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Abstract. Reactive Fiffo Systems (RFS) are used to model reactive sys-
tems which are able to memorize the events that cannot be processed
when they occur. In this paper we investigate the decidability of verifi-
cation problems for Embedded RFS which are RFS running under some
environmental constraints. We show that almost all the usual verification
problems are undecidable for the class of Periodically Embedded RFS
with two memorizing events, whereas they become decidable for Reg-
ularly Embedded RFS with a single memorizing event. We then focus
on Embedded Lossy RFS and we show in particular that for Regularly
Embedded Lossy RFS the set of predecessors Pred” is upward closed and
effectively computable.

Keywords: Reactive Fiffo Systems, Embedded Systems, Verification, Real-
Time Systems, Infinite-State Systems, Decidability.

1 Introduction

Context. Model-checking has become a very popular verification method, since
it is fully automatic for finite state systems and it has been applied successfully
in particular for VLSI circuits [7]. However, since most systems are intrinsically
infinite state, there is a need to design an efficient verification methodology for
infinite state systems.

We focus in this paper on Embedded Reactive Fiffo Systems (Embedded RFS),
a model for embedded (asynchronous) reactive systems with event memorization,
close to SDL [9]. Any Embedded RFS is actually a closed system, obtained by
synchronization of an environment defining the sequences of input events with
a Reactive Fiffo System modeling the reactions to these events.

Reactive Fiffo Systems (RFS) were introduced in [8,22] (and called Reac-
tive Fiffo Automata there) to model (asynchronous) reactive systems with event
memorizations that are specified in the Electre [8] reactive language. A major
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feature of this language is that it is possible to store occurrences of events in
order to process them later. The way the events are processed is called the Fiffo
order for First In First Fireable Out i.e. we take into account the stored events as
soon as possible and in case of conflict the oldest stored occurrence is processed.
The number of stored occurrences in the Fiffo queue is theoretically unbounded.
Consequently the behavioral model of an Electre program is a RFS which has
an infinite number of states [22].

Related work. In a previous work [22], we analyzed RFS with an implicit
environment of the form X, that is an environment generating every sequence
of events. We proved the following results for RFS: (1) the set Post® of the
reachable states of a RFS is recognizable and effectively computable; (2) the
linear temporal logic LTL without the next operator is decidable for RFS.

These results were surprising since RFS are close to Communicating Finite
State Machines (CFSMs) or Fifo Automata, and it is well known that this class
has the power of Turing Machines [6, 13]. This difference is mainly due to the fact
that RFS (with an implicit environment) are open systems (whereas CFSMs are
closed) on the one hand, and from the looping form of the memorizing transitions
(which can thus be executed any number of times) which entails that the state
space of RFS are downward closed and thus recognizable.

Our Contribution. The purpose of this paper is to analyze RFS with an
explicit environment, the so-called Embedded RFS, which are RFS that run under
some environmental constraints. Indeed, without an explicit environment, we are
able to compute the set of reachable states Post™ [22], but many of these states
would not be reachable in a “realistic” environment that would constrain the
system.

Embedded RFS are naturally defined as the synchronization between a RFS
and an environment given as a labeled transition system. We in particular con-
sider regular and periodic environments, where the languages of event sequences
are regular or periodic respectively. These classes of environments are particu-
larly relevant in the area of real-time systems as for instance, many applications
are strongly periodic (e.g. scheduling) or mainly composed of regular cyclic pro-
cesses (control of nuclear plants, avionic systems, ... ).

The main results of the paper are two fold; we first show that:

(1) Periodically Embedded RFS have the power of Turing machines: most veri-
fication problems are undecidable for this class.

Since Embedded RFS are too powerful, even in the “simple” case of periodic
environments, we then try to lower their expressiveness in order to obtain de-
cidability results. We show that:

(2) When there is at most one memorizing event, most verification problems are
decidable for Regularly Embedded RFS.

(3) Embedded Lossy RFS are well-structured transition systems (WSTS) with
effective pred-basis (as defined in [14]), provided that the environment is a
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WSTS with effective pred-basis itself. Hence the covering problem is decid-
able, and we can model-check safety properties on these systems.

(4) Moreover, we show that Pred”, the set of predecessors, is effectively com-
putable for Regularly Embedded Lossy RFS. Consequently model-checking
the existential fragment of CTL is decidable for this class.

As emphasized in the conclusion these results give a foundation for the verifica-
tion of Embedded RFS.

Outline of the paper. The next section recalls some basics and introduces
the model of Embedded RFS. In Section 3 we prove one of our main results:
Periodically Embedded RFS have the power of Turing machines. In Section 4, we
focus on a lossy version of RFS and we prove our second main result: Embedded
Lossy RFS are well structured transition systems. Finally in Section 5 we draw
some conclusions and give some hints for future work.

2 Embedded Reactive Fiffo Systems

2.1 Preliminaries

Ordering and quasi-ordering. For a given set X, a binary relation < is a quasi-
ordering if it is transitive and reflexive. The upward-closure of Y C X is Y=
{z/ € X|3z €Y, x < a'}. A finite set X is a finite basis for an upward-closed
set X' if 1X= X'. A well quasi-ordering (wgo) (X, <) is a quasi-ordering < such
that in every infinite sequence: z1, 2, ..., Z;, ... of elements from X, there exist
two integers ¢ < j such that z; < x;. Every pair (X, <) such that X is finite is
de facto a wqo. Furthermore, by definition, a well quasi-ordering (X, <) has a
finite number of minimal elements (it is well-founded).

Considering a finite alphabet X' = {a1,...,a,}, a finite (resp. infinite) word
u € X* is a finite (resp. infinite) sequence of symbols from X; u; denotes the i
letter of u and ¢ is the empty word. The shuffle of two finite words u and v is the
set defined by: u L v = {u1vy ... upvp |u1, ..., 0 € X* and u = uy ... Up, v =
v1 ..U} The sub-word ordering < is defined by: Vu,v € X*, u < v iff u can be
obtained from v by removing some letters. The Parikh mapping [21] ¥ defines
the vector ¥(u) = (k1 ... ky) where k; is the number of occurrences of a; in
the finite word w.

Labeled Transition Systems. A labeled transition system is a 4-tuple S = (Q, qo, L,
—) where Q is the set of states, ¢o € @ is the initial state, L is the set of labels
and —C @ x L x @ is the transition relation. A run of S is a finite or infinite se-

quence of transitions qq o, q1 BTN Gn+1 -+ - We denote —* the reflexive
and transitive closure of —. A state ¢’ € Q is reachable in S from state ¢ € Q iff
q —* ¢'. Post"(S) is the set of reachable states in S from ¢o. For a given state
q € Q and a given label | € L, Pred;(q) = {¢' € Q|¢ LR q} is the set of the
predecessors of ¢ by [. Let in(q) (resp. out(q)) denotes the sets of incoming labels
(resp. outgoing labels) from ¢ € Q. Finally, the sets of the predecessors of q is
Pred = ¢, () Predi(q) and Pred” denotes its transitive and reflexive closure.
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Problems of interest. For a given labeled transition system S = (Q, qo, L, —)
and a wqo (@, <), we can define the following problems :

— The boundedness problem: Is Post*(S) finite ?

— The covering problem: For any states ¢ € Post™(S) and ¢’ € Q, is there any
q" € @ such that ¢/ < ¢” and ¢” is reachable from ¢ 7

— The termination problem: Is every run of S finite ?

— The (resp. effective) recognizability problem: Is there a (resp. computable)
finite representation for Post™(S) ?

— The recurrent locality problem: Is there a run of S that visits a given ¢ € @
infinitely often ?

— The LTL (resp. CTL, EG, EF) model-checking problem: For a given LTL
(resp. CTL, EG, EF) formula! ¢, does every run of S satisfy ¢ ?

2.2 Reactive Fiffo Automata

Reactive systems are usually composed of a set of tasks which are activated, pre-
empted or ended when some events occur. Reactive Fiffo Automata (RFA) [§]
aim at modeling such asynchronous systems, thus they follow two main guide-
lines: memorization and instantaneous reaction. Indeed, the asynchronous as-
sumption implies that the tasks have a non null duration, thus they may pre-
vent the processing of events, which may thus need to be memorized. For reactive
systems, we have chosen to batch process memorized events as soon as possible
and in case two memorized events can be processed, to give the priority to the
older one. This guarantees fairness among the memorized occurrences. Moreover,
batch processing has priority against processing of new incoming occurrences.
This type of processing is called Fiffo?’. Hence, RFA can serve as a semantic
model for Electre programs [8], as well as for SDL [9] specifications, and for any
formalism for reactive systems with memorization.

Figure 1(a) depicts a RFA modeling a readers/writers mutual exclusion pro-
tocol with two readers R and R2 and one writer W. In each location the running
tasks are given (@ means no task is running, R; that reader 1 is reading and so
on.) The events W, Ry, Ry correspond to the end of a writing or reading task. A
transition of the form @ — R; means that event 7, can be processed in location
@ and leads to a state where R; is running; @ I Ry means that processing

a memorized occurrence of event r; leads to R; and finally R; M, Ry means
that if w occurs when the system is in location R; it has to be stored in the
queue. (Notice that two states correspond to task R; running but they are not
bisimilar.)

Definition 1 (Reactive Fiffo Automaton (RFA)). A Reactive Fiffo Au-
tomaton (RFA) is a 4-tuple R = (Qr, %, Ar, —r) where: Qg is a finite set of

! Recall that the EF (resp. EG) fragment of CTL uses predicates, boolean operators,
the one-step next and the EF (resp. EG) operators.
% First In First Fireable Out.



Verification of Embedded Reactive Fiffo Systems 5
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Ry w

(b) Automaton for the
periodic environment F.

w T2
— > —> 0 —> -

(c) Environment F'.

(a) A RFA for a 2 readers/1 writer problem.

Fig. 1. Some examples of RFA and environments.

locations with the distinguished initial location ¢%, Ar = X U ({!,7} x X/) is
the finite set of actions (labels) where 3 is the finite set of events, Xy C X
is the finite set of memorized events and Xp = X \ Xy is the set of fleeting
events and finally, —rC Qr X Ar X Qg is the deterministic transition relation
such that Vq € Qgr, Ve € Xy

1. eithequR q,
2. or 3¢’ € Qr such that ¢ > ¢ andqqu'. O

The memorizing transitions are loops: the processing of the event is delayed
and the system does not allow any state change. Notice that the memorizing
capability does not apply to all the events of the RFA. Indeed, the events’ set X
is divided in two parts: the memorized events X5, and the fleeting events Xp,
with X'y N X'r = 0. One could also consider static priority between events, like
“if ey is in the Fiffo list, batch process e; even if some other ey is before e; in
the list and can be processed.” This can already be specified by RFA, and thus
our work includes this case.

Following points (1) and (2) the RFA never looses a memorized event occur-
rence, and as entailed by (2), the processing (e) and the batch processing (7¢)
of an event have the same effect w.r.t. to the state’s change they bring about.

Definition 2 (Reactive Fiffo System (RFS)). A Reactive Fiffo System
(RFS), giving the semantics of the RFA R = (Qr,q%, Ar,—r), is the (infi-
nite) labeled transition system S = (Qs, q%, As, —g) defined by: Qs = Qr x X%,
is the set of states where one distinguishes the initial state ¢% = (¢%,¢), As = Ag
is the finite set of actions (labels) and the transition relation —g is the smallest
subset of Qs x Ag X Qg such that:
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(¢, 0) —55 (q,w.e) if ¢ —>pq and w € (£1)" (memorizing)

1. (q,w
2. (¢,w) 5 (¢,w) if g——rq andw € (E,!])* (processing)
3.

(g, wy.e.ws) 3—35 (¢',wr.w2) if q 3—:3 q and wy € (Zf])* (batch processing)
4. (g, w) S5 (q,w) if e & (out(q) U Xpy) and w € (Zf])*
withEé:{eGEMm‘!e—»Rq}. (I

A state (q,w) is stable if w € (X})" otherwise it is unstable (in the latter
case an event is to be batch processed). Priority is given to the batch processings
since the other transitions are only enabled in stable states. Moreover the batch
processed occurrence (if any) is the oldest one as condition w; € (2}1)* of (3)
above implies. Finally, by point (4), the RFS is complete and thus reacts to every
event (whereas the RFA may not be complete w.r.t fleeting events).

Ezample 1. The sequence below depicts a possible run of the readers/writers
RFA in Figure 1(a).

(@,6) L5 (Wie) —os (W,r1) ~2s (W, riw) —Zss (W, riwrs) —s

(@, riwrs) — s (Ry, wra) — 25 (Ri||Ra,w) <2 (Rayw) 25 (8, w).. .

The transition (Ry,wrs) 2 (R1||R2,w) clearly depicts the Fiffo (First In
First Fireable Out) policy. Indeed, ro is batch processed because (i) the config-
uration (Rj,wrs) is unstable, and (ii) the events are batch processed as soon as
possible and with priority to the oldest one.

2.3 Embedded Reactive Fiffo Systems

An environment E = (Qg,q%, Ap,—g) for a RFS S = (Qs,q2, As, —g) is a
labeled transition system, with Ap = X, defining the input words of the system
(i.e. sequences of events in X*). The Fmbedded Reactive Fiffo System S || E is
obtained by synchronization of S and E:

Definition 3 (Embedded Reactive Fiffo Systems). An Embedded Reac-
tive Fiffo System (Embedded RFS) is a (infinite) labeled transition system S ||
E = (Qs)|g: 48+ As) 5 —s5) defined by: Qsjp = Qr % (Xm)" X Qp is the set
of configurations and ngE = (g%, €, q%) is the initial configuration, Ag g = As
is the set of actions, and finally the transition relation — g is the smallest
subset of Qs X As|p X Qg||E such that:

! . !
1. {qr,w,qp) —— 3|5 (qr, we, ¢k) if (qr, w) ——s (qr, we) and qp —F ¢,
2. (qRa w, CJE> i>SHE <q}23w7 qIE> 7’f (QR, w) i’s (Qkaw) and qdE i)E qlEl

? : 2
3. (qr,wr1ews, qg) i’swz (qr, wiwe, qE) if (gr, wiews) 5 (g, wiws).

Notice that by definition 2, rule 8 has priority over rules 1 and 2. O



Verification of Embedded Reactive Fiffo Systems 7

The runs of S || E are called the constrained runs of the system. The notions
of stability and unstability naturally extend to Embedded RFS. In the sequel,
Embedded RFS(n) denotes the class of Embedded RFS with n memorized events
(1Zm| =mn).

Considering the environment E in Figure 1(b), the execution of Example 1
is the prefix of a constrained run of the RFA in Figure 1(a). But this execution
is discarded by E’ in Figure 1(c) since the transition (W,e¢) g (W,r) is
disabled by rg in E'.

Observe that, provided the set of events X' is non empty, a RFS has no
deadlock state, since in every state it is able to react to an event occurrence,
either by memorizing it, by losing it (if this event is fleeting, by (4) in Defini-
tion 2), or by processing it. Hence any Embedded RFS with a non-terminating
environment does not terminate. In the rest of the paper, we won’t discuss the
termination problem anymore, and by “problems of interest” we mean all the
problems defined in Section 2.1 except the termination problem.

3 The Power of Embedded RFS

In this section, we first prove that RFS having two memorized events and with
a periodic environment are deterministic counter automata. It follows that all
the problems of interest are undecidable. Then, we focus on RFS with at most
one memorized event constrained by regular environments and prove that their
reachability set is effectively recognizable.

3.1 Undecidability of Periodically Embedded RFS(2)

A Periodically Embedded RFS is an Embedded RFS the environment of which
recognizes a periodic sequence of events u* where u is a finite word.

Definition 4 (n-counter automata [20]). A n-counter automaton C is de-
fined by the tuple (Qc., g, {c1,...,cn},—c) where: Q¢ is a finite set of states
with initial state ¢, {c1,...,c,} is a finite set of counters with values in N and
—cC Qc x ({c1,. .., en} x {++,-—,=02}) X Q¢ is the transition relation where
cr++ denotes the increasing of ci whereas c—- is its decreasing and cy=o> Tepre-
sents the zero testing operation. A n-counter automaton is deterministic provided
for each state q there is:

. . . . Cr++ /
— either an increasing transition: ¢ ——c ¢,
— or a decreasing and a zero testing transition dealing with the same counter:
Clg—— 1 Cl =07 7
¢g——cq" and g ——c (. U

The semantics of a n-counter automaton C'is the labeled transition system S =
(Q x N2, {qo,0,...,0),—) where — is the smallest subset of (Q x N?) x (Q x N?)
given by (my,...,m, € N):

1. (g,m1,...,mu) = (¢,m1+1,...,my,) if(]cl—+Jr>Cq’7
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2. (¢,0,ma,...,mp) — {¢,0,ma,...,my) ichl—:m>c q,
3. (g, ma,...,ma) — (¢/,m1 —1,...,ms) if  ——¢ ¢ and m; > 0.
and the symmetric transitions for co, ..., c,. A run of a n-counter automaton C

isarunin S.

In the sequel we say that a transition system S simulates a transition system
S" iff Post*(S') = f(Post*(S)) with f a simple mapping (e.g. projection on a
subset of the set of states in Q so that Post*(S’) can be computed easily from
Post*(S)).

Theorem 1 ([20]). For any Turing machine T, there is a deterministic 2-
counter automaton that simulates T'. g

We now prove how to simulate a Deterministic 2-counter automaton by a
Periodically Embedded RFS(2). Assume C' is a deterministic 2-counter automa-
ton with counters ¢; and cy. Let S || E be the Periodically Embedded RFS built
in the following way. The two counters ¢; and ¢, are respectively defined by the
two memorized events e; and ey so that the number of memorized occurrences
of eq (resp. ez) is the value of ¢; (resp. c2).

Every transition in C is translated in a RFA structure (a widget). Our con-
struction runs as follows: to simulate one step of the 2-counter automaton, we
constrain the RFA widgets with a word u. This way, by processing u* we can
simulate an execution of the counter machine. The key point here is to find a
word u to be processed by a RFA widget in order to simulate a step. The en-
vironment we take here recognizes (7ejea7)* where 7 is a fleeting event and e;
and ey are memorized events.

0 T 1\ €L o\ e 3
& \4z) \dz) e
T

The widgets for the two types of transitions using counter ¢; in a 2-counter
automaton are given by>:

1. widget for ¢ — ¢ ¢

!61,!62 !el !617162

2. widget for ¢ "¢ ¢’ and ¢ = ¢

?61,61

K '62 _”Jel
?e1, el /q; ?ea, eo qu\‘ - @
N N a

3 All the dotted loops are necessary to match Definition 1 point (1), but they are never
executed during the simulation of C.
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The fleeting event 7 is introduced to allow zero testing (see widget (2)) and
the two 7 transitions: g; — ¢’ (on widget (1)) and g3 — ¢’ (on widget (2)) are
needed to put together the widgets translating the transitions of C.

Since increasing ¢, is modeled by memorizing ey, the environment must pro-
duce e; and e sequentially since (i) it is periodic, and (ii) widget (1) needs to
apply to both counters.

Thus, on widget (1), from ¢1, either there is one memorized es: one of them is
batch processed (leading from ¢; to ¢2) and e; then e; are memorized in ¢o, or e;
is memorized in ¢; and es is processed, leading to ¢o. In both cases, the number
of memorized e; has been increased by one, whereas the number of stored es is
invariant from ¢ to ¢’. In widget (2), e; is immediately processed from ¢; to g2
since ¢ is reachable iff there is no memorized e;. Then, from g¢o, e is applied
the same treatment as in widget (1).

It follows that the 2-counter automaton C can move from (g, mi, ms) to
(¢, m1+1,ms) iff widget (1) can move from (g, w, ¢%), with ¥(w) = (m1 ma),
to (¢/,w’,q%), with ¥(w') = (m1 +1 ma2) i.e. by processing exactly the word
TejeaT. The same remark applies for the other widget and the decreasing tran-
sition.

Theorem 2. For every deterministic 2-counter automaton, there exists a Peri-
odically Embedded RFS(2) that simulates C. O

As a consequence, all the problems of interest are undecidable for Embedded
RFS with at least two memorizing events and a periodic environment.

3.2 Regularly Embedded RFS(1) are Effectively Recognizable

In the previous section, we have seen that all the problems of interest are unde-
cidable for Periodically Embedded RFS(2). This class of Embedded RFS includes
the huge majority of practical systems. We now focus on Embedded RFS with
only one memorizing event e,, in order to complete our study. Particularly, we
show that this restriction heavily decreases the power of Embedded RFS as this
is the case for Fifo automata. Indeed, note that when there is a unique memo-
rizing event, the Fiffo queue of a RFS actually behaves as a counter, since only
the number of events in the queue is relevant. Memorization (batch processing)
of an occurrence of e, thus corresponds to a increment (resp. decrement) of the
counter. The processing of a fleeting event in a locality where e,,, can be (batch)
processed is possible iff the queue is empty, that is iff the counter is equal to
Z€ro.

Following the previous intuitive ideas, any RFS(1) can be seen as a one-
counter automaton. Recall that one-counter automata are effectively closed un-
der synchronization with finite automata. Hence we get that any Embedded
RFS(1) can be seen as a one-counter automaton. Since one-counter automata
form a subclass of pushdown automata which have effectively recognizable reach-
ability sets and also decidable LTL and CTL model-checking [4,15], we obtain
the following result:
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Theorem 3. Regularly Embedded RFS with at most one memorizing event have
effectively recognizable reachability sets. Moreover LTL and CTL model-checking
are decidable for this class. O

As a consequence, all the problems of interest are decidable for Embedded
RFS with at most one memorizing event and a regular environment.

4 Embedded Lossy Reactive Fiffo Systems

In this section, we consider unreliable Embedded RFS that may loose some
memorized events non deterministically. Embedded Reactive Fiffo Systems are
equipped with the lossy capability by extending definition 3 with the following
rule :

! .
4. (qr,w,qE) —s|E (qr, W', qE) if W < w.

The lossy action [ must also be added to Ag) g to obtain an Embedded Lossy
Reactive Fiffo System (Embedded Lossy RFS). Notice that the losing action only
acts on the memorizing queue, while R and E are not affected by it. We prove
that Lossy RFS with well-structured environments are well-structured them-
selves.

4.1 Well-Structured Transition Systems

Well-Structured Transition Systems (WSTS) [14,12,11,18, 3] provide a general
framework for the analysis of infinite state systems. Several definitions of WSTS
exist, from the first ones of Finkel [11,12] and Abdulla et al. [3] to the unifying
framework of Finkel and Schnoebelen [14].

WSTS are transition systems equipped

with a wqo < on the states which is com- (VA S —yq

patible with their transition relation —: : .

“for all ¢; < ¢} and transition ¢ — g2 V

there exists a sequence ¢} — ¢, such that Gp—-S-= A 3

q2 S qé ‘57

Depending on the sequence o = ¢} — ¢}, and following [14], the compatibility
is strong if o is of length 1. If the sequence 0 = ¢} = ¢}y — ... = ¢, — ¢
contains at least one transition and moreover ¢; < ¢j;, Vi € {1,...,n} then it
is a stuttering compatibility.

Taking into account the labels of the tran- VYoo @ S—q

sition system, we obtain a (strongly com- :

patible) Well-Structured Labeled Transi- a ' &

tion System (WSLTS) [14] gp--<--¢ 3

A WS(L)TS has effective pred-basis [14] if there exists an algorithm comput-
ing a finite-basis of TPred= (1q) for a given state ¢ (denoted pb(q)). Then, for a
WS(L)TS with decidable < and effective pred-basis, it is possible to compute a
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finite basis of Pred”(1g), and it follows that the covering problem is decidable [14].
Furthermore, if the WS(L)TS has stuttering compatibility the model-checking
of the fragment EG of CTL is decidable [18,14].

4.2 WS—-Embedded Lossy RFS are well-structured

Definition 5 (WS—Embedded Lossy RFS). A WS-Embedded Lossy RFS
is an Embedded Lossy RFS where the environment is a WSLTS. O

Let S || E be an WS-Embedded Lossy RFS with a well-structured environment
(E,C). We denote < the binary relation on the configurations in Qg defined
by: (qr, w,qr) < (¢r,w',qd5) & qr =qr and w < W' and qr C gp.

Notice that (Qg|g,<) is a wqo since = is a wqo on finite sets and Qg is

finite, (X*, <) is a wqo by Higman’s lemma [16] and C is a wqo as we assume
that the environment is well-structured.

Theorem 4. Every WS-Embedded Lossy RES (S || E, <) is a WSTS with stut-
tering compatibility. O

Now, deciding if a given configuration (gr,w, ¢g) is covered from (g5, w’, ¢)
consists in checking whether (¢i,w’,¢)) € Pred*(1{ qr,w,qr)), where Pred is
given by:

Pred({gr,w,qr)) = {<Q;~Zawaq/E> |dr —RA4R N 4 —EqE N WE (21!1;2)*}

!
U{(qR,w',QE>|qR'—e>RQR AN dqyg—pqe ANw=uwe A uw e (223%)*}
U {(q}b,w',qE> | qr i‘;)R qr N Yy € (Eé%)*, wy € Xhyst.ow = wiwh,
w'’ :wllew;}

U{{gr,w', qm) |w" € (X5 LI w)}

This is decidable for WS-Embedded Lossy RFS since from the following
theorem, one can compute a finite basis for Pred*(1( qr,w, qg)).

Theorem 5. A WS-Embedded Lossy RFS has effective pred-basis if its environ-
ment has effective pred-basis. O

Notice that computing a finite representation for Post™(S) (the effective rec-
ognizability problem) and computing a finite representation for Pred"(S) are
two distinct problems since RFS (and thus (Lossy) Embedded RFS) are not ef-
fectively invertible. As a result, the Post” sets of RFS are recognizable but not
computable whereas the Pred” sets are effectively recognizable.

Example 2. Assume that the environment F is finite-state. Clearly, F equipped
with the equality quasi-ordering is a WSLTS with decidable wqo and with effec-
tive pred-basis.
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Recalling that the loosing action ! is not visible by the environment, we
obtain that | qr,w,qr) C Pred*({qr,w,qg)) for any configuration {(qgr,w, qg)
of S || E. Therefore, we can compute a finite basis for Pred”({qr,w,qg)) by
applying the principle of [1] for Lossy communicating machines.

Theorem 6. For any configuration (qr,w,qr) of a WS—Embedded Lossy RFS,
the upward closed set Pred*({qr,w,qr)) is effectively computable. O

Thus it follows that the coverability problem is decidable for WS-Embedded
Lossy RFS and as a consequence the reachability problem and the EF model-
checking problem are decidable. The EG model-checking problem is also decid-
able since WS-Embedded Lossy RFS have stuttering compatibility.

4.3 TUndecidability Results

The strong connection between deterministic two counters automata and Period-
ically Embedded RFS(2) (see Section 3.1) leads us to focus on the link between
Lossy Counters Automata [5] and Periodically Embedded Lossy RFS.

Lossy Counters Automata (Lossy CA) are defined from counter automata
(see Definition 4) by extending their semantics with the loosing rule:

4. (gyma,. .. mp) = (q,ml, ... ,mb) if (¥, m, < m,)
We first prove the following result, which is easily derived from [10].

Theorem 7. The boundedness problem and the recurrent locality problem are
undecidable for Lossy 83—Counter Automata. O

Now, the construction given in Section 3.1 to simulate deterministic 2-counter
automata with Periodically Embedded RFS(2) can be adapted for deterministic
3-counter automata and Periodically Embedded RFS(3). Observe that a loss in
a Periodically Embedded Lossy RFS corresponds (w.r.t. Parikh’s mapping) to
a loss in the counters automaton. Moreover, correctness of the construction is
preserved by losiness.

The undecidability of the recurrent locality problem stated in the following
theorem is proved in [19], using the idea in [2] for communicating finite state
machines. The proof uses a machine that guesses its initial configuration in order
to have an infinite execution. The existence of such a configuration is itself unde-
cidable since the termination problem is. One needs a non-deterministic counter
automaton for that “initial guess”, but periodic environments constrain RFS in
a strong deterministic way : our construction in Section 3.1 would not apply.
The solution consists in considering ultimately periodic environments which first
allow this “initial guess”, and then constrain the considered RFS in the same
periodic way that the environment we used in Section 3.1, thus preserving our
construction.

An Ultimately Periodic Embedded Lossy RFS is an Embedded RFS with an
ultimately periodic environment : it recognizes a language L.(u)* where L is a
regular language and v a finite word. We get the following theorem.
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Theorem 8. The recurrent locality problem, the LTL model-checking problem
and the boundedness problem are undecidable for Ultimately Periodic Embedded
Lossy RFS(3). The CTL model-checking problem is undecidable for Ultimately
Periodic Embedded Lossy RFS(4). O

The difference between the LTL and the CTL model-checking problems lies
in the impossibility to model the recurrent locality problem in CTL. As far as we
know, the (un)decidability of CTL model-checking problem for Lossy 3—Counter
Automata is still an open problem.

Notice that ultimately periodic environments are well-structured with effec-
tive pred-basis, since they can be modeled by finite state transition systems, and
= is a wqo on finite states. Thus, decidability results for WS—Embedded Lossy
RFS apply to Ultimately Periodic Embedded Lossy RFS.

Theorem 9. The covering problem and the model-checking problems for the
fragments EG and EF of CTL are decidable for Ultimately Periodic Embedded
Lossy RFS. O

And the undecidability results for Ultimately Periodic Embedded Lossy RFS
extend to WS-Embedded Lossy RFS.

Theorem 10. The boundedness problem, the recurrent locality problem and the
LTL and CTL model-checking problems are undecidable for WS—Embedded Lossy
RFS. 0

5 Conclusion

Our results are summarized in table 1. In this table, U stands for “undecidable”,
D for “decidable”; Y and N indicates if the state-space is recognizable, and its
effectiveness between parentheses.

Regularly | WS—-Embedded | Periodically
Embedded Lossy Embedded
RFS(1) RFS RFS(2)
Boundedness D U U
Covering D D U
Recognizability(effective)|| Y(Y) Y(N) N
Recurrent locality D U* U
LTL Model-Checking D U U
TL/EG/EF D/D/D */D/D U/u/u
G, o[ oem o

Table 1. Summary of the results.

For Embedded Lossy RFS, the star * denotes that these problems are still
open when the RFS has two memorized events (and also for 3 memorized events
in the case of the CTL model-checking problem).
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Notice that the termination problem for Embedded RFS reduces to the ter-
mination problem for its environment. The decidability of the covering problem
for WS—Embedded Lossy RFS allows us to verify safety properties on this class.
Since the lossy semantics yields an upper approximation of an Embedded RFS,
we get an (of course incomplete) method to verify safety properties on (non-
lossy) Embedded RFS.

Our future work is concerned with the boundedness problem. Since it is unde-
cidable for Embedded RFS and WS-Embedded Lossy RFS, we intend to design
a semi-algorithm based on a test close to the one defined for Fifo Automata [17]
in order to detect unboundedness of Embedded RFS.
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