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Abstract

The paper proposes a new approach to consistent stochastic utilities, also called forward

dynamic utility, recently introduced by M. Musiela and T. Zariphopoulou [27]. These utilities

satisfy a property of consistency with a given incomplete financial market which gives them

properties similar to the function values of classical portfolio optimization. First, we derive

a non linear stochastic PDEs that satisfy consistent stochastic utilities processes of Itô

type and their dual convex conjugates. Then, under some assumptions of regularity and

monotony on the stochastic flow associated with the optimal wealth as function of the initial

capital, and on the optimal state price dual process, we characterize all consistent utilities

for a given increasing optimal wealth process from the composition of the dual optimal

process and the inverse of the optimal wealth. This allows us to reduce the resolution of

fully nonlinear second order utility SPDE to the existence of monotone solutions of two

stochastic differential equations. We also, express the volatility of consistent utilities as an

operator of the first and the second order derivatives of the utility in terms of the optimal

primal and dual policies.

∗With the financial support of the ”Fondation du Risque” and the Fédération des banques Françaises.
†Keywords: forward utility, performance criteria, horizon-unbiased utility, consistent utility, progressive util-

ity, portfolio optimization, optimal portfolio, duality, minimal martingale measure, Stochastic flows, Stochastic

partial differential equation
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Introduction

Recently, the concept of forward dynamic utilities has been introduced by M. Musiela and T.

Zariphopoulou (2004-2007) [27, 26, 28, 30, 32, 34], to model possible changes over the time

of individual preferences of an agent. Such a concept has also been studied by F. Berrier, M.

Tehranchi and C.Rogers (2009) [12] and G. Zitkovic [45]. Further works are related to this

problem from T. Choulli, C. Stricker and L. Jia (2007) [3], V. Henderson and D. Hobson

(2007) [6].

The economic agent will adjust its preferences based on the information that is revealed

over time and is represented by the filtration (Ft, t ≥ 0) defined on the probability space

(Ω,P, (Ft, t ≥ 0)). In contrast to the classical literature, there is no pre-specified trading

horizon at the end of which the utility datum is assigned. Rather, the agent starts with

today’s specification of its utility, U(0, x) = u(x), and then builds the process U(t, x) for

t > 0 in relation to the information flow given by (Ft, t ≥ 0). This, together with the

choice of a initial utility, distinguishes the forward dynamic utility from the recursive utility

for which the aggregator can be specified exogenously and the value function is recovered

backward in time.

Working with positive wealth processes Xπ in an incomplete market, we define a consistent

stochastic utility as a progressive non negative stochastic utility U(t, x), for which U(t,Xπ
t )

is a supermartingale, and a martingale for one optimal wealth. However we restrict our

study to forward utilities which are Itô-semimartingales with spatial parameter x, whose

the local characteristics (β, γ) are such that

dU(t, x) = β(t, x)dt + γ(t, x).dWt.

The key tool is the Itô-Ventzel’s formula we recall at the beginning of Section 2. As in

the classical Hamilton-Jacobi-Bellman framework, we proceed by verification to establish

the dynamics of consistent utilities. Assuming a sufficient constraint on the drift β of HJB

type, we get the utility stochastic PDE that we investigate in this paper. In particular, we

study the role of the utility risk premium defined by ηU (t, x) = γx/Ux(t, x). Paragraph 3

goes into details on the question of duality and gives a characterization of the non linear

SPDE satisfied by the progressive convex conjugate Ũ of U . This allows us to obtain a

complete interpretation of the volatility γ. Unlike the backward case, we do not give a

positive answer on the question of existence and uniqueness of solutions of the primal and

dual Hamilton-Jacobi-Bellman equations established in this work, but show the important

role of the volatility γ of the X -Consistent utility U and the strong analogy between the

primal and dual problem. The obstacles in the analysis come from the fact that the HJB
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equations are forward in time and then without maximum principle. Therefore existing

results of existence, uniqueness and regularity of weak (viscosity) solutions are not directly

applicable. An additional difficulty comes from the fact that the volatility coefficient may

depend on higher order derivatives of U , in which case the SPDE cannot be turned into

a regular PDE with random coefficients, using the method of stochastic characteristics.

Moreover, the concavity property cannot be derived directly from the dynamics; that is still

an open question in general, which we try to answer in Section 4. In paragraph 3.3, we show

the stability of the notion of consistent utility by change of numeraire and then, without loss

of generality, we can consider the martingale market where the portfolios are simple local

martingales and the stochastic PDE’s are easier to deal with.

%noindent The main contribution of this paper is a new approach to consistent dynamic

utilities, by using stochastic flows, which we introduce in Section 4. The idea is very simple

and natural: Suppose that the optimal portfolio denoted by (X (t, x) is strictly increasing

with respect to the initial capital, and denote by (X (t, x)) the adapted inverse process,

defined by X(t,X (t, x)) = x. Then, using the dual identity Ux(t,X
∗
t (x)) = Y ∗

t (ux(x)),

we can find Ux(t, x) from Ux(t, x) = Y(t,X (t, x)) where (Y ∗
t (y)) is the optimal state price

density process. Finally we get U by integration. So, we are able to generate all the

consistent utilities with given optimal portfolio.

The problem of recovering the utility function coherent with a given optimal portfolio is

known in the financial literature as the “inverse“ Merton problem; it has been considered by

many authors in the past in particular by H.He and C.Huang (1992), [14]. In the classical

expected optimization problem, there are restrictions to put so that the portfolio is consistent

with a deterministic utility criterion at some fixed time horizon. These difficulties disappear

when the criterion is a progressive utility as we show in this paper.

The study provides a fine analysis of the utility volatility vector and its derivative in terms

of optimal allocation policy and optimal choice of state price density. In fact, given these

optimal policies, the volatility vector γ is interpreted as an operator Υ(x,U ′, U ′′) which is

linear on Uxx and the dependence on Ux (resp. x) is identical to how volatility of flow Y

(resp. X∗) depends on Y (resp. X∗).

To the best of our knowledge, the utilities fully non linear stochastic partial differential

equations established in this paper and satisfied by forward utilities and their dual have not

been established in a general way. In [12] and [35] the authors study the case where the

volatility vector of the utility is zero. In [32], the authors derive a stochastic PDE and study

examples where the volatility of the utility is constant, proportional to U (case of change of

probability) and the case where the volatility is proportional to xUx which correspond to a

change of numeraire .
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Furthermore, as far as we know, there is no general consistent utilities construction proposed

in the literature, expect the case of power or exponential type, or decreasing utilities.

Another main contribution of this paper is a connection between two solvable SDEs

and the utility SPDEs early established. In particular, given a volatility vector γ such that

γx(t, x) = −xUxxκ
∗(t, x)+ν∗(t, Ux(t, x)), we show the existence and uniqueness of a solution

to the fully nonlinear second order SPDE from that of a pair of SDE’s. In any case this

represents an interesting result in the theory of stochastic partial differential equations.

The paper is organized as follows, we give the definition of consistent dynamic utilities

Then, in order to study the HJB Stochastic PDE, we give more precisions on the market

model and introduce the useful Itô-Ventzel formula. In Section 2, we provide the dynamics

of consistent utilities and a closed form for the optimal policy. In Section 3, we study the

dual process and establish a duality identity. In Section 3.3, we show the stability of the

notion of consistent utility by a change of numeraire and we provide an example of consistent

utility obtained by combining a standard utility function with some positive processes. In

Section 4, we present our new approach and the main results of this work.

1 Consistent Stochastic Utilities

We start by introducing the concept of a forward utility consistent with a given family of

portfolios. All stochastic processes are defined on a filtered probability space (Ω,Ft≥0,P)

with complete filtration (Ft)t≥0 satisfying the usual conditions. In general, F0 is assumed

to be trivial. In the Itô framework considered afterwards, (Ft)t≥0 will be usual Brownian

augmented filtration.

1.1 Definition of Consistent Stochastic Utilities

A progressive utility U is a positive adapted continuous random field U(t, x), such that t ≥ 0,

x > 0 7→ U(t, x) is an increasing concave function, (in short utility function).

Obviously, this very general definition has to be compelled to represent more realistically the

individual preferences of an investor in a given financial market, possibly changing over time.

The idea is to calibrate these utilities with regard to some convex class (in particular vector

space) of wealth processes, denoted by X , on which utilities may have more properties.

As classical utility function, a progressive stochastic utility measures the relative satisfaction

of any portfolio and gives a selection criterion which allows to identify an optimal choice

of investment at any time. In general, we will impose below the uniqueness of the optimal
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process, to be as close as possible to the usual expectations of investors. Furthermore, the

satisfaction for the optimal choice is maximum and will be preserved at all futures times

which explains the martingale property in the definition below. On the other hand if the

strategy in X fails to be optimal then it is better not to make investment. The fact of

making a bad investment choice can be seen as a loss, compared with what he could won

if he had followed the optimal policy. From this, we will suppose that the utility of any

strategy is a supermartingale. The optimum represents the reference (benchmark) for the

investor.

The class X is a test-class which only allows us to specify the stochastic utility. Once

his utility is defined, an investor can then turn to a portfolio optimization problem on the

general financial market to establish his optimal policy or to calculate indifference prices.

Now we are able to define the X -consistent stochastic utility as follows.

Definition 1.1 (X -consistent Utility). A X -consistent stochastic utility process U(t, x)

is a positive progressive utility, (t ≥ 0, x > 0 7→ U(t, x) is an increasing, strictly concave

function) with the following properties:

• Consistency with the test-class: For any admissible wealth process X ∈ X ,

E(U(t,Xt)) < +∞ and

E(U(t,Xt)/Fs) ≤ U(s,Xs), ∀s ≤ t .a.s.

• Existence of optimal wealth: For any initial wealth x > 0, there exists an optimal

wealth process X∗ ∈ X , such that X∗
0 = x, and U(s,X∗

s ) = E(U(t,X∗
t )/Fs) ∀s ≤ t.

In short for any admissible wealth X ∈ X , U(t,Xt) is a positive supermartingale and a

martingale for the optimal-benchmark wealth X∗.

Our definition of consistent dynamic utilities differs from the one introduced by Musiela and

Zariphopoulou [27, 26, 28, 30, 32] or Barrier and al. [12] by the fact that we do not require

that the wealth processes X are discounted. This variation offers more options and allows

us to study the invariance of the class of stochastic utilities by change of numéraire. In any

case, there is no fixed horizon.

Remark A deterministic utility u is a X -consistent utility only when the test-portfolios

are local martingales. In this case, the optimal strategy is to do nothing.

The Market Model We consider a securities market which consists of d+1 assets, one

riskless asset, with price S0 given by dS0
t = S0

t rtdt and d risky assets. We model the price

of the d risky assets as a locally bounded positive semimartingale Si, i = 1, . . . , d defined

on the filtered probability space (Ω,Ft≥0,P).
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A (self−financing) portfolio is defined as a pair (x, φ), where the constant x is the initial

value of the portfolio and the column vector φ = (φi)1≤i≤d is a predictable S-integrable

process specifying the amount of each asset held in the portfolio. The value process, also

called wealth process, Xφ = (Xφ
t )t≥0 of such portfolio φ is given by

Xφ
t

S0
t

=
x

S0
+

∫ t

0

φα
S0
α

.d(
Sα
S0
α

), t ≥ 0. (1)

Let us denote by X+ the set of positive wealth processes. To facilitate the exposition we

only consider wealth processes in X+. This naturally leads us to characterize portfolios by

means of relative weights π in place of the amounts φ. The relation between these two

notions is easy since φt = (π1tX
φ
t (x), .., π

d
tX

φ
t (x))

T , where the transpose operator is denoted

by T . The advantage of the second formulation is that the assumption of positive wealth is

automatically satisfied, since the previous equation becomes with the notation Xπ in place

of Xφ,
dXπ

t

Xπ
t

= rtdt+ πt.
(dSt
St

− rt1dt), t ≥ 0 (2)

where the d-dimensional vector such all components are equal to 1 is denoted by 1. Let us

now recall that a probability measure Q ∼ P is called an equivalent local martingale measure

if, for any X ∈ X+, X
S0 is a local martingale under Q. To ensure the absence of arbitrage

opportunities, we postulate that the family of equivalent local martingale measures is not

empty, (see [9], [7] for a precise statement and references). We stress that no assumption

concerning completeness is made and in particular, many equivalent martingale measures

may exist.

Itô’s Market: Let W = (W1,W2, ...,Wn)
T be a n-standard Brownian motion (n ≥ d),

defined on the filtered probability space (Ω,F ,P). The filtration (Ft)t≥0 is the P-augmented

filtration generated by the Brownian motion W .

The risky asset prices are continuous Itô’s semimartingales with the dynamics:

dSit
Sit

= bitdt+ σit.dWt, for 0 ≤ i ≤ d (3)

where the inner scalar product is denoted by ”.”. The coefficient bi represents the apprecia-

tion rate by time unit of the asset i and σi its volatility vector in Rn, considered as a n×1 ma-

trix. Denote by b the appreciation rate column vector n×1 (bi)i=1,...,d, and by σt the volatility

matrix n × d (n lines d columns), whose ith column is the vector σit for i = 1, . . . , d. The

processes b, σ and r are Ft non-anticipating processes and satisfy some minimal appropriate

integrability conditions. Using vector and matrix notation, we have dSt = St
(

btdt+σ
T
t dWt)

Moreover, equation (2) may be rewritten as, dXπ
t = Xπ

t

[(

rt + πt.(bt − rt)1
)

dt+ σtπt.dWt

]

.
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As usual, the matrix (σσT )(t, ω) is assumed to be non singular. This assumption is equiv-

alent to suppose that, for any i ∈ 1..d, the asset Si cannot be replicated by an admissible

portfolio.

The existence of an equivalent local martingale measure is equivalent in this framework, to

the fact that the excess of return vector belongs to the range of volatility matrix: in other

words, there exists a F-progressively measurable process η ∈ Rn such that bt − rt1 = σTt ηt.

Additional integrability assumptions are necessary to ensure that the exponential martingale

generated by η.W is the density of some probability measure.

We get that the dynamics of the portfolio becomes dXπ
t = Xπ

t

[

rtdt + σtπt.(dWt + ηtdt)
]

The key role is played by the volatility vector σπ. For this and in order to facilitate the

exposition, we denote it by κ := σπ. To fix the notation, we denote by Rσ
t ⊂ Rn the range

of σt, and by Rσ,⊥
t the orthogonal vector subspace. By assumption, κt is required to lie at

any time t in Rσ
t . Replacing X

π by Xκ, the above equation becomes

dXκ
t = Xκ

t

[

rtdt+ κt.(dWt + ηtdt)
]

, κt ∈ Rσ
t . (4)

Algebric Notations The following short notation will be used extensively. Let Rσ be

a vector subspace of Rn. For any α ∈ Rn, we denote by ασ the orthogonal projection of

the vector α onto Rσ and by α⊥ the orthogonal projection onto Rσ,⊥. Then, the following

decomposition : α = ασ + α⊥ holds.

To close this section, let us introduce as Musiela and Zariphopoulou ([32]), the generalized

inverse of σ known as the Moore-Penrose inverse σ+ and recall that σ+ is the unique matrix

d×N satisfying the following four Penrose equations:

σσ+ = (σσ+)T , σ+σ = (σ+σ)T , σσ+σ = σ, σ+σσ+ = σ+ (5)

Then σσ+ is the orthogonal projection matrix ontoRσ, and ασ = σσ+α. Moreover, denoting

by In the n-dimensional identity matrix, In − σσ+ is the orthogonal projection matrix onto

Rσ. Moreover, under market assumptions (σTσ non singular) there exists a unique vector

π such that κ = σπ which is π = σ+κ.

Minimal Risk premium The market incompleteness is described through the family

of risk premium η. Since for any κ ∈ Rσ, κ.η = κ.ησ , we assume throughout this paper

and without further mention that η = ησ ∈ Rσ. ησ is often referred to as the minimal risk

premium.
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2 Stochastic Partial Differential Equation

In this section, under some additional regularity assumptions we will focus on the Hamilton-

Jacobi-Bellman stochastic PDE satisfied by a X -consistent stochastic utility using essen-

tially Itô-Ventzel’s formula and techniques of dynamic programming established and de-

veloped in the classical theory of utility maximization (see for example H. Pham [15]).

Additional regularity assumptions are necessary to advance in the study. From now, X -

consistent stochastic utilities U(t, x) are described as Itô’s semimartingales with spatial

parameter x > 0; in other words, U(t, x) is a continuous random field with dynamics,

dU(t, x) = β(t, x)dt + γ(t, x).dWt, (6)

where, as in Kunita [25], the pair (β, γ) is called the local characteristics of U and are

assumed to be progressively random fields with values in R and Rn respectively.

We are concerned with the properties of the utility of admissible wealth processes. Before

that, we want to give precise definition of the progressive utility, its derivatives and their

dynamic properties.

2.1 Regular stochastic flows and Itô-Ventzel’s formula

Regular Stochastic flows There are several difficulties in the definition of semimartin-

gales depending on a parameter, as explained in H. Kunita [25] and R.A. Carmona et al.

[2], (see Appendix A).

First let us point out that in general equality (6) holds for any t except for a null set

Nx. Then the semimartingale U is well defined for (t, x) if ω ∈ (∪x∈R+
Nx)

c. However the

exceptional set (∪x∈R+
Nx) may not be a null set since it is an uncountable union of null sets.

However if we suppose that local characteristic (β, γ) of U are δ-Hölder, for some δ > 0 (see

appendix A), then according to H. Kunita [25] (Theorems 3.1.2 p.75) using Kolmogorov’s

criterion, U(t, x) has a continuous modification for which (6) holds almost surely.

A detailed discussion about these difficulties and their consequences in terms of dynamic

representation and differential rules are provided in H. Kunita [25] and R.A. Carmona et al.

[2]. The main results are also recalled in Appendix A. Here we only give a self-contained

definition of the regularity in the sense of Kunita [25]. In particular, albeit the process U and

its local characteristics (β, γ) are differentiable it is not enough as is showed in H. Kunita

[25], to get that the dynamics of the derivative ∂
∂x
U(t, x) is the derivative term by term of

that of U . Let m be a non-negative integer, β be a real function in Cm([0,+∞[×[0,+∞[)

and γ be a Cm([0,+∞[×[0,+∞[) vector. We define the following seminorms for any compact
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K,

||β||m:K(t) = sup
x∈K

|β(t, x)|

1 + |x|
+

∑

1≤α≤m

sup
x∈K

|∂αxβ(t, x)|.

||γ||∼m:K(t) = sup
x,y∈K

|γT (t, x).γ(t, y)|

(1 + |x|)(1 + |y|)
+

∑

1≤α1,α2≤m

sup
x,y∈K

|∂α1

x ∂α2

y γT (t, x).γ(t, y)|

For simplicity if a random field (G(t, x))t≥0,x≥0 is of class C0,2([0,+∞[×[0,+∞[) we use the

notation Gx for ∂
∂x
G and Gxx for ∂2

∂x2
G.

Definition 2.1. Let m ≥ 2. A random field F is said to be C(m) regular in the sense of

Kunita if F : [0,+∞[×[0,+∞[→ R is of class C0,m([0,+∞[×[0,+∞[) and satisfies

F (t, x) = F (0, x) +

∫ t

0
β(s, x)ds +

∫ t

0
γ(s, x).dWs. (7)

In the sequel, according to H. Kunita [25] the pair of adapted random fields (β, γ) is called the

local characteristics of F and satisfy β : [0,+∞[×[0,+∞[→ R and the N -dimensional vector

γ : [0,+∞[×[0,+∞[→ RN are F-adapted random field of class C0,m−1([0,+∞[×[0,+∞[)

such that ||β||m−1:K(t) and ||γ||∼m−1:K(t) are integrable with respect to t, for any compact

K ⊂ [0,+∞[.

Now we turn to the differential rules of semimartingales with spatial parameter. For this

some other notations are needed. Let 0 < δ ≤ 1 and K a compact of R+. For some random

fields f(t, x) and g(t, x, y) we set

||f ||δ:K := sup
x,y∈K
x 6=y

|∂αx f(x)− ∂αx f(y)|

|x− y|δ
, ||g||δ:K := sup

x,x′,y,y′∈K
x 6=x′,y 6=y′

|g(x, y) − g(x′, y)− g(x, y′) + g(x′, y′)|

|x− x′|δ|y − y′|δ
.

Using these notations and according to the results of H. Kunita [25],(Theorem 3.3.3 p.95,

recalled in Appendix A), we have the following differential rule.

Theorem 2.1 (Differential Rules). Let F be a random field of class C0,1([0,+∞[×[0,+∞[)

such that its local characteristics (β, γ) are of class C0,1([0,+∞[×[0,+∞[). Assume that the

derivative βx and γx are δ-Hölder, with 0 < δ ≤ 1 such that for any compact K of R+,

||β||δ:K(t) and ||aγ ||δ:K(t) are integrable with respect to t, with aγ(t, x, y) := γ(t, x)T .γ(t, y).

Then the derivative Fx of F with respect to the spatial parameter x satisfies, almost surely,

Fx(t, x) = Fx(0, x) +

∫ t

0
βx(s, x)ds +

∫ t

0
γx(s, x).dWs (8)

Furthermore, if F is of class C(m), m ≥ 3 then Fx is of class C(m−1) with local characteristics

(βx, γx) which are of class C0,m−2([0,+∞[×[0,+∞[).
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Itô-Ventzel’s formula Now, we need to study the dynamics of U(t,Xκ
t ) (X

κ is a wealth

process). Itô-Ventzel’s formula is a generalization of classical Itô’s formula where the de-

terministic function is replaced by a stochastic process depending on a real or multivariate

parameter. This enables us to carry out computations in a stochastically modulated dynamic

framework.

Theorem 2.2 (Itô-Ventzel’s Formula). Consider a random field F : [0,+∞[×[0,+∞[→ R

which is of class C(2) in the sense of Kunita,

F (t, x) = F (0, x) +

∫ t

0
β(s, x)ds +

∫ t

0
γ(s, x).dWs, a.s. (9)

Furthermore, let X be a continuous semimartingale with decomposition

Xt = X0 +

∫ t

0
µXs ds+

∫ t

0
σXs .dWs

Then (F (t,Xt)) is also a continuous semimartingale with decomposition

F (t,Xt) = F (0,X0) +

∫ t

0
β(s,Xs)ds+

∫ t

0
γ(s,Xs).dWs

+

∫ t

0
Fx(s,Xs)dXs +

1

2

∫ t

0
Fxx(s,Xs)〈dXs〉

+

∫ t

0
γx(s,Xs).σ

X
s ds.

Let us now comment the dynamics of F (t,Xt). The first line of the right hand side of this

dynamic corresponds to the dynamics of the process (F (t, x))t≥0 taken on (Xt)t≥0, where

the second one is none other than the classical Itô formula, and the last one represents a

correction term which can be written γx(s,Xs).σ
X
s = 〈dFx(s, x), dXs〉|x=Xs

.

We refer to Kunita [25], (Theorem 3.3.1, p.92, Theorem 3.3.1, p.92) for more details and

the proof of this result. We illustrate this formula from the classical Itô’s formula.

Example: Itô’s Formula Let f(t, θ, x) be a deterministic function R+ × R × Rn → R

of class C1,2,2. Denote by ∇θ the gradient with respect to θ and by ∆θθ the Hessian matrix

with respect to θ where t and x are fixed.

Let Θ ∈ Rn be a Itô’s semimartingale dΘt = µΘt dt+ σΘt dWt, with the diffusion generator

LΘ
t = µΘt ∇θ +

1

2
trace[σΘt (σ

Θ
t )

T∆θθ].

Denote by F the stochastic random field F (t, x)
def
= f(t,Θt, x). By the classical Itô’s formula

dF (t, x) = (ft(t, x,Θt) + LΘ
t f(t, x,Θt))dt+

(

∇θf(t,Θt, x).σ
Θ
t dWt

)
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such that F is a stochastic random field with local characteristics βF and γF given by

βF (t, x) = LΘ
t f(t,Θt, x), γF (t, x) = (σΘt )

T ∇θf(t, x,Θt).

Let now X be another real continuous semimartingale dXt = µXt dt + σXt .dWt and LX its

diffusion operator. We now compute the dynamics of F (t,Xt) := f(t, Yt,Xt) by the classical

Itô’s formula applied to the vector (Yt,Xt) and compare it with the Itô-Ventzel’s formula.

We obtain

dF (t,Xt) = LΘ,X
t f(t,Θt,Xt)dt+

(

(σΘt )
T ∇θf(t,Θt,Xt)+)(σXt )T f ′x(t,Θt,Xt,

)

.dWt

= βF (t,Xt)dt+ γF (t,Xt).dWt + γFx (t,Xt).σ
X
t dt+ LXt f(t,Θt,Xt)dt.

Denoting ∆θ,xf := ∂
∂x
(∇θf), L

Θ,X
t := ∂

∂t
+LΘ

t (t, θ, x)+L
X
t (t, θ, x)+σ

X
t .σ

Θ
t ∆θ,x(t, θ, x), and

then,

γx(t,Xt).σ
X
t = σXt .σ

Θ
t ∆θ,x(t,Θt,Xt).

2.2 Stochastic PDE of X -consistent Dynamic Utilities

Using the same ideas as in interest rate modeling when studying the dynamics of the forward

rates, or in the stochastic volatility models to characterize the drift of the stochastic implied

volatility, we show how the consistency property constraints the random fields β(t, x) and

γ(t, x) in terms of the random field U , its derivatives and the market parameters (rt, η
σ
t ).

Lemma 2.3 (Drift Constraint). Let U be a progressive utility of class C(2) in the sense of

Kunita with local characteristics (β, γ) as in (6). Then, for any admissible portfolio Xκ,

dU(t,Xκ
t ) =

(

Ux(t,X
κ
t )X

κ
t κt + γ(t,Xκ

t )
)

.dWt

+
(

β(t,Xκ
t ) + Ux(t,X

κ
t )rtX

κ
t +

1

2
Uxx(t,X

κ
t )Q(t,Xκ

t ,X
κ
t κt)

)

dt,

whereQ(t, x, κ) := ‖xκ‖2 + 2xκ.
(Ux(t, x)η

σ
t + γx(t, x)

Uxx(t, x)

)

.

Let γσx be the orthogonal projection of γx on Rσ; the previous expression is only depending

on γσx since κ ∈ Rσ. Let Q∗(t, x) = infκ∈Rσ Q(t, x, κ); the minimum of this quadratic form

is achieved at the optimal policy κ∗ given by






xκ∗t (x) = − 1
Uxx(t,x)

(

Ux(t, x)η
σ
t + γσx (t, x)

)

x2Q∗(t, x) = − 1
Uxx(t,x)2

||Ux(t, x)η
σ
t + γσx (t, x))||

2 = −||xκ∗t (x)||
2.

(10)

Proof. (i) The first assertion of the lemma is a direct consequence of Itô-Ventzel formula

applied to the composite process
(

U(t,Xκ
t )
)

t≥0
, where Xκ

t is an admissible wealth process

with dynamics given by (4), dXκ
t = Xκ

t

(

rtdt+ κt.(dWt + ησt dt)
)

.

11



(ii) Let us now check the second assertion. In the minimization program, we can replace

the vector γx(t, x) by its orthogonal projection γσx (t, x) on Rσ
t that yields to equation (10).

Moreover, the minimum is given by Q∗(t, x) = −||xκ∗t (x)||
2.

This lemma suggests the constraint on the drift β implying the consistency condition. The

idea of the next theorem is to reformulate this constraint as a natural candidate for β.

Theorem 2.4 (Utility-SPDE). Let U be a progressive utility of class C(2) in the sense of

Kunita with local characteristics (β, γ), and risk tolerance coefficient αUt (t, x) = − Ux(t,x)
Uxx(t,x)

.

Given the volatility vector γ, we introduce the utility risk premium ηU (t, x) = γx(t,x)
Ux(t,x)

, whose

the orthogonal decomposition on Rσ
t and Rσ,⊥

t is

ηU (t, x) = ηU,σ(t, x) + ηU,⊥(t, x), ηU,σ(t, x) ∈ Rσ
t , ηU,⊥(t, x) ∈ Rσ,⊥

t .

With these notations, the quadratic form x2Q(t, x, κ) = ‖xκt‖
2 − 2αU (t, x)(xκt).

(

ησt +

ηU,σ(t, x)
)

achieves it minimum at

xκ∗t (x) = −
1

Uxx(t, x)
(Ux(t, x)η

σ
t + γσx (t, x)) = αU (t, x)

(

ησt + ηU,σ(t, x)
)

(11)

a) Assume the drift constraint to be Hamilton-Jacobi-Bellman nonlinear type

β(t, x) = −Ux(t, x)rtx+
1

2
Uxx(t, x)‖xκ

∗
t (t, x)‖

2 (12)

Then the progressive utility is solution of the following HJB-SPDE

dU(t, x) = −Ux(t, x)
[

xrt +
1

2
αU (t, x)‖ησt + ηU,σ(t, x)‖2

]

dt+ γ(t, x).dWt,

and for any admissible wealth Xκ
t , the process U(t,Xκ

t ) is a supermartingale.

b) Furthermore, if we assume that κ∗(t, x) is sufficiently smooth so that for any initial wealth

x > 0 the equation

dX∗
t = X∗

t

[

rtdt+ κ∗t (X
∗
t ).(dWt + ησt dt)

]

(13)

has at least one positive solution X∗, then U(t,X∗
t ) is a local martingale.

c) Moreover, if the local martingale
(

U(t,X∗
t )
)

t≥0
is a martingale then the progressive utility

U is a X -consistent stochastic utility with optimal wealth process X∗.

This theorem proves that the pair consisting on the investment universe and the derivative

with respect to x of the volatility denoted by γx describes completely the evolution of the

stochastic utility U . The drift β(t, x) may be interpreted as the best compromise between

the investment universe and volatility of the utility represented by the random field γ. Hence

β(t, x) can also be interpreted as the best combination between the market risk premium ησ

and utility risk premium represented by ηU,σ(t, x) = γσx
Ux

.

12



The assumption (12) on the drift β is a sufficient condition under which the consistence with

the investment universe of the second assertion of Definition 1.1 is satisfied. Nevertheless,

additional assumptions are needed on the existence of the wealth process X∗ for which

U(t,X∗
t ) is a martingale. This explains the assumptions of the second part of the result.

The Utility-SPDE poses several challenges. It is a fully nonlinear and not elliptic SPDE;

the latter is a direct consequence of the ”forward in time” nature of the involved stochastic

optimization problem, for which there is no maximum principle. Thus, existing results of

existence, uniqueness and regularity of weak (viscosity) solutions are not directly applicable.

An additional difficulty comes from the fact that the volatility coefficient may depend on

higher order derivatives of U , in which case the SPDE cannot be turned into a regular PDE

with random coefficients, using the method of stochastic characteristics. To overcome this

difficulties we propose a new method based on stochastic change of variable; this method,

that we call ”stochastic flow method”, allows us to construct explicit solutions of this Utility-

SPDE. This will be the subject of Section 4.

Proof. All assertions are simple consequences of the previous lemma, since by the assump-

tion on β(t, x), β(t, x) + xUx(t, x) rt +
x2Uxx(t,x)

2 Q(t, x, κ) ≤ 0, a.s. ∀κ ∈ Rσ, with equality

for κ∗(t, x). Therefore, U(t,Xκ
t ) is a positive supermartingale for any admissible strategy,

moreover if equation (13) has a solution X∗, then the process
(

U(t,X∗
t )
)

t≥0
is a local mar-

tingale.

The additional assumption that U(t,X∗
t ) is a true martingale yields the characterization of

the U(t, x) as X -consistent utility.

Example: Change of probability and numeraire in standard utility function

In this paragraph, we study the β-HJB constraint (12) of Theorem 2.4 in the case of a X -

consistent stochastic utilities obtained by combining a standard utility function v with some

positive processes N and Z. The advantage here is that the drift β and the volatility γ of

the utility are given explicitly from v, N and Z.

Let v an C2 utility function and let N and Z two positive processes satisfying

dNt

Nt
= µNt dt+ σNt .dWt,

dZt
Zt

= µZt dt+ σZt .dWt, Z0 = 1.

Define the strictly increasing and concave process (with respect to x) U by U(t, x) =

Ztv(x/Nt). Applying Itô’s Lemma and using identities Ux(t, x) = Zt

Nt
vx(

x
Nt

), Uxx(t, x) =
Zt

N2
t

vxx(
x
Nt

), it is straightforward to check that, for x > 0, the process (U(t, x))t≥0 satisfies

13



dU(t, x) = β(t, x)dt + γ(t, x).dWt where the local characteristics β and γ are given by

β(t, x) = U(t, x)µZt + xUx(t, x)(−µ
N
t + ||σNt ||2 − σNt .σ

Z
t ) +

1

2
x2Uxx(t, x)||σ

N
t ||2 (14)

γ(t, x) = U(t, x)σZt − xUx(t, x)σ
N
t . (15)

Given that U is a progressive utility, we are interested in establishing conditions on the

triplet (v,N,Z) for the drift β satisfies the HJB constraint (12).

Proposition 2.5. Let v be an utility function.

(i) Except the case where v is a power or exponential utility, the process U defined by

U(t, x) = Ztv(x/Nt) is a X -Consistent stochastic utility iff Z is a martingale, ZXκ/N, κ ∈

Rσ are positive local martingales and σ ∈ Rσ. In this case the optimal policy is given

by κ∗t = σNt .

(ii) If v is a power or exponential utility, then Condition : ”Z is martingale, ZXκ/N is a

supermartingale for any κ ∈ Rσ ” is not a necessary condition.

− If v is a power utility with risk aversion a, it suffices that the parameters of Z

and N satisfied,

1

a
µZt +rt−µ

N
t +σNt .η

σ
t −σ

N,⊥
t .σZ,⊥t +

1

2(1− a)
‖ησt −σ

N,σ
t +σZ,σt ‖2+

1 + a

2
‖σN,⊥t ‖2 = 0.

− If v is an exponential utility it suffices to take Z and N satisfied

µN = r + σN .ησ, µZ =
1

2
‖ησ − σN,σ + σZ,σ‖2, σN ∈ Rσ

This result gives sufficient conditions under which U , defined above, is a X -Consistent

stochastic utilities. Note also that this example generalize that in [33] where the authors

consider the case where u is an exponential utility and provides a simillar sufficient condition.

Proof. To facilitate the exposition, let us denote by r̂ = r−µN +σN .ησ , η̂ = ησ−σN . The

volatility vector γ being given by equation (15), Lemma 2.3 gives the optimal policy κ∗

κ∗t (x) = −
1

xUxx

(

− xUxx(t, x)σ
N,σ
t + Ux(t, x)(η̂

σ
t + σZ,σt )

)

. (16)

Then, the drift of the utility process U satisfies the HJB constraint (12) if and only if,

UµZt + Uxr̂tx− xUxσ
N,⊥.(η̂t + σZt )−

(Ux)
2

2Uxx

∥

∥η̂σt + σZ,σt

∥

∥

2
+
x2Uxx

2

∥

∥σN,⊥t

∥

∥

2
(t, x) = 0.

Using that U(t, x) = Ztv(x/Nt) and simplifying by xv(x)Z, it follows from the definition of

η̂ and r̂ that ∀t ≥ 0, x > 0

v

xvx
µZt +rt−µ

N
t +σ

N
t .η

σ
t −σ

N,⊥
t .σZ,⊥t −

vx
2xvxx

‖η̂σt +σ
Z,σ
t ‖2+

(

1+
xvxx
2vx

)

‖σN,⊥t ‖2(t, x) = 0. (17)
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The case: v/xvx and vx/xvxx are proportional, in turn v is a power or exponential utility.

• v(x) = xa/a. Then equation (17) becomes, ∀t ≥ 0

1

a
µZt + rt − µNt + σNt .η

σ
t − σN,⊥t .σZ,⊥t +

1

2(1− a)
‖ησt − σN,σt + σZ,σt ‖2 +

1 + a

2
‖σN,⊥t ‖2 = 0.

• v(x) = −1
c
e−cx, c > 0. Then ∀t ≥ 0, x > 0,

µZ −
1

2
‖ησt − σN,σt + σZ,σt ‖2 − cx

(

rt − µNt + σNt .η
σ
t − σN,⊥t .σZ,⊥t

)

+
(cx2

2
− cx)‖σN,⊥t ‖2 = 0.

Obviously, this is a second order polynomial identically null, consequently all coefficients are

nulls, i.e., r̂ = r − µN + σN .ησ = 0, µZ = 1
2‖η

σ − σN,σ + σZ,σ‖2, σ ∈ Rσ

Second case : v/xv′ and v′/xv′′ are not proportional, then it is immediate that all terms

of (17) are equal to zero, in turn r̃ = 0, µZ = 0, σ ∈ Rσ, ησ −σN +σZ ∈ Rσ,⊥ and hence

the optimal strategy κ∗ in (16) is simply σN .

To summarize the situation: Z is a martingale, Xκ/N is a martingale under the probability

QZ defined by dQZ/dP = Z and σN ∈ Rσ.

As in the classical theory of optimal choice of portfolio in expected utility framework, the

process Ux(t,X
∗
t ) has nice properties and a central place in the dual problem we introduce

in the next section.

Proposition 2.6. Let U be a progressive utility of class C(3) in the sense of Kunita, with local

characteristics (β, γ). Assume that all assumptions of Theorem 2.4 hold true, in particular

that X∗ is solution of dX∗
t = X∗

t

[

rtdt+ κ∗t (X
∗
t ).(dWt + ησt dt)

]

.

Let L∗ be the diffusion operator of X∗, L∗
t,x = 1

2‖xκ
∗
t (x)‖

2 ∂2

∂x2
+ {rtx+ (xκ∗t (x)).η

σ
t }

∂
∂x

.

i) Then, Ux is of class C(2) in the sense of Kunita with local characteristics (βx, γx) and

{

γx(t, x) + Uxx(t, x)(xκ
∗
t (x)) = −Ux(t, x)η

σ
t + γ⊥x (t, x)

βx(t, x) = −Ux(t, x)rt − L∗
t,xUx(t, x)− (xκ∗t (x)).γxx(t, x)

ii) The semimartingale Ux(t,X
∗
t ) has the following decomposition

dUx(t,X
∗
t ) = Ux(t,X

∗
t )
[

− rtdt+
(

ηU,⊥t (t,X∗
t )− ησt )

)

.dWt

]

(18)

In particular, for any admissible wealth process Xκ (κ ∈ Rσ), (Xκ
t Ux(t,X

∗
t )) is a local

martingale and a martingale if Xκ = X∗.

This result shows that Ux(t,X
∗
t ) plays the role of a state price density process.
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Proof. Theorem 2.1 shows that Ux is of class C(2) in the sense of Kunita, with local char-

acteristics (βx, γx). On the other hand, by Theorem 2.4, we have the identities β(t, x) =

−xUx(t, x) rt+
1
2x

2Uxx(t, x) ||κ
∗
t (x)||

2 and Uxx(t, x)(xκ
∗
t (x)) = −

(

Ux(t, x)η
σ
t +γ

σ
x (t, x)

)

. This

second identity is useful to calculate 1
2Uxx(t, x)∂x( ||xκ

∗
t (x)||

2) = Uxx(t, x)
(

(xκ∗t (x)).∂x(xκ
∗
t (x))

)

.

Taking the derivative with respect to x in this second identity, its follows that

Uxxx(t, x)(xκ
∗
t (x)) + Uxx(t, x)∂x(xκ

∗
t (x)) = −

(

Uxx(t, x)η
σ
t + γσxx(t, x)

)

.

In fact we are interested in the inner product with the vector xκ∗t (x) that yields to the

following equality written in an appropriate form

1

2
Uxxx(t, x)||xκ

∗
t (x)||

2 + Uxx(t, x)
(

(xκ∗t (x)).∂x(xκ
∗
t (x))

)

= −
{1

2
Uxxx(t, x)||xκ

∗
t (x)||

2 + Uxx(t, x)η
σ
t .(xκ

∗
t (x))

}

− γσxx(t, x).(xκ
∗
t (x)).

It is easy to recognize the first line as the derivative of 1
2x

2Uxx(t, x) ||κ
∗
t (x)||

2 and the second

line as related to the diffusion operator L∗
t,x. In this form the relation βx(t, x) = −Ux(t, x)rt−

L∗Ux(t, x)− (xκ∗t (x)).γxx(t, x) is easy to establish.

Then we have all the elements to calculate the dynamics of Ux(t,X
∗
t ) using Itô-Ventzel

formula

dUx(t,X
∗
t ) =

(

γx(t,X
∗
t ) + Uxx(t,X

∗
t )X

∗
t κ

∗
t (X

∗
t )
)

.dWt

+
{

βx(t,X
∗
t ) + L∗Ux(t,X

∗
t ) + γxx(t,X

∗
t ).(X

∗
t κ

∗
t (X

∗
t ))

}

dt.

Note that in the last inner product, we can replace γxx(t,X
∗
t ) by its orthogonal projection

γσxx(t,X
∗
t ) on the space Rσ. Thanks to the previous calculation, the expression in the

brackets of the second line is exactly −rtUx(t,X
∗
t ). The diffusion coefficient may also be

simplified in−Ux(t,X
∗
t )η

σ
t +γ

⊥
x (t,X

∗
t ). So that, we obtained the remarkably simple dynamics

of Ux(t,X
∗
t )

dUx(t,X
∗
t ) = Ux(t,X

∗
t )
[

− rtdt+ (ηU,⊥t (t,X∗
t )− ησt ).dWt

]

.

We now consider the proof of the last sentence. Given an admissible wealth process,

dXκ
t = Xκ

t

(

rtdt+(κt(dWt+ η
σ
t dt)

)

, standard Itô’s calculus provides an explicit form for the

dynamics of Zκt = Xκ
t Ux(t,X

∗
t ) as

dZκt
Zκt

=
dXκ

t

Xκ
t

+
dUx(t,X

∗
t )

Ux(t,X∗
t )

+ <
dXκ

t

Xκ
t

,
dUx(t,X

∗
t )

Ux(t,X∗
t )

>

=
[

κt − ησt + ηU,⊥t (t,X∗
t )
]

.dWt,

which implies that Zκt = Xκ
t Ux(t,X

∗
t ) is a local martingale for any κ ∈ Rσ. In particular

the volatility coefficient of Z∗ is σZ,∗t = (κ∗(t,X∗
t ) − ησt + ηU,⊥t (t,X∗

t )). To show that the
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positive local martingale Z∗ is a martingale, we use the concavity of the utility U , with the

fact that U(0) = 0. As consequence, Z∗
t = X∗

t Ux(t,X
∗
t ) ≤ U(t,X∗

t ); since by assumption

U(.,X∗
. )is a martingale, the same property is true for Z∗. This completes the proof.

3 Duality

After having introduced the consistent stochastic progressive utilities and established the

associated SPDEs, several questions remain open at this stage. Indeed, we have shown that

the volatility γ of these utilities plays a fundamental role since it completely describes the

stochastic dynamics of utilities and the optimal policy. In particular, the projection of the

derivative of the volatility γσx is proportional to the optimal policy. It now remains to give an

interpretation of the orthogonal part γ⊥x . The concavity of U(t, x) and the classical theory

lead naturally to introduce the convex conjugate function Ũ(t, y) (also called the Legendre-

Fenchel transform) of U(t, x). We want to show that these conjugate random fields is solution

of a dual Utility-SPDE whose the optimal risk premium is related to ηU,⊥ = γ⊥x /Ux.

In the classical theory of concave function f and its conjugate f̃ , the monotone functions fx

and −f̃y are inverse of each other, −f̃y(y) = f−1
x (y); in the stochastic framework, monotone

functions are replaced by stochastic monotone flows and there inverse flows whose dynamics

are given by the Itô-Ventzel formula. For simplicity, we present these results separately and

in an appropriate form.

3.1 Local characteristics of inverse flows

Let φ and ψ be two one-dimensional stochastic flows, with dynamics

dφ(t, x) = µφ(t, x)dt+ σφ(t, x).dWt,

dψ(t, x) = µψ(t, x)dt + σψ(t, x).dWt.

From Itô-Ventzel’s formula, under regularity assumptions, the compound random field φ ◦

ψ(t, x) = φ(t, ψ(t, x)) is a semimartingale whose the characteristics are given explicitly from

those of φ and ψ and their derivatives.

Theorem 3.1. Suppose that φ is a random field, regular in the sense of Kunita, and ψ(t, x) is

a continuous semimartingale. Then the random field φ◦ψ(t, x) = φ(t, ψ(t, x)) is a continuous
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semimartingale with decomposition

d(φoψ)(t, x) = µφ
(

t, ψ(t, x)
)

dt+ σφ
(

t, ψ(t, x)
)

.dWt

+ φx
(

t, ψ(t, x)
)

dψ(t, x) +
1

2
φxx

(

t, ψ(t, x)
)

||σψ(t, x)||2dt

+ σφx
(

t, ψ(t, x)
)

.σψ(t, x)dt. (19)

The volatility of the compound process φ ◦ ψ is given by

σφoψ(t, x) = σφ
(

t, ψ(t, x)
)

+ φx
(

t, ψ(t, x)
)

σψ(t, x).

The next proposition, used several times throughout this paper, gives the decomposition of

the inverse of a strictly monotone stochastic flow.

Proposition 3.2 (Inverse flow dynamics). Let φ be a strictly monotone flow, regular in

the sense of Kunita, with characteristics (µφ(t, x), σφ(t, x)). The inverse process ξ of φ is

defined on the range of φ by φ(t, ξ(t, y)) = y.

i) The inverse flow ξ(t, y) has a dynamics given in terms of the old parameters by:

dξ(t, y) = −ξy(t, y)
(

µφ(t, ξ)dt+ σφ(t, ξ).dWt

)

+
1

2
∂y

(

ξy(t, y)‖σ
φ(t, ξ)‖2

)

dt

ii) With the new parameters, using that σξ(t, y) = −ξy(t, y)σ
φ(t, ξ(t, y))

dξ(t, y) = σξ(t, y).dWt +
(1

2
∂y
(‖σξ(t, y)‖2

ξy(t, y)

)

− µφ(t, ξ(t, y))ξy(t, y)
)

dt

It is interesting to observe that the local characteristics of the inverse flow ξ can be easily

interpreted as some derivatives. This point will play a crucial role in the sequel. The mathe-

matical formulation of this remark is given in the following corollary, where the assumptions

of Proposition 3.2 are made.

Corollary 3.3. Let (Φ(t, x),Mφ(t, x),Σφ(t, x)) be the primitives, null at x = 0, of φ(t, x),

(µφ(t, x), σφ(t, x)) respectively, so that the Φ(t, x) dynamics is dΦ(t, x) = Mφ(t, x)dt +

Σφ(t, x).dWt.

Then, the dynamics of the random field Ξ(t, y) =
∫ y

0 −ξ(t, z)dz is

• With old parameters,

dΞ(t, y) = Σφ
(

t, ξ(t, y)
)

.dWt +Mφ
(

t, ξ(t, y)
)

dt+
1

2
Ξyy(t, y)‖Σ

φ
x

(

t, ξ(t, y)
)

‖2dt

• In new variables, with the notations M ξ(t, y) = Mφ(t,−Ξy(t, y)) and Σξ(t, y) =

−Σφ(t,−Ξy(t, y)),

dΞ(t, y) = Σξ(t, y).dWt +
(

M ξ(t, y) +
1

2

‖Σξy(t, y)‖2

Ξyy(t, y)

)

dt.
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Proof. of the proposition and the corollary. The proof is essentially based on the generalized

Itô’s formula established in the Appendix. For simplicity, we denote by (µξ, σξ) the local

characteristic of ξ assumed to be regular. By Itô-Ventzel’s formula, we have

dφ(t, ξ(t, y)) = 0

= µφ(t, ξ(t, y))dt + σφ(t, ξ(t, y)).dWt + φx(t, ξ(t, y))dξ(t, y)

+
1

2
φxx(t, ξ(t, y)) < dξ(t, y) > +σφx(t, ξ(t, y)).σ

ξ(t, y)dt

Recalling the following identities

φx(t, ξ(t, y)) =
1

ξy(t, y)
, φxx(t, ξ(t, y)) = −

ξyy(t, y)

(ξy(t, y))3
,

we can express the parameters of the decomposition in terms of ξ, ξy, and ξyy and the

diffusion coefficient σξ(t, y) of ξ, since σξ(t, y) = −ξy(t, y)σ
φ(t, ξ(t, y)). It is immediate that

µξ(t, y) = −ξy(t, y)µ
φ(t, ξ(t, y))+ξy(t, y) < σφ(t, ξ(t, y)), σφy (t, ξ(t, y)) > +

1

2
ξyy(t, y)‖σ

φ(t, ξ(t, y))‖2

In terms of the stochastic random fields µφ and σφ, this may be written as

µξ(t, y) = −ξy(t, y)µ
φ(t, ξ(t, y)) +

1

2
∂y
[

ξy(t, y)‖σ
φ(t, ξ(t, y))‖2

]

.

In terms of their own parameters, it follows from the strict monotonicity of ξ that

µξ(t, y) = −ξy(t, y)µ
φ(t, ξ(t, y)) +

1

2
∂y
[

‖σξ(t, y)‖2/ξy(t, y)
]

.

The proof of Proposition 3.2 is now complete.

The proof of Corollary 3.3 is achieved, first by reconciling the results of the previous propo-

sition and the following identities,

(Φx)
−1(t, y) = −Ξy(t, y), Φxx(t,−Ξy(t, y)) = −

1

Ξyy(t, y)
, and −Cx(t,−Ξy(t, y)) =

Dy(t, y)

Ξyy(t, y)

and second by integrating with respect to y, using the initial condition Ξ(t, 0) = 0.

3.2 Convex conjugate of consistent stochastic utility and dual

utility SPDE’s

We now define the convex conjugate of a consistent stochastic utility.

Definition 3.1. Let Ũ be the convex conjugate random field of the X -consistent stochastic

utility U , given by definition for t ≥ 0,

Ũ(t, y)
def
= inf

x>0,x∈Q+

(

U(t, x) − x y
)

Ũ(t, y) is a progressive decreasing convex random field, with first derivative Ũy(t, y) =

−I(t, y), where I(t, y) = Ux(t, .)
−1(y) is the inverse flow of the decreasing flow Ux(t, x).
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The formula of inverse flows yields easily to the dynamics of Ũ(t, y) from the dynamics of

U(t, x). Based on this remark and Corollary 3.3, we derive a stochastic partial differential

equation whose a solution is the convex conjugate processes of consistent stochastic utility.

Theorem 3.4. Let U be a consistent progressive utility of class C(3), in the sense of Kunita,

satisfying the β constraint (12) with risk tolerance αU and utility risk premium ηU (t, x) =
γx(t,x)
Ux(t,x)

. Let Ũ be the dual convex conjugate of U , null if y = 0. Then

(i) In old variables, Ũ satisfies dŨ (t, y) = β1(t,−Ũy(t, y))dt + γ(t,−Ũy(t, y)).dWt, where














β1(t, x) = β(t, x)−
1

2Uxx(t, x)
‖γx(t, x)‖

2

= Ux(t, x)
[

− xrt −
1

2
αU (t, x)

(

inf
θ∈Rσ,⊥

||θt −
(

ησt + ηU (t, x)
)

||2 − ‖ηU (t, x)‖2
)

]

.

(20)

The optimization program is achieved on θ∗(t, x) = ηU,⊥(t, x).

(i) In new variables,










dŨ(t, y) =
[ 1

2Ũyy(t, y)

(

‖γ̃y(t, y)‖
2 − ‖γ̃σy (t, y) + yŨyy(t, y)η

σ
t ‖

2
)

+ yŨy(t, y)rt

]

dt+ γ̃(t, y).dWt

γ̃(t, y) = γ(t,−Ũy(t, y)).

Furthermore the drift β̃(t, y) := β1
(

t,−Ũy(t, y)
)

is the value of an optimization program

achieved on the optimal policy ν∗(t, y) = θ∗(t,−Ũ(t, y)) = −γ̃⊥y (t, y)/yŨyy(t, y).

In particular, β̃ can be written us the solution of the following optimization program

β̂(t, y) = yŨy(t, y)rt −
1

2
y2Ũyy(t, y) inf

νt∈Rσ,⊥
{||νt − ησt ||

2 + 2
(

νt − ησt
)

.
( γ̃y(t, y)

yŨyy(t, y)

)

} (21)

with −γ̃y(t, y)/yŨyy(t, y) = ηU (t,−Ũ(t, y)) = γx(t,−Ũ (t, y))/y.

First, observe that as −Ũy is the inverse flows of Ux, the dynamic of the convex conjugate

Ũ of U becomes a simple consequence of Corollary 3.3. Second, the orthogonal part of the

utility prime risk ηU,⊥ := γ⊥x /Ux is the optimal policy of the dual problem in (i).Third,

given that β is associated with an optimization program the dual drift β̃ is also constrained

by HJB type relation in the new variables. Then, the convex conjugate is consistent with

some given family of the state density processes.

Proof. By regularity assumptions, using Theorem 2.1, Ux(t, x), βx(t, x) and γx(t, x) are reg-

ular enough to apply Itô-Ventzel formula. The assumptions of Proposition 3.2 and Corollary

3.3 are satisfied and hence the dynamics of the convex conjugate is a direct consequence of

Corollary 3.3. Let us now recall that the drift β(t, x) of U(t, x) is given in Theorem 2.4 by

β(t, x) = Ux(t, x)
(

− xrt −
αU (t, x)

2
||ηU,σ(t, x) + ησt ||

2
)

.
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To get the desired formula for β1(t, x) in (20), we use the following property of the orthogonal

projection: the norm of the projection on Rσ is the distance to the orthogonal vector

space Rσ,⊥. So, for any vector a ∈ RN , ||aσ ||2 = infν∈Rσ,⊥ ||ν − a||2. By replacing a by
(

ησt + ηU,σ(t, x)
)

yields the result.

Now, we focus on the drift β̃ of Ũ(t, y) in new variables, using essentially the following

identities,

U2
x(t,−Ũy(t, y))

2Uxx(t,−Ũy(t, y))
=

1

2
y2Ũyy(t, y),

γ̃y(t, y)

Ũyy(t, y)
= −γx(t,−Ũy(t, y)),

γ̃y(t, y)

yŨyy(t, y)
= −ηU (t,−Ũy(t, y))

We get the desired formula for β̃, i.e.

β̃(t, y) = yŨy(t, y)rt −
1

2
y2Ũyy(t, y) inf

νt∈Rσ,⊥
{||νt + ησt ||

2 + 2
(

νt − ησt
)

.
( γ̃y(t, y)

yŨyy(t, y)

)

}

On the other hand by orthogonal projection on Rσ,⊥
t and using the fact that ησt ∈ Rσ

t , there

exists one and only one optimal process ν∗ given by

ν∗t (y) =
−γ̃⊥y (t, y)

yŨyy(t, y)
= ηU,⊥(t,−Ũy(t, y))

which achieves the proof.

Let us now focus on the dual optimization problem.

Definition 3.2 (State price density process). A Itô semimartingale Y ν is called a state

price density process if for any wealth process Xκ, κ ∈ Rσ, Y νXκ is a local martingale. It

follows that Y ν satisfies,

dY ν
t

Y ν
t

= −rtdt+ (νt − ησt ).dWt, νt ∈ Rσ,⊥. (22)

Y is the family of all state density processes Y := {Y ν , ν ∈ Rσ,⊥, Y ν satisfies (22)}

.Obviously the class Y is not empty, since taking ν ≡ 0, Y 0 is the classical minimal

density process where the pricing of future cash-flow at time T is obtained by first dis-

counting between t and T the cash value at T with the short rate rt, and then by taking

the conditional expected value with respect to the minimal martingale measure. More-

over, any state density process Y ν is the product of Y 0 by the density martingale Lνt =

exp
( ∫ t

0 νs.dWs − 1/2
∫ t

0 |νs|
2ds

)

.

We obtain an interesting interpretation of the volatility risk premium in terms of optimal

density process.
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Theorem 3.5. Let U be a consistent progressive utility of class C(3), in the sense of Kunita,

satisfying the β HJB constraint. Then, its conjugate process Ũ(t, y) (convex decreasing

stochastic flow) is consistent with the family of state density processes Y , in the following

sense:

Ũ(t, Y ν) is a submartingale for any Y ν ∈ Y , and a martingale for some process Y ν∗(:= Y ∗).

The optimal process can be chosen as Y ∗
t = Ux(t,X

∗
t (−ũy(y)), whose the dynamics is

dY ∗
t

Y ∗
t

= −rtdt+
(

ν∗(t, Y ∗
t )− ησt

)

.dWt.

where the dual optimal parameter ν∗(t, y) is given by

ν∗(t, y) =
−γ̃⊥y (t, y)

yŨyy(t, y)
=
γ⊥x

(

t,−Ũy(t, y)
)

y
= ηU,⊥(t,−Ũy(t, y)).

Remark . Let Y(t, x) := Ux(t,X
∗
t (x)), if X∗

t (x) is strictly monotone in x, by taking the

inverse X (t, x), we can obtain Ux(t, x) in terms of Y(t, x) and X (t, x).

Proof. The first assertion of this result is essentially obtained by analogy with the primal

problem. Indeed, using the β̃ expression’s (21), which is

β̂(t, y) = yŨy(t, y)rt +
1

2
y2Ũyy(t, y) sup

νt∈Rσ,⊥

{−||νt − ησt ||
2 − 2

(

νt − ησt
)

.
( γ̃y(t, y)

yŨyy(t, y)

)

}

One can easily remark, by analogy to expression of Q in Lemma 2.3 and that of β,( equation

(12), Theorem 2.4), that Ũ is consistent with the family of processes Y , that is Ũ(t, Y ν
t ) is a

submartingale for any Yν ∈ Y and a local martingale for the optimal choice (Theorem 3.4)

ν∗(t, y) = −γ̃⊥y (t, y)/yŨyy(t, y) = γ⊥x
(

t,−Ũ(t, y)
)/

y, if there exists a solution to the SDE,

dY ν∗

t

Y ν∗
t

= −rtdt+
(

ηU,⊥
(

t,−Ũy(t, Y
ν∗

t )
)

− ησt
)

.dWt. (23)

On the other hand we recall that according to Proposition 2.6 assertion ii) Ux(t,X
∗
t ) satisfies

dUx(t,X
∗
t )

Ux(t,X∗
t )

= −rtdt+
(

ηU,⊥(t,X∗
t )− ησt

)

.dWt,

Note that Y ∗
t (y) =

(

Ux(t,X
∗
t (−ũy(y)))

)

t≥0
and that −Ũy(t, Y

∗
t (y)) = X∗

t (−ũy(y)) shows

that that Y ∗ is a solution of (23) which in turn implies the optimality of Y ∗.

To conclude, we have to show that Ũ(Y ∗
t (y)) is not only a local martingale but a ”true”

martingale, when U(X∗
t (x)) is a martingale. Put xy = −ũy(y), and use that the conjugacy

relation implies that Ũ(Y ∗
t (y)) = U(X∗

t (xy)) − Y ∗
t (y)X

∗
t (xy) with Y

∗
t (y) =

(

Ux(t,X
∗
t (xy)).

Thanks to Proposition 2.6, U(X∗
t (xy)) and Y ∗

t (y)X
∗
t (xy) and therefore Ũ(Y ∗

t (y)) are mar-

tingales.
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Increasing Consistent Utilities An interesting class of consistent utilities is the class

of increasing consistent utilities which was studied and fully characterized in the literature

by Berrier & al. [12] and Musiela & al. [35]. This utilities have a volatility vector γ

identically zero. It is an example where the dual SPDE is easier to study than the primal

one. Indeed, taking γ = 0 it follows that U is a solution of the following PDE dU(t, x) =
[

1
2
Ux(t,x)2

Uxx(t,x)
||ησt ||

2
]

dt where the convex conjugate Ũ satisfies

dŨ(t, y) =
[

−
1

2
y2Ũyy(t, y)||η

σ
t ||

2 + rtyŨy(t, y)
]

dt

Dividing by dt and writing that Ũ(t,y)
dt

= Ut(t, y) yields

Ũt(t, y)(ω) = −
1

2
y2Ũyy(t, y)(ω)||η

σ
t (ω)||

2 + rt(ω)yŨy(t, y)(ω)

which implies, by convexity, that t 7→ Ũ(t, y) is a decreasing function. Moreover, it is easy

to recognize in this PDE that the right hand side of the equation is nothing other than

the operator of diffusion of a geometrical Brownian motion with coefficients ησt (ω) and rt(ω)

LGBt,y (ω) applied to Ũ : Ũt(t, y)(ω) = −LGBt,y Ũ(t, y)(ω). From this point, the idea is to look for

positive solutions which are space-time harmonic functions of a geometric Brownian motion.

Assume that the function Ũ(t, y) is of class C3 in y and such that ∂2

∂y∂t
Ũ(t, y) = ∂2

∂t∂y
Ũ(t, y)

is defined and continuous. First, put Ṽ (t, y) = Ũ(t, e−
∫ t

0
rsdsy) and A(t) =

∫ t

0 ||η
σ
s ||

2ds; then

Ṽ is a solution of the following PDE

Ṽt(t, y) = −
1

2
At(t)y

2Ṽyy(t, y).

Second, define H(log(y) − 1
2At,

1
2At, ω) = −Ṽt,y(t, y, ω) and take the change of variable

τ = 1
2At, it is straightforward to check that H solves the backward heat equation

Hτ (τ, z) +Hzz(τ, z) = 0

The solutions of such equation are called space-time harmonic functions. Since the function

H is strictly positive, using the result of Widder, D.V [42, 43], F. Berrier & al. [12] and

Musiela & al. [35] show the following result which characterizes all decreasing consistent

utilities

Theorem 3.6. Let U(t, x) be a regular random field of class C3 on x such that ∂2

∂y∂t
Ũ(t, y) =

∂2

∂t∂y
Ũ(t, y) is defined and continuous. Assume U satisfies the utility SPDE with γ = 0 a.s..

Then U is a consistent stochastic utility if and only if there exists a constant C ∈ R and

a finite Borel measure m, supported on the interval (0,+∞) with everywhere finite Laplace

23



transform, such that

Ũ(t, y) =

∫

R∗

+

1

1− 1
α

(

1− y1−
1

α e−
1−α

2α

∫
t

0
||ηs||2ds

)

dm(α) + C.

Ũy(0, y) = −

∫

R∗

+

y−
1

αdm(α)

More over the optimal wealth process is strictly increasing and regular with respect to its

initial condition x.

There is an interesting interpretation of these stochastic utilities: At date t = 0 the

derivative Ũy(0, y) can be easily interpreted as the integral −y−
1

α weighted by the measure

m, which is nothing than the derivative of the convex conjugate of power utility with risk

aversion α. Hence, one can imagine that the investor starts from a power utility for which

he pull at random the risk aversion α, for any realization α he associate the power utility

uα weighted by m. The derivative of the convex conjugate of his utility at any date t

is then the integral of the derivatives of the convex conjugates of power utility where the

deterministic measurem becomes stochastic mt(dα) := e−
1−α

2α

∫ t

0
||ηs||2dsdm(α). Moreover the

stochastic measure mt(dα) is the unique one which ensure that the process Ũ constructed

is the derivative of a consistent utility. This interpretation is the starting point of the work

[22] where more general method to construct consistent utilities processes from a family of

classical utilities functions is developped.

3.3 Change of numéraire

One of the our first interest in progressive utilities was the fact they are consistent with

classical transformation in financial market in contrast to the classical utilities functions

which are not stable by change of numeraire; so, the value function of the classical portfolio

optimization problem is highly dependent on market parameters (r, η). Moreover, it is easier

to work with portfolios that are local martingales rather than semimartingales, that can be

obtained using the market numéraire, we find that there is a genuine interest to provide

details of this transformation on consistent stochastic utilities.

Proposition 3.7 (Stability by change of numeraire ).

Let U(t, x) be a X consistent stochastic utility, N be a positive semimartingale and denote

by X N the class of process defined by X N = {X̂ := X/N, X ∈ X }, then the process V

defined by

V (t, x) = U(t, xNt)

is a X N -consistent stochastic utility in the market of numeraire N if and only if U is an

X -Consistent stochastic utility.
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Roughly speaking the proposition says that the notion of X -Consistent utilities is preserved

by change of numeraire. An interpretation of this stability is that if the agent decides to

invest in a second market (foreign market) his preferences (risk aversion) are still unchanged,

given the uniqueness representation of his preferences.

Furthermore, there exists a market numeraire portfolio Mt(z) = 1/Y 0
t (1/z) ∈ X , which

transforms the classical wealth processes into positive local martingales, without changing

the space of constraints Rσ. When using any state price density process Y ν and the as-

sociated numeraire Nν
t (z) = 1/Y ν

t (1/z), the local martingale property holds true, but the

space of constraints is modified. To show this result it is enough to verify the assertions of

Definition 1.1 using identity V (t, X̂t) = U(t,Xt).

Now, we turn to more quantitative aspects of the change of numéraire. The idea is to

proof how, by change of numeraire techniques, we simplify the utility SPDE’s of consistent

stochastic utilities. To this end, some hypothesis and some regularity are needed.

Assumption 3.1. The new market-numeraire N , is assumed to satisfy:

dNt

Nt
= µNt dt+ δNt .dWt, N0 = z.

The wealth process X̂ is defined by X̂t := Xt/Nt where X denotes the wealth process in the

initial market. By Itô’s formula, we can easily write the dynamics of X̂,

dX̂t(x̂)

X̂t(x̂)
=

(

rt − µNt + δNt .η
σ
t

)

dt+
(

κt − δNt
)

.
(

dWt + (ησt − δNt )dt
)

, x̂ =
x

z
.

Denoting r̂ = r−µN − δN .ησ the short interest rate in the new market and by η̂ = ησ − δN ,

the new market price of risk, we get

dX̂t(x̂)

X̂t(x̂)
= r̂tdt+

(

κt − δNt
)

.
(

dWt + η̂tdt
)

.

Let us now stress the fact that if δN ∈ Rσ the volatility vector κ̂ = κ− δN of X̂ belongs to

Rσ if and only if κ ∈ Rσ since Rσ is a vector space, and then the optimization problem is

unchanged. Hence we get that a consistent utility V in this new market satisfies the same

dynamics as U in the initial market only by replacing r, η by r̂, η̂.

Else if δN,⊥ 6= 0 the optimization problem is quite different and utility-SPDE is modified,

as we will see in the next result.

Theorem 3.8. Let U(t, x) be a X -consistent stochastic utility satisfying the assumptions

of Theorem 2.4. The X N -consistent stochastic utility V (t, x) := U(t, xNt) is a solution of

the following stochastic partial differential equation

dV (t, x) = Vx(t, x)
{ 1

2αV (t, x)

(

||η̂t+η̂
V
t ||

2−||η̂σt +η̂
V,σ
t −xαV δN,σt ||2

)

−xr̂t

}

(t, x)dt+γV (t, x).dWt

25



with αV (t, x) := Vx(t, x)/Vxx(t, x) and ηV (t, x) = γV (t, x)/Vx(t, x) denote the risk tolerance

and the utility risk premium of V . The volatility of V is γV (t, x) = γU (t, xNt)+xVx(t, x)δ
N
t

and the optimal policy κ̂∗ is given by

xκ̂∗t (x) = −
1

αV (t, x)

(

η̂σt + ηV,σt

)

(t, x)− xδN,σt . (24)

Furthermore, taking N equal to the numeraire portfolio 1/Y 0, the market has no risk pre-

mium and the ratio ηV,σ has the same impact as a risk premium, but depending on the level

of the wealth x at time t. In particular, the previous dynamic of V is simpler

dV (t, x) =
(Vx)

2(t, x)

2Vxx(t, x)
‖
γV,σx (t, x)

Vx(t, x)
‖2dt+ γV (t, x).dWt.

and the convex conjugate Ṽ of V satisfies

dṼ (t, y) =
1

2Ũyy(t, y)
‖γ̃⊥y (t, y)‖

2dt+ γ̃(t, y).dWt.

Let us comment on the content of this theorem and its relation to the previous results.

The dynamic (24) of consistent utilities and the optimal policy (24) are more complicated

then ones in the initial framework. We recognize in the optimal policy formula a first term

(very similar to that of the initial market) which corresponds to an optimization program

without δN added to a second one which correspond to a translation by δN . This is due to the

fact that the dynamic of new wealth processes are a kind of combination of that of the initial

market and the dynamic of the state price density processes in the dual problem studied in

previous section. It suffices to take δN in the range of the matrix σ, to get the SPDE’s of

the old market and to take η̂ = 0 to get SPDE similar to the dual HJB-SPDE. Finally, in

the second part of the result, taking a numeraire with good properties this HJB-SPDE is

more simplified.

We close this section, by the the following corollary which is a consequence of the above

theorem.

Corollary 3.9. Under the assumptions of Theorem 3.8, taking N = Hr,ησ , we have

• γx ∈ Rσ implies Ṽ is a local martingale and the optimal dual process is constant:

Y ∗ ≡ 1.

• γx ∈ Rσ,⊥ implies V is a local martingale and the optimal wealth X∗(x) ≡ x.

The new market defined from the first one by change of numeraire 1/Hr,η (the market

numeraire) is called a martingale market because new wealths are local martingales.

Proof. The proof of this result is based on the Itô- Ventzel’s lemma applied to U(t, xNt) and

the fact that the optimal wealth process X̂∗ = X∗/N by definition of V , where X∗ denote

the optimal portfolio process associated to U .
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4 Utility Characterization and Stochastic Flows

Method for Solving Utility-Stochastic PDE’s

As we mentioned earlier, conventional methods of resolution of SPEs defined from their

terminal conditions, such as the method of characteristics, cannot be used to solve utility

SPDEs To overcome this difficulty, we present here a new approach to these utility stochastic

partial differential equations, based on a random change of variable. This new approach,

that we call ”stochastic flows method”, is based on the properties of the optimal wealth

X∗ and the state price density process Y ∗
t , supposed to either be a monotonic function of

their initial condition. More precisely, we take the initial condition u and an admissible

wealth process as given, and ask: what are the conditions on these data, to be an optimal

wealth process of some consistent stochastic utility U , and also how to recover U from these

information? In the classical expected utility framework, that is the question He and Huang

[14] asked in (1992) in a complete market. From one point of view, our problem is easier to

solve because we allow ourselves a larger class of utility functions. In particular, we establish

in the following that the only restriction is the monotony of the wealth process with respect

to the initial wealth, plus some integrability condition. Another difference between this work

and that of He and Huang [14] is that we work directly on the path of wealth process while

they work with the volatility of the wealth process κ(t, x) = κ(t, St, x) in their setup.

Before presenting this new method, remember that the direct analysis gives us a natural

way of finding U from the inputs (u, Y ∗,X∗) : Let U be a consistent utility with optimal

wealth X∗ then, according to Theorem 3.5 and Proposition 2.6, the process Y ∗ defined

by Y ∗
t (ux(x)) = Ux(t,X

∗
t (x)) is optimal for the dual problem and such that Y ∗X∗ is a

martingale. So, if X∗ is strictly increasing with respect to the initial capital, with inverse

flow X , Ux(t, x) = Y ∗
t (ux(X (t, x))); integrating with respect to x we get U .

From this we assume for the rest of the paper the following main assumption.

Assumption 4.1. The wealth process X∗
t (x) is assumed to be continuous and increasing in

x from 0 to +∞ with X∗
t (0) = 0, X∗

t (+∞) = +∞ for any t and satisfies

dX∗
t (x)

X∗
t (x)

= rtdt+ κ∗(t,X∗
t (x)).

(

dWt + ησt dt
)

, κ∗(t, x) ∈ Rσ
t , ∀x > 0, a.s.

Denote by X (t, z) the inverse flow such that X∗
t (X (t, z))) = z.

Financially speaking this hypothesis which may be a consequence of no arbitrage oppor-

tunity says that: we do not invest more to earn less. On the other hand, this monotony

assumption is true in many examples and, according to the classical results on the the
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stochastic differential equations (SDE), is satisfied as soon as xκ∗(t, x) is locally uniformly

Lipschitz, (see Kunita [25]).

Note also, by conjugacy identity, that monotonicity of X∗(x) implies that the dual process

Y ∗(y) is, in turn, strictly increasing and therefore invertible with respect to its initial con-

dition y for any date t. The converse property is also true. Consequently, we also do the

following hypothesis.

Assumption 4.2. Y ∗
t (y) is continuous and increasing in y from +∞ to 0 satisfying

dY ∗
t (y)

Y ∗
t (y)

= −rtdt+
(

ν∗t (Y
∗
t (y))− ησt

)

.dWt, ν(t, y) ∈ Rσ,⊥, ∀y > 0, a.s. (25)

Starting from the idea above, Assumptions 4.1 and 4.2 allow us to compound X∗ with

the inverse of Y ∗ and Y ∗ with the inverse flow of X∗. Under some additional regularity

assumptions, we establish one of our main contribution that involves the characterization

of any consistent utilities generating X∗ as an optimal portfolio. In particular, we give

the decomposition of the derivative γ of the volatility vector as an operator of Ux and Uxx

given κ∗. The second main result of this paper introduce a new method solve the utility

stochastic PDE. The idea is to transform SPDE to a system of two stochastic differential

equation (SDE). Herein, the method proposed can be used for a large class of SPDE with

given optimal policy.

There are two different messages on our approach hence we decide to present the asso-

ciated results separately. Note that the results of these section can be obtained first on the

martingale market and, simply, by using results of Theorem 3.7 we get the simillar ones on

the initial market.

4.1 Utility Characterization from optimal wealth and state

density processes

To fix the idea we consider a given wealth process X∗, a state density price process Y ∗ and

an utility function u(x). The objective is to construct a consistent utility U starting from

the function u(x) (U(0, x) = u(x)), generating X∗ as optimal wealth and Y ∗ as optimal

dual process. According to the necessary analysis above the constructed utility process may

satisfies Ux(.,X
∗(x)) = Y ∗(ux(x)).

To illustrate our approach we first start by proving this result in a special case where we

assume that the process Y ∗(y) = yHr,ησ = Y 0(y) since ν∗ = 0 a.s. The advantage of this

case is that we can find all messages of our construction and a complete overview of main
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calculations. This will better understand the calculations that are made in the general case,

because they are more difficult to follow, even they are not really more complicated.

Assuming Y ∗(y) = yHr,ησ , the identity (??) (Theorem 3.5) suggests a very simple way to

associate a progressive utility U(t, x) with the wealth process X∗. Indeed, if X (t, z) is the in-

verse flow ofX∗
t (x), then the increasing process U(t, x) satisfying Ux(t, x) = ux(X (t, x))Hr,ησ

t

is a good candidate to be a consistent stochastic utility. Another remarkable property of

this random field is that Ux(t,X
∗
t (x)) = Ux(0, x)H

r,ησ

t , which is another way to express that

the optimal dual process ν∗ is null. We are then in measure to state one of the important

results of this section.

Theorem 4.1. In addition to the monotony assumption 4.1, assume that the given admis-

sible portfolio (X∗
t (x)) has a volatility κ∗(t,X∗

t ), where the process κ∗(t, x), is sufficiently

regular to make the process X∗
t (x) C(1) regular in the sense of Kunita. In addition, we as-

sume that (Hr,ησ

t X∗
t (x)) is a martingale ∀x > 0. Recall that X is the inverse flow of X.

Let u be a utility function such that x 7→ uxx(x)X
∗
t (x) is integrable near to infinity.Then we

define the processes U and Ũ by,

U(t, x) = Hr,ησ

t

∫ x

0
ux(X (t, z))dz, Ũ(t, y) =

∫ +∞

y

X∗
t (−ũy(

z

Hr,ησ

t

))dz. (26)

U is a progressive utility, whose the convex conjugate is Ũ , and the dynamics







dU(t, x) =
(

− U(t, x)rt +
1

2Uxx(t,x)
||γσx (t, x) + Ux(t, x)η

σ
t ||

2
)

dt+ γ(t, x).dWt

γx(t, x) = −Uxx(t, x)xκ
∗(t, x) − Ux(t, x)η

σ
t

Ũ(t, yHr,ησ

t ) and U(t,X∗
t ) are martingale processes and U is a X -consistent stochastic utility,

with optimal wealth X∗.

Note that the fact that the state price density process Y ∗ is linear with respect to its

initial condition greatly simplify this first result (true if ν∗ is not depending on y) contrary

to the next theorem where ν∗t is a function of y.

Proof. First by definition U is strictly increasing concave random field and of class C(3) in

the sense of Kunita. Let us now focus on the dynamics of this progressive utility. Any things

are simpler in a martingale market, when Hr,ησ

t is equal to 1, but the PDEs is a little more

complicated.

To get started, we introduce the intermediate process Ū(t, x) :=
∫ x

0 ux(X (t, z))dz with a sim-

pler convex conjugate ˜̄U(t, y) =
∫ +∞
y

X∗
t ((ux)

−1(z))dz. Denoting by (βŪ , γŪ ) and (β̃
˜̄U , γ̃

˜̄U )

the local characteristic of Ū and ˜̄U , it follows from the dynamics of X∗ and the identity
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˜̄Uy(t, y) = −X∗
t (−ũy(y)) that







β̃
˜̄U
y (t, y) = −rt

˜̄Uy(t, y)−
˜̄Uy(t, y)κ

∗(t,− ˜̄Uy(t, y)).η
σ
t

γ̃
˜̄U (t, y) = − ˜̄Uy(t, y)κ

∗(t,− ˜̄Uy(t, y))
(27)

On the other hand, using the correspondence between the diffusion parameters of Ū and ˜̄Uy

given in Proposition 3.2 (or equivalently Corollary 3.3), we have







γŪx (t, x) = −Ūxx(t, x)γ̃
˜̄U
y (t, Ūx(t, x))

βŪ (t, x) = β̃
˜̄U (t, Ux(t, x)) +

1
2Ūxx(t,x)

||γŪx (t, x)||
2

By this and (27), it is straightforward to check that







γŪx (t, x) = −xŪxx(t, x)κ
∗(t, x)

βŪx (t, x) = −xŪxx(t, x)rt + γŪx (t, x).η
σ
t + ∂

∂x

(

1
2Ūxx(t,x)

||γŪx (t, x)||
2
)

In turn, we get that Ū(t, x) satisfies dŪ(t, x) = βŪ (t, x)dt+ γŪ (t, x).dWt with







γŪ (t, x) = −
∫ x

0 Ūxx(t, z)zκ
∗(t, z)dz

βŪ (t, x) = −xŪx(t, x)rt + Ū(t, x)rt + γŪ (t, x).ησt + 1
2Ūxx(t,x)

||γŪx (t, x)||
2

As U(t, x) = Hr,ησ

t Ū(t, x), Itô’s formula leads to

dU(t, x) = Hr,ησ

t

(

βŪ (t, x)− Ū(t, x)rt − γŪ (t, x).ησt
)

dt+
(

Hr,ησ

t γŪ (t, x)− U(t, x)ησt

)

.dWt.

Denote by γ(t, x) := Hr,ησ

t γŪ (t, x) − U(t, x)ησt = −
∫ x

0 Ūxx(t, z)zκ
∗(t, z)dz − U(t, x)ησt , we

obtain using βŪ formula and identities U = Hr,ησ Ū , Ux = Hr,ησ Ūx, Uxx = Hr,ησ Ūxx that

U satisfies the desired dynamics given by

dU(t, x) =
(

− U(t, x)rt +
1

2Uxx(t, x)
||γσx (t, x) + Ux(t, x)η

σ
t ||

2
)

dt+ γ(t, x).dWt

and γx(t, x) = −Uxx(t, x)xκ
∗(t, x)− Ux(t, x)η

σ
t .

Then U is a progressive utility satisfying the utility non linear SPDE, with an optimal wealth

satisfying equation (11) of Theorem 2.4. To conclude, it suffices to prove that U(t,X∗
t ) is

a martingale. It is simpler to show this property on the conjugate dual process, since

Ũ(yHr,ησ

t ) = Hr,ησ

t

∫ +∞
y

X∗
t (−u(z))dz is a martingale since (Hr,ησ

t X∗
t (z)) is a martingale, by

integrability assumption. By the conjugacy relation, the same property holds for U(t,X∗
t ).

The risk tolerance coefficient taken along the optimal wealth has nice properties easily

proved. This martingale property has been established in He and Huang in [14]
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Corollary 4.2. Let αU (t, x) = − Ux(t,x)
Uxx(t,x)

be the risk tolerance coefficient of U .

Then αU (t,X∗
t (x)) = αu(x)X∗

x(t, x), where X
∗
x(t, x) is the derivative (assumed to exist) of

X∗
t (x) with respect to x. Moreover, Hr,ησ

t αU (t,X∗
t (x)) is a local martingale, since X∗

x(t, x)

is also an admissible portfolio with initial wealth 1.

Proof. Observe that by definition Uxx(t, x) = Hr,ησ

t uxx(X (t, x))Xx(t, x). Since Xx(t, x) =

1/X∗
x(t,X (t, x)), and Xx(t,X

∗
x(t, x)) = x, the formula αU (t,X∗

t (x)) = αu(x)X∗
x(t, x) is a

simple verification. Moreover, observe that the derivative X∗
x(t, x) (assumed to exist) belongs

to the same vector space of processes than X∗
t (z), and H

r,ησ

t X∗
x(t, x) is a local martingale.

We have shown in Theorem 4.1 that for a monotone wealth processX∗, assumption (X∗Hr,ησ

is a martingale) is sufficient in order to construct at least a consistent utility whose the

optimal wealth is X∗ and the optimal dual process Y ∗(y) = yHr,ησ . We ask now the

question how to determine the progressive utilities associated with more general processes

Y ∗. As we saw in Theorem 3.5, the intuition is to look to U such that Ux(t, x) = YoX (t, x)

where Y(t, x) = Y ∗
t (ux(x)).

We now state the general consistent utility characterization theorem.

Theorem 4.3. Let (X∗
t (x) ∈ X ) be an admissible wealth process and (Y ∗

t (y)) ∈ Y be

an admissible state price density process, C(1) regular in the sense of Kunita, such that in

addition to Assumptions 4.1 and 4.2, (X∗
x(t, x)Y

∗
t (y)) is a martingale, where by definition

X∗
x(t, x) = ∂xX

∗
x(t, x).

Let u be a utility function, and Y(t, x) = Y ∗
t (ux(x)), X (t, z) = (X∗

t (.))
−1 two regular stochas-

tic flows such that such x 7→ Y(t,X (t, z)) is integrable near to zero.

Define the processes U and Ũ by

U(t, x) =

∫ x

0
Y(t,X (t, z))dz, Ũ(t, y) =

∫ +∞

y

X∗
t ((Y)

−1(t, z))dz. (28)

U is a progressive utility, whose the convex conjugate is Ũ , and the dynamics

dU(t, x) =
(

− xUx(t, x)rt +
1

2Uxx(t, x)
||γσx (t, x) + Ux(t, x)η

σ
t ||

2
)

dt+ γ(t, x).dWt,

with volatility vector γ given by

γ(t, x) = −U(t, x)ησt −

∫ x

0

(

zUxx(t, z)κ
∗(t, z) − ν∗t (Ux(t, z))

)

dz.

The associated optimal portfolio and the optimal dual process are X∗ and Y ∗. Moreover

U(t,X∗
t ) is a martingale, so that U is a X -consistent stochastic utility.

31



In the first theorem of this paragraph we build for a given initial utility function a consistent

stochastic utility with given optimal wealth process. wealth. The extension which we give

here characterizes all consistent stochastic utilities with the same optimal wealth process

This result expresses only how we must diffuse the function Ux(0, x) = ux(x) to stay within

the framework of consistent stochastic utilities in incomplete market. The answer is intuitive

because it expresses that it is enough to keep a monotone field Y ∗ which does not influence

the reference market. On the other hand it is important to remark that the derivative with

respect to x of the volatility vector γ is the sum of two orthogonal vectors and is given by

γx(t, x) = ν∗t (Ux(t, x))− Uxx(t, x)xκ
∗(t, x)− Ux(t, x)η

σ
t

= ν∗t (Ux(t, x))− Ux(t, x)
(

ησt +
Uxx
Ux

(t, x)xκ∗(t, x)
)

,

and consequently, given κ∗ and ν∗, it is interpreted as an operator Υ(t, x, Ux, Uxx) which is

linear on Uxx, that depends on Ux through the volatility ν∗ of Y ∗ and an affine term on

ησ, and depends on x only through the optimal policy κ∗. We also emphasizes that the

term Ux/Uxx in this formula is the risk tolerance of an investor with utility process U . In

particular in the case of the market martingale (ησ = 0), Υ(t, x, Ux, Uxx) is linear on Uxx,

depends on Ux only through the volatility ν∗ of Y ∗ and on x only through the optimal policy

κ∗.

Note that in the classical backward set-up of utility maximisation, simillar idea is investi-

gated by I. Karatzas & al [11]. The authors show also that the solution of backward SPDE

can be represented as the composite of two invertible processes. But this differs from the

approach proposed here because these processes are represented as an expectation of mono-

tonic functions (characteristics method) where in this work are stochastic flows. Note that

the authors also use the Itô-Ventzel formula to establish the backward SPDE.

Remark . After giving the proof of this result, we want to draw the attention to the fact

that this Theorem can be showed first in the case of the martingale market (r = 0, η = 0).

This allows us to simplify calculation and we can always comeback to the initial market by

a technique of change of numeraire.

Proof. Under assumption 4.1 the inverse X of X∗ with respect to x satisfies by Proposition

3.2

dX (t, x) = −xXx(t, x)κ
∗(t, x).dWt +

1

2
∂x

(

Xx(t, x)‖xκ
∗(t, x)‖2

)

dt.

The hypothesis made on X∗ and Y ∗ entail that we can apply the Itô-Ventzel formula to the

compound flow YoX . To study Ux(t, x) we are first interested on the coefficient of dWt of

the dynamics of YoX because it represents the derivative of the volatility γ of the utility U .
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As (YxoX )Xx = Uxx and Ux = YoX , formula (3.1) gives us that

γx(t, x) = ν∗t (Ux(t, x))− xUxx(t, x)κ
∗(t, x)− Ux(t, x)η

σ
t .

This identity shows that the vector γx is the sum of two orthogonal vectors since the first term

ν∗t (Ux(t, x)) belong by hypothesis to the orthogonal of the second which is −Ux(t, x)
(

ησt +

(xUxx/Ux)(t, x)κ
∗(t, x)

)

that belongs by hypothesis to the space Rσ
t . Throughout, the

projection of γx on Rσ
t is the vector γσx (t, x) = −xUxx(t, x)κ

∗(t, x) − U(t, x)xη
σ
t .

As Ux = YoX , γx is the volatility process of Ux, it is enough to integrate it with respect to

x to obtain the result.

We now focus our interest on the drift µUx of the derivative YoX of U . The idea and

calculations are exactly identical to those of the proof of Corollary ?? . Indeed by the

assumptions and equation (19) we have

µUx(t, x) = −
(

xXx(t, x)YxoX (t, x) + YoX (t, x)
)

rt

+
1

2
(YxoX )(t, x)∂x

(

Xx(t, x)‖xκ
∗(t, x)‖2

)

+
1

2
(YxoX )(t, x)‖Xx(t, x)xκ

∗(t, x)‖2

−xXx(t, x)∂x

(

YoX (t, x)(ν∗t (YoX (t, x)
)

− ησt )
)

.κ∗(t, x)− xXx(t, x)YxoX (t, x)κ∗(t, x).ησt .

Note that in the last line the term −xXx(t, x)∂x

(

YoX (t, x)(ν∗t (YoX (t, x)
)

− ησt ).κ
∗(t, x)

comes from Itô-Ventzel formula and corresponds to < dY, dX >.

To lead the proof we proceed by analyzing line by line the above equality. Using the iden-

tities (YxoX (t, x))x = YxxoX (t, x)Xx(t, x) and Uxx(t, x) = YxoX (t, x)Xx(t, x), the first line

becomes

−
(

xXx(t, x)YxoX (t, x) + YoX (t, x)
)

rt = −
(

xUxx(t, x) + Ux(t, x)
)

rt = −∂x(xUx)(t, x)rt.

(29)

Rewritting the second line, we obtain

1

2

[

(

YxoX (t, x)Xx(t, x)(Xx(t, x)‖xκ
∗(t, x)‖2) + (YxxoX )(t, x)Xx(t, x)∂x

(

Xx(t, x)‖xκ
∗(t, x)‖2

)

]

=
1

2
∂x

[

YxoX (t, x)Xx(t, x)‖xκ
∗(t, x)‖2

]

. (30)

Finally, from the assumption that ν∗t (Y(t, x)).κ
∗(t,X∗

t (x)) = 0, we deduce ν∗t (YoX (t, x)).κ∗(t, x) =

0 and ∂x
(

ν∗t (YoX (t, x))
)

.κ∗(t, x) = 0. This yields in the last line

− xXx(t, x)
[

∂x

(

YoX
(

ν∗t (YoX )− ησt
)

(t, x)
)

.κ∗(t, x)− YxoX (t, x)κ∗(t, x).ησt

]

= 0. (31)

Identities (29), (30) and (31) combined with the expression of µUx and γx yield to

µUx(t, x) = ∂x

(

− xU(t, x)rt +
1

2Uxx(t, x)
||xκ∗(t, x)||2

)

.
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As U(t, 0) ≡ 0 we get by integration that U satisfies

dU(t, x) = {−xUx(t, x)rt +
1

2
Uxx(t, x)||xκ

∗(t, x)||2}dt+ γ(t, x).dWt.

Using γσx (t, x) + Ux(t, x)η
σ
t = −xUxx(t, x)κ

∗(t, x) one easily sees that

dU(t, x) = {−xUx(t, x)rt +
1

2

[‖γσx (t, x) + Ux(t, x)η
σ
t ‖

2

Uxx(t, x)

]

}dt+ γ(t, x).dWt.

It remains to show that U(t,X∗
t ) is a martingale, given that the positive process Y ∗

t (y)X
∗
x(t, x)

is a martingale by assumption. Then since U(t,X∗
t ) =

∫ x

0 Y(t, z)X∗
x(t, z)dz, U(t,X∗

t ) is also

a martingale. The proof is complete.

Remark . The risk tolerance coefficient along the optimal wealth A(t,X∗
t (x)) is no longer

proportional to X∗
x(t, x) since A(t,X∗

t (x)) =
Y ∗
t (ux(x))

Y ∗
y (t, ux(x))uxx(t, x)

X∗
x(t, x).

Nevertheless, the both processes
Y ∗
t (ux(x))

Y ∗
y (t,ux(x))

and Y ∗
t (ux(x))X

∗
x(t, x) are local martingales, but

their product is not a local martingale.

4.2 Stochastic Flows Method for Solving Stochastic PDE’s

In the previous paragraph using two invertible stochastic flows X∗ and Y ∗ we construct a

consistent utility with the desired dynamics. Naturally, the question of the converse point of

view is required. Starting from a stochastic PDE that satisfy consistent utilities, the question

is then under which assumptions we have existence and uniqueness of the solution? What

can we deduce about the monotony and the concavity of a possible solution? Answering

these questions is the purpose of this paragraph. In the following theorem we propose a new

method that allows us to address the issue of such resolution of fully nonlinear second order

stochastic PDEs .

Theorem 4.4. Consider a utility stochastic PDE with initial condition u(.),

dU(t, x) =
(

− xUx(t, x)rt +
1

2Uxx(t, x)
||γσx (t, x) + Ux(t, x)η

σ
t ||

2
)

dt+ γ(t, x).dWt. (32)

Put −xUxx(t, x)κ
∗(t, x) = γσx (t, x) + Ux(t, x)η

σ
t and ν∗t (Ux(t, x)) = γσx t, x).

Assume that the both equations

dX∗
t (x)

X∗
t (x)

= rtdt+κ
∗(t,X∗

t (x)).
(

dWt+η
σ
t dt),

dY ∗
t (y)

Y ∗
t (y)

= −rtdt+
(

ν∗t (Y
∗
t (y))−η

σ
t

)

.dWt (33)

admit solutions which are increasing: [0,+∞) → [0,+∞) in their initial conditions and are

a regular flow in the sense of Kunita. Let Y(t, x) = Y ∗
t (ux(x)), X (t, z) = (X∗

t (.))
−1 and
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assume x 7→ Y(t,X (t, z)) is integrable near to zero. Then there exists an increasing and

concave solution U of the SPDE (32) given by

U(t, x) =

∫ x

0
Y(t,X (t, z))dz

Moreover, if X∗ and Y ∗ are unique then U is the unique solution of (32).

Theorem 4.3 shows that for a given X∗ and Y ∗ increasing solutions of SDEs (33) the

random field U(t, x) =
∫ x

0 Y(t,X (t, z))dz is a consistent utility solution of the utility SPDE

(32) with a volatility vector γ s.t. γx(t, x) +Ux(t, x)η
σ
t = −xUxx(t, x)κ

∗(t, x) + ν∗t (Ux(t, x)).

In this result the converse point of view is investigated. Starting from the utility SPDE

(32) with a given initial condition u, putting −xUxx(t, x)κ
∗(t, x) = γσx (t, x)+Ux(t, x)η

σ
t and

ν∗t (Ux(t, x)) = γσx t, x), the theorem shows, under the assumption that both two SDE’s (33)

admit a increasing solutions, that there exists an increasing concave solution U of SPDE

(32) given by U(t, x) =
∫ x

0 Y(t,X (t, z))dz. Moreover, the uniqueness of U is strongly related

on the uniqueness of the solutions X∗ and Y ∗ of SDE’s (33). Finally, remark that the

martingale property of the product X∗Y ∗ is not required to have a solution of the SPDE

where it was necessary to conclude that U is a consistent utility in Theorem 4.3.

These is an interesting new approach in which the solution of the utility SPDE have a trajec-

tory (path wise) representation contrary to the characteristics method where the solutions

are represented as an expectation. In particular, note that there are several advantages of

this connection between SPDE’s and SDE’s. For example, the existence of divers works in

the domain of SDE’s and seen in the multitude of results on the existence, uniqueness and

on the integrability of solutions. The monotonicity of solutions X∗ and Y ∗ gives several

properties of the solution U of the SPDE which to the best of our knowledge there are no

or few results that assert the monotonicity or the convexity of such solutions. Also, there

may be other advantages in numerical methods and simulations of the SDE then of SPDE.

We finish this section mentioning that the main assumption of Theorem 4.4 is to assume

that the SDEs (33) admit a solutions which is a fairly strong assumption because κ∗ and

ν∗ may depend on higher order derivatives of U . For example in the Markovian case where

U(t, x) = u(t, x, St), according to Example 2.1, the volatility vector γ of U is given by

γ(t, x) = (σt)
T ∇Su(t, x, St).

Hence, one ca easily obtain that

−xκ∗(t, x) =
(σt)

T ∇Su(t, x, St)

uxx(t, x, St
)

In other words, existence of a solution to the associated SDE in (33) is like an inverse

problem.
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Conclusion This paper investigates consistent stochastic utilities from the stochastic

PDEs point of view. This leads therefore to make strong regularity assumptions: The

market is a Brownian market and securities are modeled as continuous semimartingales.

Utilities are at least of class C(2) in the sense of Kunita in order to apply Itô-Ventzel Lemma

and to deduce the SPDEs. Moreover, the method of stochastic utilities construction is based

on the dynamics of stochastic flows and their inverses, and therefore additional regularity

assumptions on X∗ and Y ∗ are required. However, one can take a direct approach still based

on monotony assumptions on optimal processes for the primal and dual problem, and on

compound flows formula ; it is showed in [23], that these assumptions can be considerably

weakened. Indeed, considering any financial market in which the securities are modeled

as a bounded semimartingales, the stochastic utilities are of class C1 and wealth process

are required to lie in a convex class X ⊂ X+, the monotony assumption of X∗ and Y ∗

is sufficient to show the validity of the construction proposed in this work, using analysis

methods and optimality conditions.

Appendix

A Itô-Ventzel’s formula

The Itô-Ventzel’s formula is a generalization of classical Itô’s formula where the deterministic

function is replaced by a stochastic process depending on a real or multivariate parameter.

There are several difficulties in the definition of semimartingale depending on a parameter,

as explained in H. Kunita [25]. For instance, let us consider the Itô integral of a predictable

process ft(x) with parameter x in some domain D of R+ with respect to some Brownian

motion B. Suppose that
∫ T

0 fs(x)
2ds < +∞ holds for each x ∈ D. Then the Itô integral

Mt(x) =
∫ t

0 fs(x)dBs is well defined for any t except for a null set Nx. It is a continuous local

martingale with parameter x ∈ D. Then Mt(x) is well defined for (t, x) if ω ∈ (∪x∈INx)
c.

However the exceptional set (∪x∈INx) may not be a null set since it is an uncountable

union of null sets. To overcome this technical problem we must take a good modification

of the random field Mt(x) so that it is well defined for all (t, x) a.s. and is continuous or

continuously differentiable with respect to x for all t almost surely.

A.1 Notation and Definition

Functional spaces We shall first introduce some notations. Let D be a domain in R+,

m an non-negative integer and denote by Cm(D,R) the set of all functions g : D −→ R which
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are m-times continuously differentiable. Using the notation g(m) for the derivative of order

m of some function g, we introduce the seminorms defined on some compact subset of D by

||g||m:K = sup
x∈K

|g(x)|

1 + |x|
+

∑

1≤α≤m

sup
x∈K

|g(α)(x)|.

Equipped with these seminorms, Cm(D,R) is a Frechet space. When D itself is a compact

space we drop out the reference to K.

We sometimes need to refer to more regular functions whose derivatives of order m are

δ-Hölder continuous (0 < δ ≤ 1). Then we introduce a new family of seminorms,

||g||m+δ:K = ||g||m:K + sup
x,y∈K
x 6=y

|g(m)(x)− g(m)(y)|

|x− y|δ
.

on the set of Cm(D,R) whose last derivative is δ-Hölder continuous.

Definition A.1. A continuous function g(t, x), x ∈ I, t ≥ 0 is said to belong to Cm,δ, δ ∈

[0, 1] if for every t, f(t) = f(t, .) belongs to Cm,δ and ||f(t)||m+δ:K is integrable with respect

to t for any compact subset K of I. If the set K is I, the function f is said to belong to the

class Cm,δb . Furthermore, if ||f(t)||m+δ is bounded in t it is said to belongs to Cm,δub

We also need to introduce the same kind of definition for functions depending on two

parameters

||g||∼m+δ:K = ||g||∼m:K +
∑

α=m

||∂αx ∂
α
y g(x, y)||

∼
δ:K

||g||∼δ:K = sup
x,x′,y,y′∈K
x 6=x′,y 6=y′

|g(x, y) − g(x′, y)− g(x, y′) + g(x′, y′)|

|x− x′|δ|y − y′|δ
.

Definition A.2. A continuous function g(t, x, y), x, y ∈ I, t ∈ [0, T ] is said to belong to

C̃m,δ, δ ∈ [0, 1] if for every t, g(t) = g(t, ., .) belongs to C̃m,δ and ||g(t)||∼m+δ:K is integrable

on [0, T ] with respect to t for any compact subset K of I. If the set K is I, the function g

is said to belong to the class C̃m,δb . Furthermore, if ||g(t)||∼m+δ is bounded in t it is said to

belong to C̃m,δub

Cm,δ-process : Let U(t, x) a family of real valued process with parameter x ∈ I. We

can regard it as a random field with double parameter t and x. If U(t, x, ω) is a continuous

function of x for almost all ω for any t, we can regard U(t, .) as a stochastic process with

values in C = C(I,R) or a C-valued process. If U(t, x, ω) is m-times continuously differen-

tiable with respect to x for almost all ω for any t, it can be regarded as a stochastic process

with values in Cm = Cm(I,R) or a Cm-valued process. If U(t, x) is a continuous process with
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value in Cm, it is called a continuous Cm-process. A Cm,δ-valued process and continuous

Cm,δ-processes are defined similarly.

C̃m,δ-process : Let G(t, x, y) be a stochastic process with parameter x, y ∈ I. If it is

m-times continuously differentiable with respect to each x and y a.s. for any t, it is called a

stochastic process with values in C̃m or a C̃m-valued process. The C̃m,δ-valued process and

continuous C̃m,δ-valued process are defined similarly.

Theorem A.1. Let Mt(x), x ∈ I be a family of continuous local martingales such that

M0(x) ≡ 0. Assume the joint quadratic variation < Mt(x),Mt(y) > has a modification

A(t, x, y) of a continuous C̃m,δ-process for some m ≥ 1 and δ ∈ (0, 1]. Then Mt(x) has a

modification of a continuous Cm,ε-process for any ε < δ. Furthermore, for each n ≥ m,

∂nxMt(x), x ∈ I is a family of continuous local martingales with joint quadratic variation

∂nx∂
n
yA(t, x, y).

Definition A.3. We shall call the random field Mt(x) with the property of the previous

Theorem a continuous local martingale with values in Cm,ε or a continuous Cm,ε-local mar-

tingales.

Regular Itô’s random fields Cm,δ-semimartingale : Suppose U(t, x), x ∈ I is

a family of continuous semimartingale decomposed as U(t, x) = B(t, x) +M(t, x), where

M(t, x) is a local martingale and B(t, x) is a continuous process of bounded variation.

U(t, x), x ∈ I is said to belong to the class Cm,δ or simply to be Cm,δ-semimartingale if

M(t, x) is a continuous Cm,δ-local martingale and B(t, x) is a continuous Cm,δ-process such

that Dα
xB(t, x), α ≤ m are all process of bounded variation. Further if δ = 0 it is called a

Cm-semimartingale.

Let U be a semimartingale satisfying

dU(t, x) = β(t, x)dt+ γ(t, x).dWt, U(r, x) = U(x),

where β and γ are predictable process.

Definition A.4 (Kunita).

• The pair (β, γ) is called the local characteristic of U .

• Let m be a non-negative integer and a(t, x, y) := γ(t, x)∗γ(t, y). The local charac-

teristic (β, γ) is said to be in the class Bm,0 if both β and a are predictable pro-

cess with value Cm and if for any compact subset K1 ⊂ R+ and K2 ⊂ R+ × R+

||β(t, .)||m:K1
, ||a(t, ., .)||∼m:K2

∈ L1.
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Where

||f ||m:K1
= sup

x∈K1

|f(x)|

1 + |x|
+

∑

1≤|α|≤m

sup
x∈K1

|Dα
xf(x)|.

||g||∼m:K2
= sup

x,y∈K2

|g(x, y)|

(1 + |x|)(1 + |y|)
+

∑

1≤|α|≤m

sup
x,y∈K2

|Dα
xD

α
y g(x, y)|

Definition A.5 (Itô-Ventzel Regularity). A semimartingale random field U is said to be

Itô-Ventzel regular if U is a continuous C2-process and continuous C1-semimartingale with

local characteristic satisfying previous assumption .

Theorem A.2 (Itô-Ventzel’s Formula (Kunita)). Let (U(t, x)) be an Itô-Ventzel regular

semimartingale random field and let Xt be a continuous semimartingale with values in I

and volatility σX , then U(t,Xt) is a continuous semimartingale and

U(t,Xt) = U(0,X0) +

∫ t

0
β(s,Xs)ds +

∫ t

0
γ(s,Xs).dWs

+

∫ t

0

∂U

∂x
(s,Xs)dXs +

∫ t

0

∂2U

∂x2
(s,Xs) < X >s ds

+

∫ t

0
〈
∂γ

∂x
(s,Xs), σ

X
s 〉ds.

Furthermore, according to H. Kunita [25] Theorem 3.3.3 p.94 we have the following

differential rules for stochastic integrals.

Theorem A.3 (Differential rules for stochastic integrals). (i) Let F (t, x) be a continuous

Cm,δ-semimartingale with local characteristic belonging to the class Bm,δ where δ >

0. Let X(t, x), x ∈ Λ, t ∈ [0, T ] be a continuous predictable process with values in

Ck,γ(Λ,I) where γ > 0 and Λ ⊂ Re. Set

M(t, x) =

∫ t

0
F (X(s, x), ds).

Then M(t, x) has a modification of continuous Cm,δ-semimartingale with values in

Cm∧k,ε(Λ,R) with local characteristic belonging to the class Bm∧k,γδ with ε < γδ.

Further if gt is a continuous predictable process with values in Λ, then we have the

equality:
∫ t

0
M(ds, gs) =

∫ t

0
F (X(s, gs), ds). (34)

(ii) If m ≥ 1 and k ≥ 1, then we have the equality:

∂

∂xi
M(t, x) =

d
∑

i=1

∫ t

0

∂

∂xj
Xi(s, x)

∂

∂xi
F (X(s, x), ds). (35)
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Boston, MA, 2007.

[32] M. Musiela and T. Zariphopoulou. Stochastic partial differential equations in portfolio

choice. Preliminary report, 2007.

[33] M. Musiela and T. Zariphopoulou. Optimal asset allocation under forward exponen-

tial performance criteria. volume 4 of Contemp. Math., pages 285–300. Institute of

Mathematical Statistics, 2008.

[34] M. Musiela and T. Zariphopoulou. Portfolio choice under dynamic investment perfor-

mance criteria. Quantitative Finance, 9(2):161–170, 2008.

[35] M. Musiela and T. Zariphopoulou. Portfolio choice under space-time monotone perfor-

mance criteria. Preprint, November-2008.

[36] Eckhard Platen and David Heath. A benchmark approach to quantitative finance.

Springer Finance. Springer-Verlag, Berlin, 2006.

[37] R. Tyrrell Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Prince-

ton University Press, Princeton, N.J., 1970.

[38] R. Rouge and N. El Karoui. Pricing via utility maximization and entropy. Math.

Finance, 10(2):259–276, 2000. INFORMS Applied Probability Conference (Ulm, 1999).

[39] W. Schachermayer. Optimal investment in incomplete financial markets. In Mathemat-

ical Finance: Bachelier Congress 2000, pages 427–462. Springer, 2001.

[40] A.D. Ventzel. On equations of the theory of conditional Markov processes. Theory of

Probability and its Applications, 10:357–361, 1965.

[41] Z. H. Wei and S. G. Zhang. Relationship between optimal growth portfolio and mar-

tingale measure. Chinese J. Appl. Probab. Statist., 19(1):14–18, 2003.

[42] D. V. Widder. The role of the Appell transformation in the theory of heat conduction.

Trans. Amer. Math. Soc., 109:121–134, 1963.

42



[43] D. V. Widder. The heat equation. Academic Press [Harcourt Brace Jovanovich Pub-

lishers], New York, 1975. Pure and Applied Mathematics, Vol. 67.
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