXt > .

2.2 Stochastic PDE of X -consistent Dynamic Utilities

Using the same ideas as in interest rate modeling when studying the dynamics of the forward

rates, or in the stochastic volatility models to characterize the drift of the stochastic implied

volatility, we show how the consistency property constraints the random fields β(t, x) and

γ(t, x) in terms of the random field U , its derivatives and the market parameters (rt, η
σ
t ).

Lemma 2.3 (Drift Constraint). Let U be a progressive utility of class C(2) in the sense of

Kunita with local characteristics (β, γ) as in (5). Then, for any admissible portfolio Xκ,

dU(t,Xκ
t ) =

(

Ux(t,X
κ
t )X

κ
t κt + γ(t,Xκ

t )
)

.dWt

+
(

β(t,Xκ
t ) + Ux(t,X

κ
t )rtX

κ
t +

1

2
Uxx(t,X

κ
t )Q(t,Xκ

t , κt)
)

dt,

whereQ(t, x, κ) := ‖xκ‖2 + 2xκ.
(Ux(t, x)η

σ
t + γx(t, x)

Uxx(t, x)

)

.

Since κ ∈ Rσ, Q(t, x, κ) is only depending on γσx (t, x), the orthogonal projection of γx(t, x)

on Rσ
t . Let Q

∗(t, x) = infκ∈Rσ Q(t, x, κ); the minimum of this quadratic form is achieved at

the optimal policy κ∗ given by






xκ∗t (x) = − 1
Uxx(t,x)

(

Ux(t, x)η
σ
t + γσx (t, x)

)

x2Q∗(t, x) = − 1
Uxx(t,x)2

||Ux(t, x)η
σ
t + γσx (t, x))||

2 = −||xκ∗t (x)||
2.

(9)

Remark 2.1. Similar results may be established when the volatility vector of wealth processes

has an affine form κ̄t = κt + αt, κt ∈ Rσ
t , αt ∈ RN and the market risk premium is

a general η. In this framework the quadratic form is unchanged, Q(t, x, κ̄) = ‖xκ̄‖2 +

2xκ̄.
(Ux(t,x)ηt+γx(t,x)

Uxx(t,x)

)

but the optimization program is related to affine constraints, κ̄t−αt ∈

Rσ
t . Denoting Q̄∗(t, x, α) := inf κ̄∈Rσ+αQ(t, x, κ̄), the optimal policy is

xκ̄∗t = xαt + (
Ux(t, x)ηt + γx(t, x)

Uxx(t, x)
− xαt)

σ =
Ux(t, x)η

σ
t + γσx (t, x)

Uxx(t, x)
+ xα⊥

t (10)

and finally

Q̄∗(t, x, α) = ||
Ux(t, x)η

⊥
t + γ⊥x (t, x)

Uxx(t, x)
− xα⊥

t ||
2 − ||

Ux(t, x)ηt + γx(t, x)

Uxx(t, x)
||2 (11)

This identities will be used extensively in the study of the dual process and the transformation

by change of numeraire.

12



Proof. (i) The first assertion is a direct consequence of Itô-Ventzel formula applied to the

composite process
(

U(t,Xκ
t )
)

t≥0
, where Xκ

t is an admissible wealth process with dynamics

given by (4), dXκ
t = Xκ

t

(

rtdt+ κt.(dWt + ησt dt)
)

.

(ii) The minimization program of the quadratic form Q(t, x, κ) corresponds to the square

of the distance between −
Ux(t,x)ησt +γx(t,x)

Uxx(t,x)
and the vector space Rσ

t , that yields to equation

(9). Then, the minimum is given by Q∗(t, x) = −||xκ∗t (x)||
2.

This lemma suggests that the constraint on the drift β implies the consistency condition.

The idea of the next theorem is to reformulate this constraint as a natural candidate for β.

Theorem 2.4 (Utility-SPDE). Let U be a progressive utility of class C(2) in the sense

of Kunita with local characteristics (β, γ). Let us introduce the risk tolerance coefficient

αUt (t, x) = − Ux(t,x)
Uxx(t,x)

and the utility risk premium ηU (t, x) = γx(t,x)
Ux(t,x)

with its two components

ηU,σ ∈ Rσ, ηU,⊥ ∈ Rσ,⊥.

The quadratic form x2Q(t, x, κ) = ‖xκt‖
2 − 2αU (t, x)(xκt).

(

ησt + ηU,σt (x)
)

achieves its

minimum at the optimal policy,

xκ∗t (x) = −
1

Uxx(t, x)
(Ux(t, x)η

σ
t + γσx (t, x)) = αU (t, x)

(

ησt + ηU,σt (x)
)

(12)

a) Assume the drift constraint to be of Hamilton-Jacobi-Bellman nonlinear type

β(t, x) = −Ux(t, x)rtx+
1

2
Uxx(t, x)‖xκ

∗
t (t, x)‖

2 (13)

Then the progressive utility is a solution of the following HJB-SPDE

dU(t, x) = −Ux(t, x)
[

xrt +
1

2
αU (t, x)‖ησt + ηU,σt (x)‖2

]

dt+ γ(t, x).dWt,

and for any admissible wealth Xκ
t , the process U(t,Xκ

t ) is a supermartingale.

b) Furthermore, if κ∗t (x) is assumed to be sufficiently smooth so that for any initial wealth

x > 0, the equation

dX∗
t = X∗

t

[

rtdt+ κ∗t (X
∗
t ).(dWt + ησt dt)

]

(14)

has at least one positive solution X∗, then U(t,X∗
t ) is a local martingale.

c) Moreover, if this local martingale
(

U(t,X∗
t )
)

t≥0
is a martingale, then the progressive

utility U is a X -consistent stochastic utility with optimal wealth process X∗.

This theorem proves that the pair consisting on the investment universe and the derivative

with respect to x of the volatility denoted by γx describes completely the evolution of the

13



stochastic utility U . The drift β(t, x) may be interpreted in term of the risk aversion ηU

and the volatility γ of the utility. The optimal policy κ∗ is the best combination between

the market risk premium ησ and the utility risk premium ηU,σt (x) = γσx
Ux

.

The assumption (13) on the drift β is a sufficient condition under which the consistence with

the investment universe of the second assertion of Definition 1.1 is satisfied. Nevertheless,

additional assumptions are needed on the existence of the wealth process X∗ for which
(

U(t,X∗
t )
)

t≥0
is a martingale. This explains the assumptions of the second part of the

result.

The Utility-SPDE poses several challenges. It is a fully nonlinear and non elliptic SPDE;

the latter is a direct consequence of the ”forward in time” nature of the involved stochastic

optimization problem, for which there is no maximum principle. Thus, existing results of

existence, uniqueness and regularity of weak (viscosity) solutions are not directly applicable.

An additional difficulty comes from the fact that the volatility coefficient may depend on

higher order derivatives of U , in which case the SPDE can not be turned into a regular PDE

with random coefficients by using the method of stochastic characteristics. To overcome

these difficulties, we propose a new method based on a stochastic change of variable; this

method, that we call ”stochastic flow method”, allows us to construct explicit solutions of

this Utility-SPDE. This will be the subject of Section 4.

Proof. All assertions are simple consequences of the previous lemma, since by the assumption

on β(t, x), β(t, x) + xUx(t, x) rt +
x2Uxx(t,x)

2 Q(t, x, κ) ≤ 0, a.s. ∀κ ∈ Rσ, with equality for

κ∗t (x). Therefore, U(t,Xκ
t ) is a positive supermartingale for any admissible strategy, and if

equation (14) has a solution X∗, then the process
(

U(t,X∗
t )
)

t≥0
is a local martingale.

The additional assumption that
(

U(t,X∗
t )
)

is a true martingale yields the characterization

of the U(., x) as X -consistent utility.

Example: Change of probability and numeraire in standard utility function

In this example, we study the β-HJB constraint (13) of Theorem 2.4 in the case of a X -

consistent stochastic utilities obtained by combining a standard utility function v with some

positive processes N and Z. The advantage here is that the drift β and the volatility γ of

the utility are given explicitly from v, N and Z.

Let v an C2 utility function and let N and Z two positive processes satisfying

dNt

Nt
= µNt dt+ σNt .dWt,

dZt
Zt

= µZt dt+ σZt .dWt, Z0 = 1.
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Define the strictly increasing and concave process (with respect to x) U by U(t, x) =

Ztv(x/Nt). Applying Itô’s Lemma and using identities Ux(t, x) = Zt

Nt
vx(

x
Nt

), Uxx(t, x) =
Zt

N2
t

vxx(
x
Nt

), it is straightforward to check that, for x > 0, the process (U(t, x))t≥0 satisfies

dU(t, x) = β(t, x)dt + γ(t, x).dWt where the local characteristics β and γ are given by

β(t, x) = U(t, x)µZt + xUx(t, x)(−µ
N
t + ||σNt ||2 − σNt .σ

Z
t ) +

1

2
x2Uxx(t, x)||σ

N
t ||2 (15)

γ(t, x) = U(t, x)σZt − xUx(t, x)σ
N
t . (16)

Given that U is a progressive utility, we are interested in establishing conditions on the

triplet (v,N,Z) for the drift β satisfies the HJB constraint (13).

Proposition 2.5. Let v be an utility function.

(i) The process U defined by U(t, x) = Ztv(x/Nt) is a consistent stochastic utility if Z is a

martingale, ZXκ/N, κ ∈ Rσ are positive local martingales and σN ∈ Rσ. In this case

the optimal policy is given by κ∗t = σNt .

(ii) In the special case where v is a power or an exponential utility, then Condition : ”Z

is martingale, ZXκ/N is a local martingale for any κ ∈ Rσ ” can be relaxed.

− If v is a power utility with risk aversion a 6= 0: v(x) = xa

a
, it suffices that the

parameters of Z and N satisfying,

1

a
µZt +rt−µ

N
t +σNt .η

σ
t −σ

N,⊥
t .σZ,⊥t +

1

2(1− a)
‖ησt −σ

N,σ
t +σZ,σt ‖2+

1 + a

2
‖σN,⊥t ‖2 = 0,

so that U(t, x) = Ztv(x/Nt) is a consistent stochastic utility.

− If v is an exponential utility it suffices to take Z and N satisfy

µN = r + σN .ησ, µZ =
1

2
‖ησ − σN,σ + σZ,σ‖2, σN ∈ Rσ

so that U(t, x) = Ztv(x/Nt) is a consistent stochastic utility.

This result gives sufficient conditions under which U , defined above, is an X -consistent

stochastic utility. Note also that this example generalizes the one in [33] in which case u is

an exponential utility and provides a simillar sufficient condition.

Proof. To facilitate the exposition, let us denote by r̂ = r−µN +σN .ησ , η̂ = ησ−σN . The

volatility vector γ being given by equation (16), Lemma 2.3 gives the optimal policy κ∗

κ∗t (x) = −
1

xUxx

(

− xUxx(t, x)σ
N,σ
t + Ux(t, x)(η̂

σ
t + σZ,σt )

)

. (17)
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Then, the drift of the utility process U satisfies the HJB constraint (13) if and only if,

UµZt + Uxr̂tx− xUxσ
N,⊥.(η̂t + σZt )−

(Ux)
2

2Uxx

∥

∥η̂σt + σZ,σt

∥

∥

2
+
x2Uxx

2

∥

∥σN,⊥t

∥

∥

2
(t, x) = 0.

Using that U(t, x) = Ztv(x/Nt) and simplifying by xv(x)Z, it follows from the definition of

η̂ and r̂ that ∀t ≥ 0, x > 0

v

xvx
µZt +rt−µ

N
t +σ

N
t .η

σ
t −σ

N,⊥
t .σZ,⊥t −

vx
2xvxx

‖η̂σt +σ
Z,σ
t ‖2+

(

1+
xvxx
2vx

)

‖σN,⊥t ‖2(t, x) = 0. (18)

The case: v/xvx and vx/xvxx are proportional, in turn v is a power or exponential utility.

• v(x) = xa/a. Then equation (18) becomes, ∀t ≥ 0

1

a
µZt + rt − µNt + σNt .η

σ
t − σN,⊥t .σZ,⊥t +

1

2(1− a)
‖ησt − σN,σt + σZ,σt ‖2 +

1 + a

2
‖σN,⊥t ‖2 = 0.

• v(x) = −1
c
e−cx, c > 0. Then ∀t ≥ 0, x > 0,

µZ −
1

2
‖ησt − σN,σt + σZ,σt ‖2 − cx

(

rt − µNt + σNt .η
σ
t − σN,⊥t .σZ,⊥t

)

+
(cx2

2
− cx)‖σN,⊥t ‖2 = 0.

Obviously, this is a second order polynomial identically null, consequently all coefficients are

nulls, i.e., r̂ = r − µN + σN .ησ = 0, µZ = 1
2‖η

σ − σN,σ + σZ,σ‖2, σ ∈ Rσ

Second case : v/xv′ and v′/xv′′ are not proportional, then it is immediate that all terms

of (18) are equal to zero, in turn r̃ = 0, µZ = 0, σ ∈ Rσ, ησ −σN +σZ ∈ Rσ,⊥ and hence

the optimal strategy κ∗ in (17) is simply σN .

To summarize the situation: Z is a martingale, Xκ/N is a martingale under the probability

QZ defined by dQZ/dP = Z and σN ∈ Rσ.

As in the classical theory of optimal choice of portfolio in expected utility framework

([24], [40]), the process
(

Ux(t,X
∗
t )
)

has nice properties and a central place in the dual

problem introduced in the next section. For notational simplicity in the next result we do

not recall the dependence of the optimal wealth relative to its intial condition x contrary to

Section 4 where it plays a very important role..

Proposition 2.6. Let U be a progressive utility of class C(3) in the sense of Kunita, with

local characteristics (β, γ). Assume that all assumptions of Theorem 2.4 hold true, in par-

ticular that X∗ is a solution of dX∗
t = X∗

t

[

rtdt+ κ∗t (X
∗
t ).(dWt + ησt dt)

]

.
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Let L∗ be the stochastic diffusion operator of X∗, L∗
t,x = 1

2‖xκ
∗
t (x)‖

2 ∂2

∂x2
+{rtx+(xκ∗t (x)).η

σ
t }

∂
∂x

.

i) Then, Ux is of class C(2) in the sense of Kunita with local characteristics (βx, γx) and

{

γx(t, x) + Uxx(t, x)(xκ
∗
t (x)) = −Ux(t, x)η

σ
t + γ⊥x (t, x)

βx(t, x) = −Ux(t, x)rt − L∗
t,xUx(t, x)− (xκ∗t (x)).γxx(t, x)

ii) The semimartingale Ux(t,X
∗
t ) has the following dynamics

dUx(t,X
∗
t ) = Ux(t,X

∗
t )
[

− rtdt+
(

ηU,⊥t (X∗
t )− ησt )

)

.dWt

]

(19)

In particular, for any admissible wealth process Xκ (κ ∈ Rσ), (Xκ
t Ux(t,X

∗
t )) is a local

martingale and a martingale if Xκ = X∗.

This result shows that Ux(t,X
∗
t ) plays the role of a state price density process, defined in

Definition 3.1.

Proof. Theorem 2.1 shows that Ux is of class C(2) in the sense of Kunita, with local char-

acteristics (βx, γx). On the other hand, by Theorem 2.4, we have the identities β(t, x) =

−xUx(t, x) rt+
1
2x

2Uxx(t, x) ||κ
∗
t (x)||

2 and Uxx(t, x)(xκ
∗
t (x)) = −

(

Ux(t, x)η
σ
t +γ

σ
x (t, x)

)

. This

second identity is useful to calculate 1
2Uxx(t, x)∂x( ||xκ

∗
t (x)||

2) = Uxx(t, x)
(

(xκ∗t (x)).∂x(xκ
∗
t (x))

)

.

Taking the derivative with respect to x in this second identity, it follows that

Uxxx(t, x)(xκ
∗
t (x)) + Uxx(t, x)∂x(xκ

∗
t (x)) = −

(

Uxx(t, x)η
σ
t + γσxx(t, x)

)

.

In fact we are interested in the inner product with the vector xκ∗t (x) that yields the following

equality written in an appropriate form

1

2
Uxxx(t, x)||xκ

∗
t (x)||

2 + Uxx(t, x)
(

(xκ∗t (x)).∂x(xκ
∗
t (x))

)

= −
{1

2
Uxxx(t, x)||xκ

∗
t (x)||

2 + Uxx(t, x)η
σ
t .(xκ

∗
t (x))

}

− γσxx(t, x).(xκ
∗
t (x)).

It is easy to recognize the first line as the derivative of 1
2Uxx(t, x) ||xκ

∗
t (x)||

2 and the second

line as related to the diffusion operator L∗
t,x. In this form the relation βx(t, x) = −Ux(t, x)rt−

L∗Ux(t, x)− (xκ∗t (x)).γxx(t, x) is easy to establish.

We have now all the elements needed to calculate the dynamics of Ux(t,X
∗
t ) using Itô-Ventzel

formula

dUx(t,X
∗
t ) =

(

γx(t,X
∗
t ) + Uxx(t,X

∗
t )X

∗
t κ

∗
t (X

∗
t )
)

.dWt

+
{

βx(t,X
∗
t ) + L∗Ux(t,X

∗
t ) + γxx(t,X

∗
t ).(X

∗
t κ

∗
t (X

∗
t ))

}

dt.
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Note that in the last inner product, we can replace γxx(t,X
∗
t ) by its orthogonal projection

γσxx(t,X
∗
t ) on the space Rσ. Thanks to the previous calculation, the expression in the

brackets of the second line is exactly −rtUx(t,X
∗
t ). The diffusion coefficient may also be

simplified into −Ux(t,X
∗
t )η

σ
t + γ⊥x (t,X

∗
t ). So, we obtain the remarkably simple dynamics of

Ux(t,X
∗
t )

dUx(t,X
∗
t ) = Ux(t,X

∗
t )
[

− rtdt+ (ηU,⊥t (X∗
t )− ησt ).dWt

]

.

Let us now prove the last sentence. Given an admissible wealth process, dXκ
t = Xκ

t

(

rtdt+

κt(dWt+ ησt dt)
)

, standard Itô’s calculus provides an explicit form for the dynamics of Zκt =

Xκ
t Ux(t,X

∗
t ) as

dZκt
Zκt

=
dXκ

t

Xκ
t

+
dUx(t,X

∗
t )

Ux(t,X
∗
t )

+ <
dXκ

t

Xκ
t

,
dUx(t,X

∗
t )

Ux(t,X
∗
t )

>

=
[

κt − ησt + ηU,⊥t (X∗
t )
]

.dWt,

which implies that Zκt = Xκ
t Ux(t,X

∗
t ) is a local martingale for any κ ∈ Rσ. In particular

the volatility coefficient of Z∗ is σZ,∗t = (κ∗t (X
∗
t )−η

σ
t +η

U,⊥
t (X∗

t )). To show that the positive

local martingale Z∗ is a martingale, we use the concavity of the utility U , with the fact that

U(0) = 0. As consequence, Z∗
t = X∗

t Ux(t,X
∗
t ) ≤ U(t,X∗

t ); since by assumption U(.,X∗
. ) is

a martingale, the same property is true for Z∗. This completes the proof.

3 Duality

After having introduced the consistent stochastic utilities and established the associated

SPDEs, several questions remain open at this stage. Indeed, we have shown that the volatil-

ity γ of these utilities plays a fundamental role since it completely describes the stochastic

dynamics of utilities and the optimal policy. It now remains to give an interpretation of the

orthogonal part γ⊥x . The classical theory leads naturally to introduce the convex conjugate

function Ũ(t, y)
def
= infx>0,x∈Q+

(

U(t, x)− x y
)

(also called the Legendre-Fenchel transform)

of U(t, x).

We want to show that this conjugate random field is a solution of a dual utility SPDE,

consistent with a convex family Y of semimartingales called density processes parametrised

by their so-called risk premium ν⊥. Then the optimal risk premium ν⊥,∗ is related to

ηU,⊥ = γ⊥x /Ux.

In the classical theory of concave functions f and their conjugates f̃ , the monotone

functions fx and −f̃y are inverse of each other, i.e. −f̃y(y) = f−1
x (y); in the stochastic
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framework, monotone functions are replaced by stochastic monotone flows and their inverse

flows whose dynamics are given by the Itô-Ventzel formula. For simplicity, we present these

results separately and in an appropriate form.

3.1 Local characteristics of inverse flows

Let φ and ψ be two one-dimensional stochastic flows, with dynamics

dφ(t, x) = µφ(t, x)dt+ σφ(t, x).dWt,

dψ(t, x) = µψ(t, x)dt + σψ(t, x).dWt.

From Itô-Ventzel’s formula, under regularity assumptions, the compound random field φ ◦

ψ(t, x) = φ(t, ψ(t, x)) is a semimartingale whose characteristics are given explicitly from

those of φ and ψ and their derivatives.

Theorem 3.1. Suppose that φ is a C(2) regular random field in the sense of Kunita, and

ψ(t, x) is a continuous semimartingale. Then the random field φ ◦ ψ(t, x) = φ(t, ψ(t, x)) is

a continuous semimartingale with decomposition

d(φ ◦ ψ)(t, x) = µφ
(

t, ψ(t, x)
)

dt+ σφ
(

t, ψ(t, x)
)

.dWt

+ φx
(

t, ψ(t, x)
)

dψ(t, x) +
1

2
φxx

(

t, ψ(t, x)
)

||σψ(t, x)||2dt

+ σφx
(

t, ψ(t, x)
)

.σψ(t, x)dt. (20)

The volatility of the compound process φ ◦ ψ is given by

σφ◦ψ(t, x) = σφ
(

t, ψ(t, x)
)

+ φx
(

t, ψ(t, x)
)

σψ(t, x).

The next proposition, used several times throughout this paper, gives the decomposition of

the inverse of a strictly monotone stochastic flow.

Proposition 3.2 (Inverse flow dynamics). Let φ be a strictly monotone flow, regular in

the sense of Kunita, with characteristics (µφ(t, x), σφ(t, x)). The inverse process ξ of φ is

defined on the range of φ by φ(t, ξ(t, y)) = y.

i) The inverse flow ξ(t, y) has a dynamics given in terms of the old variables by:

dξ(t, y) = −ξy(t, y)
(

µφ(t, ξ)dt+ σφ(t, ξ).dWt

)

+
1

2
∂y

(

ξy(t, y)‖σ
φ(t, ξ)‖2

)

dt
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ii) With the new variables, using that σξ(t, y) = −ξy(t, y)σ
φ(t, ξ(t, y))

dξ(t, y) = σξ(t, y).dWt +
(1

2
∂y
(‖σξ(t, y)‖2

ξy(t, y)

)

− µφ(t, ξ(t, y))ξy(t, y)
)

dt

It is interesting to observe that the local characteristics of the inverse flow ξ can be easily

interpreted as some derivatives. This point will play a crucial role in the sequel. The mathe-

matical formulation of this remark is given in the following corollary, where the assumptions

of Proposition 3.2 are made.

Corollary 3.3. Let (Φ(t, x),Mφ(t, x),Σφ(t, x)) be the primitives, null at x = 0, of φ(t, x),

(µφ(t, x), σφ(t, x)) respectively, so that the Φ(t, x) dynamics is dΦ(t, x) = Mφ(t, x)dt +

Σφ(t, x).dWt.

Then, the dynamics of the random field Ξ(t, y) =
∫ +∞
y

ξ(t, z)dz is

• In old variables,

dΞ(t, y) = Σφ
(

t, ξ(t, y)
)

.dWt +Mφ
(

t, ξ(t, y)
)

dt+
1

2
Ξyy(t, y)‖Σ

φ
x

(

t, ξ(t, y)
)

‖2dt

• In new variables, with the notations M ξ(t, y) = Mφ(t,−Ξy(t, y)) and Σξ(t, y) =

−Σφ(t,−Ξy(t, y)),

dΞ(t, y) = Σξ(t, y).dWt +
(

M ξ(t, y) +
1

2

‖Σξy(t, y)‖2

Ξyy(t, y)

)

dt. (21)

Remark . Note that if the process φ is strictly increasing on x then its primitive Φ is a

progressive utility (concave increasing random field) with a convex conjugate random field

Ξ satisfying (21). Moreover, for a particular choice of the drift MΦ (HJB type), Φ is a

consistent utility and the dynamics (21) gives the dual SPDE.

Proof. The proof of Proposition 3.2 is essentially based on the generalized Itô’s formula

established in the Appendix. For simplicity, we denote by (µξ, σξ) the local characteristic of

ξ assumed to be regular. By Itô-Ventzel’s formula, we have

dφ(t, ξ(t, y)) = 0

= µφ(t, ξ(t, y))dt + σφ(t, ξ(t, y)).dWt + φx(t, ξ(t, y))dξ(t, y)

+
1

2
φxx(t, ξ(t, y)) < dξ(t, y) > +σφx(t, ξ(t, y)).σ

ξ(t, y)dt

Recalling the following identities

φx(t, ξ(t, y)) =
1

ξy(t, y)
, φxx(t, ξ(t, y)) = −

ξyy(t, y)

(ξy(t, y))3
,
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we can express the parameters of the decomposition in terms of ξ, ξy, and ξyy and the

diffusion coefficient σξ(t, y) of ξ, since σξ(t, y) = −ξy(t, y)σ
φ(t, ξ(t, y)). It is immediate that

µξ(t, y) = −ξy(t, y)µ
φ(t, ξ(t, y))+ξy(t, y) < σφ(t, ξ(t, y)), σφy (t, ξ(t, y)) > +

1

2
ξyy(t, y)‖σ

φ(t, ξ(t, y))‖2

In terms of the stochastic random fields µφ and σφ, this may be written as

µξ(t, y) = −ξy(t, y)µ
φ(t, ξ(t, y)) +

1

2
∂y
[

ξy(t, y)‖σ
φ(t, ξ(t, y))‖2

]

.

In terms of their own parameters, it follows from the strict monotonicity of ξ that

µξ(t, y) = −ξy(t, y)µ
φ(t, ξ(t, y)) +

1

2
∂y
[

‖σξ(t, y)‖2/ξy(t, y)
]

.

The proof of Proposition 3.2 is now complete.

The proof of Corollary 3.3 is achieved, first by reconciling the results of the previous propo-

sition and the following identities,

(Φx)
−1(t, y) = −Ξy(t, y), Φxx(t,−Ξy(t, y)) = −

1

Ξyy(t, y)
, and −Cx(t,−Ξy(t, y)) =

Dy(t, y)

Ξyy(t, y)

and second by integrating with respect to y, using the initial condition Ξ(t, 0) = 0.

3.2 Convex conjugate of consistent stochastic utility and dual

utility SPDE’s

In this paragraph, properties and dynamics of the convex conjugate Ũ of a consistent stochas-

tic utility U are investigated. In particular we show that if the drift β of the utility U is of

HJB type (equation (13)), then the drift of the convex conjugate Ũ denoted by β̃ is also of

HJB type and conversely. This property implies that the random field Ũ is a progressive

convex conjugate random field, consistent with a familly of state price density processes,

introduced below. We apply the results of the previous paragraph to the stochastic flow
(

Ux(t, x)
)

and its inverse
(

− Ũy(t, y)
)

.

The formula of inverse flows yields easily the dynamics of Ũ(t, y) from the dynamics of

U(t, x). Based on Proposition 3.2 and Corollary 3.3, we derive a stochastic partial differential

equation whose convex conjugate process Ũ(t, y) is a solution.

Proposition 3.4. Let U be a consistent progressive utility of class C(3) in the sense of

Kunita, with risk tolerance αUt (t, x) = − Ux(t,x)
Uxx(t,x)

and utility risk premium ηU (t, x) = γx(t,x)
Ux(t,x)

.

Assume that U satisfies the utility SPDE with the β constraint (13). Let Ũ be its dual convex

conjugate, null if y = +∞. Then,
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(i-a) In old variables, Ũ satisfies dŨ (t, y) = β1(t,−Ũy(t, y))dt + γ(t,−Ũy(t, y)).dWt, where















β1(t, x) = β(t, x)−
1

2Uxx(t, x)
‖γx(t, x)‖

2

= Ux(t, x)
(

− xrt −
αU (t, x)

2

(

||ηU,σt (x) + ησt ||
2 − ||ηUt (x)||

2
)

)

(22)

(i-b) In new variables,











β̃(t, y) = β1(t,−Ũy(t, y)), γ̃(t, y) = γ(t,−Ũy(t, y)), γ̃y(t, y) = −yŨyy(t, y)η
U (t,−Ũy(t, y))

β̃(t, y) = yŨy(t, y)rt +
1

2Ũyy(t, y)

(

‖γ̃y(t, y)‖
2 − ‖γ̃σy (t, y) + yŨyy(t, y)η

σ
t ‖

2
)

(ii) Optimization Programs: The drift β1(t, x) and β̃(t, y) are the value of two optimization

programs achieved, respectively, at the optimal policies θ∗(t, x) = ηU,⊥t (x) and ν∗t (y) =

θ∗(t,−Ũ (t, y)) = −γ̃⊥y (t, y)/yŨyy(t, y).















β1(t, x) = Ux(t, x)
[

− xrt −
1

2
αU (t, x)

(

inf
θ∈Rσ,⊥

||θt −
(

ησt + ηUt (x)
)

||2 − ‖ηUt (x)‖
2
)

]

β̃(t, y) = yŨy(t, y)rt −
1

2
y2Ũyy(t, y) inf

νt∈Rσ,⊥
{||νt − ησt ||

2 + 2
(

νt − ησt
)

.
( γ̃y(t, y)

yŨyy(t, y)

)

}
(23)

First, observe that as −Ũy is the inverse flow of Ux, the dynamic of the convex conjugate Ũ of

U becomes a simple consequence of Corollary 3.3. Second, the orthogonal part of the utility

risk premium ηU,⊥ := γ⊥x /Ux is the optimal policy of the dual problem in (ii). Third, given

that β is associated with an optimization program the dual drift β̃, it is also constrained

by a HJB type relation in the new variables, which means that the convex conjugate Ũ is

consistent with some given family of the state density processes.

Proof. By regularity assumptions, using Theorem 2.1, Ux(t, x), βx(t, x) and γx(t, x) are reg-

ular enough to apply Itô-Ventzel formula. The assumptions of Proposition 3.2 and Corollary

3.3 are satisfied and hence the dynamics of the convex conjugate is a direct consequence of

Corollary 3.3. Let us now recall that the drift β(t, x) of U(t, x) is given in Theorem 2.4 by

β(t, x) = Ux(t, x)
(

− xrt −
αU (t, x)

2
||ηU,σt (x) + ησt ||

2
)

.

Combining this identity with Definitions of the random fields αU and ηU yields (22). In

other hand, the formula for β1(t, x) in (23) is a consequence of the following property of the

orthogonal projection: the norm of the projection on Rσ is the distance to the orthogonal

vector space Rσ,⊥. So, for any vector a ∈ RN , ||aσ ||2 = infν∈Rσ,⊥ ||ν − a||2. Replacing a by
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(

ησt + ηU,σt (x)
)

yields the result.

Now, we focus on the drift β̃ of Ũ(t, y) in new variables, using essentially the following

identities,

U2
x(t,−Ũy(t, y))

2Uxx(t,−Ũy(t, y))
=

1

2
y2Ũyy(t, y),

γ̃y(t, y)

Ũyy(t, y)
= −γx(t,−Ũy(t, y)),

γ̃y(t, y)

yŨyy(t, y)
= −ηUt (−Ũy(t, y))

We get the desired formula for β̃ in (23).

β̃(t, y) = yŨy(t, y)rt −
1

2
y2Ũyy(t, y) inf

νt∈Rσ,⊥
{||νt + ησt ||

2 + 2
(

νt − ησt
)

.
( γ̃y(t, y)

yŨyy(t, y)

)

}

On the other hand by orthogonal projection on Rσ,⊥
t and using the fact that ησt ∈ Rσ

t , there

exists one and only one optimal process ν∗ given by

ν∗t (y) =
−γ̃⊥y (t, y)

yŨyy(t, y)
= ηU,⊥t (−Ũy(t, y))

By the same argument we get θ∗(t, x) = ηU,⊥t (x). Which achieves the proof.

Let us now focus on the dual optimization problem.

Definition 3.1 (State price density process). A Itô semimartingale Y ν is called a state

price density process if for any wealth process Xκ, κ ∈ Rσ, Y νXκ is a local martingale. It

follows that Y ν satisfies,

dY ν
t

Y ν
t

= −rtdt+ (νt − ησt ).dWt, νt ∈ Rσ,⊥. (24)

Y is the family of all state density processes Y := {Y ν , ν ∈ Rσ,⊥, Y ν satisfies (24)}

.Obviously the class Y is not empty, since taking ν ≡ 0, Y 0 is the classical minimal

density process where the pricing of future cash-flow at time T is obtained by first dis-

counting between t and T the cash value at T with the short rate rt, and then by taking

the conditional expected value with respect to the minimal martingale measure. More-

over, any state density process Y ν is the product of Y 0 by the density martingale Lνt =

exp
( ∫ t

0 νs.dWs − 1/2
∫ t

0 |νs|
2ds

)

.

We obtain an interesting interpretation of the volatility risk premium in terms of optimal

density process.

Let now, turn to the main result of this section which is based on the interpretation of

the drift β̃ as an optimization program.
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Theorem 3.5. Let U be a consistent progressive utility of class C(3), in the sense of Kunita,

satisfying the β HJB constraint. Then, its conjugate process Ũ(t, y) (convex decreasing

stochastic flow) is consistent with the family of state density processes Y , in the following

sense:

Ũ(t, Y ν) is a submartingale for any Y ν ∈ Y , and a martingale for some process Y ν∗(:= Y ∗).

The optimal process can be chosen as Y ∗
t (y) = Ux

(

t,X∗
t (−ũy(y))

)

, whose dynamics is

dY ∗
t

Y ∗
t

= −rtdt+
(

ν∗t (Y
∗
t )− ησt

)

.dWt.

where the dual optimal parameter ν∗t (y) is given by

ν∗t (y) =
−γ̃⊥y (t, y)

yŨyy(t, y)
=
γ⊥x

(

t,−Ũy(t, y)
)

y
= ηU,⊥t (−Ũy(t, y)).

Remark . Let Y(t, x) := Ux(t,X
∗
t (x)), if X∗

t (x) is strictly monotone in x, by taking its

inverse X (t, x), we can obtain Ux(t, x) in terms of Y(t, x) and X (t, x).

Proof. The first assertion of this result is essentially obtained by analogy with the primal

problem. Indeed, using the β̃ expression’s (23), which is

β̂(t, y) = yŨy(t, y)rt +
1

2
y2Ũyy(t, y) sup

νt∈Rσ,⊥

{−||νt − ησt ||
2 − 2

(

νt − ησt
)

.
( γ̃y(t, y)

yŨyy(t, y)

)

}

One can easily remark, by analogy to expression of Q in Lemma 2.3 and that of β (equation

(13), Theorem 2.4), that Ũ is consistent with the family of processes Y , that is Ũ(t, Y ν
t ) is

a submartingale for any Yν ∈ Y and a local martingale for the optimal choice (Theorem

3.4) ν∗t (y) = −γ̃⊥y (t, y)/yŨyy(t, y) = γ⊥x
(

t,−Ũ(t, y)
)/

y, if there exists a solution to the SDE,

dY ν∗

t

Y ν∗
t

= −rtdt+
(

ηU,⊥
(

t,−Ũy(t, Y
ν∗

t )
)

− ησt
)

.dWt. (25)

On the other hand we recall that according to Proposition 2.6 assertion ii) Ux(t,X
∗
t ) satisfies

dUx(t,X
∗
t )

Ux(t,X
∗
t )

= −rtdt+
(

ηU,⊥t (X∗
t )− ησt

)

.dWt,

Note that Y ∗
t (y) =

(

Ux(t,X
∗
t (−ũy(y)))

)

t≥0
and that −Ũy(t, Y

∗
t (y)) = X∗

t (−ũy(y)) shows

that that Y ∗ is a solution of (25) which in turn implies the optimality of Y ∗.

To conclude, we have to show that Ũ(Y ∗
t (y)) is not only a local martingale but a ”true”

martingale, when U(X∗
t (x)) is a martingale. Put xy = −ũy(y), and use that the conjugacy

relation implies that Ũ(Y ∗
t (y)) = U(X∗

t (xy)) − Y ∗
t (y)X

∗
t (xy) with Y

∗
t (y) =

(

Ux(t,X
∗
t (xy)).

Thanks to Proposition 2.6, U(X∗
t (xy)) and Y ∗

t (y)X
∗
t (xy) and therefore Ũ(Y ∗

t (y)) are mar-

tingales.
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Decreasing Consistent Utilities An interesting class of consistent utilities is the class

of decreasing consistent utilities, which was studied and fully characterized in the literature

by Berrier & al. [10] and Musiela & al. [35]. The utilities have a volatility vector γ identically

zero. It is an example where the dual SPDE is easier to study than the primal one. Indeed,

taking γ = 0, U is a solution of a non linear SPDE

dU(t, x) =
[1

2

Ux(t, x)
2

Uxx(t, x)
||ησt ||

2
]

dt

where the convex conjugate Ũ satisfies

dŨ(t, y) =
[

−
1

2
y2Ũyy(t, y)||η

σ
t ||

2 + rtyŨy(t, y)
]

dt

Writing that dŨ(t,y)
dt

= Ut(t, y) yields

Ũt(t, y)(ω) = −
1

2
y2Ũyy(t, y)(ω)||η

σ
t (ω)||

2 + rt(ω)yŨy(t, y)(ω)

which implies, by convexity, that t 7→ Ũ(t, y) is a decreasing function. Moreover, it is easy

to recognize in this PDE that the right hand side of the equation is nothing other than the

operator of diffusion of a geometrical Brownian motion with coefficients ησt (ω) and −rt(ω)

LGBt,y (ω) applied to Ũ : Ũt(t, y)(ω) = −LGBt,y Ũ(t, y)(ω). From this point, the idea is to look for

positive solutions which are space-time harmonic functions of a geometric Brownian motion.

As in Musiela & al and Berrier & al, the function Ũ(t, y) is assumed to be of class C3 in y

and of class C1 in time. First, put Ṽ (t, y) = Ũ(t, e−
∫ t

0
rsdsy) and A(t) =

∫ t

0 ||η
σ
s ||

2ds; then Ṽ

is a solution of the following PDE

Ṽt(t, y) = −
1

2
At(t)y

2Ṽyy(t, y).

Second, define H(log(y) − 1
2At,

1
2At, ω) = −Ṽt,y(t, y, ω) and take the change of variable

τ = 1
2At, it is straightforward to check that H solves the backward heat equation,

Hτ (τ, z) +Hzz(τ, z) = 0

The solutions of such equation are called space-time harmonic functions. Since the function

H is strictly positive, using the result of Widder, D.V [43, 44], F. Berrier & al. [10] and

Musiela & al. [35] show the following result which characterizes all decreasing consistent

utilities

Theorem 3.6. Let U(t, x) be a regular random field of class C3 on x such that ∂2

∂y∂t
Ũ(t, y) =

∂2

∂t∂y
Ũ(t, y) is defined and continuous. Assume U satisfies the utility SPDE with γ = 0 a.s..
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Then U is a consistent stochastic utility if and only if there exists a constant C ∈ R and

a finite Borel measure m, supported on the interval (0,+∞) with everywhere finite Laplace

transform, such that

Ũ(t, y) =

∫

R∗

+

1

1− 1
α

(

1− y1−
1

α e−
1−α
2α

∫ t

0
||ηs||2ds

)

dm(α) + C.

Ũy(0, y) = −

∫

R∗

+

y−
1

αdm(α)

Moreover the optimal wealth process is strictly increasing and regular with respect to its

initial condition x.

There is an interesting interpretation of these stochastic utilities: at date t = 0 the

derivative Ũy(0, y) = uy(y) cqscccan be easily interpreted as the integral −y−
1

α weighted

by the measure m, which is nothing than the derivative of the convex conjugate of power

utility with risk aversion α. Hence, one can imagine that the investor starts from a power

utility and pulls at random the risk aversion α. At time 0, his dual utility is a mixture

of power dual utilities weighted by some measure m, and at time t, the same property is

preserved but the measure becomes stochastic with density with respect to m, mt(dα) :=

e−
1−α
2α

∫ t

0
||ηs||2dsdm(α).

The stochastic measure mt(dα) is the unique one which ensure that the process Ũ con-

structed is the conjguate of a consistent utility. This interpretation is the starting point of

the work [22] where more general method to construct consistent utilities processes from a

family of classical utilities functions is developed.

3.3 Change of numeraire

One of our first reasons of interest in progressive utilities was the fact they are consistent

with classical transformation in financial market in contrast to the classical utilities functions

which are not stable by change of numeraire; so, the value function of the classical portfolio

optimization problem is highly dependent on market parameters (r, η). Moreover, it is easier

to work with portfolios that are local martingales rather than semimartingales, that can be

obtained using the market numéraire and there is a genuine interest to provide details of

this transformation on consistent stochastic utilities.

Let’s start with the following general result which is a direct consequence of the definition

1.1. In a more specific market: the bownien market which is the framework of this paper we

can say more about the properties of these utilities in particular we can study the dynamics

of these random fields as we see in next results.
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Proposition 3.7 (Stability by change of numeraire ).

Let U(t, x) be a X -consistent stochastic utility, N be a positive semimartingale and denote

by X̂ the class of process defined by X̂ = {X̂ := X/N, X ∈ X }, then the process V defined

by

V (t, x) = U(t, xNt)

is a X̂ -consistent stochastic utility in the market of numeraire N if and only if U is an

X -consistent stochastic utility. Moreover, the optimal wealth processes are related by the

following identity: X̂∗ = X∗/N .

Roughly speaking the proposition says that the notion of X -consistent utilities is preserved

by change of numeraire. If the agent decides to invest in a secondary market (foreign market)

his preferences (risk aversion) are still unchanged, given the uniqueness representation of his

preferences.

To show this result it is enough to verify the assertions of Definition 1.1 using identity

V (t, X̂t) = U(t,Xt) and the fact that by definition the optimal wealth processes are related

by X̂∗ = X∗/N .

Now, we turn to more quantitative aspects of the change of numéraire. In the brownien

market, the idea is to show how, by change of numeraire techniques, we simplify the utility

SPDE’s of consistent stochastic utilities. The local characteristics of the new stochastic

utility V are obtained by applying Ito-Ventzel Lemma and the parameters of the new N -

market.

Assumption 3.1. The new numeraire N , is assumed to satisfy:

dNt

Nt
= µNt dt+ δNt .dWt, N0 = z.

The wealth process X̂ is defined by X̂t := Xt/Nt where X denotes the wealth process in the

initial market. By Itô’s formula, we can easily write the dynamics of X̂κ = Xκ
t /Nt,

dX̂κ
t (x̂)

X̂κ
t (x̂)

=
(

rt − µNt + δN,σt .ησt
)

dt+
(

κt − δNt
)

.
(

dWt + (ησt − δNt )dt
)

, x̂ =
x

z
.

Denoting r̂ = r−µN + δN,σ.ησ the short interest rate in the new market and by η̂ = ησ− δN

(η̂σ = ησ − δN,σ) the new market price of risk, we get

dX̂κ
t (x̂)

X̂κ
t (x̂)

= r̂tdt+
(

κt − δNt
)

.
(

dWt + η̂tdt
)

, κt ∈ Rσ
t .
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Let us now stress that if δN ∈ Rσ the volatility vector κ̂ = κ − δN of X̂ belongs to Rσ.

Hence we get that a consistent utility V in this new market satisfies the same dynamics as

U in the initial market only by replacing r, η by r̂, η̂.

Else if δN,⊥ 6= 0 the optimization problem is quite different and utility-SPDE is modified,

as we will see in the following result.

Theorem 3.8. Let U(t, x) be a X -consistent stochastic utility satisfying the assumptions

of Theorem 2.4. The X̂ -consistent stochastic utility V (t, x) := U(t, xNt) is a solution of the

following stochastic partial differential equation

dV (t, x) = Vx(t, x)
{ 1

2αV (t, x)

(

||η̂t+η̂
V
t ||

2−||η̂⊥t +η̂
V,⊥
t −xαV δN,⊥t ||2

)

−xr̂t

}

(t, x)dt+γV (t, x).dWt

with αV (t, x) := Vx(t, x)/Vxx(t, x) and ηV (t, x) = γV (t, x)/Vx(t, x) denote the risk tolerance

and the utility risk premium of V . The volatility of V is γV (t, x) = γU (t, xNt)+xVx(t, x)δ
N
t

and the optimal policy κ̂∗ is given by

xκ̂∗t (x) = −
1

αV (t, x)

(

η̂σt + ηV,σt

)

(t, x) (26)

Let us comment on the content of this theorem and its relation to the previous results.

The dynamic (26) of consistent utilities and the optimal policy (26) are more complicated

then the ones in the initial framework. We recognize in the optimal policy formula a first term

(very similar to that of the initial market) which corresponds to an optimization program

without δN added to a second one which correspond to a translation by δN . This is due to

the fact that the dynamic of new wealth processes are a kind of combination of the initial

market and the dynamics of the state price density processes in the dual problem studied

in previous section.

According to Remark 2.1, which generalizes Lemma 2.3, and due to the fact that volatilities

of new wealth processes X̂ are translated by the vector −δN , the optimal policy in this new

market, denoted by κ̂ is given by

xκ̂∗t (x) = −
1

αV (t, x)

(

η̂σt + ηV,σt

)

(t, x)

On the other hand, it suffices to take δN in the range of the matrix σ, to get the SPDE’s of

the old market and to take η̂ = 0 to get SPDE similar to the dual HJB-SPDE.

Martingale market Now, remark that there exists a market numeraire portfolio Xησ

t =

1/Y 0
t ∈ X also called growth optimal portfolio see E. Platen and D. Heath [36] , which
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transforms the classical wealth processes into positive local martingales, by translating the

space of constraints Rσ. When using any state price density process Y ν and the associated

numeraire Nν
t = 1/Y ν

t , the local martingale property holds true, but the space of constraints

is modified.

Corollary 3.9. Under same assumptions as Theorem 3.8, taking N equal to the numeraire

portfolio 1/Y 0, the market has no risk premium and the ratio ηV,σ has the same impact as

a risk premium, but depending on the level of the wealth x at time t. In particular, the

previous dynamic of V is simpler

dV (t, x) =
(Vx)

2(t, x)

2Vxx(t, x)
‖
γV,σx (t, x)

Vx(t, x)
‖2dt+ γV (t, x).dWt.

and the convex conjugate Ṽ of V satisfies

dṼ (t, y) =
1

2Ṽyy(t, y)
‖γ̃⊥y (t, y)‖

2dt+ γ̃V (t, y).dWt.

Where the optimal policies are given by:

xκ̂∗t (x) = −
ηV,σ(t, x)

αV (t, x)
= −

γV,σ(t, x)

Vxx(t, x)
, ν̂∗t (y) = −

γ̃V,⊥y (t, y)

Ũyy(t, y)

In this result, taking a numeraire with good properties the HJB-SPDE is simplified and

become more intuitive. The utility process is a supermartingale and its dual conjugate is

a submartingale. Moreover, the optimal policies are only characterized and driven by the

derivative of the volatility vector.

We end this section, by the following corollary which is a consequence of the above result.

Corollary 3.10. Under the assumptions of Theorem 3.8, taking N = Y 0, we have

• γVx ∈ Rσ implies that Ṽ is a local martingale and the optimal dual process is constant:

Y ∗ ≡ 1.

• γVx ∈ Rσ,⊥ implies that V is a local martingale and the optimal wealth X∗(x) ≡ x.

The new market defined from the first one by change of numeraire Xησ (the market nu-

meraire) is called a martingale market because new wealths are local martingales.

4 Utility Characterization and Stochastic Flows

Method for Solving Utility-Stochastic PDE’s

As it is mentioned earlier, conventional methods of resolution of SPEs defined from their

terminal conditions, such as the method of characteristics, can not be used to solve utility
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SPDEs. To overcome this difficulty, we present here a new approach for these utility stochas-

tic partial differential equations, based on a random change of variable. This new approach,

that we call ”stochastic flows method”, is based on the properties of the optimal wealth X∗

and the state price density process Y ∗, both supposed to be a monotonic function of their

initial condition. More precisely, we take the initial condition U(0, .) = u(.) and an admissi-

ble wealth process as given, and ask: what are the conditions on these data to be an optimal

wealth process of some consistent stochastic utility U , and also how to recover U from this

information? In the classical expected utility framework, this is the question that He and

Huang [12] asked in (1992) in a complete market. From one point of view, our problem is

easier to solve because we allow ourselves a larger class of utility functions. In particular, we

establish in the following that the only restriction is the monotony of the wealth process with

respect to the initial wealth, plus some integrability condition. Another difference between

this work and that of He and Huang [12] is that we work directly on the path of wealth

process while they work with the volatility of the wealth process κ(t, x) = κ(t, St, x) in their

setup.

Before presenting this new method, remember that the direct analysis gives us a natural

way of finding U from the inputs (u, Y ∗,X∗) : Let U be a consistent utility with optimal

wealth X∗ then, according to Theorem 3.5 and Proposition 2.6, the process Y ∗ defined

by Y ∗
t (ux(x)) = Ux(t,X

∗
t (x)) is optimal for the dual problem and such that Y ∗X∗ is a

martingale. So, if X∗ is strictly increasing with respect to the initial capital, with inverse

flow X , Ux(t, x) = Y ∗
t (ux(X (t, x))); integrating with respect to x we get U .

From this we assume for the rest of the paper the following main assumption.

Assumption 4.1. The wealth process X∗
t (x) is assumed to be continuous and increasing in

x from 0 to +∞ with X∗
t (0) = 0, X∗

t (+∞) = +∞ for any t and satisfies

dX∗
t (x)

X∗
t (x)

= rtdt+ κ∗t (X
∗
t (x)).

(

dWt + ησt dt
)

, κ∗t (x) ∈ Rσ
t , ∀x > 0, a.s.

Denote by X (t, z) the inverse flow such that X∗
t (X (t, z))) = z.

Financially speaking this hypothesis, which may be a consequence of a no arbitrage

opportunity, says that: we do not invest more to earn less. On the other hand, this monotony

assumption is true in many examples and, according to the classical results of stochastic

differential equations (SDE), is satisfied as soon as xκ∗t (x) is locally uniformly Lipschitz,

(see Kunita [25]).

Note also, by conjugacy identity, that monotonicity of X∗(x) implies that the dual process

Y ∗(y) is, in turn, strictly increasing and therefore invertible with respect to its initial con-
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dition y for any date t. The converse property is also true. Consequently, we also have the

following hypothesis.

Assumption 4.2. Y ∗
t (y) is continuous and increasing in y from +∞ to 0 satisfying

dY ∗
t (y)

Y ∗
t (y)

= −rtdt+
(

ν∗t (Y
∗
t (y))− ησt

)

.dWt, ν∗t (y) ∈ Rσ,⊥, ∀y > 0, a.s. (27)

Starting from the idea above, Assumptions 4.1 and 4.2 allow us to compose X∗ with

the inverse of Y ∗ and Y ∗ with the inverse flow of X∗. Under some additional regularity

assumptions, we establish one of our main contribution that involves the characterization

of any consistent utilities generating X∗ as an optimal portfolio. In particular, we give

the decomposition of the derivative γ of the volatility vector as an operator of Ux and Uxx

given κ∗. The second main result of this paper introduce a new method to solve the utility

stochastic PDE. The idea is to transform the SPDE in a system of two stochastic differential

equations (SDE). Herein, the method proposed can be used for a large class of SPDE.

There are two different messages in our approach hence we decide to present the asso-

ciated results separately. Note that the results of this sections can be obtained first on the

martingale market and, simply, by using the results of Theorem 3.7 we get simillar ones on

the initial market.

4.1 Utility Characterization from optimal wealth and state

density processes

To fix the idea we consider a given wealth process X∗, a state density price process Y ∗ and

an utility function u(x). The objective is to construct a consistent utility U starting from

the function u(x) (U(0, x) = u(x)), generating X∗ as optimal wealth and Y ∗ as optimal dual

process. According to the necessary analysis above, the constructed utility process satisfies

Ux(.,X
∗(x)) = Y ∗(ux(x)).

Remark . Before continuing our investigations it is important to note that the duality is

not needed in what follows. By Proposition 2.6 assertion ii), Ux(.,X
∗(x)) is a density price

process, which is sufficient to present our new approach.

Linear optimal state density process. To illustrate our approach we first start by

proving this result in a special case where we assume that the process Y ∗(y) = yY 0 since

ν∗ = 0 a.s. The advantage of this case is that we can find all messages of our construction
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and a complete overview of the main calculations. This will better the understanding of

the calculations that are made in the general case, because they are more difficult to follow,

although not really more complicated.

Assuming Y ∗(y) = yY 0, the identity Y ∗
t (y) = Ux(t,X

∗
t (−ũy(y)) (Theorem 3.5) suggests

a very simple way to associate a progressive utility U(t, x) with the wealth process X∗.

Indeed, if X (t, z) is the inverse flow of X∗
t (x), then the increasing process U(t, x) satisfying

Ux(t, x) = ux(X (t, x))Y 0
t is a good candidate to be a consistent stochastic utility. Another

remarkable property of this random field is that Ux(t,X
∗
t (x)) = Ux(0, x)Y

0
t , which is another

way to express that the optimal dual policy ν∗ is null. We are then ready to state one of

the important results of this section.

Theorem 4.1. In addition to the monotony assumption 4.1, assume that the given admissi-

ble portfolio (X∗
t (x)) has a volatility κ∗t (X

∗
t ), where the process κ∗t (x), is sufficiently regular

to make the process X∗
t (x) a C(1) regular in the sense of Kunita. In addition, we assume

that
(

Y 0
t X

∗
t (x)

)

is a martingale ∀x > 0. Recall that X is the inverse flow of X.

Let u be a utility function such that x 7→ uxx(x)X
∗
t (x) is integrable near to infinity. Then

we define the processes U and Ũ by,

U(t, x) = Y 0
t

∫ x

0
ux(X (t, z))dz, Ũ(t, y) =

∫ +∞

y

X∗
t (−ũy(

z

Y 0
t

))dz. (28)

U is a progressive utility, whose convex conjugate is Ũ , and satisfies the dynamics






dU(t, x) =
(

− U(t, x)rt +
1

2Uxx(t,x)
||γσx (t, x) + Ux(t, x)η

σ
t ||

2
)

dt+ γ(t, x).dWt

γx(t, x) = −Uxx(t, x)xκ
∗
t (x)− Ux(t, x)η

σ
t

Ũ(t, yY 0
t ) and U(t,X∗

t ) are martingale processes and U is a X -consistent stochastic utility,

with optimal wealth X∗.

Note the fact that the state price density process Y ∗(y) = yY 0 is linear with respect

to its initial condition greatly simplify this first result (true if ν∗ is not depending on y)

contrary to the next theorem where ν∗t is a function of y.

Proof. First by definition U is strictly increasing concave random field and of class C(3) in

the sense of Kunita. Let us now focus on the dynamics of this progressive utility. Any thing

is simpler in a martingale market, when Y 0
t is replaced by 1, but the PDEs are a little more

complicated.

To get started, we introduce the intermediate process Ū(t, x) :=
∫ x

0 ux(X (t, z))dz with a sim-

pler convex conjugate ˜̄U(t, y) =
∫ +∞
y

X∗
t ((ux)

−1(z))dz. Denoting by (βŪ , γŪ ) and (β̃
˜̄U , γ̃

˜̄U )
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the local characteristic of Ū and ˜̄U , it follows from the dynamics of X∗ and the identity

˜̄Uy(t, y) = −X∗
t (−ũy(y)) that







β̃
˜̄U
y (t, y) = −rt

˜̄Uy(t, y)−
˜̄Uy(t, y)κ

∗
t (−

˜̄Uy(t, y)).η
σ
t

γ̃
˜̄U (t, y) = − ˜̄Uy(t, y)κ

∗
t (−

˜̄Uy(t, y))
(29)

On the other hand, using the correspondence between the diffusion parameters of Ū and ˜̄Uy

given in Proposition 3.2 (or equivalently Corollary 3.3), we have







γŪx (t, x) = −Ūxx(t, x)γ̃
˜̄U
y (t, Ūx(t, x))

βŪ (t, x) = β̃
˜̄U (t, Ux(t, x)) +

1
2Ūxx(t,x)

||γŪx (t, x)||
2

By this and (29), it is straightforward to check that







γŪx (t, x) = −xŪxx(t, x)κ
∗
t (x)

βŪx (t, x) = −xŪxx(t, x)rt + γŪx (t, x).η
σ
t + ∂

∂x

(

1
2Ūxx(t,x)

||γŪx (t, x)||
2
)

In turn, we get that Ū(t, x) satisfies

dŪ (t, x) = βŪ (t, x)dt+ γŪ (t, x).dWt with







γŪ (t, x) = −
∫ x

0 Ūxx(t, z)zκ
∗
t (z)dz

βŪ (t, x) = −xŪx(t, x)rt + Ū(t, x)rt + γŪ (t, x).ησt + 1
2Ūxx(t,x)

||γŪx (t, x)||
2

As U(t, x) = Y 0
t Ū(t, x), Itô’s formula leads to

dU(t, x) = Y 0
t

(

βŪ (t, x)− Ū(t, x)rt − γŪ (t, x).ησt
)

dt+
(

Y 0
t γ

Ū (t, x)− U(t, x)ησt

)

.dWt.

Denote by γ(t, x) := Y 0
t γ

Ū (t, x)−U(t, x)ησt = −
∫ x

0 Ūxx(t, z)zκ
∗
t (z)dz−U(t, x)ησt , we obtain

using βŪ formula and identities U = Y 0Ū , Ux = Y 0Ūx, Uxx = Y 0Ūxx that U satisfies the

desired dynamics given by

dU(t, x) =
(

− U(t, x)rt +
1

2Uxx(t, x)
||γσx (t, x) + Ux(t, x)η

σ
t ||

2
)

dt+ γ(t, x).dWt

and γx(t, x) = −Uxx(t, x)xκ
∗
t (x)− Ux(t, x)η

σ
t .

Then U is a progressive utility satisfying the utility non linear SPDE, with an optimal wealth

satisfying equation (12) of Theorem 2.4. To conclude, it suffices to prove that U(t,X∗
t ) is

a martingale. It is simpler to show this property on the conjugate dual process, since

Ũ(yY 0
t ) = Y 0

t

∫ +∞
y

X∗
t (−u(z))dz is a martingale since (Y 0

t X
∗
t (z)) is a martingale, by inte-

grability assumption. By the conjugacy relation, the same property holds for U(t,X∗
t ).
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Risk tolerance dynamics. With the utility characterization given in Theorem 4.1, the

study of the risk tolerance coefficient, taken along the optimal wealth, is greatly simplified.

In particular, the nice martingale property established in He and Huang in [12], in a complete

market, may be generalized to consistent utilities.

Proposition 4.2. Let αU (t, x) = − Ux(t,x)
Uxx(t,x)

be the risk tolerance coefficient of U .

Then αU (t,X∗
t (x)) = αu(x)X∗

x(t, x), where X
∗
x(t, x) is the derivative (assumed to exist) of

X∗
t (x) with respect to x. Moreover, denoting Y ∗

y the partial dervative of Y ∗ with respect to its

initial condition, the process Y 0
t α

U (t,X∗
t (x)) ≡ Y ∗

y (t, y)α
U (t,X∗

t (x)) is a local martingale,

since X∗
x(t, x) is also an admissible portfolio with initial wealth 1.

Proof. Observe that by definition Uxx(t, x) = Y 0
t uxx(X (t, x))Xx(t, x). Since Xx(t, x) =

1/X∗
x(t,X (t, x)), and X (t,X∗(t, x)) = x, the formula αU (t,X∗

t (x)) = αu(x)X∗
x(t, x) is a

simple verification. Moreover, observe that the derivative X∗
x(t, x) (assumed to exist) belongs

to the same vector space of processes than X∗
t (z), and Y

0
t X

∗
x(t, x) is a local martingale.

An extension of this result to the general framework where Y ∗ is not necessarily linear

on its initial condition is given by Proposition 4.4.

General results. We have shown in Theorem 4.1 that for a monotone wealth processX∗,

Assumption (X∗Y 0 is a martingale) is sufficient in order to construct at least a consistent

utility whose optimal wealth isX∗ and the optimal dual process Y ∗(y) = yY 0. The extension

to a general processes Y ∗ ( not necessarily linear on its initial condition) is suggested by

Theorem 3.5 which gives us the general form of consistent utilities using identity Ux(t, x) =

Y◦X (t, x) where Y(t, x) = Y ∗
t (ux(x)). Starting from this identity, we proceed by verification,

the ideas are the same as in the proof of Theorem 4.1 but the calculations and equations

are more complicated due to the fact that the diffusion parameters of a general Y ∗ depond

on Y ∗ and not necessarily in linear form.

The general utility characterization result is the following one.

Theorem 4.3. Let (X∗
t (x) ∈ X ) be an admissible wealth process and (Y ∗

t (y)) ∈ Y be

an admissible state price density process, C(1) regular in the sense of Kunita, such that in

addition to Assumptions 4.1 and 4.2, (X∗
x(t, x)Y

∗
t (y)) is a martingale, where by definition

X∗
x(t, x) = ∂xX

∗(t, x).

Let u be a utility function, and Y(t, x) = Y ∗
t (ux(x)), X (t, z) = (X∗

t (.))
−1 two regular stochas-

tic flows such that x 7→ Y(t,X (t, z)) is integrable near to zero.
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Define the processes U and Ũ by

U(t, x) =

∫ x

0
Y(t,X (t, z))dz, Ũ(t, y) =

∫ +∞

y

X∗
t ((Y)

−1(t, z))dz. (30)

U is a progressive utility, whose convex conjugate is Ũ , and the dynamics

dU(t, x) =
(

− xUx(t, x)rt +
1

2Uxx(t, x)
||γσx (t, x) + Ux(t, x)η

σ
t ||

2
)

dt+ γ(t, x).dWt,

with volatility vector γ given by

γ(t, x) = −U(t, x)ησt −

∫ x

0

(

zUxx(t, z)κ
∗
t (z)− ν∗t (Ux(t, z))

)

dz.

The associated optimal portfolio and the optimal dual process are X∗ and Y ∗. Moreover

U(t,X∗
t ) is a martingale, so that U is a X -consistent stochastic utility.

In the first theorem of this section we built for a given initial utility function a consistent

stochastic utility with a given optimal wealth process. The extension which we give here

characterizes all consistent stochastic utilities with the same optimal wealth process. This

result expresses only how we must diffuse the function Ux(0, x) = ux(x) to stay within the

framework of consistent stochastic utilities in incomplete market. The answer is intuitive

because it expresses the fact that it is enough to keep a monotone field Y ∗ which does

not influence the reference market. On the other hand it is important to remark that the

derivative with respect to x of the volatility vector γ is the sum of two orthogonal vectors

and is given by

γx(t, x) = ν∗t (Ux(t, x))− Uxx(t, x)xκ
∗
t (x)− Ux(t, x)η

σ
t

= ν∗t (Ux(t, x))− Ux(t, x)
(

ησt +
Uxx
Ux

(t, x)xκ∗t (x)
)

,

and consequently, given κ∗ and ν∗, it is interpreted as an operator Υ(t, x, Ux, Uxx) which

is linear on Uxx, that depends on Ux through the volatility ν∗ of Y ∗ and an affine term

on ησ , and depends on x only through the optimal policy κ∗. We also emphasize that the

term Ux/Uxx in this formula is the risk tolerance of an investor with utility process U . In

particular, for the case of the market martingale (ησ = 0), Υ(t, x, Ux, Uxx) is linear on Uxx,

depends on Ux only through the volatility ν∗ of Y ∗ and on x only through the optimal policy

κ∗.

Note that in the classical backward set-up of utility maximization, a similar idea is inves-

tigated by I. Karatzas & al [9]. The authors show also that the solution of a backward

SPDE can be represented as the composite of two invertible processes. But this differs from
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the approach proposed here because these processes are represented as an expectation of

monotonic functions (characteristics method) where in this work are stochastic flows. Note

that the authors also use the Itô-Ventzel formula to establish the backward SPDE.

Remark . After giving the proof of this result, we want to draw the attention to the fact

that this theorem can be showed first in the case of the martingale market (r = 0, ησ = 0).

This allows us to simplify the calculations and then we can always comeback to the initial

market by a technique of change of numeraire.

Proof. Under Assumption 4.1 the inverse X of X∗ with respect to x satisfies by Proposition

3.2

dX (t, x) = −xXx(t, x)κ
∗
t (x).dWt +

[

− xXx(t, x)rt +
1

2
∂x

(

Xx(t, x)‖xκ
∗
t (x)‖

2
)

]

dt.

The hypothesis made on X∗ and Y ∗ entails that we can apply the Itô-Ventzel formula to

the compound flow Y ◦X . To study Ux(t, x) we are first interested on the coefficient of dWt

of the dynamics of Y ◦X because it represents the derivative of the volatility γ of the utility

U . As (Yx ◦ X )Xx = Uxx and Ux = Y ◦ X , formula (3.1) gives us that

γx(t, x) = ν∗t (Ux(t, x)) − xUxx(t, x)κ
∗
t (x)− Ux(t, x)η

σ
t .

This identity shows that the vector γx is the sum of two orthogonal vectors since the

first term ν∗t (Ux(t, x)), by hypothesis, belongs to the orthogonal of the second which is

−Ux(t, x)
(

ησt +(xUxx/Ux)(t, x)κ
∗
t (x)

)

that belongs by hypothesis to the spaceRσ
t . Through-

out, the projection of γx on Rσ
t is the vector γσx (t, x) = −xUxx(t, x)κ

∗
t (x)− U(t, x)xη

σ
t .

As Ux = Y ◦X , γx is the volatility process of Ux, it is enough to integrate it with respect to

x to obtain the result.

We now focus our interest on the drift µUx of the derivative Y ◦ X of U . The idea and

calculations are exactly identical to those of the proof of the previous result. Indeed by the

assumptions and equation (20), we have

µUx(t, x) = −
(

xXx(t, x)Yx ◦ X (t, x) + Y ◦ X (t, x)
)

rt

+
1

2
(Yx ◦ X )(t, x)∂x

(

Xx(t, x)‖xκ
∗
t (x)‖

2
)

+
1

2
(YxoX )(t, x)‖Xx(t, x)xκ

∗
t (x)‖

2

−xXx(t, x)∂x

(

Y ◦ X (t, x)(ν∗t (Y ◦ X (t, x)
)

− ησt )
)

.κ∗t (x)− xXx(t, x)Yx ◦ X (t, x)κ∗t (x).η
σ
t .

Note that in the last line the term −xXx(t, x)∂x

(

Y ◦ X (t, x)(ν∗t (Y ◦ X (t, x)
)

− ησt ).κ
∗
t (x)

comes from Itô-Ventzel formula and corresponds to < dYx, dX >.
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To lead the proof we proceed by analyzing line by line the above equality. Using the iden-

tities (Yx ◦ X (t, x))x = YxxoX (t, x)Xx(t, x) and Uxx(t, x) = YxoX (t, x)Xx(t, x), the first line

becomes

−
(

xXx(t, x)Yx ◦ X (t, x) + Y ◦ X (t, x)
)

rt = −
(

xUxx +Ux
)

(t, x)rt = −∂x(xUx)(t, x)rt. (31)

Rewritting the second line, we obtain

1

2

[

(

Yx ◦ X (t, x)Xx(t, x)(Xx(t, x)‖xκ
∗
t (x)‖

2) + (Yxx ◦ X )(t, x)Xx(t, x)∂x
(

Xx(t, x)‖xκ
∗
t (x)‖

2
)

]

=
1

2
∂x

[

Yx ◦ X (t, x)Xx(t, x)‖xκ
∗
t (x)‖

2
]

. (32)

Finally, from the assumption that ν∗t (Y(t, x)).κ
∗
t (X

∗
t (x)) = 0, we deduce ν∗t (Y◦X (t, x)).κ∗t (x) =

0 and ∂x
(

ν∗t (Y ◦ X (t, x))
)

.κ∗t (x) = 0. This yields in the last line to

− xXx(t, x)
[

∂x

(

Y ◦ X
(

ν∗t (Y ◦ X )− ησt
)

(t, x)
)

.κ∗t (x)− Yx ◦ X (t, x)κ∗t (x).η
σ
t

]

= 0. (33)

Identities (31), (32) and (33) combined with the expression of µUx and γx yield to

µUx(t, x) = ∂x

(

− xUx(t, x)rt +
1

2Uxx(t, x)
||xκ∗t (x)||

2
)

.

As U(t, 0) ≡ 0 we get by integration that U satisfies

dU(t, x) = {−xUx(t, x)rt +
1

2
Uxx(t, x)||xκ

∗
t (x)||

2}dt+ γ(t, x).dWt.

Using γσx (t, x) + Ux(t, x)η
σ
t = −xUxx(t, x)κ

∗
t (x) one easily sees that

dU(t, x) = {−xUx(t, x)rt +
1

2

[‖γσx (t, x) + Ux(t, x)η
σ
t ‖

2

Uxx(t, x)

]

}dt+ γ(t, x).dWt.

It remains to show that U(t,X∗
t ) is a martingale, given that the positive process Y ∗

t (y)X
∗
x(t, x)

is a martingale by assumption. Then since U(t,X∗
t ) =

∫ x

0 Y(t, z)X∗
x(t, z)dz, U(t,X∗

t ) is also

a martingale. The proof is complete.

For more general processes Y ∗, as in Proposition 4.2, the risk tolerance coefficient of U

taken along the optimal wealth has a nice properties.

Proposition 4.4. Under the same assumptions as in Theorem 4.3, the risk tolerance coef-

ficient αU of U is given by

αU (t, x) =
Y ◦ X (t, x)

Yx ◦ X (t, x)
X∗
x ◦ X (t, x).

Where , Y(t, x) := Y ∗
t (ux(x)). Moreover, αU (t,X∗

t (x)) =
Y ∗
t (ux(x))

Y ∗
y (t,ux(x))uxx(t,x)

X∗
x(t, x) and

satisfies: Y ∗
y (t, y)α

U (t,X∗
t (x)) is a local martingale.
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4.2 Stochastic Flows Method for Solving Stochastic PDE’s

In the previous section using two invertible stochastic flows X∗ and Y ∗ we construct a

consistent utility with the desired dynamics. Naturally, the question of the converse point of

view is required. Starting from a stochastic PDE that satisfy consistent utilities, the question

is then under which assumptions we have existence and uniqueness of the solution? What

can we deduce about the monotony and the concavity of a possible solution? Answering

these questions is the purpose of this section. In the following theorem we propose a new

method that allows us to address the issue of such resolution of fully nonlinear second order

stochastic PDEs .

Theorem 4.5. Consider a utility stochastic PDE with initial condition u(.),

dU(t, x) =
(

− xUx(t, x)rt +
1

2Uxx(t, x)
||γσx (t, x) + Ux(t, x)η

σ
t ||

2
)

dt+ γ(t, x).dWt. (34)

Where the derivative γx of γ is the operator given by

γx(t, x) = −Ux(t, x)η
σ
t − xUxx(t, x)κ

∗
t (x) + ν∗t (Ux(t, x)), κ

∗
t ∈ Rσ

t , ν
∗
t ∈ Rσ,⊥

t , t ≥ 0.

Assume that the both equations

dX∗
t (x)

X∗
t (x)

= rtdt+κ∗t (X
∗
t (x)).

(

dWt+ ησt dt),
dY ∗

t (y)

Y ∗
t (y)

= −rtdt+
(

ν∗t (Y
∗
t (y))− ησt

)

.dWt (35)

admit solutions and that X∗ is monotonous: [0,+∞) → [0,+∞) in its initial condition and

it is a regular flow in the sense of Kunita. Let Y(t, x) = Y ∗
t (ux(x)), X (t, z) = (X∗

t (.))
−1

and assume x 7→ Y(t,X (t, z)) is integrable near to zero. Then there exists a solution U of

the SPDE (34) given by

U(t, x) =

∫ x

0
Y(t,X (t, z))dz

Moreover, if X∗ and Y ∗ are increasing: [0,+∞) → [0,+∞) in their initial conditions and

are a regular flows in the sense of Kunita, the random field U is an increasing and concave

solution of the SPDE (34). Finally, if X∗ and Y ∗ are unique then U is the unique solution

of (34).

Theorem 4.3 shows that for a given X∗ and Y ∗ increasing solutions of SDEs (35) the

random field U(t, x) =
∫ x

0 Y(t,X (t, z))dz is a consistent utility solution of the utility SPDE

(34) with a volatility vector γ s.t. γx(t, x) + Ux(t, x)η
σ
t = −xUxx(t, x)κ

∗
t (x) + ν∗t (Ux(t, x)).

In this result the converse point of view is investigated. Starting from the utility SPDE

(34) with a given initial condition u, and a given κ∗ and ν∗ such that −xUxx(t, x)κ
∗
t (x) =
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γσx (t, x) + Ux(t, x)η
σ
t and ν∗t (Ux(t, x)) = γσx t, x), the theorem shows, under the assumption

that both the SDE’s (35) admit a solutions and if only X∗ is invertible then there exist

a solution to the SPDE (34) given by U(t, x) =
∫ x

0 Y(t,X (t, z))dz. If both X∗ and Y ∗

are strictly increasing regular flows the solution U is increasing concave. Moreover, the

uniqueness of U is strongly related on the uniqueness of the solutions X∗ and Y ∗ of SDE’s

(35). Remark that the martingale property of the product X∗Y ∗ is not required to have a

solution of the SPDE where it was necessary to conclude that U is a consistent utility in

Theorem 4.3. Finally, note that in previous sections if the random field U(t, x) is a consistent

regular utility then the processes κ∗ and ν∗ ( X∗ and Y ∗) exists and are regular.

This is an interesting new approach in which the solution of the utility SPDE have a trajec-

tory (path wise) representation contrary to the characteristics method where the solutions

are represented as an expectation. In particular, note that there are several advantages of

this connection between SPDE’s and SDE’s. For example, the existence of diverse works

in the domain of SDE’s and seen in the multitude of results on the existence, uniqueness

and on the integrability of solutions. The monotonicity of solutions X∗ and Y ∗ gives several

properties of the solution U of the SPDE. To the best of our knowledge, there are no or few

results that assert the monotonicity or the convexity of such solutions. Also, there may be

other advantages in numerical methods and simulations of the SDE than of SPDE.

We finish this section mentioning that the main assumption of Theorem 4.5 is to assume

that the SDEs (35) admit a solutions which is a fairly strong assumption because κ∗ and

ν∗ may depend on higher order derivatives of U . For example in the Markovian case where

U(t, x) = u(t, x,Θt), according to Example 2.1, the volatility vector γ of U is given by

γ(t, x,Θt) = ΣΘ
t ∇Θu(t, x,Θt)

and the optimal startegy is given by

−xκ∗(t, x,Θt) =
ΣΘ
t ∇Θux(t, x,Θt)

uxx(t, x,Θt)

In other words, for a given policy κ∗ the existence of a solution to the associated SDE in

(35) is like an inverse problem.

Therefore, in the case where the optimal portfolio X∗
t (x) is monotone with respect to its

initial condition, we have by previous results the following characterization

u(t, x,Θt) =

∫ x

0
Y ∗
t

(

ux(X (t, z))
)

dz

and in particular u(t, x,Θt) is a solution of the stochastic PDE (34). But this is insufficient

to characterize the function u(t, x, θ) which must satisfy an ordinary PDE of HJB type.
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So, to characterize u(t, x, θ), there is a further step that must be overcome. But, if in

addition of monotony Assumption 4.1, θ 7→ Θt(θ) is strictly increasing, then using the same

method of stochastic change of variable we characterize u(t, x, θ) by inverting the global flow

(x, θ) 7→
(

X∗
t (x, θ),Θt(θ)

)

. Then, we obtain

u(t, x, θ) =

∫ x

0
Y ∗
t

(

ux
(

0,X (t, z,Θ−1
t (θ)),Θ−1

t (θ)
)

,Θ−1
t (θ)

)

dz

Where Y ∗
. ≡ Y ∗

. (y, θ).

Conclusion This paper investigates consistent stochastic utilities from the stochastic

PDEs point of view. This leads therefore to make strong regularity assumptions: The

market is a Brownian market and securities are modeled as continuous semimartingales.

Utilities are at least of class C(2) in the sense of Kunita in order to apply Itô-Ventzel Lemma

and to deduce the SPDEs. Moreover, the method of stochastic utilities construction is based

on the dynamics of stochastic flows and their inverses, and therefore additional regularity

assumptions on X∗ and Y ∗ are required. However, one can take a direct approach still based

on monotony assumptions on optimal processes for the primal and dual problem, and on

compound flows formula ; it is showed in [23], that these assumptions can be considerably

weakened. Indeed, considering any financial market in which the securities are modeled

as bounded semimartingales, the stochastic utilities are of class C1 and wealth process are

required to lie in a convex class X ⊂ X+, the monotony assumption ofX∗ and Y ∗ is sufficient

to show the validity of the construction proposed in this work, using analysis methods and

optimality conditions.

Appendix

A Itô-Ventzel’s formula

The Itô-Ventzel’s formula is a generalization of classical Itô’s formula where the deterministic

function is replaced by a stochastic process depending on a real or multivariate parameter.

There are several difficulties in the definition of semimartingale depending on a parameter,

as explained in H. Kunita [25]. For instance, let us consider the Itô integral of a predictable

process ft(x) with parameter x in some domain D of R+ with respect to some Brownian

motion B. Suppose that
∫ T

0 fs(x)
2ds < +∞ holds for each x ∈ D. Then the Itô integral
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Mt(x) =
∫ t

0 fs(x)dBs is well defined for any t except for a null set Nx. It is a continuous local

martingale with parameter x ∈ D. Then Mt(x) is well defined for (t, x) if ω ∈ (∪x∈INx)
c.

However the exceptional set (∪x∈INx) may not be a null set since it is an uncountable

union of null sets. To overcome this technical problem we must take a good modification

of the random field Mt(x) so that it is well defined for all (t, x) a.s. and is continuous or

continuously differentiable with respect to x for all t almost surely.

A.1 Notation and Definition

Functional spaces We shall first introduce some notations. Let D be a domain in R+,

m an non-negative integer and denote by Cm(D,R) the set of all functions g : D −→ R which

are m-times continuously differentiable. Using the notation g(m) for the derivative of order

m of some function g, we introduce the seminorms defined on some compact subset of D by

||g||m:K = sup
x∈K

|g(x)|

1 + |x|
+

∑

1≤α≤m

sup
x∈K

|g(α)(x)|.

Equipped with these seminorms, Cm(D,R) is a Frechet space. When D itself is a compact

space we drop out the reference to K.

We sometimes need to refer to more regular functions whose derivatives of order m are

δ-Hölder continuous (0 < δ ≤ 1). Then we introduce a new family of seminorms,

||g||m+δ:K = ||g||m:K + sup
x,y∈K
x 6=y

|g(m)(x)− g(m)(y)|

|x− y|δ
.

on the set of Cm(D,R) whose last derivative is δ-Hölder continuous.

Definition A.1. A continuous function f(t, x), x ∈ I, t ≥ 0 is said to belong to Cm,δ, δ ∈

[0, 1] if for every t, f(t) = f(t, .) belongs to Cm,δ and ||f(t)||m+δ:K is integrable with respect

to t for any compact subset K of I. If the set K is I, the function f is said to belong to the

class Cm,δb . Furthermore, if ||f(t)||m+δ is bounded in t it is said to belongs to Cm,δub

We also need to introduce the same kind of definition for functions depending on two

parameters

||g||∼m+δ:K = ||g||∼m:K +
∑

α=m

||∂αx ∂
α
y g(x, y)||

∼
δ:K

||g||∼δ:K = sup
x,x′,y,y′∈K
x 6=x′,y 6=y′

|g(x, y) − g(x′, y)− g(x, y′) + g(x′, y′)|

|x− x′|δ|y − y′|δ
.
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Definition A.2. A continuous function g(t, x, y), x, y ∈ I, t ∈ [0, T ] is said to belong to

C̃m,δ, δ ∈ [0, 1] if for every t, g(t) = g(t, ., .) belongs to C̃m,δ and ||g(t)||∼m+δ:K is integrable

on [0, T ] with respect to t for any compact subset K of I. If the set K is I, the function g

is said to belong to the class C̃m,δb . Furthermore, if ||g(t)||∼m+δ is bounded in t it is said to

belong to C̃m,δub

Cm,δ-process : Let U(t, x) a family of real valued process with parameter x ∈ I. We

can regard it as a random field with double parameter t and x. If U(t, x, ω) is a continuous

function of x for almost all ω for any t, we can regard U(t, .) as a stochastic process with

values in C = C(I,R) or a C-valued process. If U(t, x, ω) is m-times continuously differen-

tiable with respect to x for almost all ω for any t, it can be regarded as a stochastic process

with values in Cm = Cm(I,R) or a Cm-valued process. If U(t, x) is a continuous process with

value in Cm, it is called a continuous Cm-process. A Cm,δ-valued process and continuous

Cm,δ-processes are defined similarly.

C̃m,δ-process : Let G(t, x, y) be a stochastic process with parameter x, y ∈ I. If it is

m-times continuously differentiable with respect to each x and y a.s. for any t, it is called a

stochastic process with values in C̃m or a C̃m-valued process. The C̃m,δ-valued process and

continuous C̃m,δ-valued process are defined similarly.

Theorem A.1. Let Mt(x), x ∈ I be a family of continuous local martingales such that

M0(x) ≡ 0. Assume the joint quadratic variation < Mt(x),Mt(y) > has a modification

A(t, x, y) of a continuous C̃m,δ-process for some m ≥ 1 and δ ∈ (0, 1]. Then Mt(x) has a

modification of a continuous Cm,ε-process for any ε < δ. Furthermore, for each n ≥ m,

∂nxMt(x), x ∈ I is a family of continuous local martingales with joint quadratic variation

∂nx∂
n
yA(t, x, y).

Definition A.3. We shall call the random fieldMt(x) with the property of the previous The-

orem a continuous local martingale with values in Cm,ε or a continuous Cm,ε-localmartingale.

Regular Itô’s random fields Cm,δ-semimartingale : Suppose U(t, x), x ∈ I is

a family of continuous semimartingale decomposed as U(t, x) = B(t, x) +M(t, x), where

M(t, x) is a local martingale and B(t, x) is a continuous process of bounded variation.

U(t, x), x ∈ I is said to belong to the class Cm,δ or simply to be Cm,δ-semimartingale if

M(t, x) is a continuous Cm,δ-local martingale and B(t, x) is a continuous Cm,δ-process such

that Dα
xB(t, x), α ≤ m are all process of bounded variation. Further if δ = 0 it is called a

Cm-semimartingale.
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Let U be a semimartingale satisfying

dU(t, x) = β(t, x)dt+ γ(t, x).dWt, U(r, x) = U(x),

where β and γ are predictable process.

Definition A.4 (Kunita).

• The pair (β, γ) is called the local characteristic of U .

• Let m be a non-negative integer and a(t, x, y) := γ(t, x)∗γ(t, y). The local charac-

teristic (β, γ) is said to be in the class Bm,0 if both β and a are predictable pro-

cess with value Cm and if for any compact subset K1 ⊂ R+ and K2 ⊂ R+ × R+

||β(t, .)||m:K1
, ||a(t, ., .)||∼m:K2

∈ L1.

Where

||f ||m:K1
= sup

x∈K1

|f(x)|

1 + |x|
+

∑

1≤|α|≤m

sup
x∈K1

|Dα
xf(x)|.

||g||∼m:K2
= sup

x,y∈K2

|g(x, y)|

(1 + |x|)(1 + |y|)
+

∑

1≤|α|≤m

sup
x,y∈K2

|Dα
xD

α
y g(x, y)|

Definition A.5 (Itô-Ventzel Regularity). A semimartingale random field U is said to be

Itô-Ventzel regular if U is a continuous C2-process and continuous C1-semimartingale with

local characteristic satisfying previous assumption .

Theorem A.2 (Itô-Ventzel’s Formula (Kunita)). Let (U(t, x)) be an Itô-Ventzel regular

semimartingale random field and let Xt be a continuous semimartingale with values in I

and volatility σX , then U(t,Xt) is a continuous semimartingale and

U(t,Xt) = U(0,X0) +

∫ t

0
β(s,Xs)ds +

∫ t

0
γ(s,Xs).dWs

+

∫ t

0

∂U

∂x
(s,Xs)dXs +

∫ t

0

∂2U

∂x2
(s,Xs) < X >s ds

+

∫ t

0
〈
∂γ

∂x
(s,Xs), σ

X
s 〉ds.

Furthermore, according to H. Kunita [25] Theorem 3.3.3 p.94 we have the following

differential rules for stochastic integrals.

Theorem A.3 (Differential rules for stochastic integrals). Let F (t, x) be a continuous

Cm,δ-semimartingale with local characteristic belonging to the class Bm,δ where δ > 0. Let
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X(t, x), x ∈ Λ, t ∈ [0, T ] be a continuous predictable process with values in Ck,γ(Λ,I) where

γ > 0 and Λ ⊂ Re. Set

M(t, x) =

∫ t

0
F (X(s, x), ds).

(i) Then M(t, x) has a modification of continuous Cm,δ-semimartingale with values in

Cm∧k,ε(Λ,R) with local characteristic belonging to the class Bm∧k,γδ with ε < γδ.

Further if gt is a continuous predictable process with values in Λ, then we have the

equality:
∫ t

0
M(ds, gs) =

∫ t

0
F (X(s, gs), ds). (36)

(ii) If m ≥ 1 and k ≥ 1, then we have the equality:

∂

∂xi
M(t, x) =

d
∑

i=1

∫ t

0

∂

∂xj
Xi(s, x)

∂

∂xi
F (X(s, x), ds). (37)
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