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Abstract

In this paper, a new filtering method is presented for sinmelteus noise reduction and enhance-
ment of signals using a fractal scalar conservation law Wwiscsimply the forward heat equation
modified by a fractional anti-diffusive term of lower ordérhis kind of equation has been first in-
troduced by physicists to describe morphodynamics of sameésl To evaluate the performance of
this new filter, we perform a number of numerical tests onotggisignals. Numerical simulations
are based on finite difference schemes or Fast and Fouriesforan. We used two well-known
measuring metrics in signal processing for the compari§dre results indicate that the proposed
method outperforms the well-known Savitzky-Golay filtersignal denoising. Interesting multi-
scale properties w.r.t. signal frequencies are exhibited/ang to control both denoising and contrast
enhancement.

Keywords: fractal operator, fractional calculus, Fourier transfpiDEs filters, denoising, enhance-
ment, fast Fourier transform (FFT), finite difference scke®avitzky-Golay filter.

1 Introduction

Filtering is a process that removes some unwanted compémenta signal. It is a very important task
in signal processing, data analysis and communicatioresyst Many techniques have been proposed
for this purpose. For instance, we can use simple averadtegsfsuch as a Gaussian filter. It is well-
known that this filter can be realized by solving the heat #gnaOther more general partial differential
equations (PDE) have been used, with non-linear anisatrdifiusion [6, 21], non-linear fractional
diffusion [4, 15] or fractional time-derivative [7]. It haseen proved that PDEs are suitable in signal
denoising [19]. The denoising applications have to take @micount two points. First, we want to obtain
a clean and readily observable signal (improving signaidise ratio SNR) and secondly, preserve the
original shape characteristics (maxima, minima...) ofdigmal. This task is complex because it is very
important that the denoising has no blurring effect on theges and does not change the location of
image edges, [5]. For some applications, it is interestm@rhplify some features of the signal such
as relative maxima or minima in order to enhance its contrdsually, these features are flattened by
the denoising methods based on averaging techniques. Athendenoising methods which preserve
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characteristics of the initial signal is the Savitzky-GoRéter, with which we will compare our new
method.

A basic and crude idea to enhance the contrast could be te gudvbackward heat equation for a
few time steps. Of course, this is an ill-posed PDE and we dadwocate this unsafe method but it
illustrates the fact that enhancement and denoising aaganistic operations. Our method is based on a
linear PDE, with two antagonistic terms : a usual diffusiod @ nonlocal fractional anti-diffusive term
of lower order. The diffusion is used to reduce the noise wéethe nonlocal anti-diffusion is used to
enhance the contrast. Let us emphasize that we pefdiotime same timeoise reduction and contrast
enhancement. Our method is based on the Cauchy problem faflihveing PDE :

{&gu(t,x) —ad?ult,x) + bIy[u(t, )](x) =0 te(0,T),z€R, W

u(0,z) = up(x) z €R,

whereT is any given positive timeyy € L?(R), a, b are positive constants adq is a fractional operator
defined as follows via the Fourier transform: for any Schwvarhctiony € S(R)

L)) = = F (P F(@) () )
where0 < A < 2 and.F denote the Fourier transform defined by: for@# R
F1©) = [ e p(a)da,
R

Let us note that foA €]1, 2[, we have an explicit nonlocal formula (see proposition 5)

Tg)(@) = an /R %d& @3)

wherea, is a suitable constant.
Alternatively, we can also give a slightly different defiait, inspired by fractional calculus (see remark
below) :

+OO 1" x _
Ipl(z) = OCA/O %d@ (4)
Remark 1. For causal signals (i.e(x) = 0 for x < 0) we have
1 e (P”(x —&) . A, _ d*
TZ— N\ /0 T T paa T g ®)

which is exactly the Riemann Liouville definition of the fraical derivative [22].

Remark 2. Our model is closely related to a nonlocal conservation lawt fintroduced to describe
the morphodynamics of sand dunes and ripples sheared byddflttwi. Namely, Fowler introduced the
following equation

2

Opu(t, ) + Oy (%) (t,x) + Z[u(t, )](z) — % u(t,z) =0, (6)

whereu = u(t, z) represents the dune height afids a nonlocal operator defined as follows: for any
Schwartz functiop € S(R) and anyz € R,

+oo 1
Tlp)(x) = /0 5" (@ — ¢)dc. @)
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Equation(6) is valid for a river flow over a erodible bottom(¢, =) with slow variation. The nonlocal
term appears after a subtle modeling of the basal shearsti® refer to [12, 14, 13] for more detalils.
This nonlocal term appears also in the work of Kouakou & Lagi#6, 17]. The operatofZ[u] is a
weighted mean of second derivatives.afith the bad sign and has therefore an anti-diffusive efiect
create instabilities which are controlled by the diffusiygerator—o2,.. We find again this phenomenon
for the equation(1).

The solution of the linear PDE (1) is obtained by convolutidith the kernelK of 7, — 92,.. There-
after, this kernel will be our filter for denoising and enhament of signals. The analysis of this kernel
shows that the low frequencies are more or less presernved)édium frequencies are amplified and the
high frequencies are eliminated. It is clear that this kiede@ends on the parameters, A and that the
choice of these coefficients will determine the quality @& tioise reduction and of the enhancement. In
this paper, we discuss the choice of these parameters.

To evaluate the performance of our filter, we discretize tBE By two methods : the fast Fourier
transform and the finite difference method. Numerical stsidif nonlocal equations are rather scarce:
among them, we mention [11] which proves the convergencefiofta volume method to approximate
the solutions of a fractal scalar conservation law, thab isay a conservation law regularized bgi&
fusivefractional power of the Laplace operator and [3] which amedythe stability of finite difference
schemes for the solution of (6). In these works, the distagtin of the fractal operator is performed
via an integral formula fofZ, similar to the ones appearing in [1, 9]. Our method has beemeaoced
with Savitzky-Golay filter. Results show that the PDE (1)atevant and effective for denoising with
preservation or enhancement of features of the signal.

The remaining of this paper is organized as follows: in thet section, we explicit the solution
of problem (1) and we give some properties of the kernel. tti@e 3, we present explicit numerical
schemes which approximate the fractal conservation lavarfil)we give some numerical simulations.
In this section, we also briefly present the Savitzky-Gol#grfiand compare it with our filter. Other
numerical simulations based on the FFT are given in sectidiedalso discuss the choice of parameters
a,b, A and we highlight both the ability of denoising and contragtancement of our model. Section
5 is devoted to the performance evaluation and criteriaiosetSection 6 gives conclusions about this
study.

2 Theoretical study of the PDEs

In this section, we verify that (1) is well-posed and in suis® 2.2 we analyze the properties of the
kernel K of 7, — 9%, for0 < \ < 2.

Tx?

2.1 Waell-posedness of the problem

Using the Fourier transform, we see that any solution todfisfes the formula (8).

Proposition 1. LetT > 0 andug € L?(R). The functioru € L>((0,T); L?>(R)) is a solution of(1) if
foranyt € (0,7):

whereK (t,z) = F~1 (e7%0) () with ¢ (¢) := 4n2a&? — b |¢]* is the kernel of the operatdf, — 92,



Proposition 2. LetT > 0, ug € L%(R). Then, the function

u:te (0,T) — K(t,-) *ug
is well-defined and belongs ([0, 7; L?(R)): u is extended at = 0 by the valueu(0,.) = uy.
Proof. Since

K(t,z) = /]R 2T (&) dE.

whereh(£) = e (&), For0 < A < 2, itis easy to verify that belongs toiV%!(R) wherelW > (R) :=
{v € LY(R); 42, % € Ll(R)} therefore we have that (¢,.) € L'(R). Hencevt > 0, K (t,-) * ug iS
in L2(R).

Let us prove the strong continuity ie

lim K (t,.) % ug = ug in L*(R).
t—0

By Plancherel’s formula,

1K () % uo = wol 72y = [[F(K(t,-) % uo) — Fuol 72w
= [ Fuo = Fuolfagey = [ 167 =1 1Fuf. @
Since the functiorje =" — 1|2 | Fug|? converges pointwise t0 on R, ast — 0 and asmin ¢ is finite

then, by the dominated convergence theorem, the last te(®) ténds ta) ast — 0.
[

Remark 3 (Regularity of the solution)lt is easy to see that € C*°((0, 7] x R) becauseX is smooth.
The smoothness @&f is an immediate consequence of the theorem of derivatioaruhd integral sign
applied to the definition oK™ by Fourier transform. To obtain the regularity &= 0, we have to suppose
that the initial conditionuy is in C*°(R) and satisfies for alk € N, u(()k) € L%(R). The proof is similar

with replacingug by u(()k).

Remark 4. From the formula8), it is straightforward that

/Ru(t,x) dx:}"(K(t,-)(O)/uo(x) dx:/Ruo(x) dx. (10)

R

This is a “mass conservation” property.

2.2 Study of thekerne

In this subsection, we give some properties on the Fouaasform of the kernek.

Proposition 3. The kernelK has a non-zero negative part.



Proof. Let us assume thdt is a nonnegative, then
O < IF N = [ K]

- / K(t,) = F(K(t,))(0) = e = 1
R

_1
for all ¢ € R. But we have foi0 < [¢] < (32-)77, |[e ()| = ¢t eV ~ 1 | this yields a

4m2a

contradiction. [

The main consequence of the non-positivity 76fis the failure of the maximum principle for the
equation (1) [1]. Thereby,(x,t) is not forced to remain in the intervahin(ug), max(ug)]. The signal
can then be amplified when it is necessary.

Using the proof of the previous proposition, we can deduaettie enhancement of the frequencies will
be feasible only for the low/middle frequencies. Of couthis amplification will depend on the choice
of the parameters, b, A and of the time.
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(a) The kernel ofZ for ¢t = 0.1 (red) andt = 0.5 s (blue) (b) Evolution of)
Figure 1:a = 0.5,b = 2and\ = 1.5
We expose in figure 1 the evolution &f (¢, .) for different times and the evolution af for a =
0.5,b=2,\=1.5.
3 Finitedifference schemes

In this section, we present a finite difference numericabsuh to directly approximate the solution to
(1) for any\ €]0, 2.

3.1 Integral representation of 7,

To approximate the nonlocal term, it is useful to write it asrategral formula. [10] gives an equivalent
definition for the fractal operator, namely an integral fatanfor Z,:



Proposition 4 (Droniou J. & Imbert C. [10]) If A €]0, 2[, we have for ally € S(R), all € R and all
r >0,

Lilgl(z) = Cx </ olz +2) Tzﬁf\) —e @z, + /R\(_T : 4G T;l);\ p(z) dz>

-r

)
14
2r2tr(1-3)

1) If X €]0, 1] then

whereC' = andI" denote the Euler function.

Ll = Gy [ 2 TZ,E; 2D g (11)
2) If X €]1,2[ then /
R e a2)

From this proposition, we deduce the following useful resul
Proposition 5. For all ¢ € S(R) and allz € R we have for\ €]1, 2|

Zh[e](x) :a,\/ﬂk%—:z)dz:ax/lk%dz (13)

wherea), = %

Proof. The regularity ofp ensures the validity of the following computations . Since

/

fat2) =@ - @ = [ (Jatn-¢@)d
= /1 <<p/(x +tz) — (,0/(.%')> zdt,
0

the last equality arise from the change of variaple ¢z. Then, using Fubini’'s Theorem, we have

1 z
T(z) = Gy /R /0 (¢ o+ 12) = & (@) iy e

= /01 </R(gpl(x+tz) — ¢ (z)) M%dz) dt
o [ ([ ern - tsa)ea

1
C/t)‘_ldt/ (& +y) — o (2)—L—d
A 0 ]R(SO( y) 90( ))’y‘1+)\ Y

C)\/ </1 " ) y
= == v (z+sy)yds | ——dy
A Jr \Jo ( ) ly[+
" 1
9/ $TE (z +2) dz/ )2 ds
AJr P 0

C, go//(x + 2)
— dz.
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3.2 Thenumerical scheme

The spatial discretization is given by a set of poimisi = 1, ..., N and the discretization in time is
represented by a sequence of timés= 0 < ... < t" < ... < T. For the sake of simplicity we will
assume constant step sizeanddt in space and time, respectively. The discrete solution aira pill
be represented by ~ u(t",z;). In this section, we will present the behaviour of expliaitnmerical
scheme which directly approximate the solution to (1).

We discretize all terms of the equation using an explicitirodt We consider for any, j € N

n+l _  n no_ n n
; u; ujyy — 2uj +uj

1 n
e gy Tl =0 (14

u

whereZs, is a discretization of the nonlocal terfm. This scheme is explicit because the values of the
solution at timet™*+! are obtained directly from the (known) values at tittie For the Laplacian term,
we use a standard centered finite difference approximatiseaond order. To discretize the fractal
operatorZ,, we consider the formulation (4), which for €]1, 2[ is a causal variant of (13). Next, we
use a basic quadrature rule to approximate the integral @dse a finite difference approximation of
the derivative:

+oo
Tsalv)y = 627 Y 1AM vy 40 — 2050+ v5000); (15)
=1
Note that we have absorbed the constantn b.

Remark 5. The practical implementation of the schemes requires toentralkcations. The main trun-
cation concerns the integral operator for the nonlocal tefm We replac«s\fgC>c> with fOL and the finite
difference approximation becomes:

A
Tso[vly = 027 Y 1 Mwjoign — 2050+ v5-101); (16)
=1

with L = Adz. Usually, we consider that functions are either compactigported or constant near
—oo and +oo, so it is legitimate to consider a finite sum for the discegion of Z,. However the
truncation parameterd has to be chosen judiciously. Indeed, witerr A\ < 1, the termi'~* in the
discretization(16) is bigger and bigger for increasingj henceA ought to be big enough. In contrast,
wheneverl < A < 2, I'~ is negligeable for large values and is important only for drmalues ofl.
Thus in this case, it is judicious to takksmall enough. We see again here that the non local effect is al
the more important than is small. These memory effects strongly depending luave been reported in
[8]. To take this behaviour into account, we set the trurmatparameterd := max(100, 170)- Of course
100 is an arbitrary limit to avoid rounding effects for small

Since the equation is implemented using an explicit methiad,imposes a CFL condition on the
time and space steps which ensures the numerical stabidityi to say that the difference between the
approximate solution and the exact solution remains badivdgenn — +oo for éx, 6t given. The
stability analysis of the nonlocal scheme (14) is done in [Bhis requires a careful study, owing to
the anti-diffusive behaviour of the nonlocal term. Indetttt analysis of the PDE (1) shows that for
the continuous problem, low to medium frequencies are dieglby the nonlocal term, [1]. We come
back to this in section 4. Therefore, the standard Von Newngfinition of stability must be slightly



modified. Denoting) = kéz € (0,2m) andu}] = exp (ij6), instead of imposing that the amplification
n+1

factor G(#) = “L— must fulfill |G(6)| < 1 for any frequency), we only imposéG(6)| < 1 for 6 above

um

a given threshold. We obtain the two following conditionstia time and space steps:

b 2a

1-X

(1-2 )595—)‘<W’ 17)
2a 6t 3, bat

W+(2_21 )‘)M—A<1. (18)

The first stability condition (17) forces the mesh-sizeto be small enough in order that the diffusion
term should dominate the nonlocal anti-diffusive term fighhfrequencies, whereas the second stability
condition (18) looks like an usual CFL condition for explischemes and forces the time-step to be small
enough. For more details, we refer the reader to [3].

3.3 Numerical results

In the following numerical tests, we have to take care to@h6t anddéx accuratly following the con-
ditions (17) and (18). Thus, the time and space steps depetkeochoice ofz, b and A\. We begin

by consider an electrocardiogram (ECG) signal. Figureugtithtes a comparison between the PDE (1)
implemented using a finite difference method (FDM) and thét3ey-Golay smoothing filter.

The Savitzky-Golay smoothing filter also called digital stiong polynomial filter or least-squares
smoothing filter was first described in 1964 by Abraham Skyiand Marcel J. E. Golay. [23]. Es-
sentially, the Savitzky-Golay method performs a local polyial regression on a series of values that
is to say it replaces each value of the series with a new vahiehwis obtained from a polynomial fit to
neighboring points. The algorithm is based on the followeggation

n+1
2

uj = |aogv; + Z ;i (Vj—i + Vj4i)
i=1

wheren is the number of data pointa; are (positive) constants,is the noisy signal and defines the
filtered signal. The main advantage of this approach is teegwvation of features of the signal such
as relative maxima, minima and width. Indeed, usually thesracteristics are 'flattened’ by classical
averaging techniques such as moving averages. Figure 2sstmoae plots: The noisy ECG signal,
the smoothed signal (red) using the PDE filter (1) superiragosith the noiseless signal (blue) and
the smoothed signal (red) using the Savitzky-Golay filtgresimposed with the noiseless signal (blue).
As we can remark, for these parameters, the low/middle &eges are not amplified but the relative
maxima and minima are preserved. The denoising seems tamddhe filtering with our numerical
scheme and with Savitzky-Golay seems similar, see betterewaluate our approach and we compare it
with Savitzy-Golay in section 5.

Figure 3 illustrates two filtered signals of different typ®¢e start from the simplest possible example
of nonlocal filter denoising applied to a signalx) consisting of a piecewise constant step function
v(z) = —1for0 <z < landv(xz) =1forl < z < 2 corrupted by additive Gaussian white noiser)
with standard deviatioa = 0.4:

u(x) = v(x) + n(z). (19)
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Figure 2: Top: a noisy electrocardiogram Middle: in red the noiseless signal, in blue the filtered
signal with finite difference scheme (14) with= 4,b = 0.5, A\ = 1.7,02 = 1 anddt = 0.1; Bottom :
Noiseless signal (blue) vs. filtered signal using Savit@olay filter.

The result of the denoising is illustrated in figure 3(a). Asaan notice, the noise is well eliminated and
we find again our original signal, the shape of the signal leeshtpreserved. The result is better than
filtering Savitzky-Golay. Moreover, unlike Discrete FarriTransform where the contrast is low in the
neighbourhood of the discontinuity (see figure 5(a)), tl@wuliinuity/shock is conserved. Therefore, the
finite difference method is more suitable for this kind ofrelly Figure 3(b) shows another example of
good denoising.

4 Numerical resultsusing Discrete Fourier Transform

In this section, we first discuss the choice of parametelisA and next, we give some numerical results
based on fast Fourier transform (FFT) which is an efficiegbdlhm to compute the discrete Fourier
transform.

4.1 Choice of parameters

We fixT = 1. So, we can rewrite the kernel in Fourier variable as foltows
Ky (¢) = e

where(¢) = 4n2a&? — bl¢]*. We draw in figure 4 the behaviour of the kerdég)b for a, )\ fixed

9
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Figure 3: (a) Top: Noisy signal (blue) vs. noiseless signadl); Middle: Noiseless signal (blue) vs.
filtered signal using FDM; Bottom: Noiseless signal (blus) \iltered signal using Savitzky-Golay
filter. (b) Top: Noisy signal; Middle: Noiseless signal ; Bon: filtered signal using FDM .
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Figure 4: Evolution of the spatial Fourier transform of tlenel K for different parameters.

_1
and for different values ob. As K, reaches it maximum afy; := (g2%-)>> and K}, (§u) =

A (5)7 2 (57D e deduce thak},(¢»7) > 1if and only if0 < A < 2. Therefore, whatever the
choice ofX €]0,2[, we always have an amplification of medium frequencies. @fsm®m the magnitude

of amplification depends om, b, A. Another natural frequency &§ = (47:’2@)ﬁ which represents the
neutral frequency and satisfiéégb(gl) =1 anngb(gl) < 1for & > & . Thereforeg; is the threshold
above which dampening will occur. ’

Now, we wish to control both the denoising and contrast eodiarent. For that, we follow a simple

strategy:

1. In a first step, we wish to control the frequency range toldyngrhis one can be controlled by

10



the following ratio:g% = (2)1/2* . Indeed, this ratio is decreasing w.r.t. paramatand shrinks

from +oo to /e when\ varies from0 to 2. Hence, to choose a given amplified frequency range,
1
it is enough to fix parameter and the ratio? (which in turn determines; = (;5-)>7).

4m2q

2. In this step, we want to monitor the denoising, which widirsfor frequencies above the neutral
one¢;. One can easily check the following equality:

P(agr) = 4n%a i (0” — o).

where« is a any positive constant. Therefore, the greatés, the smallerkK jb(agl) will be,
which means that the dampening rate will increase. Hencanpetera monitors the denoising
intensity, this is coherent because it controls the Laplatérm.

3. To finish with, we wish to monitor the valu®/ := Kgb(gM) in order to control the contrast
enhancement. Indeed, the highdris, the better the constrast will be amplified. Paramekers
andg being fixed by item 1 it enough to adjust both parametessd a while keeping the ratio
g within some bounds in order to preserve the amplified frequeange. The expression of
shows that to have a good amplification of medium frequendieés necessary to increageas
well asa. This is quite natural since the coefficigntontrols the anti-diffusive term and has an
opposite behaviour to the Laplacian term which tends tcefhettte signal. In our method, contrast
and denoising are no more antagonistic. We come back ontivegtof parameteb in section 5.

4.2 Denoising

In this subsection, we are only going to highlight the apitif noise reduction of our nonlocal equation
(1).

To begin with, we consider an ECG signal to illustrate theoing using the FFT to solve the fractal
equation (1). The result is given in the figure 5(b). For thigice of parameters, we note that the

Noisy signal vs. filtered signal

Noisy signal vs. filtered signal
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o 0.1 0.2 03 0.4 0.5 0.6 07 08 0.9 1 0 50 500 1000

1500 2000 2500 3000

Noiseless signal vs. filtered signal Noiseless signal vs. filtered signal
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o r N 0.2}
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—02}

-0.4
0

500 1000 1500 2000 2500 3000

(@) 47%a = 0.01,b = 0.03 and\ = 0.5 (b) 47%a = 0.0051, b = 0.015 and\ = 1.7

Figure 5: Top: Noisy signal (blue) vs. filtered signal (reBpttom: noiseless signal (blue) vs. filtered
signal (red).

denoising is suitable and that the relative maxima are prede However, the relative minima are not
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completely preserved, in fig. 5(b) bottom. At last, Figuréa)@escribes the denoising of a sinusoidal
signal. We can see the performance of the denoising of nahémproach discretized with FFT, which
works very well for this type of periodic signal.

4.3 Denoising & Enhancement of signals

In this part, we are going to highlight both the ability of seireduction and contrast enhancement. Of
course, to emphasize the amplification, we take into acahentemarks done in subsection 4.1.

We start from a simple example of simulatenous denoisingesaidincement applied to a strongly
attenuated sinusoidal signal highly corrupted by a randoiwen In figure 6 middle, we plot the original
noiseless signal, the same signal amplified and the filtered signal, performed with our non local FFT
method. As we can notice in figure 6, the noise is eliminatetthe contrast is well amplified.

Noiseless signal vs. noisy signal

Figure 6: Top: Noisy signal (blue) vs. noiseless signal) = 0.02cos(z) (red); Middle: Noiseless
signal (blue) vs. filtered signal (red) using FFT with?a = 0.2,b = 1.25, A\ = 0.5 superimposed with
amplifiednoiseless signalos(z) (green); Bottom: Noiseless signal (blue) vs. filtered sigred) using
Savitzky-Golay method.

Figure 7 illustrates the smoothing of an electrocardiogs&gnal by filtering the noise with Savitzky-
Golay filter (third plot) and by denoising and enhancemerth wie fractal scalar conservation law (1)
(second plot). In the second case, we can see that the eetatixima and minima are amplified. Of
course, we can obtain even greater amplification of low/iridicequencies by suitably tuning the pa-
rameters but, in these conditions, we will obtain sizeabigations between each peak. Thus, when we
wish to amplify the low frequencies, we have to be careful tedo not alter too much the shape of the
noiseless signal.

To rate the performance of denoising and enhancement oflieuy fve consider signals with different
SNR, which corresponds to the power ratio between a sigmbthrenbackground noise.
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Figure 7: Top: a noisy electrocardiogramz); Middle: the noiseless signalx) (blue) and denoising &
enhancement of the ECG signal (red) using the FFT on theafraquation (1) withi72a = 0.005,b =
0.0225 and X = 1.7. Bottom: filtering using Savitzky-Golay method.

In figure 8, we took a small SNR. We can observe that shapesygtifiad and that noise has been
reduced significantly. But, we can also remark the undeitshjost before and behind the shapes. This
phenomenon has been highlighted in [1] in the setting of dunerphodynamics. It is a consequence
of the mass conservation property, see equation (10). Werobimilar results in figure 9 with a large
SNR. Indeed, as we can see, the proposed method of filterfadsyioth an interesting denoising and an
amplification of low/middle frequencies. The third plot gegs the filtering using the Savitzky-Golay
approach. As agreed upon, we obtain a preservation ofwelatiaxima. Moreover, comparing the output
obtained thanks to our nonlocal method with the one of Slay@&olay filter, we notice the better ability
to increaselocal extrema (contrast enhancement) while keeping a geodising. This statement is
confirmed by Figure 10(b), where the signal has a medium SN&RoMa&in a “good” smoothing and an
interesting amplification of the low and middle frequencies

5 Performance metrics
In this section, we wish to measure the denoising ability wfmodel. To evaluate our approach and

compare it with the Savitzky-Golay filter, we use two measuthe Mean Square Error (MSE) and the
Signal-to-Noise Ratio (SNR). These metrics are frequemdlyd in signal processing. They are defined
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Figure 8: First plot (top) represents two shapes perturbed (blue) and the second plot (bottom)
illustrates the noiseless signadlz) (in blue) and denoising & enhancement of the signal (red)giie
FFT on the fractal equation (1) withr?a = 0.1,b = 0.3 and\ = 1.5.

as follows:
N

MSE =+ 3 (uoli) — u(i))?

i=1

N N2
SNRg = 10logy ( 2i=1 t0(?) )

oI (uo (i) — u(i))?

whereuy is the noiseless original signal,is the filtered signal and/ is the length of the filter.

It is easy to see that a small MSE corresponds to a high nailsetien and that a large SNR indicates
a good denoising. To compare the performance of filters, wsider a signal of trigonometric type and
an ECG signal. Noise is added to these signals with SNR vgty@tween 0 to 8. Results are plotted in
figures 10(a) and 5(b). For each signal, we use a sample ofal@l®m noises. The performance of the
two approaches is estimated using MSE and SNR criteria. \bfeapl average of the results on figures
11 and 12. Figures 11(a) and 12(a) show SNR values for thesenethods applied to trigonometric

and electrocardiogram signals. Figures 11(b) and 12(by MSE values. These values show the high
performance of nonlocal approach in signal denoising igpotrometric signals. Remember that in this
case, the algorithm used for the implementation of the éguas the FFT, which is most suitable for

trigonometric signals. Conversely, the FFT algorithm doatsperform uniformly well for ECG signals.
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Noisy signal vs.filtered signal

Noiseless signal vs. Savitzky—Golay filter
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Figure 9: Choice of parametergr?a = 0.01,b = 0.05 and\ = 1.5. The red line depicts the filtered
signal.
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Noiseless signal vs. Filtered signal
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Figure 10: The red line depicts the filtered signal. In thisscave tookug(z) = cos(5mx) + cos(207mx).

Indeed, we remark in figure 12 that for high SNR, the Savit@gfay filter is better than the nonlocal
filter approach. Still, when the SNR is low - and it is the calicase - the proposed method method is
more efficient than the Savitzky-Golay. Thus, the impleraton of our PDE based on the FFT may not
be effective for any type of signal, at least when the SNR g hiTherefore, to filter the ECG signal,
we also tried the finite difference scheme. Results of thisrfilg are illustrated in figure 13. As we
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can see, the proposed model implemented with the finiterdiffee method is always more efficient than
the Savitzky-Golay approach, but for low SNR the FFT scheemains best. Finally, regardless the
type of signal considered, the fractal conservation lawig§®) good tool of denoising, provided that it is
implemented with the right method.

SNR(db) value for output signal
MSE value for output signal

1 2 3 4 5 6 7 8 2 3 4 5
SNR(db) value for input signal SNR(db) value for input signal
=g Savitzky-Golay method
Savitzky-Golay method —&— Proposed method

—f— Proposed method

(@) SNR values in Savitzky-Golay method in comparisoftoMSE values in Savitzky-Golay method in comparison to
proposed method proposed method

Figure 11: Choice of parametersgr?a = 0.01,b = 0.03 and\ = 1.5. The initial signal isug(z) =
cos(bmzx) + cos(20mz).
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(@) SNR values in Savitzky-Golay method in comparisoftoMSE values in Savitzky-Golay method in comparison to
proposed method proposed method

Figure 12: Choice of parameter$r?a = 0.005,b = 0.015 and\ = 1.7 . The initial signal isug(z) is
an electrocardiogram (ECG) signal.

Remark 6. Let us briefly explain how SNR metrics allow us to optimizecti@ice of parameteb.

In figure 14, we display the behaviour of SNR values for diffevalues ob. As we can remark, the
denoising will be most efficient fér~ 0.03. Hence visualization of the surface (figure 14(a)) and csirve
(figure 14(b)) enables us to find easily the paramétir optimal denoising.
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(@) SNR values in Savitzky-Golay method in comparisofloMSE values in Savitzky-Golay method in comparison to
proposed method using finite difference scheme proposed method

Figure 13: Choice of parameters:= 0.5,b = 0.3, A = 1/3. The initial signal isuy(z) is an electrocar-
diogram (ECG) signal.
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Figure 14: Choice of parametersr?a = 0.01 and )\ = 1.5 . The initial signal isug(x) = cos(5rz) +
cos(20mx).

6 Concluding remarks

Ouir first aim was to introduce a fractal conservation law femaising and contrast enhancement of sig-
nals. This device permits to reduce considerably the naidd@increase contrasts simultaneously. The
study showed that our filter eliminates the high frequenaies$ amplifies the low/medium frequencies.
In this paper, we also discussed the choice of parametérand \.

This equation has been implemented using both a finite diffsg scheme and the fast Fourier trans-
form. Various well-known measuring metrics have been usembimpare our method with the Savitzy-
Golay filter. Results showed the good performance of our mddereover, the analysis highlighted
that, depending on the considered signal, it may be moraldaito use the finite difference scheme or
the FFT algorithm. Obviously, for a sinusoidal type sigriiis preferable to use the FFT, whereas for
a signal like step functions it is better to implement thectiah equation with finite difference method.
Nevertheless, no matter the algorithm used, the fractadersation law (1) is an interesting and natural
method for denoising and contrast enhancement.
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These satisfying properties for signal processing engasras to implement it for image enhance-
ment: this study is in progress.
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