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Abstract: Possible hindering effects of impurities on the crystal growth were shown to take 

place through the adsorption of impurity species on the crystal surface. Transient features 

of this adsorption were also observed, such that the growth of a given crystal does not 

depend on supersaturation only, but also on the time a given particle spent in contact with 

impurities present in the mother liquor. Meanwhile, few kinetic models describe the effect 

of impurities on the growth of crystals in solution, and published models are usually 

derived from data obtained thanks to specific experiments based on the evaluation of the 

growth rate of singles crystals. Such models are obviously questionable because, in the 

industrial practice, distributed properties of crystals are actually involved. Considering the 

“time of contamination” of particles as a new internal variable is thus made necessary. This 

is the reason why a specific PBE resolution algorithm is presented in this paper. The 

numerical scheme for the resolution of PBEs is based on the method of characteristics and 

shown to allow fast and accurate simulation of transient features of the crystal size 

distribution in the particular case when the growth or nucleation rates are assumed to 

exhibit unsteady-state dynamics. Thanks to this algorithm and through the simulation of 

isothermal seeded desupersaturation crystallization operations of citric acid, important 

industrial features of crystallization in impure media are satisfactorily reproduced.  

Keywords. Crystallization, Dynamic simulation, Nucleation, Population balance, 

Particulate processes, Impurities. 
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1. INTRODUCTION 

1.1  Impurities in solution crystallization.  

Actually, almost all modelling and control papers in the field of crystallization deal with 

pure solute/solvent systems, which is obviously a very significant limitation because it is 

well known that industrial crystallization processes cannot avoid undesirable impurities to 

be generated during the many chemical reactions preceding the crystallization steps. Even 

minute concentrations of impurities present in the initial solution can affect tremendously 

the crystallization process (Sangwal, 1996; Wood, 2001; Myerson, 2001; Chernov, 2004; 

Sangwal, 2007) and induce significant reductions of the growth rate (Sangwal, 1996; 

Kubota et al., 2000; Kubota, 2001).  

As far as the advanced dynamic modelling of crystallization systems is concerned, and to 

the best of our knowledge, such key-features of “real” industrial crystallization processes 

(i.e. processes performed in the unavoidable presence of impurities) have never been 

described using PBEs so that one cannot evaluate the distribution and the time-variations 

of the detrimental effects of impurities during crystallization processes.  

From an industrial point of view, obvious unwanted consequences of impurities in 

crystallizing media have therefore to be dealt with: 

- Due to final intractable residual supersaturation, the yield of the crystallization operation 

is reduced because the solubility equilibrium can no more be reached. 

- Undesirable growth rates reductions require increasing the duration of the crystallization 

operation, and therefore reduce the process productivity.  

-  As impurities can incorporate the crystal lattice, controlling the final chemical purity of 

the particles is obviously a major quality issue. In the field of pharmaceutical production for 

example (see e.g. Chow et al. 1985; Johnson & Li, 2007; Raghavan et al. 2001), it is clear 

that for the sake of public health, the concentration of harmful impurity species in final 

active ingredients is strictly controlled by public regulatory agencies such as the US FDA 

(Federal Drug Administration).  

It is the goal of the present paper to address this problem, and to present a new numerical 

scheme allowing one to solve the related PBEs.  



3 

 

1.2.  Population Balance Equations (PBE) and crystallization 

PBEs are widely used as a modeling tool in the engineering of dispersed media, with 

applications including crystallization, powder technologies, polymerization processes, 

biotechnologies, etc (see e.g. Mersmann et al., 2002;  Ramkrishna 2000, Ramkrhisna and 

Mahoney, 2002, Vale & Mc Kenna, 2005; Liao & Lucas, 2009).  

In the monodimensional size case, the PBE reduces to the well-known following partial 

differential equation allowing one to compute the time variations of the Crystal Size 

Distribution (CSD). For the sake of simplicity, supersaturation σ is omitted in the list of 

arguments, even though it is the driving force of almost all crystallization phenomena: 
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�                      
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(1) 

 

(2) 
 

(3) 

The initial condition (2) accounts for the possibility of the crystallization to start through 

primary nucleation (i.e. no solid phase is initially present in the crystallizer) or through 

seeding, which consists in the introduction of small amounts of particles, usually sieved, in 

the supersaturated solution. Due to the supersaturated state of the solution, seed particles 

initiate the crystallization process and are characterized by their size distribution ψseed.  

RN  is the rate of nucleation expressed in  #.s
-1

.m
-3

. 


 � ����  is the crystal growth rate, in m.s
-1

,  which is likely to be affected by the presence 

of impurities, as explained in more details in the next Part.  

Many systems exist where impurities were shown to lead to supersaturation thresholds 

below which the development of crystallization is fully inhibited (see e.g. Sangwal, 2002). 

To the best of our knowledge, such key-features of “real” industrial crystallization 

processes (i.e. processes performed in the unavoidable presence of impurities) were never 

described using PBEs.  
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Now, from a more technical point of view, if one considers the variety of the techniques 

which were proposed to solve the PBEs in the case of crystallization processes, it appears 

that few of these methods are based on the method of characteristics (MOC). It is however 

known that MOCs avoid numerical diffusion errors and oscillatory solutions caused by the 

discretization of the involved growth term, especially when steep or discontinuous 

particulate phenomena take place in suspension (Kumar and Ramkrishna, 1997; Briesen, 

2006). Qamar and Warnecke (2007) have proposed a numerical method for solving PBEs 

involving nucleation, growth and aggregation processes. The scheme combines a method 

of characteristics for computing the growth term with a finite volume technique for 

calculating aggregation terms. The method is compared to a finite volume method through 

the modelling of “academic” situations for which analytical solutions are available. The 

numerical scheme based on MOC is shown to be more efficient than pure finite volume 

schemes. This interesting feature of MOC is attributed to the semi-analytical integration of 

the advection term �
�/�� from the main PBE.  Sotowa et al. (2000) compare the 

numerical resolution of a simple crystallization PBE using a finite difference method and 

the method of characteristics to evaluate the impact of numerical dispersion on the design 

of feedback controllers. It is finally concluded that, as far as the simulation of control 

systems is concerned, the method of characteristics is recommended for simulating 

crystallization processes. More recently, in order to simulate the growth of anisotropic 

particles, Briesen (2006) proposed a reduced two-dimensionnal PBE model. Here, the MOC 

approach was used to validate the calculations.  

It is the goal of the present paper to address the problem of accounting for the “birthdate” 

of crystals in the governing crystallization PBE, and to propose a new numerical scheme, 

based on MOC, for the resolution of the latter PBE. In fact, it is clear that the approach 

proposed by Kumar and Ramkrishna (1996a-b, 1997) in their series of three papers is much 

more “advanced” than the approach presented here, both in terms of the accuracy of the 

used size integration technique and with respect to the ability of the technique to describe 

agglomeration and breakage phenomena. Nevertheless, the present algorithm offers 

another way of considering nucleation phenomena and, through its great simplicity, can be 

valuable for applications where fast computation is required (e.g. for in-line feedback 

control applications or for kinetic parameter estimation).   
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1.3.  Crystal growth rate. 

In most published crystallization PBE modeling works the crystal growth rate G is assumed 

not to depend on the particle size (McCabe’s hypothesis), but essentially on supersaturation. 

Several expressions of the supersaturation may actually be used, according to the theoretical 

background of the study. The following equations define the relative supersaturation σ(t) 

and the supersaturation ratio β(t), which both are adimensional variables: 

σ�t� �  C� t� ! C�  C�                                                          (4)

β(t)= C(t)/C* (5)

∆C(t)= C(t)-C*        (6)

 

where C* is the equilibrium concentration (i.e. the solubility of the solid compound which 

crystallizes) and C(t) is the actual solute concentration.  

The growth of crystals from solution is a complex process which roughly speaking 

corresponds to the transport of identical dissolved atoms, molecules, ions, complex units, 

etc, to the solid surface; followed by their ordered integration into the crystal lattice. The 

crystal growth rate is usually defined as the rate at which a specific or an average 

characteristic size of the solid particle increases. Despite its lack of physical meaning, the 

following simplified kinetic empirical law is often used:  


"�
� � #�#
 � $%�&�
� ! &��
��' � $%Δ&�
�' 
 

 (7) 

 

where index o will refer in the following to the growth rate in pure solvent.  

In eq.(7), exponent i depends on the involved growth mechanism(s). In practice, 

consistently with “standard” theoretical models, most published values of i are given 

between 1 and 2.  
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Figure 1.  (a) Adsorption of impurities at kink sites of growing steps after Kubota (2001)

(b) AFM image showing the pinning effect, after Tirado-Mejíast et al., 2006. 
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Kubota-Mullin’s model (1995) was proposed to describe the pinning mechanism through 

the following ratio Γ between the step velocities in pure (u0) and impure (u) solvents : 

Γ �  **+ � 1 ! - ./012�3 4 � 1 ! 54�                                                                   (8) 

 

where γ is the edge free energy, a is the size of the growth unit, T is the absolute 

temperature, k is the Boltzmann constant and θ∗  is the steady-state coverage fraction of 

active growing crystal surface by adsorbed impurities. The notion of step velocity is roughly 

represented in Figure 1a and one generally assume that 
 6 7. 
 

The overall parameter α  is the effectiveness factor quantifying the efficiency of the 

impurity specie in hindering the crystal growth. It is very important to notice that α does 

not only depend on properties of the involved solid, but also on supersaturation. Several 

approaches can be used to compute the equilibrium coverage θ∗. Ιn Kubota-Mullin’s 

Model (Kubota & Mullin, 1995; Kubota et al., 1997), the equilibrium coverage of the 

growing surface is estimated thanks to Langmuir adsorption theory: 

θ *=K Ci /(1+K Ci)  (9) 

where K is the Langmuir adsorption constant and Ci is the concentration of impurity.  

Even though the adsorption process is often regarded as instantaneous (i.e., the steady-

state coverage θ∗ is reached instantaneously), it was shown that the dynamics of the 

adsorption of impurity species on the crystal surface cannot always be neglected. This is 

the reason why, as a first phenomenological approximation, the transient behavior of the 

coverage process (i.e. the time variations of θ ) was suggested by Kubota (2001) to obey 

the following first-order dynamics where τ is the time constant of the coverage process: 

θ = θ * [1-exp(-t/τ)] 

 

(10) 
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2.2 General expression of the PBEs accounting for the adsorption of 

impurities.  

Assuming that the crystal growth rate is proportional to the step velocity (i.e. G/Go ≈ Γ) it 

finally turns out that G depends on both time and supersaturation. Combining expressions 

(7) to (10) leads to the following expression where ν  is the time at which the crystal 

surface is set in contact with the impure liquid phase. In the industrial practice, impurities 

might be introduced fortuitously in the mother liquor or, more likely, as undesired 

products of upstream secondary reactions. In this latter case, the impurities are present 

from the beginning of the crystallization process so that one can assume that the 

nucleation events (i.e. primary homogeneous or heterogeneous and further secondary 

nucleation) occur in the presence of impurities. This is the reason why, in the sequel, the 

time ν is supposed to coincide with the nucleation time. As an example, the following 

growth rate expression is considered: 


�
� � 
8�
� 91 ! 5 :&'1 � :&' ;1 ! <=> 9! �
 ! ?�@ ABA
             �  $%Δ&�
�' 91 ! 5 :&'1 � :&' ;1 ! <=> 9! �
 ! ?�@ ABA 

 
 

   (11) 

 

Applying the impurity adsorption model to Eq. (1) is not straightforward as it increases the 

dimension of the problem: the time (t-ν) spent by the crystals in contact with impurities 

should now be accounted for. Even though they are exposed to the same supersaturation, 

two crystals taken at a given time t do not exhibit the same growth rate G. This is why we 

now introduce a population density function φ depending on the “classical” variables, L and 

t, as well as ν , the time of nucleation of a given particle: 

���
��
���C��, 
, ?��
 � 
�
, ?� �C��, 
, ?��� � 0         

C��, 0, ?� � 0                                                 C�0, 
, ?� � ���
�
�
, ?� D�
 ! ?�                     
� 

 (12)

(13)

(14)

 

The standard definition of the crystal size distribution can still be retrieved as: 

���, 
� � E C��, 
, ?�#?F8 � E C��, 
, ?�#?G8                       (15) 
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3.   A METHOD OF CHARACTERISTICS FOR SOLVING POPULATION 

BALANCE EQUATIONS ACCOUNTING FOR IMPURITY EFFECTS. 

 

A simple method of characteristics for the resolution of the PBE without agglomeration and 

breakage is now presented, first in the “standard” case corresponding to mono-

dimensional crystals generated and grown in pure solvent; and second in the case when 

the impurity adsorption depends on time.  

3.1  A method of characteristics for monodimensional PBEs without 

impurities. 

As already mentioned supersaturation is the driving force of crystallization and computing 

σ requires computing the time-variations of C(t) during the crystallization process. Actually, 

the decrease of solute concentration C(t) is caused by the generation of crystals: the 

molecules of solute initially present in the liquid phase are transferred through 

crystallization to the dispersed solid phase. The total amount of solid is therefore given by 

the total volume of particles computed through the integration of the whole CSD:  

 

&��
� � HIJKLI E ���, 
��M#�F�� � HIJKLI E ���, 
��M#�F8                                                (16) 

where ρs (kg/m
3
) and Ms are the density and the molecular weight of the solid compound, 

ϕp is a volumetric particle shape factor (equal to π/6 in the “ideal” case of spherical 

crystals.)  

An elementary mass balance of the solute allows computing at each time the evolutions of 

C(t) and consequently yields σ(t) through Eq. (4), provided that experimental data about 

the solubility curve C*(T)  are available. Now, in the case of unseeded crystallization 

process, the PBE system (1-3) is expressed as follows where the growth rate is a complex 

function of physical and kinetic variables depending on σ and, through the indirect size-

dependency of the solute concentration C(t), on the current size distribution: 
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��
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�
� ����, 
��� � 0                                                                   

���, 0� � 0                                                                                                 ��0, 
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�
�
�                                                                                         
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(17) 

(18) 

(19) 

During the crystallization process the suspension is kept in supersaturated conditions. One 

can therefore write that σ > 0 and the following condition is always fulfilled: 

N
 O PQ, N ? O R0, 
 S,     
�
� T 0   (20) 

Now, the following characteristic curve is considered to describe the size population of 

particles nucleated at time ν: 

N
 O PQ,   N ? O R0, 
 S ,       �UV�
� � E 
�
W�#
W�V      (21) 

As depicted in Figure 2, the CSD along a given characteristic curve is defined as follows: 

 �UV�
� � �X�UV�
�, 
Y, 

 so that one can write: 

#�UV�
�#
 � ��X�UV�
�, 
Y�
 �  ��UV�
, ?��
   ��X�UV�
�, 
Y��                           
              � ��X�UV�
�, 
Y�
 � 
�
, ?�   ��X�UV�
�, 
Y��                                

 #�UV�
�#
  � 0                                                                                                   
 

     

 

(22) 

 

It therefore turns out that �UV does not depend on t, which implies that the solution of Eq. 

(17) is fully determined by the boundary condition (19) and the resolution of (21) 

describing the time evolutions of the characteristic curves:  

N
 O PQ,   N ? O R0, 
 S ,    
                              �X�UV�
�, 
Y � �UV�
� � �UV�?� � ��0, ?� 

                                      �X�UV�
�, 
Y � ���?�
�?�  

(23) 

(24) 

 



 

Now, let us show that eq. (24

every point (L,t) in the phase space can be represented 

following application is considered:

,

, is clearly continuous and

which, given Eq. (20), shows that

to [0, ]. It follows that the characteris

A means of computing the distribution density function is therefore given by:

,  , 

 

Figure 2. Schematic representation of the coupling between the numbers of particles 

nucleated at time ν and the overall distribution at time t.

3.2  Semi-discretization of the size population density function. 

Considering successive sampling times, the time variable 

, ,  

24) allows determining the CSD for every time and size, i.e. 

) in the phase space can be represented thanks to Eq.(21). To this eff

following application is considered: 

 

is clearly continuous and  ,

), shows that λt is strictly decreasing and therefore invertible from [0

]. It follows that the characteristic curves do not exhibit shock or 

A means of computing the distribution density function is therefore given by:

                   

 

Figure 2. Schematic representation of the coupling between the numbers of particles 

and the overall distribution at time t. 

discretization of the size population density function. 

Considering successive sampling times, the time variable ν is discretized as follows:
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) allows determining the CSD for every time and size, i.e. 

. To this effect, the 

 

reasing and therefore invertible from [0,t] 

or rarefaction. 

A means of computing the distribution density function is therefore given by: 

(25) 

 

Figure 2. Schematic representation of the coupling between the numbers of particles 

discretization of the size population density function.  

is discretized as follows: 

 



12 

 

                        Ψ[�t� � E ���, 
�#�\]^_�G�\]�G�                                   

(26) 

From Eq.(24), and setting the following change of coordinates:  

`  ? � a�bc���                                     � � �UV�
�, #� #? � !
�?�                                                                                                       �27� � 
we get: Ψ[�t� � E ���, 
�#�\]^_�G�\]�G� � E �X�UV�
�, 
Y
�?�#?f]f]^_  � E ���?�#?f]f]^_                  (28) 

  

As illustrated in Fig.2, it finally turns out that integrating ψ  in size between Li (t) and Li-1 (t), 

at a given time t, amounts to integrating ψ  in ν  between νi-1 and νi, for a given size, and 

that the result of this integration does not depend on time t.  

Consequently, to solve the system (17-19), one simply has to solve the following two 

systems coupled by the integral operator G. In order not to make the notation heavier, the 

latter will still be referred to as G after discretization: 

`  ��g�� �
� � 
�
�
�'�?'� � 0         � ;  h

�ig�� �
� � 0                       
  Ψ'�?'� � E ���?� #?VgVg^_

�     

(29) 

3.3  Time-discretization.  

Any time-discretization scheme can be used to solve jointly the two systems (29). As an 

example, t might be discretized in the same way as ν (i.e. the same sampling interval dt is 

used to scan t and ν), which leads to the following simple numerical scheme:  

$ � 0 ;klmno 
0 p 
�q� rs

t
t
t     usv w � 1, $ ! 1  rsx    �'�
0� � �'�
0bc� � E 
y�
�#
 ;�z�z^_ �o{r
     �0�
0� � 0 ;     Ψ|�
� � E ���?�#? ;�z�z^_      $ � $ � 1 ;

�

o{r                  
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3.4 A method of characteristics for monodimensional PBEs accounting for 

impurity effects. 

In order to account for the distribution of growth rates resulting from the adsorption of 

impurities, the general system (12-14) is now considered. As explained above, the growth 

rate integral operator 
 is a complex function of physical and kinetic variables depending 

on time and, through the indirect size-dependency of the solute concentration, on the 

whole current size distribution: 


�
, ?� � } ~
, ? ,C�, �� 6 � C��W, 
, ?���M �
�#�WF
8 �   (30) 

 where mS  is the total mass of crystallized solid. 

The nucleation time of every crystal is introduced in Eq. (30) because, as explained in Part 

2, the growth rate 
 depends now on the time spent by the growing crystal in the presence 

of adsorbing impurities. Now, let us consider characteristic curves defined as follows: 

N
 O PQ,   N �?, �� O R0, 
 S�,       �U��
, ?� � E 
�
W, ?�#
W��      (31)

The distribution along a given characteristic curve is noted:   

 CU��
� � CX�U��
, ?�, 
, ?Y   and one can write: 

�CU��
, ?��
 � �CX�U��
, ?�, 
, ?Y�
 �  ��U��
, ?��
   �CX�U��
, ?�, 
, ?Y��           
             � �CX�U��
, ?�, 
, ?Y�
 � 
�
, ?� �CX�U��
, ?�, 
, ?Y��              

�CU��
, ?��
  � 0                                                                                                   
 

 

 

     (32)

    (33)

It finally turns out that CU��
, ?� does not depend on t, and it can also be concluded that:  

N
 O PQ,   N �?, �� O R0, 
 S�,    
 CX�U��
, ?�, 
, ?Y � CU��
, ?� � CU���, ?� � C�0, �, ?�           

 CX�U��
, ?�, 
, ?Y � D�� ! ?� �����
��, ?� 

(34) 
 

  (35) 
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3.5  Semi-discretization of the size population density function taking the nucleation time 

into account.  

The time variable µ  is discretized considering successive sampling times: 

 � O ��', w O ��,  and one can define the following distribution function: 

N
 O PQ, N ? O R0, 
 S 

       �'�
� � �U�g�
, ?� 

       Φ[�t, ?� � E C��, 
, ?�#�\]^_�G,V�\]�G,V�             

        Ψ[�t� � E Φ'�
, ?�#?G8     

 

 

 

        (36) 

Using Eq.(32) and setting: 

`� � a�,Vbc���                                                    � � �U��
, ?�, #� #� ��� � !
��, ?�  �  

    (37)

yields:    Φ[�t, ?� � � C��, 
, ?�#�\]^_�G,V�
\]�G,V�  

                              � � CX�U��
, ?�, 
, ?Y
��, ?�#�µ]
µ]^_  

                              � � D�� ! ?� ����� #�µ]
µ]^_  

                              = � ���?�               w} ? O R�'bc ; �'S     0                      otherwise        � 

 

 (38) 

(39) 

 

(40) 

  

(41) 

 

It follows that: 

Ψ[�t� � � Φ'�
, ?�#?G
8 � � ���?�#?µ]

µ]^_     (42) 

The following two systems are thus obtained which are coupled by the integral operator G.  


�
� � } �
, �', C�,  &� 6 �� 6 �  Ψ'��'�' �'M�
�� 

 

  (43) 
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 `  ��g�� �
� � 
�
�
�'��'� � 0         � ;  h

�ig�� �
� � 0                       
  Ψ'��'� � E ����� #��g�g^_

�          (44) 

(45) 

The principle of the numerical scheme is the same as explained in Part 3.3 and in Figure (2).  

4.  APPLICATION TO THE SIMULATION OF THE CRYSTALLIZATION OF 

CITRIC ACID IN THE PRESENCE OF IMPURITIES. 

4.1   Effects of impurities on the development of isothermal 

crystallizations.  

In order to illustrate the resolution method, the crystallization of citric acid monohydrate is 

simulated using kinetic data related to the crystallization of citric acid in water. These data 

previously published by Févotte et al. (2007) outline clearly the major role played by 

secondary nucleation mechanisms in the development of the crystallization of citric acid. In 

the absence of reported experimental studies dealing with impure media, the parameters 

of Kubota-Mullin’s model are set arbitrarily in order to compare the features of 

crystallization operations performed with and without impurities. The latter data do not 

correspond to any existing impurity specie that would impair the crystallization of citric 

acid; they were simply set to reproduce the kinetic features of systems for which, according 

to Eq.(8), supersaturation thresholds can be observed at the end of the batch process. It is 

important to notice that in the following no effect of impurities on the rate of nucleation is 

assumed to occur, even though such assumption is probably unrealistic. Actually, published 

data about nucleation in the presence of impurities is really lacking and the goal here is 

rather to show the usefulness of the resolution method and to analyze possible effects of 

the adsorption of impurities on the development of the crystallization process, than to 

investigate real solute/solvent/impurity systems.  

Isothermal desupersaturation crystallization operations were simulated at 15°C. In order to 

initiate the crystallization in the supersaturated zone (i.e. Cinit. >C* at 15°C) a seed mass of 

10 kg is supposed to be introduced in a pilot-scale crystallizer fed with a supersaturated 

citric acid solution containing 1 m
3

  of water. The initial dissolved citric acid concentration is 

Cinit = 1.825 kg anhydrous CA/kg water. The algorithm presented in Part 3 was applied to 
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system (11-15) after setting the parameters presented in Tables (1) and (2). As one can see 

in Figure 3, the computed CSD is smooth and does not exhibit any oscillatory behavior, 

even when coarse time intervals are used for the numerical simulation (see Part 4.2).  

 

Figure 3. Simulation of seeded isothermal crystallization of citric acid monohydrate in pure water 

at 15°C: Time variations of the CSD (Number of Particles.L
-1

.s
-1

). The kinetic parameters are given 

in Tables 1 and 2. (a) Crystallization performed in pure water. (b) crystallization performed with 

0.01 kg.m
-3

 impurities and unsteady-state adsorption (ττττ=500 s)  

 

After seeding the number of particles increases due to secondary nucleation, and the initial 

supersaturation is consumed through the growth of crystals, as displayed in Fig. 4d and a. 

Despite the adsorption of impurity species at the crystal surfaces, the impurity 

concentration Ci is assumed to remain constant during the crystallization (i.e. the amount 

of adsorbed molecules is assumed negligible with respect to the dissolved impurities.) 

Table 2 shows the parameters used for comparative simulations aiming at analyzing the 

effect of the concentration Ci on the development of isothermal batch crystallizations. 

Typical results are displayed in Figure 4 to illustrate the main features of the effects of 

impurities. As a reference, simulation n°1 corresponds to the crystallization of 

monohydrate citric acid in pure water, the operating and modeling conditions are the same 

as previously (See Table 1). Concerning the following simulations the presence of impurities 

has a clear impact on the development of the CSD and yields, in the average, smaller 

particles than the ones obtained in pure solvent. In particular, as shown in Figure 4b, the 

particles obtained at the end of the crystallization process in impure water (Run 4) are 

about 25% smaller than in pure water (see also Fig.5).  
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It is worth noting that, as expected, the supersaturation reaches a constant asymptotic 

value at the end of batch processes with impurities (e.g. σlim=0.05 for simulation n°4), 

while less than 1% supersaturation remains after 1500 s during Run 1. Such value of σlim 

corresponds to the final threshold supersaturation expected from Kubota-Mullin’s model 

for α>1. 

 

Figure 4. Simulation of seeded isothermal crystallization of citric acid monohydrate in pure water 

(curve 1) and with the presence of impurities, at 15°C. (a) Desupersaturation profile. (b) Time 

evolution of the number average crystal size (c) Generation of total crystallized solid during time 

in kg/L. (d) Time variations of the overall number of crystals in nb/L.   

Legend : Run 1 (continuous), 2 (dashed), 3 (dashed-dotted), 4 (dotted), Indices 1 to 4 refer to the 

parameters in Table 2.  

 

Figure 3 shows the time evolution of the simulated CSDs without (Run 1) and with 

unsteady-state adsorption of impurities (Run 3). The CSDs are significantly modified by the 

presence of impurities and the main effect of impurities appears to be the significant 

generation of fines during the whole batch process, especially at the end where almost no 
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fines are generated in pure solvent (see final curves in Fig. 4a) while more than 5 10
6
 

particles/L
-1

.s
-1

 are generated in the presence of impurities during Run 3. Such amount of 

fines is likely to exert a detrimental effect on the solid properties (e.g. downstream unit 

operations like filtration can be made difficult by excessive amounts of fines). It should also 

be noticed that the bad effects of impurities are damped when the adsorption process is 

not instantaneous (curves 3 compared with curve 4 in Fig. 4.) With identical impurity 

concentration it is clear that the dynamic features represented by the overall time constant 

τ  soften the deterioration of the CSD, as well as the reduction of the solid production.  

However, it is important to remind that the simulations are based on the assumption that 

the nucleation process remains unaffected by the presence of impurities; the availability of 

data describing the sensitivity of the nucleation process to impurities might therefore 

significantly change the main trends observed concerning the effects of impurities on the 

CSD variations.  As outlined in Part 1.2 the final level of supersaturation remains higher 

when impurities are present in the crystallizing solution, due to the pinning mechanism. As 

during the present simulation no impurity effect is assumed to affect the secondary 

nucleation of new citric acid particles, higher levels of supersaturation lead to much a 

higher overall number of particles (Fig.4d) while, due to growth rate reductions and to the 

final supersaturation threshold outlined previously, the overall production of solid is clearly 

reduced. Figure 4c shows that only 86% of the expected solid is obtained at the end of the 

batch process performed in the presence of impurities (0.5 kg/L of crystals is expected from 

the values of Cinit and C*, while only 0.43 kg/L is obtained). 

Due to the resolution algorithm, the results presented in Figure 3 might appear as rather 

misleading because the displayed PSDs are not true population density functions: according 

to the method presented above every point of a given curve represents the number of 

particles in the size interval  [L, L+ G.dt], where dt is the constant sampling time. It is clear 

that such size interval is large at the beginning of the crystallization process; while it is 

small at the end (i.e. G is much smaller at the end). Consequently, the distribution of small 

particles is under-represented by the curve in Fig. 3. This is the reason why the results were 

recomputed in terms of normalized size distribution histograms and presented in Fig. 5. 

The increase of the amount of fines is clearly shown by the final number distribution 

histogram in Fig. 5a while the reduction of the size of bigger particles is outlined by the 

weight distribution displayed in Fig. 5b.  
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Figure 5. Number and weight particle size distribution histograms obtained at the end of 

crystallization operations performed without (Run 1) and with impurities (Run 3). Figure 6. 

Logarithmic plot of the relationship max=f(dt), the reference simulation was computed with 

dt=0.005 s 

4.2   Some comments on the convergence of the numerical method.  

In order to evaluate the convergence of the method as a function of the discretization 

time-step dt, the same simulation was performed with different values of dt. 

Unfortunately, due to the lack of analytical solution, no exact reference simulation is 

available here, this is why the time-step dt=0.005 s was arbitrarily set as a reference 

allowing to compare the convergence of the solution for increasing time-steps. The 

“simulation error” was then estimated as follows:  

  �'�?� � E ���������bE �g������+�+ E ����������+ ,        for   ν O R0, 3000S 

 

(46) 

where �'�
� is the computed number of crystals generated between time t and t+dt, index 

i refers to the simulation under consideration (i.e. performed with a given value of the time 

step dt) and index ‘ref ’ refers to the simulation performed with as small as possible time 

increment dt.  

It is clear that the relative error on the computed CSD increases with the time-step. For 

example, when the time-step increases from 0.02 to 0.05 s, the maximum discrepancy 

between the 2 cumulative distributions is equal to 10
-4

 (at time t=300 s) which, however, 

remains quite acceptable. Figure 6 shows a log-log plot of the numerical error in the 



 

cumulative CSD, as a function of the time step. The reference calculation was performed 

with dt=0.005 s, and the error is computed using the infinite norm. 

method presents a convergence order of 1, which is probably mostly limited by the order 

of the numerical integration formulas used in the scheme

Figure 6. Logarithmic plot of the relationship 

with dt=0.005 s 

6. CONCLUSIONS 

A simple method of characteristics for the resolution of population balance equations 

applied to crystallization processes without agglomeration 

and evaluated through the dynamic 

The method is intended to allow 

solution crystallizations performed in the presence 

Indeed, the effect of impurities was shown by Kubota and Mullin (1995) to depend on the 

time spent by every crystal in the 

depend on the “age” of the crystals. Such a particul

, as a function of the time step. The reference calculation was performed 

the error is computed using the infinite norm. The plot shows

method presents a convergence order of 1, which is probably mostly limited by the order 

of the numerical integration formulas used in the scheme to compute Eq.(21

 

Logarithmic plot of the relationship εεεεmax=f(dt), the reference simulation was computed 

 

 

method of characteristics for the resolution of population balance equations 

applied to crystallization processes without agglomeration and breakage was developed 

dynamic simulation of the crystallization of citric acid in water. 

The method is intended to allow representing growth rate reductions observed during 

solution crystallizations performed in the presence of industrial impurities. 

Indeed, the effect of impurities was shown by Kubota and Mullin (1995) to depend on the 

time spent by every crystal in the presence of dissolved impurities and 

depend on the “age” of the crystals. Such a particular problem required accounting for an 
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, as a function of the time step. The reference calculation was performed 

The plot shows that the 

method presents a convergence order of 1, which is probably mostly limited by the order 

to compute Eq.(21). 

 

=f(dt), the reference simulation was computed 

method of characteristics for the resolution of population balance equations 

and breakage was developed 

the crystallization of citric acid in water. 

growth rate reductions observed during 

of industrial impurities.  

Indeed, the effect of impurities was shown by Kubota and Mullin (1995) to depend on the 

 consequently, to 

ar problem required accounting for an 
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additional time variable in the expression of the PBEs and finding a way of solving the 

resulting PBE system.  

From a physical viewpoint, the PBE model turns out to be consistent with industrial 

observations and among other results, the PBE modelling allows representing the 

reduction of the yield of industrial crystallizations which is generally poorly understood but 

often attributed to the presence of impurities. The simulations also demonstrate the 

impact of the unsteady-state behaviour of the adsorption of impurities on the performance 

of the crystallization process in terms of yield and CSD of the solid product. Such 

simulations could be applied, for example, to the design of model-based control strategies 

aiming at improving the productivity of batch crystallizers and/or the quality of crystals 

generated in impure industrial mother liquors.  To the best of our knowledge, such control 

studies still remain to be undertaken.  

As outlined by several authors (e.g. Kumar and Ramkrishna, 1997; Briesen, 2006), despite 

the apparent simplicity of these two processes, the discretization of crystal nucleation and 

growth raises numerical diffusion and stability issues which can be attributed to the 

hyperbolic features of the governing equations (17) to (19). From this latter viewpoint the 

proposed resolution method offers a very straightforward way of computing nucleation 

and growth phenomena during crystallization processes.   

 

NOMENCLATURE 

C Solute concentration      kg solute/kg solvent 

C* Solubility concentration     kg solute/kg solvent 

Ci Impurity concentration     kg.m
-3

  

CS Solid concentration      kg.m
-3

 

G Growth rate       m. s
-1

 

i Exponent of the supersaturation dependency  

of the crystal growth rate     [-] 

im Exponent of the dependency of the nucleation  
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rate on the concentration of solid in suspension  [-] 

jm Exponent of the supersaturation dependency  

      of the nucleation rate      [-] 

K Langmuir’s  constant      m
3
. kg

-1
 

kg Growth rate constant      [-] 

K2 Kinetic nucleation parameter  

L Particle size       m  

N(r,t) Number of particles at time t in a given subset  #.m
-3

 

RN Nucleation rate      #.s
-1

.m
-3

 

t Time        s 

   

Greek letters 

ψ(L,t) Population density function  #.m
-1

.m
-3

 

θ Fraction of coverage of growing crystal surface by adsorbed impurity  

θ∗ Fraction of coverage of growing crystal  

surface by adsorbed impurity at the equilibrium  [-] 

ν Nucleation time      s 

τ Adsorption time constant     s 

σ  Supersaturation      [-] 
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Table 1.  Kinetic equations and parameters used for the simulation 

of the crystallization of Citric Acid monohydrate. 

 

 

  #�#
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�
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              � 1.72 10¥. &¦�
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where:  ���
�  is the secondary surface nucleation    

    rate of monohydrated citric acid  [#.s-1.m-3]                 $�     is a “lumped” kinetic constant for the secondary 

nucleation of monohydrated citric acid  

    &��  is the solubility in water of monohydrated citric acid  

(1.35 kg/kg water at 15°C)   

            w, w� , ª�  are exponents proposed by Févotte et al. (2006)  
 

Parameters of Kubota’s-Mullin’s adsorption model:  

K =5    [m3/kg] 

τ =500  [s] 

Ci =0.01   [kg/m
3
] 

α.σ = 1  
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Table 2.  Parameters of Kubota-Mullin’s model used for the batch 

simulations displayed in Figures 4 and 5. 

 

 

Simulation n° K  (kg.m
-3

)
-1 

Ci  (kg.m
-3

) τ (s) 

1 - 0 - 

2 5 0.005 500 

3 5 0.01 500 

4  5 0.01 0 

 

 

 


