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Abstract

This paper presents a real-time stereo image sequences matching approach dedi-

cated to intelligent vehicles applications. The main idea of the paper consists in

integrating temporal information into the matching scheme. The estimation of the

disparity map of an actual frame exploits the disparity map estimated for its pre-

ceding frame. An association between the two frames is searched, i.e. temporal

integration. The disparity range is inferred for the actual frame based on both the

association and the disparity map of the preceding frame. Dynamic programming

technique is considered for matching the image features. As a similarity measure, a

new cost function is defined. The proposed approach is tested on virtual and real

stereo image sequences and the results are satisfactory. The method is fast and able

to provide about 20 millions disparity maps per second on a HP Pavilion dv6700

2.1GHZ.
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detection, Intelligent vehicles, Real-time, Temporal consistency.

1 Introduction1

An appealing application of intelligent transportation systems (ITS) is the au-2

tomatization of transport of people and goods in inner city environments. Re-3

liable, robust and real-time obstacle detection methodologies [9,29] are needed4

to enable the safe operation of these types of IV among other traffic partic-5

ipants such as cars and pedestrians. The intelligent vehicle (IV) can achieve6

the obstacle detection by knowing its environment. Stereo vision has the ad-7

vantage that it is able to obtain an accurate and detailed 3D representation of8

the environment around a vehicle, by passive sensing and at a relatively low9

sensor cost.10

The key problem in stereo vision consists in finding correspondence between11

pixels of stereo images taken from different viewpoints [6]. Exhaustive sur-12

veys on the methods tackling the correspondence problem are available in13

[18,12,13]. An updated taxonomy of dense stereo correspondence algorithms14

together with a testbed for quantitative evaluation of stereo algorithms is15

provided by Scharstein and Szeliski [28]. It is demonstrated from [28] that16

graph cuts methods [11,22,32,21] produce good results. However, they are17

time consuming which make them not suitable for real-time applications,e.g.18

∗ Corresponding author : Mohamed El Ansari

Email addresses: m.elansari@univ-ibnzohr.ac.ma,melansari@yahoo.com

(Mohamed El Ansari), stephane.mousset@insa-rouen.fr (Stéphane Mousset),
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IV applications.19

The reader should keep in mind that the stereo vision approach we are pre-20

senting in the actual work is devoted to IV applications. The IV stereo vision21

system is configured as follows. The IV is equipped with a stereo sensor which22

provides pair of stereo images at each time instant, i.e. stereo sequences. Both23

the IV and objects of the scene, e.g. cars and pedestrians, are moving. There-24

fore, the stereo approach we propose should deal with dynamic scenes.25

Although there is strong support that the incorporation of temporal informa-26

tion can achieve better results [17,30,34,19], only a small amount of research27

has been devoted to the reconstruction of dynamic scenes from stereo image28

sequences. All the stereo approaches in the survey papers mentioned above29

match each frame independently. We believe that by considering the tempo-30

ral consistency between successive frames the stereo matching results could31

be improved better [5]. Based on this principle, this paper presents a new32

real-time stereo matching approach dedicated to IV applications. The method33

provides a sparse disparity map and the so-called declivity operator [26] is34

used for extracting edge points from the stereo images. The declivity operator35

is precise, fast, and self-adaptive which justify its choice in our framework.36

The main idea of the proposed approach consists in exploiting the disparity37

map estimated at one frame for the computation of the disparity map of the38

next frame. A pre-estimated disparity map is computed for the last frame and39

used to deduce its possible disparities (disparity range) for each image line. A40

new cost function is defined to measure the similarity between pairs of edge41

points. Dynamic programming technique [27,25,8] is considered for matching42

edge points of the stereo sequences. The new method is tested on both virtual43

and real stereo image sequences and gives good promising results.44
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The remainder of the paper is organized as follows. Section II overviews some of45

the stereo methods handling stereo sequences and using temporal consistency.46

Section III presents the method used to extract primitives. The new stereo47

method is detailed in section IV. Experimental results are shown in section V.48

Section VI concludes the paper.49

2 Related work50

In the recent years, several techniques have been proposed to obtain more ac-51

curate disparity maps from stereo sequences by utilizing temporal consistency52

[17,19,30,34]. Most of these methods use either optical flow or spatiotempo-53

ral window for matching stereo sequences. In their approach, Tao et al. [30]54

proposed a dynamic depth recovery in which a scene representation, that con-55

sists of piecewise planar surface patches, is estimated within an incremental56

formulation. Such a representation is derived based on color segmentation of57

input images. Each segment is modeled as a 3D plane. The motion of this58

plane is described using a constant velocity mode. The spatial match mea-59

sure and the scene flow constraint [31,35] are investigated in the matching60

process. The accuracy of the results and the processing speed are limited by61

the image segmentation algorithm used. Zhang et al. [35] compute 3D scene62

flow and structure in an integrated manner, in which a 3D motion model is63

fit to each local image region and an adaptive global smoothness regulariza-64

tion is applied to the whole image. They later improve their results by fitting65

parametric motion to each local image region obtained by color segmenta-66

tion, so that discontinuities are preserved [36]. Carceroni and Kutulakos [14]67

present a method to recover piecewise continuous geometry and parametric68
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reflectance under non-rigid motion with known lighting positions. Vedula et69

al. [31] present a linear algorithm to compute 3D scene flow based on 2D opti-70

cal flow and estimate 3D structures from the scene flow. In [24], the temporal71

consistency was enforced by minimizing the difference between the disparity72

maps of adjacent frames. This approach is designed for offline processing only,73

i.e. it takes pre-captured stereo sequences as input and calculates the disparity74

maps for all frames at the same time. In [19], an algorithm has been devel-75

oped to compute both disparity maps and disparity flow maps in an integrated76

process. The disparity map generated for the current frame is used to predict77

the disparity map for the next frame. The disparity map found provides the78

spatial correspondence information which is used to cross-validate the dispar-79

ity flow maps estimated for different views. Programmable graphics hardware80

have been used for accelerating the processing speed.81

Zhang et al. [34], propose to extend the existing traditional methods by using82

both spatial and temporal variations. The spatial window used to compute83

SSD cost function is extended to a spatiotemporal window for computing sum84

of SSD (SSSD). Their method could improve the results when we deal with85

static scenes and with structured light. However, It fails to do with dynamic86

scenes. Davis et al. [17] have developed a similar framework as the one in87

[34]. However, their work is focused on analyzing and presenting results for88

geometrically static scenes imaged under varying illumination. Given an input89

sequence taken by a freely moving camera, Zhang et al. [33] propose a novel90

approach to construct a view-dependent depth map for each frame. Their91

method takes a one sequence as input and provides the depth for the different92

frames, i.e. offline processing. It can’t be applicable in IV.93

Our approach is different from the aforementioned ones. It uses neither optical94
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flow nor spatiotemporal window. As temporal integration, we propose to use95

what we call association between successive frames. The association is defined96

later. Once the association is found between the actual frame and its preced-97

ing one, a pre-estimated disparity map of the actual frame can be inferred.98

The pre-estimated disparity map allows to determine the disparity range au-99

thorized for each image line. The disparity range is provided to the dynamic100

programming algorithm which performs the matching between edge points of101

the same image line. The authors have developed different stereo matching102

[3,4] methods. However, it is difficult to adapt these methods to IV appli-103

cations because of the features and segmentation they use in the matching104

process.105

3 Image segmentation106

The first step in stereo vision consists in extracting significant features from107

the stereo images to be matched. In this work, we are interested in edge108

points as features to consider in the matching process. In order to be suited109

for computer vision applications, e.g. IV applications, the edge detector we110

choose should satisfies the following constraints : fastness, precision, and self-111

adaptivity. Therefore, we consider the so-called declivity [26] as edge detector112

because it meets the above mentioned constraints. In an image line, a declivity113

is defined as cluster of contiguous pixels, limited by two end-points which114

correspond to two consecutive local extrema of grey level intensity, i.e. one115

maximum and one minimum. As shown in Fig. 1, Deci and Deci+1 are two116

adjacent declivities. The declivity Deci is limited by two end-points li and ri.117

The grey-level intensities at the end-points are respectively I(li) and I(ri). The118
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same for the declivity Deci+1, their end-points are li+1 and ri+1, respectively.119

Each declivity is characterized by its amplitude, e.g. ai = I(ri) − I(li) is the120

amplitude of Deci and ai+1 = I(ri+1) − I(li+1) is the amplitude of Deci+1.121

Relevant declivities are extracted by thresholding these amplitudes. To be122

self-adaptive, the threshold value is defined by123

at = 5.6σ (1)124

where σ is the standard deviation of the white Gaussian noise component in125

each image line, which is computed using the cumulative histogram of the126

absolute value of the gradient [26].127

Fig. 1. Image line : characteristic parameters of a declivity.

The position of a declivity is computed using the mean position of its points128

weighted by the gradients squared. As an example, the position xi of Deci is129

calculated as follows (See 1).130

xi =

∑ri−1

x=li
[I(x + 1) − I(x)]2(x + 0.5)

∑ri−1

x=li
[I(x + 1) − I(x)]2

(2)
131

For each declivity Deci, the following characteristics should be known to be132

used in the matching process:133

• The x-coordinate xi of Deci in the image line as defined in equation 2. xi134
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define the position of the edge point detected by the declivity operator. We135

note that in the subsequent of the paper edge point or declivity has the same136

meaning.137

• The left and right end-points of Deci : li and ri.138

• The set of intensities of pixels situated between the right end-point ri of139

Deci and the left end-point li+1 of Deci+1, i.e. the declivity on the right side140

of Deci (see Fig 1). We call this set of pixels as the right side of Deci.141

More details about the declivity operator and how to determine the parameter142

σ are available in[26].143

4 Stereo matching algorithm144

In this section, we present the proposed method for matching pairs of stereo145

images provided by stereo sensor mounted aboard a car. We start by men-146

tioning the constraints the pairs of corresponding declivities should meet. As147

disparity constraint, we propose a technique which defines the possible dis-148

parities for each scanline independently. A new cost function is defined to149

measure the similarity between candidates pairs of declivities. The last sub-150

section describes the dynamic programming algorithm used for the matching151

process. We note that the stereoscopic sensor used in our experiments provides152

rectified images, i.e., the corresponding pixels have the same y-coordinate.153

4.1 Matching constraints154

In order to discard false matches, we consider some local constraints. The first155

one is geometric resulting from the sensor geometry, which assumes that a pair156
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of declivities dl
i and dr

j appearing in the left and right scanlines, respectively,157

represent possible match only if the constraint xl
i > xr

j is satisfied [20]. xl
i and158

xr
j are the x-coordinates of dl

i and dr
j , respectively. The second constraint is159

the slope constraint, which means that only pairs of declivities with the same160

slope sign are considered as possible matches.161

4.2 Disparity range162

The accurate choice of the maximum disparity threshold value for almost any163

known stereo processing method [28] is crucial to the quality of the output164

disparity map and the computation time [16]. In this subsection, we propose165

a new approach which is able to find the minimum and maximum disparity166

value for each image scanline based on the image content, i.e. objects appeared167

in the stereo images. The main idea consists in exploiting the disparity map168

computed for the preceding frame to compute the disparity range of the actual169

frame. To achieve such a task we need to find a relationship between successive170

frames. We refer to that relationship as association between declivities of171

successive frames. For each declivity in the actual frame, we search its associate172

one in the preceding frame, if any. The next step computes a pre-estimated173

disparity map for the actual frame. The disparity range is derived from the174

pre-estimated disparity map. The rest of the subsection details the three main175

steps followed to compute the disparity range.176

4.2.1 The association177

The aim of this subsection is to describe the method used to find association178

between declivities of successive frames. Let Ik−1 and Ik be two successive im-179
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ages of the same sequence, e.g. left sequence. Let Ck−1 be a curve in the image180

Ik−1 and Ck be its corresponding one in the image IK . Consider two declivities181

Pk−1 and Qk−1 belonging to the curves Ck−1 and their corresponding ones Pk182

and Qk belonging to the curve Ck (see Fig. 2). We define the associate point183

of the point Pk−1 as the point belonging to the curve Ck which has the same184

y-coordinate as Pk−1. Note that the association is not correspondence neither185

motion. Two associate points are two points belonging to two corresponding186

curves of two successive images of the same sequence and having the same y-187

coordinate. From Fig. 2, we remark that the point Qk meets these constraints.188

Consequently, Qk constitutes the associate point of the point Pk−1. In prac-189

tice, we assume that the movement of the objects from one frame to the other190

is small. So, if x1 and x2 represent the x-coordinates of Pk−1 and Qk, respec-191

tively, x2 should belongs to the interval [x1 − ∆x, x1 + ∆x], where ∆x is a192

threshold to be selected. This constraint allows the reduction of the number193

of associate candidates. The gradient magnitude is used to choose the best194

associate one. As a similarity criterion, the absolute difference between the195

gradient magnitudes of the declivities is used. As we see in Fig. 2, the point196

Pk represents the match of the point Pk−1. However, the point Qk constitutes197

the associate of the point Pk−1. We remark that the points Pk and Qk are198

different because of the movement of the point Pk in the image Ik.199

4.2.2 The pre-estimated disparity map200

We define the so-called pre-estimated disparity map of a pair of stereo images201

as the disparity map deduced from the disparity map of its preceding pair of202

stereo images. The goal of this subsection is to demonstrate how to compute203

the pre-estimated disparity map at an actual frame from its preceding one.204
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Fig. 2. Ik−1 and Ik represent successive images of the same sequence, e.g. left se-

quence. The point Qk in the image Ik constitutes the associate point of the point

Pk−1 in the image Ik−1. The points Pk and Pk−1 are in red color. The points Qk

and Qk−1 are in green color. We mean declivity with point.

Let IL
k−1 and IR

k−1 be the left and right stereo images of the frame fk−1 acquired205

at time k − 1 and dk−1 is the corresponding disparity map. IL
k and IR

k are the206

left and right stereo images of the frame fk acquired at time k. The declivities207

are extracted by the method presented in [26]. For each declivity in the image208

IL
k we look for its associate one in the image IL

k−1, if any, by following the209

approach detailed in section 4.2.1. The same process is performed for the210

declivities of the images IR
k−1 and IR

k . The subject now consists in computing211

the pre-estimated disparity map of the frame fk based on the knowledge of the212

association between their declivities and those of the preceding frame fk−1, and213

the disparity map dk−1. The method we propose for such a task is as follows.214
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for i=1 to N do

Dec = Declivity(i);

if AssociateOf(Dec) exists

aDec = AssociateOf(Dec);

if MatchOf(aDec) exists

maDec = MatchOf(aDec);

if AssociateOf(maDec) exists

amaDec = associate(maDec);

disparity(Dec) = amaDec-Dec;

endif

endif

endif

endfor
215

The algorithm is executed independently for each image scanline. N denotes216

the number of the declivities present in the scanline for which the algorithm217

is performed. The association can be searched from frame fk to frame fk−1,218

and vice versa. Fig. 3 illustrates the different steps of the algorithm. We have219

two frames fk−1 and fk. P , Q, R, and S are declivities belonging to the l-220

scanlines of the four images . The first step consists in finding the associate221

of P , which we name Q (Fig. 3). In the second step, we get the match S of222

Q based on disparity value computed for the frame fk−1. The third step looks223

for the associate R of S. The last step deduces that R is the match of P .224

Consequently, we can compute the disparity at the point P in the image IL
k225

or at the point Q in the image IR
k . The same technique will be done for all226

image scanlines (l = 1, .., image height).227
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Fig. 3. Stereo images of two successive frames. (a) Left image of the frame fk−1,

(b) right image of the frame fk−1, (c) left image of the frame fk, (d) right image

of the frame fk. Q represents the associate of P . S represents the match of Q. R

constitutes the associate of S. R is the match of P .

4.2.3 Disparity range228

We suppose that the pre-estimated disparity map pdk of the frame k has been229

computed as described in section 4.2.2. The subsequent of this subsection230

details how to compute the disparity range of the frame fk.231

Let H be a function of the image variable pdk such that H(pdk) = vpdk.232

The image vpdk is called the v-disparity image [23]. H accumulates the points233

with the same disparity that occur on a given image line. Details on how to234

construct the v-disparity image are available on [23]. The processing of the235

v-disparity image provides geometric content of road scenes. It was demon-236

strated in [23] that the obstacles and the road appeared as vertical and oblique237

lines, respectively. Assume that we have a road scene containing four objects.238

The corresponding v-disparity image should be as shown in Fig. 4. We re-239

mark that the v-disparity image contains four vertical lines representing four240
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obstacles and one oblique line representing the road map. For computing the241

disparity range, we divide the v-disparity image into two parts: the top part242

containing the objects and bottom part containing the road map. The two243

parts are separated by the line y = L0. We propose to find the disparity range244

independently for each part.245

Let start by the top part of the v-disparity image. A disparity value is as-246

sociated to each object in the scene. We can deduce from the top part that247

the disparities of the detected objects belong to the interval [d1, d2], where d1248

is the disparity of the farthest object and d2 is the disparity of the closest249

object. In order to take account the uncertainty inherent to the computation,250

the disparity range can be chosen as [d1 − d, d2 + d], where d is a threshold to251

select. d controls the number of possible candidates in the matching process.252

The authorized disparities at the scanlines {y = yi}1,..,L0
should belong to the253

interval [d1 − d, d2 + d], which is represented by the area situated between the254

lines (D1) and (D2) (the lines in blue color in Fig. 4).255

In the bottom part, the road map is represented by an oblique line. We have256

only one possible disparity value for each scanline. For the scanline yi the only257

possible disparity is a ∗ yi + b, where a and b are the oblique line equation258

parameters. In order to take into account the uncertainty inherent to the259

computation, the possible disparities at the scanline {y = yi}L0+1,..,M , where260

M is the image height, should be between a ∗ yi + b − d and a ∗ yi + b + d. In261

Fig. 4, the possible disparities is the area situated between the lines (D3) and262

(D4) (in green color). We remark that the disparity range in the top part is263

the same for all the image lines. However, it varies from scanline to scanline264

in the bottom part.265
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Fig. 4. v-disparity of the pre-estimated disparity map. The vertical axis refers to

the image lines and the horizontal axis represents the disparities. M is the image

height. dmax is the maximum disparity value. The possible disparities are the area

between the lines (D1) and (D2) for the top part and the area between the lines

(D3) and (D4) for the bottom part.

4.3 Cost function266

As a similarity criterion between corresponding declivities, we propose a new267

cost function which we define based on the variance of the intensities at the268

pixels situated on the right sides of the matched declivities. Let dl
i and dr

j269

be two declivities belonging to two corresponding epipolar lines on the left270

and right images, respectively. We denote by Sl = {f l
m}m=1,..,M l and Sr =271
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{f r
n}n=1,..,Mr their corresponding right sides, respectively. M l and M r are the272

numbers of pixels in Sl and Sr, respectively. We assume that corresponding273

declivities on the stereo images should have the same intensities at their right274

sides. Let S = {f l
1, .., f

l
M l , f

r
1 , .., f r

Mr} = {fi}i=1,..,M l+Mr be the union of Sl and275

Sr. Corresponding declivities should have similar right sides, i.e. the intensities276

of Sl and Sr should be similar or very close to each other. We propose to use277

the variance of the intensities of S as a similarity criterion between dl
i and dr

j .278

Corresponding declivities should give a small variance value. We define the279

cost function as follows.280

C(dl
i, d

r
j) =

1

M l + M r

M l+Mr

∑

i=1

(

fi − f̄
)2

(3)
281

where f̄ , is the mean of the intensities of S, defined as282

f̄ =
1

M l + M r

M l+Mr

∑

i=1

fi (4)
283

4.3.1 Dynamic programming284

Let {dl
i}i=1,..,N l and {dr

j}j=1,..,Nr be two sets of declivities ordered according to285

their coordinates in an arbitrary l right and l left epipolar scanlines. N l and N r
286

are the numbers of the declivities on the left and right sacanlines, respectively.287

The problem of obtaining correspondences between declivities on right and left288

epipolar scanlines can be solved as a path finding problem on 2D plane [27].289

Fig. 5 illustrates this 2D search plane. The vertical lines show the positions290

of declivities on the left scanline and the horizontal ones show those on the291

right scanline. We refer to the intersections of those lines as nodes. Nodes in292

this plane correspond to the stages in dynamic programming where a decision293

should be made to select an optimal path to that node. Optimal matches are294
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obtained by the selection of the path which corresponds to minimum value295

of the global cost. The optimal path must goes from the upper left corner S296

to the lower right corner G monotonically due to the condition on ordering.297

Because of the non reversal ordering constraint, starting from S, a path can be298

extended towards only one of the three directions: east, south, or southeast.299

Fig. 5. 2D search plane. The horizontal axis corresponds to the left scanline and the

vertical one corresponds to the right scanline. vertical and horizontal lines are the

declivity positions and path selection is done at their intersections.

Based on the subsections 4.1 and 4.2 the possible matched pairs of declivities300

on the left and right scanlines are searched. The pairs which do not meet the301

above constraints will be discarded and their nodes on the search plane will302

be noted as invalid nodes. The cost function (Eq. 3) is used to fill in the valid303

nodes in the search plane. After looking for the optimal path in the 2D search304

plane, the pairs of corresponding declivities on the corresponding scanlines are305

determined. The matching process is achieved independently for each scanline.306

5 Experimental results307

In order to evaluate the performance of the proposed approach, it has been ap-308

plied to virtual and real stereo sequences. We propose to call the new method309
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as temporal consistent matching (TCM) method in the sequel of this sec-310

tion. We call space matching (SM) method, the TCM method deprived of311

the disparity range computation step. The SM method uses the dynamic pro-312

gramming with a predetermined disparity maximum value for all the image313

lines. To assess the performance of the TCM method, particularly the dispar-314

ity range computation step, the SM method has been applied to data used in315

our experimentation.316

5.1 Virtual stereo image sequences317

We have tested our method on the MARS/PRESCAN virtual stereo images318

available in [2]. The archives contain the original left and right stereo sequences319

with and without added distortions and noise, and the ground truth. The size320

of the images is 512 × 512. Before using them they are converted into grey321

level as our approach deals with grey level images. At first, we have applied322

the new method (TCM) to the original virtual sequences. Fig. 6 illustrates the323

left stereo images of the frames #293 to #295 of the same sequence.324

Fig. 6. Virtual stereo sequences (left images of the frames #293 to #295).

The extracted edge points are depicted in Fig. 7. The disparity maps computed325

by the TCM method are shown in Fig. 8. We have used false colors for rep-326

resenting the disparity maps. For the initialization of the proposed approach,327
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Fig. 7. edge points of the images shown in Fig. 6.

Fig. 8. Disparity maps computed for the frames shown in Fig. 6 by the TCM method.

Fig. 9. Computation of the disparity range for the frame #293. (left) The computed

pre-estimated disparity. (middle) V-disparity of the pre-estimated disparity in (left).

(right) The disparity range computed by the proposed method. It is shown in green

color.

the SM method is used for the first frame and then the TCM method is used328

for the following frames. The maximum disparity value is set to dmax = 200.329

The results related to the disparity range computation are shown in Fig. 9. In330
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Fig. 10. Disparity range computed for the frame #293. (left) left stereo image of

the frame #293. (right) the disparity range found (the area in black color).

the left of the figure, we have the pre-estimated disparity map for the frame331

#293. It is deduced from the disparity computed for the frame #292 and332

the association between the frames #292 and #293. The image in the middle333

of Fig. 9 represents the v-disparity of the pre-estimated disparity map. The334

disparity range is illustrated in green color on the right of Fig. 9. For the335

computation of the disparity range for an actual frame, we need to extract336

straight lines from the v-disparity image of its pre-estimated disparity map.337

The Open Computer Vision Library (OpenCV) [1] was used for such a task.338

Numerically speaking, The disparity range computed for the frame #293 is as339

follows.340

0 ≤ d(l) ≤ dmax if 1 ≤ l ≤ 35

3 ≤ d(l) ≤ 23 if 36 ≤ l ≤ 329

0.17l − 43.57 ≤ d(l) ≤ 0.17l − 38.57 if 330 ≤ l ≤ 512

(5)

341

where l denotes the scanline index. The same disparity range is depicted in342

Fig. 10.343

Between the scanlines 1 and 35 no lines are detected. Therefore, dmax was344
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Frame NME PCM NCM NFM

293 15685 80.87 13312 2373

294 15934 88.03 14027 1907

295 15740 85.81 13507 2233

Table 1

Summary of the results obtained by the TCM method when applied to the stereo

images shown in Fig. 6.

kept. From scanline 36 to scanline 329 some lines was detected. The lines345

corresponding to farthest and closest objects are lying on the disparities 8 and346

18, respectively. We have used 5 as the tolerance value for our algorithm. The347

disparity range becomes [3, 23]. The disparities and the interval are mentioned348

in pixel. From the line 330 to the line 512 an oblique line was detected, which349

has the equation d = 0.17l − 43.57, where d is the disparity and l is the350

scanline index. The possible disparities for each l-scanline are the interval351

[0.17l− 43.57− 5, 0.17l− 43.57 + 5]. Table 1 summarizes the matching results352

obtained. It shows the number of matched edge points (NME), the percentage353

of correct matches (PCM), the number of correct matches (NCM), and the354

number of false matches (NFM) for the frames #293 to #295.355

The SM method has been applied to the sequence shown in Fig. 6 in order356

to assess the performance of the TCM method. The estimated disparity maps357

obtained by the SM method are depicted in Fig. 11. Table 2 summarizes358

the results provided by the SM method. Comparison results are illustrated359

in Table 3 from which we remark clearly the improvements due to the TCM360

approach. The TCM method has matched correctly more pairs of edge points361

and mismatches less pairs of edge points than the SM method for the different362
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Fig. 11. Disparity maps computed for the frames shown in Fig. 6 by the SM method

(dmax = 200).

Frame NME PCM NCM NFM

293 16499 72.24 11919 4580

294 16772 73.78 12375 4397

295 16503 72.77 12010 4493

Table 2

Summary of the results obtained with the SM method.

frames of the sequence. As an example, let’s take the frame #293. The number363

of pairs of edge points matched correctly by the methods SM and TCM are364

11919 and 13312, respectively. The TCM approach matches 1393 pairs more365

correctly, which correspond to 12% of the correct matches of the SM method.366

The number of mismatches by the methods SM and TCM are 4580 and 2373,367

respectively. More mismatches has been made by the SM methd. The same368

remarks are true for all the frames of the virtual stereo sequences, which prove369

the success of the TCM method.370

The TCM and SM methods have been applied also to the virtual sequences371

with added distortions and noise. Table 4 summarizes the results. The perfor-372

mances of the TCM against the SM method are very obvious. It gives more373
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NME PCM NCM NFM

Frame
SM TCM SM TCM SM TCM SM TCM

293 16499 15685 72.24 84.87 11919 13312 4580 2373

294 16772 15934 73.78 88.03 12375 14027 4397 1907

295 16503 15740 72.77 85.81 12010 13507 4493 2233

Table 3

Matching results when the SM and TCM methods applied to the virtual stereo

sequences.

NME PCM NCM NFM

Frame
SM TCM SM TCM SM TCM SM TCM

293 14362 13432 67.54 80.98 9699 10877 4662 2555

294 14163 13372 66.15 77.93 9369 10421 4794 2951

295 13974 13120 67.01 78.64 9364 10317 4610 2803

Table 4

Matching results when the SM and TCM methods applied to the virtual stereo

sequences with added distortions and noise.

correct matches and less false matches which demonstrates its effectiveness.374

5.2 Real images sequences375

The proposed method has been tested on the real sequence #1 depicted in Fig.376

12. The image size is 384 × 288. The stereo sequence was acquired by stereo377

vision sensor embedded in a car. The velocity of the car is 90km per hour.378
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Fig. 12. Real stereo sequences #1 (left images of the frames #4185 to #4187).

Fig. 13. Edge points of the real stereo sequence #1 (frames #4185 to #4187).

Fig. 14. Disparity maps computed by the TCM method.

The stereo vision sensor provides 10 frames per second. The extracted edge379

points are shown in Fig. 13. The disparity maps computed by the TCM and380

SM methods are illustrated in Figs. 14 and 15, respectively. It is clear that the381

disparity maps computed by the TCM method are more smooth than those382

computed with the SM method. The SM disparity maps are more noised. With383

real sequence, there is no ground truth available like for virtual ones to judge384

the results. To achieve such a task, let consider the disparity maps computed385

by the two methods at the sub-images covering the left car (LC) and the right386

car (RC) appearing in the frame #4185. Fig. 16 depicts the two sub-images.387

Let start by analyzing the computed disparities at the area containing RC.388

Fig. 17 shows sub-disparity maps taken from the disparity maps of Fig. 15389
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Fig. 15. Disparity maps computed by the SM method.

Fig. 16. Sub-images covering the left and right cars.

Fig. 17. Disparity maps at RC computed by (right) the SM method and (left) the

TCM method.

and 14. They are enlarged before insertion in the manuscript. The left and390

right maps depict the disparity maps estimated with the SM and the TCM391

methods, respectively. Inspired of the smoothness constraint of the disparity,392

the edge points belonging to the same contour should have very close or similar393

disparity values. If we focus on the contour points of RC, we remark clearly394

that those on the left image are more noised. That means that the left image395

contains more false matches. However, in the right image the disparity values396
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Fig. 18. Disparity maps at LC computed by (right) the SM method (left) the TCM

method.

at the car contour points are homogeneous. Consequently, the disparity map397

on the right image presents very small number of false matches for comparison398

to the left disparity map. The same on the top right and the top left areas of399

the images, we can see that the disparity values on the left image are more400

noised. The left disparity map of the car contains more false matches which401

are represented by different colors. The correct matches in the car contour402

points in the left image should have the same color as the car contour points403

in the right image. All the points with different color are considered as false404

matches. In the area situated between the vertical contours of the car, we see405

that mismatches was made in the left image, which is not the case in the right406

image.407

After analyzing the results obtained, we deduce that the edge points of RC408

should have a disparity value equal to 9 pixels. We consider the edge points409

with this value as correct matches. The number of correct matches with the410

SM and TCM methods are 74 and 89, respectively. The TCM has more correct411

matches, which is equal to 20% of the correct matches with SM method.412

The same comparison can be done for LC appeared on the stereo images.413

Fig. 18 shows the sub-disparity maps for LC sub-images. The left and right414
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maps represent the disparities estimated with SM and TCM methods, respec-415

tively. The correct matches in the car contours should have the same color as416

in the vertical car contour on the right image. There is little false matches in417

the right image. In the left image, there are a lot of false matches lying on the418

vertical contours of LC. The remarks are valid when we see on the right side419

and the middle part of LC. There is more false matches in the map computed420

with the SM method. The improvements are clear when we analyze the results421

obtained for the other frames. The TCM method gives promising results.422

After analyzing the disparity maps, we deduce that the correct disparities at423

the edge points of LC should have a disparity value equal to 7 pixels. The424

number of edge points having this value are 206 with the SM method and 234425

with the TCM method. We remark that the TCM method matches correctly426

13% more edge points than the SM method.427

The proposed stereo matching approach has been applied also to the real stereo428

sequences #2 depicted in Fig. 19. Instead of showing the results corresponding429

to the frames of the Fig. 19 with small size, we illustrate only the results430

obtained for the frame #1983 with large size. This makes it easy to comment431

the disparity map obtained. The comments made for the frame #1983 will432

be true for the other frames. The declivity of the frame #1983 is depicted in433

Fig. 20. The computed disparity maps by both the TCM and SM methods434

are shown in Figs. 21 and 22, respectively. We remark clearly the difference435

between the two disparity maps. The one obtained by the TCM is more smooth436

than the other obtained by the SM method.437

To have more comparison results we concentrate our comments on the areas438

in the images where the cars are situated. The first area (A1) is the sub-439
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Fig. 19. Left real stereo sequence #2 (frames #1980, #1983, and #1989).

Fig. 20. Declivity of the left image of the frame #1983 of the real sequence #2.

Fig. 21. Disparity map found by the TCM method for the frame #1983.
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Fig. 22. Disparity map found by the SM method for the frame #1983.

Fig. 23. The two sub-images used for commenting the results obtained by the meth-

ods SM and TCM.

image containing the three cars and the second area (A2) is the sub-image440

containing the small car (see Fig. 23). The disparity maps computed for A1441

(resp. A2) by the methods SM and TCM are depicted in Fig. 24 (resp. Fig 25).442

In both A1 and A2, the disparity maps estimated by the TCM method are443

more smooth than those of estimatd by the SM method, i.e. the TCM method444
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Fig. 24. Disparity map at the edge points of A1 computed by (left) the SM method

and (right) the TCM method.

Fig. 25. Disparity map at the edge points of the A2 computed by (left) the SM

method and (right) the TCM method.

Sequence Real Sequence #1 Real Sequence #2

Sub-image RC LC A1 A2

SM 74 206 1062 16

TCM 89 234 1273 28

PMM 20% 13% 20% 75%

Table 5

Number of correct matches with the two methods and the percentage of the more

matched (PMM) by TCM.

gives less mismatches. We are persuaded that the disparities in A1 should be445

approximately between 7 and 10. The edge points in A1 having their disparities446

in the interval [7,10] are considered as correct matches. The number of correct447

matched obtained with SM and TCM are 1062 and 1273, respectively. The448

same for the A2 the correct matches should have a disparity value equal to 4.449

The number of correct matched obtained with SM and TCM are 16 and 28,450
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respectively. We remark that the TCM method gives more correct matches451

than the SM method. The TCM method matches correctly 20% more edge452

points at A1. Although, the small car in A2 is very far, the TCM matches 75%453

more edge points, which is very interesting in the road applications for which454

the proposed approach is devoted. The same performance obtained for all the455

frames of the sequence. This shows clearly the performance of the proposed456

method. Table 5 summarizes the results obtained on different selected areas457

in the two real sequences when the TCM and SM method have been applied.458

It provides the number of correct matches with the two methods and the459

percentage of the more matched pairs correctly by the TCM.460

5.3 Running time461

The hardware used for the experiments is a HP Pavilion dv6700 2.1GHZ run-462

ning under Windows Vista. Table 6 illustrates the time consumed by different463

methods per frame. The time needed in the TCM matching process is less464

than the SM method for all the sequences. However when we take int ac-465

count the time consumed by the disparity range computation step, the TCM466

method needs more time than the SM for matching. This is due to the tech-467

nique used to find association between successive frames. Although the time468

used by the disparity range computation step, the TCM is still very fast and469

able to process about 20 millions frames per second.470
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TCM

Sequence Declivity SM
Disparity range Matching

Virtual 72.21 135.72 65.01 97.10

Virtual with noise 69.43 102.53 52.12 77.07

Real #1 27.14 20.14 11.85 15.85

Real #2 27.71 26.85 14.57 20.84

Table 6

Running time consumed with different algorithms in nanosecond (nsec)

6 Conclusion471

A new real-time stereo matching method has been proposed to match the472

stereo image sequences of dynamic scenes. The method is dedicated to IV473

applications. Believing its advantages, the temporal information has been in-474

tegrated in the matching process. The proposed method is very fast and can475

process about 20 millions frames per second on a HP Pavilion dv6700 2.1GHZ476

running under Windows Vista. The running time can be reduced more by us-477

ing GPU card for our implementations as we have used dynamic programming478

technique which can be performed independently for each image line. The new479

method has been tested on virtual and real stereo image sequences and the480

results are satisfactory.481

The method, we use for finding association between edge points of successive482

frames, is based on the gradient information. In the future work, we plan to483

improve this step of the proposed method. The future association technique484

should provides more pairs of associate points which gives a more dense pre-485
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estimated disparity maps. The eventual association technique should need less486

running time. On the other hand, the dynamic programming technique used487

in our stereo approach ignores the inter-scanline consistency [27,15,10,7]. This488

is another point to investigate in the future.489
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