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Stochastic Utilities With a Given Benchmark Portfolio :

Approach by Stochastic Flows∗†

El Karoui Nicole, ‡ Mrad Mohamed §

April 5, 2013

Abstract

The paper generalizes the construction by stochastic flows of consistent utility pro-

cesses introduced by M. Mrad and N. El Karoui in [19]. The utilities random fields are

defined from a general class of processes denoted by X . Making minimal assumptions

and convex constraints on test-processes, we construct by composing two stochastic flows

of homeomorphisms, all the consistent stochastic utilities whose the optimal-benchmark

process is given, strictly increasing in its initial condition. Proofs are essentially based on

stochastic change of variables techniques.

1 Introduction.

The purpose of this paper is to generalize the construction of consistent utilities by stochas-

tic flows method introduced in [19] in a Itô’s framework where securities are modeled as

continuous Itô’s semimartingales. The concept of consistent stochastic utilities, also called

”forward dynamic utilities”, has been introduced by M. Musiela and T. Zariphopoulou

in 2003 [24, 26] ; since this notion appears in the literature in varied forms, in the work
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of T. Choulli, C. Stricker and L. Jia [1], V. Henderson and D. Hobson [4], F. Berrier, M.

Tehranchi and Rogers [9], G. Zitkovic [37] and in the work of M. Mrad and N. El Karoui

in [19]. Intuitively, a stochastic utility should represent, possibly changing over time,

individual preferences of an agent. The agent’s preferences are affected over time by the

information available on the market represented by the filtration (Ft, t ≥ 0) defined on

the probability space (Ω,P,F). For this, the agent starts with today’s specification of his

utility, u(0, x) = u(x) , and then builds the process U(t, x) for t > 0 taking into account

the information flow given by (Ft, t ≥ 0). Consequently, its utility, denoted by U(t, x) is

a progressive process depending on time and wealth, t and x, which is as a function of

x strictly increasing and concave. In contrast to the classical literature, there is no pre-

specified trading horizon at the end of which the utility datum is assigned. Consequently

the initial function U(0, x) is given in place of U(T, x) where T is the time horizon in

the classical problem . These utility random fields will be called consistent progressive

utilities in that follows.

Working on a general framework, our main contribution is the new approach by

stochastic flows of consistent dynamic utilities, proposed in Section 3. The idea is the

same as in [19]: suppose the optimal process denoted by X∗ is strictly increasing with

respect to its initial capital. Denote by X the reverse flow of X∗ i.e. X.(z) := (X∗
. )

−1(z),

by Y ∗ the optimal process of the dual problem and by Ux the first derivative of the ran-

dom variable U with respect to the spacial parameter x, then from the duality identity

Ux(t,X
∗
t (x)) = Y ∗(t, Ux(0, x)) we easily get Ux(t, x) = Y ∗

(

t, Ux(0,X (t, x))
)

and finally U

by simple integration. We then, by stochastic flows techniques, construct all consistent

utilities generating X∗ as optimal process.

Let us end this introduction by an overview of the paper. In the next section, the frame-

work is introduced and the

definition of consistent stochastic utilities is given. Also, in the next section, the

model class X of test-processes is given and a simple and intuitive example of stochastic

utility which focuses on a sufficient assumption to the existence of these random fields

is developed. Next optimality conditions are established and the question of duality is

elaborated. In paragraph 2.6, we show the stability of the notion of consistent utility by

change of numeraire. Section 3 is the core of the paper, we present our new approach.
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2 Consistent Stochastic Utilities

To get started, we consider a probability space (Ω,F ,P), a time horizon TH ∈ (0,∞]

and a filtration F = (F0≤t≤TH
) satisfying the usual conditions of right-continuity and

completeness. Thus only the càdlàg version of (P,F)-semimartingales are considered.

Before moving to the precise definition of the utilities processes that is the subject of this

work, the definition of the notion of g-supermartingale is needed and will be extensively

used.

Definition 2.1. A stochastic process (Zt)t will be called a generalized supermartingale

with respect to F if E(Zt/Fs) ≤ Zs whenever s ≥ 0, t ≥ s with E(Z+
t ) < +∞ a.s. for any

t, where Z+
t is the positive part of Z given by Z+

t := Zt1Zt≥0.

2.1 Progressive Utilities

To simplify the understanding of stochastic utilities and how they differ from utility

functions, let recall the definition of the latter.

A utility function is a concave strictly increasing function U : R → [−∞,+∞) satisfying:

• The half-line dom(U)
def
= {x ∈ R;U(x) > −∞} is a nonempty subset of R.

• Ux is continuous, positive and strictly decreasing on the interior of dom(U), and

Ux(+∞)
def
= lim

x→+∞
Ux(x) = 0 (1)

Set x̄ := inf{x ∈ R;U(x) > −∞} so that x̄ ∈ (−∞,+∞) and either dom(U) =

(x̄,+∞). We define

Ux(x̄)
def
= lim

x↓x̄
Ux(x) (2)

so that Ux(x̄) ∈ (0,+∞].

In the particular case where x̄ ∈ {−∞, 0} and Ux(x̄) = +∞, we say that the function U

satisfies the Inada conditions.

In the traditional framework, for a specified future date T which is the investment horizon,

an agent reflect its preferences as a utility function, allowing it subsequently to select an

optimal strategy, using the expected utility criterion. Thus the investor will follow this

strategy, which is strongly dependent on T , for the future period until maturity. Note

in passing that this function is chosen independently from the investment universe and

therefore can not be adapted, in the future, to potential crises or events that may have a

considerable impact on the market analysis of the investor.
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The class of stochastic utilities U , studied in this paper, are also used in behavioral

modeling of economic agents but evolve dynamically in time. For this reason, a stochas-

tic utility U is a càdlàg1 random field 2 interpreted as a collection of R-valued random

variables U(t, x) indexed by the time t and a spacial parameter x and satisfying in x the

classical properties of utility function. In particular, we only suppose that the first deriva-

tive exists in the classical sense, and is a continuous function. For notational simplicity,

the derivative of some regular function f is denoted by fx(x) :=
∂
∂x

f(x).

Definition 2.2. Given a initial utility function U(0, x) = u(x), a progressive utility U

is a càdlàg random field U(t, x) such that the following properties hold true on a subset

Ω1 ∈ F such that P(Ω1) = 1

(i) For all (t, ω) ∈ [0, TH ]×Ω1 the mapping x 7→ U(t, x, ω) from R into R is an increasing

strictly concave function (in short utility function) of class C1; we also assume the

positive progressive random field Ux(t, x) :=
∂
∂x
U(t, x) to be càdlàg.

(ii) Path regularity: For any (t, ω) ∈ [0, TH ]× Ω1 and x ∈ R, the function t 7→ U(t, x, ω)

is càdlàg on [0, TH ]

Finally, the random field U(t, x) satisfies the Inada conditions if for any (t, ω) ∈ [0, TH ]×

Ω1, the function x 7→ U(t, ω, x) satisfies the Inada conditions in the above classical sense.

Obviously, this very general definition of progressive utility has to be constrained to

represent, possibly changing over time, the individual preferences of an investor in a given

financial market. The idea is to calibrate these utilities with regard to some convex

subclass (in particular vector space) of permitted processes X, denoted by X , on which

utilities may have more properties.

This class X is a general class. As the initial condition of test-processes will play a

central role in this work, some subclasses of X should be defined.

• The set of all test-processes X starting from the same initial condition x is denoted

by X (x) := {X ∈ X : X0 = x}, x ∈ R.

• Let τ be a stopping time, a Fτ -measurable random variable η is said to be τ -

attainable if there exists X ∈ X such that Xτ = η a.s.

• A process X is said to be an admissible test-process if X ∈ X . Furthermore, a

process X(τ, η) starting at time τ from η is said to be an admissible test-process,

1Right continuous with left hand limits.
2A generalization of a stochastic process such that the underlying parameter need no longer be a simple real

or integer valued ”time”, but can instead be take values that are multidimensional vectors, or points on some

manifold.
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and we write X(τ, η) ∈ X (τ, η), if there exists X ∈ X such that Xτ = η, and

Xϑ = Xϑ(τ, η) a.s. for ϑ ≥ τ.

2.2 Definition of X -consistent Stochastic Utilities.

We now recall the concept of consistent utilities which has been introduced by M. Musiela

and T. Zariphopoulou [24, 26] under the name ”forward utilities”, also called ”forward

performance processes”.

Traditionally, the measuring of the performance of investment strategies by expected

utility criteria is based on a priori specification of a deterministic, concave and increasing

function of terminal wealth at fixed future time. In addition to the fact that there is

no clear idea how to specify the utility (usually defined in isolation to the investment

opportunities) and the fact that explicit solutions to optimal investment problems can

only be derived under very restrictive model, the optimal strategy (if exists) is strongly

dependent on the investment horizon. This not only limits the applicability of such criteria

but also poses potential inter-temporal inconsistency problems.

Herein, an alternative that alleviates the horizon dependence, but as mentioned the notion

of progressive utility on which we are interested in this paper is very large and need to be

calibrated to the convex class X . This class is a class of test portfolios which only allows

to define the stochastic utility. Once his utility defined, an investor can then turn to a

portfolio optimization problem on the general financial market to establish his optimal

strategy or to calculate indifference prices.

At this stage, one can ask how the class X is used to characterize the class of stochastic

utilities? The answer is in the choice of this class and its interpretation: In finance, X is

chosen because it is rather rich with high liquidity, so that the investor is able to specify

his preferences. Second, the investor have no interest to invest in this class and for this

reason he use it only to define his utility. Mathematically this latter point ”no interest to

invest in this class” translates in: a supermartingale property for an arbitrary investment

strategy, in other terms for any t-attainable wealth Xt and any X ∈ X (t,Xt)

E(U(s,Xs)/Ft) ≤ U(t,Xt), a.s. (3)

Finding this insufficient to characterize stochastic utilities, we further assume that there

exist a test benchmark X∗ for which U(t,X∗
t ) is a martingale.

Note that, this properties: a supermartingale for an arbitrary investment strategy and

a martingale at an optimum, are also satisfied by the value functions of the traditional

problem and are a natural consequences of the dynamic programming principle.
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As the consistent utilities can be interpreted as a generalization of these value functions, in

this dynamic framework, we will imposes that this properties are satisfied at any stopping

time τ starting from any τ -attainable process Xτ . The economic interpretation of this

point is ”It is never too late to optimize”. Finally in contrast to the classical framework

the datum is fixed for today and not for a future time.

Definition 2.3 (X -consistent Utility). A X -consistent stochastic utility process U(t, x)

is a progressive utility with the following properties:

• Consistency with the test-class For any stopping time ϑ and any test process

X ∈ X s.t. E(U(ϑ,Xϑ)
+) < +∞, we have

E(U(ϑ,Xϑ)/Fτ ) ≤ U(τ,Xτ ), a.s. for any stopping time ϑ ≥ τ .

• Existence of benchmark process For any pair of stopping time and test-process

(τ,Xτ ), the constraint is saturated: that is there exists an optimal-benchmark pro-

cess X∗ ∈ X , such that X∗
τ = Xτ , i.e. X∗(τ, η) ∈ X (τ, η) , and U(τ,X∗

τ ) =

E(U(ϑ,X∗
ϑ)/Fτ ) a.s. for any stopping time ϑ ≥ τ .

In short for any test-process X ∈ X , U(t,Xt) is a g-supermartingale and a martingale

for the optimal-benchmark process X∗.

In the following, the set of X -consistent stochastic utilities will be denoted by U(X )

and by AU(X ) the subset of affine X -consistent stochastic utilities.

The existence of benchmark is a strong assumption. We refer the reader to Zitkovic [37]

who recently, in the case where X is X+ the set of all positive wealth processes, has taken

the above property as the definition of consistent utility, by removing the assumption

that the benchmark-optimal wealth X∗ exists. He has found the necessary and sufficient

condition under which U is consistent utility. We do not consider the problem of existence

of the benchmark process in this paper but as the the growth optimal portfolio (GOP) in

Platen et al [30], [29] properties of X∗ plays a crucial role in the sequel.

Note that condition E(U(ϑ,Xϑ)
+) < +∞ leaves open the possibility that the condi-

tional expectation E(U(t,Xt)) = E(U(t,Xt)
+) − E(U(t,Xt)

−) takes the value −∞ with

positive probability.

The important novel feature of our definition of consistent dynamic utilities and this is

where our notion differs from that in the work of Musiela and Zariphopoulou [24, 26],

Tehranchi et al. [9] and Zitkovic [37] is that: First, this version of stochastic utilities is

more coherent with the financial market in the sense that it allows, at each date ϑ, to

catch up and thus achieve an optimum even if up to this date ϑ we have not made the best

investment choices. Second, the test-processes X are not required to be discounted; this
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variation opens the door to a more general analysis as the question of numeraire change.

Third, the notion of class-test, that has not been introduced in the previous literature

gives more sense to the notion of progressive ”forward” utility, as explained above.

Note also that in the literature, consistent stochastic utilities are, in general, defined

on a more large sets which are linear spaces for example X+ (the set of all positive wealth

processes). But one might wonder what remains to optimize after having built the utility.

Affine X -consistent utilities The purpose of this paragraph is to investigate the

affine X -consistent utilities. Note that, of course, is the simplest example of stochastic

utilities but remember that any concave function is a limit of affine functions, therefore

this example is very important.

Next result, shows that the concept of X -consistent utilities is not vacuous and gives a

sufficient condition under which there is at least one X -consistent utility.

Theorem 2.1. Let (Yt)t a positive adapted process and (Zt)t an adapted process, the

random field Ū(t, x) := Ytx+Zt is X -consistent utility, that is Ū ∈ AU(X ), if and only

if there exist X∗ ∈ X and a martingale (Mt)t such that,

(i) Ū(t, x) := Yt(x−X∗
t ) +Mt a.s. with M0 = Y0X

∗
0 + Z0.

(ii) For any stopping time τ and a τ -attainable random variable η, X∗(τ, η) ∈ X (τ, η).

(iii) Yt = Ū(t,X∗
t ) a.s. and satisfies: for all X ∈ X , the process

(

Yt

(

Xt −X∗
t

)

)

t≥τ
is a

g-supermartingale and martingale for X. = X∗.

Proof. Suppose that the random field Ū(t, x) := Ytx+ Zt is a X -consistent utility, then

by definition there exists an optimal process X∗ such that Ū(t,X∗
t ) = YtX

∗
t + Zt is a

martingale and for any test-process X ∈ X , Ū(t,Xt is a g-supermartingale. This implies,

writing that

Ū(t,Xt) = YtXt + Zt = Yt(Xt −X∗
t ) + YtX

∗
t + Zt

and denoting byMt := YtX
∗
t +Zt = Ū(t,X∗

t ), that (Mt)t is martingale and
(

Yt(Xt−X∗
t )
)

t

is a g-supermartingale for any test-process X which prove the direct implication. The

reverse implication is trivial.

Remark 2.1. Assertions of Theorem 2.1, can be easy rewritten in the following dynamic

version:

(i) Mτ (τ, η) = Ū(η, τ) = Yτη + Zτ .

(ii) X∗(τ, η) ∈ X (τ, η).
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(iii)
(

Yt(τ, Ū(τ, η))
a.s.
= Ū(t,X∗

t (τ, η))
)

t≥τ
and satisfies for all X(τ, η′) ∈ X (τ, η′), the

process
(

Ys

(

Xs(τ, η
′) − X∗

s (τ, η)
)

)

s≥τ
is a g-supermartingale and martingale for

X(τ, η) = X∗(τ, η) a.s.

The last assertion of Theorem 2.1 (equivalently (iii) of the remark above) is fundamental.

Existence of X -consistent utility requires the existence of a second process Ȳ , in addition

to an optimal test-process X̄ , such that for any X ∈ X , the process
(

Ȳt(Xt − X̄t))
)

t
is

a g-supermartingale.

To better understand the role played by Ȳ and in order to successfully conclude our

study, for any stopping time τ , a random variable η τ -attainable and X̄(τ, η) ∈ X (τ, η),

we denote by YX̄(τ,η) and YX̄ the sets given by

YX̄(τ,η) := {Y ≥ 0 : (Yt(Xt(τ, η)−X̄t(τ, η)))t≥τ is a g-supermartingale, ∀X(τ, η) ∈ X (τ, η)}

YX̄ := {Y ≥ 0 : Y ∈ YX̄(τ,η), ∀(τ, η)}.

In convex analysis, see R.T. Rockafellar [31], the set YX̄ (resp. YX̄(τ,η) ) is called the

normal cone to X in X̄ (resp. to X (τ, η) in X̄(τ, η)), it is a generalization of the concept

of the dual cone. The reader may naturally ask the meaning of YX̄ (YX̄(τ,η)), as usual

the space of dual processes do not depend on the benchmark process X∗ and it’s initial

conditions. This dependence is mainly related to the structure of X . In particular if X

is homogeneous, that is for any λ > 0, λX ⊂ X , it is easy to see that YX̄ is equal to Y

the set of all positive processes Y such that Y X is a supermartingale for all X ∈ X , and

if X is the set of all wealth processes uniformly bounded by bellow, then YX̄ is the set

of equivalent local martingale Me.

We will see in Section 2.5 that Y is the analogue of X in the dual problem, but what is

very important, and we want immediately to report it is the fact that the existence of a

consistent utility is strongly linked to the fact that the set Y is empty or not. The case

of linear utilities above is a good example to highlight this point.

The following corollary is then a direct consequence of previous Theorems

Corollary 2.2. AU(X ) 6= ∅ if there exist X̄ ∈ X s.t. YX̄ 6= ∅. Moreover, for any

martingale (Mt)t and any Ȳ ∈ YX̄ the random field Ū(t, x) := Ȳt(x − X̄t) + Mt is in

AU(X ).

Consistent utilities and value function An obvious question naturally arises: Is

the definition of stochastic utilities do not look like a problem of optimization?
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The answer is immediate, according to this definition, the utility process U satisfies for

any pair τ ≤ ϑ of stopping times,

U(τ,X∗
τ ) = ess sup

X∈X :Xτ=X∗

τ

E(U(ϑ,Xϑ)/Fτ ) a.s.

The utility process is then defined from an optimization program but only on the class

X . This may seem surprising, but it is important to note that the consistent utilities U

are a kind of generalization of the value function v of the classical portfolio optimization

program which are also a solution (where X is the set of all wealth processes uniformly

bounded by bellow) of similar identity, as it is showed by W. Schachermayer in [34].

Indeed, for a classical optimization program with maturity T , the dynamic programming

principle, reads as follows: for any pair τ ≤ ϑ of [0, T ]-valued stopping times we have

vτ (Xτ ) = ess sup
X admissible:Xτ=X∗

τ

E(vϑ(Xϑ)/Fτ ) a.s.

2.3 Test Processes

Deliberately, no details on the class of test-processes X is given previously, because no

more is needed to define stochastic utilities. But to carry out our study, a minimum of

properties are required.

Assumption 2.1. (i) Convexity:The class X is closed and convex in the sense that is

εX1(τ, η1) + (1− ε)X2(τ, η2) ∈ X (τ, εη1 + (1− ε)η2) a.s.

holds for any stopping time τ , any η1, η2 τ -admissible random variables, X1 ∈ X (τ, η), X2 ∈

X (τ, η′) and ε ∈ [0, 1].

(ii) Switching property: For any test-processes X1 and X2 in X and all stopping

time τ , denoting by Aτ the event Aτ := {ω : X1
τ (ω) = X2

τ (ω)}, the process X̂ defined by

X̂t := X1
t∧τ +X1

t∨τ1Ω\Aτ
+X2

t∨τ1Aτ is also an element of X .

These properties, assumed to be satisfied by definition are a kind of guarantee to ensure

that the portfolio constraints are large enough and not reduced to singleton. This is very

important to hope find solutions to our problem. We refer the reader to El Karoui [8]

chap 1. for more details on the last point and its role in control problems in full generality

and to [18] for the role of this hypothesis and its application in the financial investment

optimization problem .

Financial Interpretation of the Set X : A set X that satisfies Assumption 2.1 can be

thought as modeling the wealth processes that are available to some agent in a financial
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market. If an agent can invest at time τ in two wealth processes X1 ∈ X and X2 ∈ X ,

the agent should be free to allocate at time t = 0 a fraction ε ∈ [0, 1] of the unit initial

capital to wealth X1 and the remaining fraction to the wealth X2. The switching property

has the following economic interpretation: if an agent can invest in two wealth processes

X1 ∈ X and X2 ∈ X , we should then allow for the possibility that, starting with the

wealth process X1, at time τ the agent decides to either switch to the wealth process X2,

which happens on Aτ ∈ Fτ , or keep investing according to X1, on the event Ω\A.

2.4 Optimality Conditions.

The purpose of this paragraph is to exploit the definition of consistent stochastic utilities

and to bring the properties and consequences it implies. Optimality conditions established

later in this paragraph are the key properties on which we rely to establish the main results

of this paper. In particular we will show in Section 3 that these necessary conditions are

sufficient to establish the existence of stochastic utilities.

Theorem 2.3 (Pontryagin’s Maximum Principle). Let U be an X -consistent stochastic

utility with optimal-benchmark process X∗. Let τ a stopping time and a random variable

η τ -attainable, then:

If the convex set X is homogeneous that is for any λ > 0 and any X ∈ X the process

λX still in X , then

(i) The process
(

X∗
t (τ, η)Ux(t,X

∗
t (τ, η))

)

t≥τ
is a martingale.

(ii) For any τ -attainable random variables η, η′, and any test-process X ∈ X (τ, η′), the

process
(

Xt(τ, η
′)Ux(t,X

∗
t (τ, η))

)

t≥τ
is a g-supermartingale.

Else, X is only assumed to satisfies Assumption 2.1,

(OC) For any τ -attainable random variables η, η′ and for any X(τ, η′) ∈ X (τ, η′) the

process
(

(Xt(τ, η
′)−X∗

t (τ, η))Ux(t,X
∗
t (τ, η)), t ≥ τ

)

is a g-supermartingale.

Before proceeding to the proof of this result, it is interesting to note that this optimality

conditions established in a general way are quite different from those of [19]. Indeed, in the

last paper the process Ux(t,X
∗
t )t≥τ is a state density process, in turn for any test-process

X, XtUx(t,X
∗
t ) is a local martingale and a martingale if X = X∗. This is due essentially

to the structure of the class X which is, only, assumed to be convex in the present paper

and X = X+ (set of all positive wealth processes) in [19].

Proof. To verify the above assertions observe, by convexity of X , that for any test-process

X(τ, η′) ∈ X (τ, η′) and any ε ∈ [0, 1], the process ε
(

X(τ, η′) −X∗(τ, η)
)

+X∗(τ, η′) is a
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permitted test process in X (τ, ε(η′−η)+η), starting from ε(η′−η)+η at time t = τ . For

simplicity let us denote by △X(τ) the process given by △X.(τ) := X.(τ, η
′) − X∗

. (τ, η).

Consequently, by consistency property with the class X and by martingale property of

U(.,X∗
. (τ, η)), it follows for θ ≥ α ≥ τ

E
(

U
(

θ,X∗
θ (τ, η) + ε△Xθ(τ)

)

− U(θ,X∗
θ (τ, η))/Fα

)

≤ U
(

α,X∗
α(τ, η) + ε△Xα(τ)

)

− U
(

α,X∗
α(τ, η)

)

a.s.. (4)

Divide by ε > 0 and denote, for any t, η and η′, f(θ, .) the functional

f(θ, ε) :=
1

ε

[

U
(

θ,X∗
θ (τ, η

′) + ε△Xθ(τ)
)

− U
(

θ,X∗
θ (τ, η

′)
)

]

,

and observe that
(

f(θ, ε), θ ≥ τ
)

is, by inequality (4), a g-supermartingale satisfying,

from the monotonicity of U , the following

f+(θ, ε) = f(θ, ε)1△Xθ(τ)≥0 and f−(θ, ε) = −f(θ, ε)1△Xθ(τ)≤0

From the derivability assumption of U , for any θ ≥ τ , f(θ, ε) goes to f(θ, 0) when ε 7→

0. By this, the right hand side of last inequality converge almost surely to f(θ, 0) =

△Xθ(τ)Ux(t,X
∗
θ (τ, η)). To conclude, it remains to justify the passage to the limit under

the expectation. To this end, remark that by concavity and the increasing property of

U(θ, .) , ε 7→ f(θ, ε) is a decreasing function with the same sign as △Xθ(τ). Then, on

the set {△Xθ(τ) ≥ 0}, f(θ, ε) is positive and decreases to f(θ, 0). Letting ε ց 0, the

conditional monotone convergence theorem implies

E
(

f+(θ, ε)/Fα

)

= E
(

f(θ, ε)1△Xθ(τ)≥0/Fα

)

−→ E
(

f(θ, 0)1△Xθ(τ)≥0/Fα

)

On the other hand, on the set {△Xθ(τ) ≤ 0}, −f(θ, ε) is positive and increase to −f(θ, 0).

Applying the dominated convergence theorem, we get for θ ≥ α ≥ τ

E
(

− f−(θ, ε)/Fα

)

= E
(

f(θ, ε)1△Xθ(τ)≤0/Fα

)

−→ E
(

f(θ, 0)1△Xθ(τ)≤0/Fα

)

a.s.

This justifies the passage to the limit on the inequality (4). Hence, it follows that

E
(

(

Xθ(τ, η
′) − X∗

θ (τ, η)
)

Ux(θ,X
∗
θ (τ, η))/Fα

)

≤
(

Xα(τ, η
′)−X∗

α(τ, η)
)

Ux(α,X
∗
α(τ, η)) a.s. (5)

Which proves (OC).

Let, now, focus on the case where the convex set X is homogeneous. In this case the

stability property of X by positive multiplication implies that for any ε > −1, the process
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(1+ε)X∗(τ, η) ∈ X (τ, (1+ε)η) still permitted and hence, by the same argument as above,

we deduce for −1 < ε < 0 respectively ε > 0, the following inequalities

1

ε
E
(

U
(

θ, (1 + ε)X∗
θ (τ, η)

)

− U
(

θ,X∗
θ (τ, η)

)

/Fα

)

≥
1

ε

(

U
(

α, (1 + ε)X∗
α(τ, η)

)

− U
(

α,X∗
α(τ, η)

)

)

a.s.

and similarly

1

ε
E
(

U
(

θ, (1 + ε)X∗
θ (τ, η)

)

− U
(

θ,X∗
θ (τ, η)

)

/Fα

)

≤
1

ε

(

U
(

α, (1 + ε)X∗
α(τ, η)

)

− U
(

α,X∗
α(τ, η)

)

)

a.s.

Passing to the limit ε → 0, yields respectively

E
(

X∗
θ (τ, η)Ux(θ,X

∗
θ (τ, η))/Fα

)

≥ X∗
α(τ, η)Ux(α,X

∗
α(τ, η)), a.s. ∀ θ ≥ α ≥ τ

E
(

X∗
θ (τ, η)Ux(θ,X

∗
θ (τ, η))/Fα

)

≤ X∗
α(τ, η)Ux(α,X

∗
α(τ, η)), a.s. ∀ θ ≥ α ≥ τ,

then we have

E
(

X∗
θ (τ, η)Ux(θ,X

∗
θ (τ, η))/Fα

)

= X∗
α(τ, η)Ux(α,X

∗
α(τ, η)), a.s. ∀ θ ≥ α ≥ τ.

We have thus proved assertion (i). Reconciling (i) and (OC) yields (ii).

2.5 Duality.

The use of convex duality in utility maximization and optimal stochastic control in general

has proven extremely fruitful. As it is established in [19] analysis of utility random fields

is no exception, the process Ux(t,X
∗
t ), t ≥ 0 is a state price density process which is

optimal to some dual problem. The idea here is to adopt a similar approach by duality

in order to prove the dual optimality of Ux(t,X
∗
t ), t ≥ 0. This will support the intuition

and allows us a constructive intuition on different difficulties encountered in the study of

consistent progressive utilities.

We start with a straightforward translation of the well-known Fenchel-Legendre conjugacy

to the random field case. For a utility random field U we define the dual random field

Ũ : [0,+∞[×[0,+∞[×Ω, by

Ũ(t, y)
def
= max

x∈Q∗

(

U(t, x)− xy
)

, for t ≥ 0, y ≥ 0 (6)

By a simple derivation with respect to x, the maximum is achieved at x∗t = (Ux)
−1(t, y) =

−Ũy(t, .), where (Ux)
−1(t, y) denote the inverse function of Ux(t, .) with respect to the

spacial parameter x. In turn

Ũ(t, y) = U(t, (Ux)
−1(t, y))− y(Ux)

−1(t, y) (7)
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As mentioned above, the purpose of this paragraph is to study the dual problem, for

that we first specify the set of the dual processes, on which one optimizes. Unsurprising,

the dual set for a given X -consistent utility with optimal process X∗ is YX∗ introduced

in paragraph 2.2. From Theorem 2.3 YX∗ is the set of potential candidates Y to play the

role of
(

Ux(t,X
∗
t )
)

t
.

As in the primal problem, the initial condition of the dual processes will play an important

role. Then, to formulate the dual problem, for a stopping time τ , a τ -attainable random

variable η and y > 0, we define the class YX∗(τ,η)(τ, y) by

YX∗(τ,η)(τ, y) := {Y (τ, y) ≥ 0 : Y (τ, y) ∈ YX∗(τ,η), Yτ (τ, y) = y}

which contains, for y = Ux(τ, η), the process
(

Ux(t,X
∗
t (τ, η))

)

t≥τ
.

As for test-portfolio, for a stopping time τ , we introduce in the following definition the

τ -achievability of a dual random variable κ.

Definition 2.4. For a stopping time τ , a random variable κ is τ -achievable if there exists

a τ -attainable r.v. η such that κ = Ux(τ, η) a.s.

The goal of this section is now, the proof of the following theorem :

Theorem 2.4 (Duality). Let U be a stochastic consistent utility with optimal-benchmark

process X∗. Then the convex conjugate Ũ of an X -Consistent utility U , given by (6),

satisfies

(i) for any t ≥ 0, y 7→ Ũ(t, y) is convex decreasing function.

(ii) for any pair τ ≤ ϑ of stopping times, for any τ -attainable random variable η and for

any Y (τ, κ) ∈ YX∗(τ,η)(τ, κ), we have for κ > 0

E(Ũ(ϑ, Yϑ(τ, κ))/Fτ ) ≥ U(τ, η)− κη + sup
X∈X (τ,η)

{κη − E(Yϑ(τ, κ)Xθ(τ, η)/Fτ )}, a.s. (8)

If κ is τ -achievable with κ = Ux(τ, η), the quantity U(τ, η)− κη in right side of this

inequality is replaced by Ũ(τ, κ).

(iii) Assume the set X to be homogeneous and κ to be τ -achievable with κ = Ux(τ, η)

a.s. Then there exists a unique optimal process Y ∗
t (s, κ) s.t.

Ũ(τ, κ) = E(Ũ(ϑ, Y ∗
ϑ (τ, κ))/Fτ ) = inf

Y (τ,κ)∈YX∗(τ,η)(τ,κ)
E(Ũ(ϑ, Yϑ(τ, κ))/Fτ ) a.s. (9)

Furthermore, Y ∗
ϑ (τ, Ux(τ, η)) = Ux(ϑ,X

∗
ϑ(τ, η)) a.s. where we recall that X∗

. (τ, η) de-

note the optimal-benchmark process associated with U , starting from the τ -attainable

capital η.
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The reader should note the difference between assertions (ii) and (iii) of this theorem. In-

deed, in the general case where X is only assumed convex, the dual problem is much more

complicated than the primal problem in itself. For example, we have no idea or intuition

about the properties of processes
(

Ũ(t, Yt(τ, κ))
)

t≥τ
if they are sub or supermartingales.

It is also not clear if Ũ(., Ux(.,X
∗)) is a true martingale or any semimartingale. Certainly

the dual problem is ill posed and requires further investigation. If the set X is assumed

convex and homogeneous, then processes Y X are supermartingales and martingale for

X = X∗ which implies that

sup
X∈X (τ,η)

{κη − E(Yϑ(τ, κ)Xθ(τ, η)/Fτ )} = 0 a.s. (10)

In this case, it is immediate that the processes
(

Ũ(t, Yt(τ, κ))
)

t≥τ
(if κ is τ -achievable

) are a submartingales and martingale for Y = Y ∗ := Ux(.,X
∗).

Note also that the fact κ is τ -achievable plays a crucial role in this theorem. Within

this assumption, properties of submartingales and existence of an optimal dual process

(in homogeneous case) are not satisfied. This is, essentially , due to the fact that sets

X (τ, .) and YX∗(τ, .) are not in perfect duality because (Ux)
−1(.,YX∗(τ, .)) * X (τ, .), in

general. In other terms, existence of solutions is intimately related to the inverse range of

Ux, i.e. (Ux)
−1(.,YX∗(τ, .)). For more details see [21] for the classical case of optimization

problem. For example, if the range of the function Ux(0, .) is the whole R+ (or such that

asymptotic elasticity, introduced in [21], is less than 1 ) then any y > 0 is 0-admissible

which implies that for any y > 0 the dual problem (9) at τ = 0 (replacing τ by 0) admits

a unique solution.

Remark 2.2. In the framework of [34], the identity (9) is also satisfied by the convex

conjugate ṽ of the value function of a classical optimization program with maturity T , that

is for any pair τ ≤ ϑ of [0, T ]-valued stopping times, the following identity holds

ṽ(τ, κ) = E(ṽ(ϑ, Y ∗
ϑ (τ, κ))/Fτ ) = inf

Y (τ,κ)
E(Ũ(ϑ, Yϑ(τ, κ))/Fτ ) a.s.

The proof is given in [34].

Proof. Assertion (i) is a simple consequence of the definition of the convex conjugate. Let

prove (ii) and (iii). By definition of the Fenchel transform, it is immediate that for any

Y ∈ YX∗ ,

Ũ(t, Yt) ≥ U(t,X∗
t )− YtX

∗
t ∀t ≥ 0.
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For any τ -attainable random variable η and any test-process X(τ, η) ∈ X (τ, η), one easily

sees, using the definition of YX∗(τ,η)(τ, κ) and the martingale property of (U(t,X∗
t ))t≥0,

that

E(Ũ(ϑ, Yϑ(τ, κ))/Fτ ) ≥ E(U(ϑ,X∗
ϑ(τ, η))/Fτ )− E(Yϑ(κ)X

∗
ϑ(τ, η)/Fτ )

= U(τ, η) + E(Yϑ(τ, κ)
(

Xϑ(τ, η)−X∗
ϑ(τ, η)

)

/Fτ )− E(Yϑ(τ, κ)Xϑ(τ, η)/Fτ )

≥ U(τ, η)− κη + κη − E(Yϑ(τ, κ)Xϑ(τ, η)/Fτ ) a.s.

which is valid for any X(τ, η) ∈ X (τ, η) and any η τ -attainable. Inequality (8) is then

achieved by taking the supremum over X (τ, η), i.e.,

E(Ũ(ϑ, Yϑ(τ, κ))/Fτ ) ≥ U(τ, η) − κη + sup
X∈X (τ,η)

{κη − E(Yϑ(τ, κ)Xθ(τ, η)/Fτ )}, a.s. κ > 0.

Assume now that κ is τ -achievable with κ = Ux(τ, η) for some r.v. η, it follows by

definition of the dual conjugate that

U(τ, η)− κη = U(τ, (Ux)
−1(τ, κ)) − κ(Ux)

−1(τ, κ) = Ũ(τ, κ).

Which proves (ii). Now let turn to assertion (iii). By is homogeneity assumption of X

and the existence and τ -achievability of κ i.e., Ux(τ, η) = κ for some τ -attainable r.v. η,

it follows, denoting by
(

X∗
t (s, η)

)

t≥s
the associated optimal process that the process, that

the process
(

Y ∗
t (s, κ)

)

t≥s
defined by

Y ∗
ϑ (τ, κ) = Ux(ϑ,X

∗
ϑ(τ, (Ux)

−1(τ, κ))) > 0.

is in the set YX∗(τ, κ) as by optimality conditions (Theorem 2.3), for any τ -admissible η′

and any test-processX ∈ X (τ, η′), the process
(

Xt(τ, η
′)Y ∗

t (τ, κ)
)

t≥τ
is a g-supermartingale.

Now rewriting the las identity in the following form

(Ux)
−1(ϑ, Y ∗

ϑ (τ, κ)) = X∗
ϑ(τ, (Ux)

−1(τ, κ))

which implies

Ũ(ϑ, Y ∗
ϑ (τ, κ)) = U(ϑ,X∗

ϑ(τ, (Ux)
−1(τ, κ))) − Y ∗

ϑ (τ, κ)X
∗
ϑ(τ, (Ux)

−1(τ, κ))).

One can easily deduce, since U is X -consistent stochastic utility, from the martingale

property of processes
(

X∗
t (τ, η)Ux(t,X

∗
t (τ, η))

)

t≥τ
and

(

U(t,X∗
t (τ, η))

)

t≥τ
and by defini-

tion of
(

Y ∗
t (s, κ)

)

t≥s
, that

(

Ũ(t, Y ∗
t (τ, κ))

)

t≥τ
is also a true martingale. Finally, for a

stopping time ϑ ≥ τ using (ii),
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inf
Y (τ,κ)∈YX∗(τ,κ)

E(Ũ(ϑ, Yϑ(τ, κ))/Fτ ) ≥ Ũ(τ, κ) = E(Ũ(ϑ, Y ∗
ϑ (τ, κ))/Fτ )

≥ inf
Y (τ,κ)∈YX∗ (τ,κ)

E(Ũ(ϑ, Yϑ(τ, κ))/Fτ )

Which achieves the proof.

2.6 Stability by numeraire change.

We saw in the previous sections, how optimality conditions, in non-homogeneous case,

which satisfy the X -consistent utilities are not intuitive. Because it is more convenient

and more simpler to work with local martingales or g-supermartingales then semimartin-

gales, the idea of this paragraph is to simplify the test class X , which allow us to simplify

the approach and to develop a constructive intuition about this study. More clearly, con-

sider, for example, the context of a financial market where X is a class of positive wealth

processes that are semimartingales. If the set of equivalent local martingales is not empty

then applying the change of numeraire 1/M with M is an equivalent local martingale,

the new wealth are positive local martingales therefore supermartingales, which is an

appropriate property to the study of consistent stochastic utilities.

The goal of this paragraph is then to prove the following result.

Theorem 2.5 (Stability by numeraire change).

Let U(t, x) be a stochastic random field and let Y be a positive semimartingale, and denote

by X Y the class of processes defined by X Y = {X
Y
, X ∈ X }, then the process V defined

by

V (t, x) = U(t, xYt) (11)

is X Y -consistent stochastic utility if and only if U is an X -consistent stochastic utility.

Roughly speaking, the theorem says, that the notion of X -consistent stochastic util-

ity is preserved by numeraire change. In particular, in the case of financial market, for

any equivalent martingale measure M , this theorem shows that studying X -consistent

stochastic utilities is equivalent to study the X M -consistent utilities. The advantage,

here, is that the new test-processes in X M are local martingales (in particular a super-

martingales if positives). From this point, we can deep the study of our utilities in the

new martingale market X M .

Proof. To show this result it is enough to verify assertions of definition 2.3.
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− Concavity : for t ≥ 0, x 7→ V (t, x) is increasing concave function, by definition .

− Consistency with the test-class X Y : For any test-process X̃ ∈ X Y and any pair ϑτ

of stopping times, E
(

V (ϑ, X̃ϑ) = U(ϑ,Xϑ)
)

< +∞ a.s. and

E(V (ϑ, X̃ϑ)/Fτ ) = E(U(ϑ,Xϑ)/Fτ ) ≤ U(τ,Xτ )
def
= V (τ, X̃τ )

− Existence of optimal-benchmark: Let η̃ be a τ -admissible random variable. As U

is X -consistent utility and η = Yτ η̃ is τ -admissible r.v. in the initial market, there

exists an optimal-benchmark process X∗(τ, η) ∈ X (τ, η),

U(τ, η) = E(U(ϑ,X∗
ϑ(τ, η))/Fτ ) = ess sup

X∈X (τ,η)
E(U(ϑ,Xϑ(τ, η))/Fτ ), ∀τ ≤ ϑ.

Taking X̃∗(τ, η̃) = X∗(τ, x)/Y yields, by definition of V and that of X Y we get

V (τ, η̃) = U(τ, η) = E(U(ϑ,X∗
ϑ(τ, η))/Fτ ) = sup

X∈X (τ,η)
E(U(ϑ,Xϑ(τ, η))/Fτ )

= E(V (ϑ, X̃∗
ϑ(τ, η̃))/Fτ ) = sup

X̃∈X Y (τ,η̃)

E(V (ϑ, X̃ϑ(τ, η̃))/Fτ ), ∀τ ≤ ϑ.

The proof is complete.

3 New approach by stochastic flows.

In this section, where X is only assumed to be convex class, we generalize the construction

of consistent progressive utilities proposed in [19] where the market securities are modeled

as a continuous semimartingale in a brownien market and where X is the set of all

positives wealth processes. We remind the reader that the results of the following sections

can be stated in any class X Y obtained from X by change of numeraire and that similar

results can be deduced for X by using results of Theorem 2.5.

The main contribution of this section is the explicit construction of progressive dynamic

utilities by techniques of stochastic flows composition.

The attentive reader might remark in the sequel that the duality approach and the duality

results are not necessary. Our new approach is only based on the optimality conditions

established in Theorem 2.3, which we recall and analyze in the sequel. Let begin by the

main idea.

3.1 Main Idea.

Because we know several properties of the derivative Ux of an X -consistent utility U ,

along the optimal trajectory, i.e,
(

Ux

(

t,X∗
t (x)

)

)

t
given in Theorem 2.3, the question is
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the following one: can we obtain more information about the process
(

Ux(t, x)
)

t
, itself,

from these properties?

Although this can appear too much to ask, because we try to characterize the derivative

of a stochastic utility from its behavior on a very particular trajectory, but the answer to

this question is positive and simple. Suppose that the benchmark process X∗ is strictly

increasing with respect to its initial condition x. In turn the process
(

Y ∗(t, .)
)

t
which

plays the role of
(

Ux

(

t,X∗
t

(

(ux)
−1(.)

))

)

t
is strictly increasing with respect to y because

U is strictly concave. Denoting by X (t, .) the inverse flow of X∗
t (.), one, easily, sees that

last identity becomes,

Ux(t, z) = Y ∗
t (ux(X (t, z))), a.s. ∀t ≥ 0, z > 0.

Integrating yields

U(t, x) =

∫ x

0
Y ∗
t (ux(X (t, z)))dz, a.s. ∀t ≥ 0, z > 0.

This identity is the key of the construction propose, in this paper, in order to characterize

X -consistent stochastic utilities.

Note that monotony assumption of the optimal-benchmark process is very natural. For ex-

ample, in the results of Example 2.2, the optimal benchmark process is strictly monotonous

and even twice differentiable with respect to the initial capital x, under certain additional

hypotheses. This is still true within the framework of decreasing (in the time) consistent

”forward” utilities, studied by M. Musiela et al [28] and Tehranchi et al. [9]. We can

also find these properties of the optimal process in the classic framework of portfolio op-

timization in the case of power, logarithmic, exponential utilities and in the multitude of

examples proposed by Huyên Pham in [11] and by Ioannis Karatzas and Steven Shreve in

[17]. To conclude, let us notice that, by absence of arbitrage opportunities on the security

market, the optimal process can be only increasing with regard to the initial wealth, be-

cause otherwise by investing less money we could obtain the same gain. Mathematically,

technical problems can appear, what leads to put this property as assumption.

Assumption 3.1. Suppose the process (X∗
t (x); t ≥ 0) satisfying

∀t ≥ 0, x 7→ X∗
t (x) continuous and strictly increasing, s.t.

X∗
t (−∞) = −∞ X∗

t (0) = 0 X∗
t (+∞) = +∞ a.s.
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Remark 3.1. Under this hypothesis, one can easily sees, as the process
(

Y ∗
t (ux(x)), t ≥

0
)

plays the role of
(

Ux(t,X
∗
t (x)), t ≥ 0

)

, Y ∗ should satisfy also,

∀t ≥ 0, x 7→ Y ∗
t (x), positive strictly increasing, and s.t. Inada conditions hold if

Y ∗
t (0) = 0, Y ∗

t (+∞) = +∞ a.s.

3.2 Benchmark process as a stochastic flow.

The monotony assumption 3.1 of the benchmark process X∗
t (x) brings us naturally to

consider it as the value, leaving from x at t = 0, of a stochastic flow (X∗
t (s, x))s≤t, which

we define below. We can then consider the benchmark as leaving from condition x at

t = 0 or leaving from condition z at date s.

Proposition 3.1. Let (X∗
t (x)) be a strictly monotonous flow with respect to x with values

in ]−∞,+∞[. Its inverse X (t, z) = (X∗
t (.))

−1(z) is also a strictly monotonous stochastic

flow, defined on ]−∞,+∞[. We prolong the flow X∗ and its inverse X in the intermediate

dates (s < t) in the following way

X∗
t (s, x) = X∗

t (X (s, x)) (12)

Xs(t, z) = (X∗
t (s, .))

−1(z) = X∗
s (X (t, z)).

In particular, we have the following properties

(i) Equality X∗
t (s, x) = X∗

t (α,X
∗
α(s, x)) hold true for all 0 ≤ α ≤ s ≤ t a.s..

Identity Xs(t, z) = Xs(α,Xα(t, z)) hold true for all 0 ≤ s ≤ α ≤ t a.s..

(ii) Moreover, X∗
t (t, x) = x, Xt(t, z) = z, and

Xs(t,X
∗
t (s, x)) = x, X∗

t (s,Xs(t, x)) = x, for all 0 ≤ s ≤ t.

These are important properties which will be used several times bellow. For more details,

we invite the reader to see H. Kunita [22] for the general theory of stochastic flows.

3.3 Optimality Conditions.

We remind in this paragraph some results and notations, established in the previous sec-

tion, which will play crucial role in the sequel. Let U be an X -consistent stochastic util-

ity, optimality conditions imply that the derivative Ux taken over the optimal-benchmark

portfolio X∗, i.e.
(

Ux(t,X
∗
t (x))

)

t
plays the role of dual process in our study (Theorem

2.3). In the case of homogeneous constraint
(

Ux(t,X
∗
t (x))

)

t
is a positive supermartingale.

Furthermore, the process Ux

(

t,X∗
t ((ux)

−1(y))
)

t
is the optimal dual process of the dual
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optimization problem (9) denoted by
(

Y ∗
t (y)

)

t
(see Theorem 2.5). We remind, also, that

the conditions which have to satisfy necessarily optimal processes X∗(x) and Y ∗(y) as we

established them in Theorem 2.3 of paragraph 2.4 are the following.

For any stopping time τ and any τ -attainable r.v. η, η′,

(1) X∗(τ, η) ∈ X (τ, η).

(2) For any X(τ, η′) ∈ X (τ, η′), (Xt(τ, η
′) − X∗

t (τ, η))Y
∗
t (τ, ux(τ, η))); t ≥ τ) is a g-

supermartingale. In other words
(

Y ∗
t (τ, ux(τ, η))); t ≥ τ

)

∈ YX∗(τ,η)(τ, ux(τ, η)).

From this, the monotony assumption and the above notations, it is easy to see, writing

for any stopping time τ and any r.v. η τ -attainable: η = X∗
τ (X (τ, η)), that

Ux(τ, η) = Ux(τ,X
∗
τ (X (τ, η)) = Y ∗

τ (ux(X (τ, η)).

This implies, in particular, that

Y ∗
t

(

τ, Ux(τ, η)
)

= Y ∗
t

(

τ, Y ∗
τ (ux(X (τ, η))

)

= Y ∗
t (ux(X (τ, η)), t ≥ τ

Hence, the process
(

Y ∗
t (ux(X (τ, η))

)

t
, starting at time t = 0 from ux(X (τ, η), can be

interpreted as the extension to all t ≥ 0 of
(

Y ∗
t

(

τ, Ux(τ, η)
)

)

t≥τ
which plays the role of

(

Ux(t,X
∗
t (τ, η)

)

t≥τ
.

Summing up, from this point, optimality conditions above and the fact that the initial

condition u occurs in the optimality conditions (2), we define a set of properties to which

we shall often refer afterwards.

Definition 3.1. Let X∗ and Y ∗ be two given random fields and let u an utility function.

Conditions (O∗) are :

For any stopping time τ and any τ -attainable r.v. η, η′,

(O1) X∗(τ, η) ∈ X (τ, η).

(OC) For any X(τ, η′) ∈ X (τ, η′), (Xt(τ, η
′) − X∗

t (τ, η))Y
∗
t (ux(X (τ, η))); t ≥ τ) is a

g-supermartingale. In other words
(

Y ∗
t (ux(X (τ, η))

)

t≥τ
∈ YX∗(τ,η)(τ, ux(X (τ, η))).

Note that, contrary to condition (2), condition (OC) is written only in terms of the

initial condition u, the interpretation is clearer but both conditions are equivalent.

3.4 Construction of X -consistent utilities for a given bench-

mark process.

As announced in the introduction of this section, our objective, under strictly monotonous

hypothesis of optimal process X∗, is to construct X -consistent utilities of a given bench-

mark processX∗ in the class of test-processes X . After the general characterization of the
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consistent stochastic utilities, the construction is presented in the special case, where the

optimal dual process Y ∗ is linear with respect to its initial condition, that is Y ∗
. (y) ≡ yȲt

. This is an interesting case because: on one side it includes the well known utilities of

exponential, powers types etc ... and on the other side its gives a complete overview of

the main properties of the pair (X∗, Y ∗) and an intuitive explanation of the phenomenon

occurring in the general case. This will be the aim of the next paragraph.

3.4.1 Existence of X -consistent utilities for a given benchmark process.

The previous study shows that if, there exists Ȳ ∈ YX∗ such that the process X∗Ȳ is

martingale, and not only a supermartingale, the process Y ∗ s.t. Y ∗
t (y) = yȲt is admissible

in the sense that the pair (X∗, Y ∗) satisfy conditions O∗ of Definition 3.1 for any initial

utility function u.

The main idea (equation (12)) suggests a very simple form of a X -consistent utility

U(t, x) of given monotonous optimal test-process. If X (t, z) denote the inverse of X∗
t (x),

the concave increasing process U(t, x) such that Ux(t, x) = ux(X (t, x))Ȳt is a good can-

didate to be an X -consistent utility. Another remarkable property of this stochastic

process is that Ux(t,X
∗
t (x)) = ux(x)Ȳt(= Y ∗

t (ux(x))), what is in another way to express

that optimal dual process Y ∗
t (y) is linear with respect to its initial condition y. This is

the main idea of the following result.

Theorem 3.2. Let X∗
t (x) be a test-process assumed to be strictly increasing with respect

to the initial condition x such that there exists Ȳ ∈ YX∗ satisfying that the process X∗Ȳ

is martingale. Denote by X (t, z) its inverse flow. Then for any martingale M and any

utility function u such that ux(X (t, z)) is locally integrable near z = 0, the stochastic

process U defined by

U(t, x) = Ȳt

∫ x

0
ux(X (t, z))dz +Mt (13)

is an X -consistent stochastic utility. The associated optimal process is X∗ and the optimal

dual process is Y ∗(y) = yȲ . Further, the convex conjugate of U denoted by Ũ , is given by

Ũ(t, y) =

∫ +∞

y

X∗
t (−ũy(

z

Ȳt

))dz + M̃t, (14)

with M̃ is a martingale.

Note that this result generalizes the example of affine utilities given in paragraph

2.2, it suffices to take ux = cte. In particular, we stress the fact that the assumption:

”There exists Ȳ ∈ Y satisfying that the process X∗Ȳ is martingale” is equivalent to the

necessary condition at least in the homogeneous case, see assertion (ii) Theorem 2.3. This
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just once again highlight the necessity of optimality conditions, Theorem 2.3, in the study

of existence of the consistent utilities.

The proof of Theorem 3.2 will be broken into several steps.

Lemma 3.3. For any stopping time τ , any random variable η τ -attainable and any test-

process (Xt(τ, η); s ≤ t) ∈ X (s, η), we have

E
(

U(t,Xt(τ, η)/Fτ

)

≤ E
(

U(t,X∗
t (τ, η))/Fτ

)

a.s. (15)

Proof. By concavity of the process x 7→ U(t, x), we have

U
(

t,Xt(τ, η)
)

− U
(

t,X∗
t (τ, η)

)

≤
(

Xt(τ, η) −X∗
t (τ, η)

)

Ux

(

t,X∗
t (τ, η)

)

a.s.

From Definition (13) of U , we get that Ux

(

t,X∗
t (τ, η)

)

= Ȳtux(X (t,X∗
t (τ, η))). On the

other hand, using proposition 3.1, we haveX∗
t (τ, η) = X∗

t (X (τ, η)) and hence, by definition

of X , we obtain Ux

(

t,X∗
t (τ, η)

)

= Ȳτux(X (τ, η)) = Ux(τ, η)Ȳτ,t with Ȳs,t := Ȳt/Ȳs. The

inequality bellow becomes

U
(

t,Xt(τ, η)
)

− U
(

t,X∗
t (τ, η)

)

≤ Ȳτ,t

(

Xt(τ, η) −X∗
t (τ, η)

)

Ux

(

τ, η
)

a.s. (16)

We have also that (Ȳs,tX
∗
t (τ, η), t ≥ τ) is a martingale by assumption and (Ȳτ,tXt(τ, η), t ≥

τ) is a g-supermartingale because Ȳ ∈ YX∗. Those properties, together with (16), imply

E
(

U
(

t,Xt(τ, η)
)

− U
(

t,X∗
t (τ, η)

)

/Fτ

)

≤ E
(

Ȳτ,t(Xt(τ, η) −X∗
t (τ, η)

)

/Fτ

)

Ux

(

τ, η
)

≤ 0.

This will prove the validity of (15).

Lemma 3.4. For any stopping time τ and for any τ -attainable random variable η, de-

noting Ȳτ,t := Ȳt/Ȳτ for t ≥ τ ,

U(t,X∗
t (τ, η)) = Ux(τ, η)Ȳτ,tX

∗
t (τ, η) − Ȳt

∫ X (τ,η)

0
X∗

t (z)dux(z) a.s.

and it is a martingale.

Proof. Fix τ and η any τ -attainable random variable, by definition, for t ≥ τ , we have

U(t,X∗
t (τ, x)) = Ȳt

∫ X∗

t (τ,x)

0
ux(X (t, z))dz
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Consider the increasing change of variable z′ = X (t, z) or equivalently z = X∗
t (z

′). Using

identity X (t,X∗
t (τ, x)) = X (τ, z) it follows

U(t,X∗
t (τ, x)) = Ȳt

∫ X (τ,x)

0
ux(z) dz X

∗
t (z)

Integration by parts with integrability assumptions imply

U(t,X∗
t (τ, x)) = ux(X (τ, x))ȲtX

∗
t (τ, x)− Ȳt

∫ X (τ,x)

0
X∗

t (z)dux(z).

Replacing x by η and using the fact that Ȳsux(X (τ, η)) = Ux(τ, η) yields the desired

identity

U(t,X∗
t (τ, η)) = Ux(τ, η)Ȳτ,tX

∗
t (τ, η) − Ȳt

∫ X (τ,η)

0
X∗

t (z)dux(z).

While (Ȳτ,tX
∗
t (τ, η), t ≥ τ) is a martingale and Ux(τ, η) is Fτ -measurable Ux(τ, η)Ȳτ,tX

∗
t (τ, η), t ≥

τ is a martingale. Using the Fubini-Tonelli theorem, the integral on ux(z) of ȲtX
∗
t (z) is

martingale. Consequently, as a sum of two martingales, the sequence of random variables

(U(t,X∗
t (τ, x)), t ≥ τ) is a martingale.

We now have prepared the ingredients for the proof of Theorem 3.2.

Proof. (Theorem 3.2) Since u is an utility function 1 and X is strictly increasing, U(t, .) is

a strictly concave and increasing function. To conclude, we have to check that the above

Lemmas imply assertions ii) and iii) of Definition 2.3.

Let (Xt(τ, η); t ≥ τ) ∈ X (τ, η) be a test-process, we have, using Lemmas 3.3 and 3.4,

E
(

U(t,Xt(τ, η)/Fτ

)

≤ E
(

U(t,X∗
t (τ, η))/Fτ

)

= U(τ, η) a.s.

Which proves the consistency with the class-test X . Existence and uniqueness of optimal

is a simple consequence of X∗-admissibility and strict concavity of U , so that we may

deduce that U is an X -consistent stochastic utility with X∗ as optimal portfolio. On the

other hand, the optimal dual process is given by Ux(t,X
∗
t (τ, η))/Ux(τ, η) which is equal

to one by construction. Finally, identity (14) directly follow from the conjugacy relation

Ũy(t, y) = −(Ux)
−1(t, y).

Remark 3.2. Let us note in passing that, if the processes Xt(s, x) defined by

Xt(s, x) = Xt(X (s, x)) (17)

1u is a strictly concave and increasing function
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are admissible test-process, then we can replace η in the previous two Lemmas, simply, by

x. There is no modifications to be brought in proofs. In other words, if we can start at

any time s from any x ∈ R+ then, replacing Xt(τ, η) by Xt(τ, x) and X∗
t (τ, η) by X∗(τ, x),

Lemmas 3.3 and 3.4 still valid. But note that this assumption suggest that any x ∈ R is

τ -attainable for any stopping time τ , which is a strong assumption.

Clearly, we do not make this hypothesis, which in some ways complicate our study and

that of [19]. But on the other hand, in order to overcome some difficulties the technique

of stochastic change of variables is a powerful alternative for such problems.

Application: Change of Numeraire It is obvious that the above theorem shows

the existence of consistent utilities and completely characterizes a large class of these

random fields. This on one side, but on the other side this result accurately explains the

structure of these utilities and establishes the link between these random fields and the

associated optimal processes, which is certainly true in the classical portfolio optimization

by utility criterion. This message is clearer by applying the change of numeraire 1/Ȳ , the

following theorem rewrites as follows

Theorem 3.5. Let X̄∗
t (x) be a test-process in X Ȳ assumed to be martingale and strictly

increasing with respect to the initial condition. Denote by X̄ (t, z) its inverse flow. Then

for any martingale M and any utility function u such that ux(X̄ (t, z)) is locally integrable

near z = 0, the stochastic process U defined by

U(t, x) =

∫ x

0
ux(X̄ (t, z))dz +Mt (18)

is an X Ȳ -consistent stochastic utility. The associated optimal benchmark process is X̄∗

and the optimal dual process is constant Ȳ ∗(y) = y. Further, the convex conjugate of U

denoted by Ũ , is given by

Ũ(t, y) =

∫ +∞

y

X̄∗
t (−ũy(z))dz + M̃t, (19)

with M̃ is a martingale.

This result merits some comments. First, the derivative of the stochastic utility is other

than a deterministic function of the inverse map of the optimal portfolio, equivalently

the derivative Ũy(t, y) of the convex conjugate is exactly (minus) the optimal benchmark

(the optimal wealth in the case of financial market) with the initial condition (ux)
−1(y).

Second, starting from a financial market the martingale market, obtained by change of

numeraire 1/Y with Y is a State price density process, is not unique. Then the fact that
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the optimal dual process is constant does not mean that the market is complete but that

this dual optimal process is linear with respect to its initial condition ux(x) in the selected

martingale market.

3.4.2 Construction of all X -consistent utilities for a given benchmark

process.

In this section, we turn to the central result of this paper. We showed in Theorem 3.2 that

for any increasing test-process X∗, such X∗ is a martingale, we can construct a consistent

utilities of optimal benchmark processX∗. The feature of these consistent utilities, defined

by (13), is that the optimal dual process is fixed to 1. In order to characterize all consistent

utilities with given optimal portfolio X∗, we consider more general class of processes Y ∗

such that optimality conditions O∗ are satisfied for the pair (X∗, Y ∗). As we saw it, the

intuition is to characterize utilities U such that Ux(t, x) = Y ∗
(

ux(X (t, x))
)

, where X (t, x)

is the inverse flow of X∗. The monotony condition of X∗ draw away that the stochastic

flow Y ∗ must be increasing to guarantee that Ux(t, x) is decreasing. To resume, in the

sequel we, only, consider pairs (X∗, Y ∗) of processes and utility function u satisfying

Assumption 3.2. (A1) The process (X∗
t (x);x ∈ R, t ≥ 0) is strictly increasing from

−∞ to +∞ while (Y ∗
t (y); y ≥ 0, t ≥ 0), according to remark 3.1, is strictly increasing

from +∞ to 0 such that Y ∗
t (ux(x)) is locally integrable near x = 0.

(A2) The triplet (X∗, Y ∗, u) satisfy O∗.

The martingale property of the process
(

X∗
t (x)Y

∗
t (y); t ≥ 0

)

played a key role in estab-

lishing the validity of Lemma 3.4 and consequently that of Theorem 3.2. In general this

property is not satisfied (Theorem 2.3). However, one can remark that, in general case,

that the martingale property hold true with X∗ replaced by his derivative DxX
∗ with

respect to x (if it exists). Indeed, from Theorem 2.3, for any δ > 0

(

(

X∗
t (x+ δ)−X∗

t (x)
)

Y ∗
t (ux(x))

)

t
is g-supermartingale

(

(

X∗
t (x− δ)−X∗

t (x)
)

Y ∗
t (ux(x))

)

t
is g-supermartingale

If DxX
x exists, one gets, letting ε ց 0, that ∓Y ∗(ux(x))DxX

∗(x) is a g-supermartingale,

then martingale. In the following, this property implies a generalization of Lemma 3.4

which will be needed to show the main result of this work.

To justify passage on the limit and furthermore, in order to generalize our new approach

(Theorem 3.2), the following domination assumption suffices.
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Assumption 3.3. H1 local) For all x, there exists an integrable positive adapted pro-

cess, Ut(x) > 0 such that, if we denote by B(x, α) the ball of radius α > 0 centered

at x,

∀y, y′ ∈ B(x, α), |X∗
t (y)−X∗

t (y
′)| < |y − y′|Ut(x), a.s. t ≥ 0 (20)

H2 global) Ut(x) is increasing with respect to x and U I
t (x) =

∫ x

0 Y(t, z)Ut(z)dz is

integrable for all t ≥ 0.

Let us point out that this hypothesis is introduced only to justify result of the following

proposition. Summing up, under this assumption

Proposition 3.6. Let assumptions 3.2 and 3.3 hold. If the derivative with respect to x of

the increasing process X∗
t (x) denoted by DxX

∗
t (x) exists in any point x, then Y ∗

t (ux(x))Dx X
∗
t (x)

is a martingale. Otherwise, without derivability assumption, the process
∫ x

0
Y ∗
t (ux(z))dzX

∗
t (z), (21)

is also a martingale.

We show in the proof of Theorem 3.2, that quantity

∫ X (τ,η)

0
Y ∗
t (ux(z))dzX

∗
t (z).

corresponds to U(t,X∗
t (τ, η)) where U is a process which we define afterwards. Partic-

ularly, this proposition is other than a generalization of Lemma 3.4 where we replace

deterministic quantity ux by the process Y.

Proof. For the duration of the proof we write Y(t, x) for Y ∗
t (ux(x)). Then we have to

show that
∫ X (τ,η)

0
Y(t, z)dzX

∗
t (z).

is a martingale.

a) First, suppose X∗
t (x) is differentiable with respect to x. For 0 < ǫ < α, the process

Y(t, x)
(

X∗
t (x + ǫ) − X∗

t (x)
)

is a positive supermartingale (assertion ((OC) of Theorem

2.3). By assumption 3.3 the right derivative with respect to ǫ, Y(t, x)D+
x X∗

t (x) is a posi-

tive supermartingale.

On the other hand, Y(t, x)
(

X∗
t (x) − X∗

t (x − ǫ)
)

is a positive submartingale. Once

again, the hypothesis 3.3 is used to show that we can again pass to the limit and deduct
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that Y(t, x)D−
x X

∗
t (x) is a positive submartingale. From derivability of X∗, D−

x X
∗
t (x) =

D+
x X

∗
t (x) = DxX

∗
t (x) and then the process Y(t, x)DxX

∗
t (x) is, consequently, a sub and

supermartingale and therefore martingale.

b) In the general case, without differentiability assumption on X∗, we use Darboux sum

to study the properties of S(x) =
∫ x

0 Y(t, z)dzX
∗
t (z). We partition the interval [0, x] into

N subintervals ]zn, zn+1] where the mesh approaches zero. To approach the integral (21)

by below respectively by above we consider respectively the following sequences

SN (t, x) =

n=N−1
∑

n=0

Y(t, zn)
(

X∗
t (zn+1)−X∗

t (zn)
)

S′
N (t, x) =

n=N−1
∑

n=0

Y(t, zn+1)
(

X∗
t (zn+1)−X∗

t (zn)
)

.

By the same arguments as above, the sequence SN (t, x) is a positive supermartingale,

while the sequence S′
N (t, x) is a positive submartingale, and a positive local martingale

if X is homogeneous. In all cases, by hypothesis 3.3, the positive processes SN (t, x) and

S′
N (t, x) are bounded above by

S̄N (t, x) :=

n=N−1
∑

n=0

Y(t, zn+1)Ut(zn+1)

Moreover, under assertion H2 global) of hypothesis 3.3 , S̄N (t, x) is bounded above by

U I
t (x) =

∫ x

0 Y(t, z)Ut(z)dz. As the properties of sub and supermartingale are preserved

in passing to the limit it follows that
∫ x

0 Y(t, z)dzX
∗
t (x) is a martingale.

We have now all elements to characterize consistent utilities of given optimal benchmark.

Theorem 3.7 (General Characterization). Let (X∗, Y ∗) be a pair of processes and u any

utility function such that assumptions 3.2 and 3.3 hold. Let X the inverse flow of X∗,

Y the inverse flow of Y ∗, M a martingale and ũ the convex conjugate of u. Then the

concave increasing process U defined by

U(t, x) =

∫ x

0
Y ∗
t

(

ux(X (t, z))
)

dz +Mt (22)

is an X -consistent stochastic utility with u as the initial function, X∗ as the optimal

benchmark process. The optimal dual process is Y ∗ and the convex conjugate is given by

Ũ(t, y) =

∫ +∞

y

X∗
t

(

− ũy
(

Y∗(t, z)
)

)

dz + M̃t. (23)

With M̃ is a martingale.
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In Theorem 3.2, for a given initial utility, we construct an X -consistent utility of given

optimal portfolio (martingale). The extension which we give here which, up-technical

points, characterizes all the X -consistent utilities equivalent to the previous one (in the

sense that they gives the same optimal portfolio process). This characterization expresses

only how we have to diffuse the function ux(x) to stay within the framework of the X -

consistent utilities. The answer is intuitive because it expresses that it is enough to keep

a monotonous flow Y ∗ ∈ YX∗ : Y (X −X∗), X ∈ X are a g-supermartingale. Moreover,

note that in the forward problem the idea, at the beginning, is to diffuse the initial utility

u using the information given by the path of X∗. Contrary to what one might think we

observe clearly that the diffusion is not on u but on the derivative ux.

Proof. As in the previous Theorem, the proof is made in two step. The consistency with

the universe of investment is based on two essential properties:

− On one hand on the fact that (U(t,X∗
t (s, η)), t ≥ s) is a martingale.

− On the other hand, the consistency with the class-test X (s, η).

To show these properties, we begin by the following result which is the extension of

Lemma 3.3.

Lemma 3.8. Under assumptions of the previous theorem, for any stopping time τ , any

random variable η τ -attainable and any test-process (Xt(τ, η); s ≤ t) ∈ X (s, η), we have

E
(

U(t,Xt(τ, η)/Fτ

)

≤ E
(

U(t,X∗
t (τ, η))/Fτ

)

a.s. (24)

Proof. The proof is identical to that of Lemma 3.3. By concavity of the process x 7→

U(t, x), it follows

U
(

t,Xt(τ, η)
)

− U
(

t,X∗
t (τ, η)

)

≤
(

Xt(τ, η) −X∗
t (τ, η)

)

Ux

(

t,X∗
t (τ, η)

)

a.s.

By Definition of U andX∗
t (τ, η) = X∗

t (X (τ, η)), Ux

(

t,X∗
t (τ, η)

)

= Y ∗
t

(

ux(X (t,X∗
t (τ, η)))

)

=

Y ∗
t

(

τ, Ux(τ, η)
)

. The inequality bellow becomes

U
(

t,Xt(τ, η)
)

− U
(

t,X∗
t (τ, η)

)

≤ Y ∗
t

(

τ, Ux(τ, η)
)(

Xt(τ, η) −X∗
t (τ, η)

)

a.s. (25)

By Assumption, for any X(τ, η) ∈ X (τ, η), Y ∗
t

(

τ, Ux(τ, η)
)(

Xt(τ, η) −X∗
t (τ, η)

)

, t ≥ τ)

is a g-supermartingale. Those properties, together with (25), imply

E
(

U
(

t,Xt(τ, η)
)

− U
(

t,X∗
t (τ, η)

)

/Fτ

)

≤ E
(

Y ∗
t

(

τ, Ux(τ, η)
)(

Xt(τ, η) −X∗
t (τ, η)

)

/Fτ

)

≤ 0.

This will prove the validity of (24).
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To conclude, it suffices to show that U(t,X∗
t (x)) is a martingale. To be made, we proceed

as in Lemma 3.4 by writing that U(t,X∗
t (s, η)) =

∫ X∗

t (s,η)
0 Y ∗

t

(

ux
(

X (t, z′)
)

)

dz′. Let us

make the change of variable X (t, z′) = z, consequently, because X (t,X∗
t (s, η)) = X (s, η),

we get

U(t,X∗
t (s, η)) =

∫ X (s,η)

0
Y ∗
t

(

ux(z)
)

dz(X
∗
t (z))

Finally, by proposition 3.6,
(

∫ X (s,η)
0 Y ∗

t

(

ux(z)
)

dz(X
∗
t (z)), t ≥ s

)

is a martingale and,

hence,
(

U(t,X∗
t (s, η)), t ≥ s

)

is a martingale and the proof is complete.

The general characterization of consistent stochastic utility in this result is given ac-

cording to the initial condition at time 0, Ux(0, .) = ux. But it is also possible to write

the formula for any intermediate date s as it is given in the following result

Corollary 3.9. Under assumptions of Theorem 3.7, for any stopping time τ , the X -

consistent stochastic utility U defined by (22) and its convex conjugate Ũ are rewritten

U(t, x) =

∫ x

0
Y ∗
t

(

τ, Ux(τ,Xτ (t, z))
)

dz, t ≥ τ

Ũ(t, y) =

∫ +∞

y

X∗
t

(

− Ũy

(

τ,Yτ (t, z)
)

)

dz, t ≥ τ.

Proof. Recalling the notation X0(τ, x) = X (τ, x), the proof of this result is based on the

previous theorem. Indeed, rewriting for t ≥ τ

Ux(t, x) = Y ∗
t (ux(X (t, x))) = Y ∗

t

(

τ, Y ∗
τ

(

ux(X (t, x))
)

)

and using the fact that X
(

τ,Xτ (t, x)
)

= X (t, x) it follows

Ux(t, x) = Y ∗
t

(

τ, Y ∗
s

(

ux(X
(

τ,Xτ (t, x)
)

)
)

)

= Y ∗
t

(

τ,
[

Y ∗
τ

(

ux(X
(

τ, .
)

)
)]

(Xτ (t, x))
)

From this point and the identity Ux(τ, .) = Y ∗
τ

(

ux(X (τ, .))
)

yields

Ux(t, x) = Y ∗
t

(

τ,
[

Y ∗
τ

(

ux(X
(

τ, .
)

)
)]

(Xτ (t, x))
)

= Y ∗
t

(

τ, Ux

(

τ,Xτ (t, x)
)

)

Integrating yields the result. Inverting the roles of X∗ and Y ∗, the same arguments allows

us to establish the dual identity.
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Conclusion

Despite the abstract framework of this paper and although the results here are, under

minimal regularity assumptions, an extension of those set in [19], the proofs in this work

are much simpler and require less computations. Second, as announced at the beginning

of this work the results and the method are valid for more general convex sets of test-

processes, provided they are rich enough, because only the property of convexity plays a

role in the proofs of Theorems. Finally, as we have seen we can do without the duality,

which allows an interpretation of process Ux(t,X
∗
t ).
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