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Abstract

1



This paper describes the OpenViBE software platform which enables to

design, test and use Brain-Computer Interfaces. Brain-Computer Interfaces

(BCI) are communication systems that enable users to send commands to

computers only by means of brain activity. BCI are gaining interest among

the Virtual Reality (VR) community since they have appeared as promis-

ing interaction devices for Virtual Environments (VE). The key features of

the platform are 1) a high modularity, 2) embedded tools for visualization

and feedback based on VR and 3D displays, 3) BCI design made available

to non-programmers thanks to visual programming and 4) various tools of-

fered to the different types of users. The platform features are illustrated in

this paper with two entertaining VR applications based on a BCI. In the first

one, users can move a virtual ball by imagining hand movements, while in

the second one, they can control a virtual spaceship using real or imagined

foot movements. Online experiments with these applications together with

the evaluation of the platform computational performances showed its suit-

ability for the design of VR applications controlled with a BCI. OpenViBE

is a free software distributed under an open-source license.

1 Introduction

One of the keys to a great immersion feeling with Virtual Reality (VR) is the

ease of interaction with Virtual Environments (VE). Recently, a new method has

emerged: interacting through cerebral activity, using a Brain-Computer Interface

(BCI) (Leeb et al., 2007)(Leeb et al., 2006)(Lécuyer et al., 2008). Such an inter-
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face is a communication system that enables a user to send commands to a com-

puter by means of variations of brain activity, which is in turn measured and pro-

cessed by the system (Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan,

2002). BCI are currently following the path drawn by haptic devices a few years

ago (Burdea, 1996) by providing a completely new way of conceiving interac-

tion with computers and electronic devices through the “interaction by thought”

concept. The BCI technology is rapidly improving, and several interesting ap-

plications using BCI have already been developed for navigating or interacting

with virtual environments (Leeb et al., 2007)(Lécuyer et al., 2008)(Friedman et

al., 2007), or for videogames (Krepki, Blankertz, Curio, & Müller, 2007)(Nijholt,

2009).

However, designing BCI-based interaction devices requires expertise in a broad

range of domains, ranging from neurophysiology, signal processing and interac-

tion, to computer graphics or computer programming which represents a challeng-

ing multidisciplinary task. A general purpose software platform that provides the

necessary functionalities to easily design BCI and connect them with VR would

foster the research in the domain and democratize the use of BCI in real and virtual

environments.

In this paper, we present the OpenViBE platform, a novel, free and open source

platform to design and tune BCI systems and connect them with real and virtual

environments. This paper is organized as follows: section 2 proposes a short state-

of-the-art of existing BCI platforms while section 3 describes the features of our

platform. Section 4 presents the range of users our system targets. Sections 5 and
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6 detail respectively the design of a BCI with OpenViBE and the tools we provide.

Section 7 is dedicated to the connection with VR and section 8 details the platform

internals. Finally, some examples of BCI implementations, performances and

current state of the platform are presented respectively in sections 9, 10 and 11.

The paper ends with a general conclusion.

2 Related work: existing BCI softwares

Several softwares for offline and online analysis of EEG and biomedical signals

are available. They are briefly reviewed in (Schlögl, Brunner, Scherer, & Glatz,

2007). However, these softwares do not include all the necessary functionalities

for designing a BCI.

In the freeware community, only three softwares enclose the necessary func-

tionalities for real-time BCI designs: BioSig (Schlögl et al., 2007) (thanks to

the “rtsBCI” package), BCI2000 (Mellinger & Schalk, 2007) and BCI++(Maggi,

Parini, Perego, & Andreoni, 2008).

BioSig is an open-source software library for biomedical signal processing and

more specifically for BCI research (Schlögl et al., 2007). It is a toolbox for Oc-

tave and Matlab which offers several data management modules, data import and

export, artifact processing, quality control, feature extraction algorithms, classifi-

cation methods, etc. It also offers rapid prototyping of online and real-time BCI

with the “rtsBCI” package using Matlab/Simulink.

BCI2000 is a general-purpose system for BCI research (Mellinger & Schalk,
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2007). This software is not open-source but its sources and executables are avail-

able for free for non-profit research and educational purposes. BCI2000 is a C++

software that proposes to build an online and real-time BCI by assembling four

modules: the source module, for data acquisition and storage ; the signal process-

ing module, that comprises the preprocessing, feature extraction and classification

of brain activity ; the user application module, with which the user interacts ; and

finally, the operator interface for data visualization and system configuration. In-

terestingly, BCI2000 also provides tools for offline analysis of data within the

“MARIO” software.

Recently, another BCI software platform has been proposed: BCI++ (Maggi

et al., 2008). This software is a C/C++ framework for designing BCI systems

and experiments. BCI++ also includes some 2D/3D features for BCI feedback.

However, it should be mentioned that this platform is not completely open-source.

A comparison of these softwares with OpenViBE is provided in section 3.1.

3 OpenViBE features

OpenViBE is a free and open-source software platform for the design, test and use

of Brain-Computer Interfaces. The platform consists of a set of software modules

that can be easily and efficiently integrated to design BCI for both real and VR

applications. Key features of the platform are:

Modularity and reusability. Our platform is a set of software modules de-

voted to the acquisition, pre-processing, processing and visualization of cerebral
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data, as well as to the interaction with VR displays. OpenViBE being a general

purpose software implies that users are able to easily add new software modules in

order to fit their needs. This is ensured thanks to the box concept, an elementary

component in charge of a fraction of the whole processing pipeline, that allows

to develop reusable components, reduces development time and helps to quickly

extend functionalities.

Different types of users. OpenViBE is designed for different types of users:

VR developers, clinicians, BCI researchers, etc. Their various needs are addressed

and different tools are proposed for each of them, depending on their program-

ming skills and their knowledge in brain processes.

Portability. The platform operates independently from the different software

targets and hardware devices. It includes an abstract level of representation allow-

ing to run with various acquisition machines, such as EEG or MEG. It can run on

Windows and Linux operating systems and also includes different data visualisa-

tion techniques. Finally, it is based on free and portable softwares (e.g., GTK+1,

IT++2, GSL3, VRPN4, GCC5).

1The Gnome ToolKit is a highly usable, feature rich toolkit for creating graphical user inter-

faces which boasts cross platform compatibility and offers an easy to use API. More information

can be found at http://www.gtk.org
2IT++ is a C++ library of mathematical, signal processing and communication routines. More

information can be found at http://sourceforge.net/apps/wordpress/itpp
3The GNU Scientific Library is a numerical library for C and C++ programmers. More infor-

mation can be found at http://www.gnu.org/software/gsl
4The Virtual-Reality Peripheral Network is a set of classes within a library designed to imple-

ment an interface between application programs and the set of physical devices used in a virtual-

reality system. More information can be found at http://www.cs.unc.edu/Research/vrpn
5The GNU Compiler Collection is a compiler which supports a wide range of architectures.

More informations can be found at http://gcc.gnu.org
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Connection with VR. Our software can be integrated with high-end VR ap-

plications. OpenViBE acts as an external peripheral to any kind of real and virtual

environments. It also takes advantage of VR displays thanks to a light abstrac-

tion of a scenegraph management library, allowing to visualize cerebral activity in

a legible way or to provide incentive training environments (e.g., for neurofeed-

back).

3.1 Comparison with other BCI platforms

In comparison to other BCI softwares, the OpenViBE platform appears as highly

modular. It addresses the needs of different types of users (should they be pro-

grammers or non-programmers) and proposes a user-friendly graphical language

which allows non-programmers to design a BCI without writing a single line of

code. In contrast, all other BCI platforms require some degree of programming

skills to design a new real-time BCI from scratch. Furthermore, their modularity

is coarser (except for BioSig), hence restricting the range of possible designs.

OpenViBE is also portable, independent of the hardware or software and is en-

tirely based on free and open-source softwares. In comparison, among other real-

time BCI platforms, only BioSig is fully open-source but the “rtsBCI” package

needed for online and real-time BCI requires Matlab/Simulink which a non-free

and proprietary software.

OpenViBE proposes to generate online scenarios (step 3 in Figure 1) automat-

ically from offline analysis (step 2 in Figure 1). Finally, in contrast with other

platforms, OpenViBE is well suited for VR applications as it provides several em-
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bedded tools to design innovative VR displays and feedback as well as to perform

3D visualization of brain activity in real-time. Furthermore, OpenViBE can also

be used as a device for any VR application.

4 Different types of users

OpenViBE has been designed for four types of users. On the first hand, the devel-

oper and the application developer are both programmers, on the other hand the

author and the operator do not need any programming skills.

The developer (programmer) has the possibility to add new functionalities

and test his own pieces of software in OpenViBE. To that end, OpenViBE is de-

livered with a complete Software Development Kit (SDK). This SDK provides

access to functionalities at different levels depending on the task to realize. There

are two main categories of developers. First, the kernel developers who enhance

and modify kernel functionalities (see section 8.2). Second, plugin developers

who create new additional modules (see section 8.3).

The application developer (programmer) uses the SDK to create standalone

applications, using OpenViBE as a library. Such applications range from new

tools such as the visual scenario editor described in section 6, to external VR ap-

plications that the BCI user can interact with. Such VR applications are presented

in section 7.

The author (non-programmer) uses the visual scenario editor (see Figure 2)

to arrange existing boxes to form a scenario. He configures these boxes and the
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scenario in order to produce a complete, ready-to-use BCI system. The author is

aware of the internals of our platform as well as of BCI systems and is familiar

with basic signal processing. He is also aware of the interaction paradigm to use.

However, he does not need strong computer programming skills because he uses

dedicated tools to perform his tasks (see section 6).

The operator (non-programmer) generally would be a clinician or a practi-

tioner (he is not a computer expert nor an OpenViBE expert). He is in charge of

using and running the pre-built scenarios of the author. He then simply runs the

scenario. He is aware of how the BCI system should and can work, and monitors

the execution of the BCI system thanks to dedicated visualization components.

He has understanding of neurophysiological signals and can help the BCI user to

improve his control over the BCI system.

Finaly, another role should be considered: the BCI user. The BCI user gener-

ally wears the brain activity acquisition hardware (e.g., an EEG cap) and interacts

with an application by means of his mental activity. The application could be

for instance, a neurofeedback training program, a videogame in virtual reality, a

remote operation in augmented reality, etc. While he does not directly use the

OpenViBE platform, he implicitly takes advantage of its features.

5 How to design a BCI with OpenViBE?

Designing and operating an online BCI with our software follows a rather univer-

sal way of doing so (Wolpaw et al., 2002). Three distinct steps are required (see
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Figure 1). In the first step, a training dataset must be recorded for a given subject,

while he performs specific mental tasks. The second step consists in an offline

analysis of these records with the goal of finding the best calibration parameters

(e.g. optimal features, relevant channels, etc.) for this subject. The last step con-

sists in using the BCI online in a closed loop process. Optionally, iterations can

be done on data acquisition and offline training in order to refine the parameters.

The online loop (third step) is common to any BCI and it is composed of six

phases: brain activity measurements, preprocessing, feature extraction, classifica-

tion, translation into a command and feedback (see Figure 1).

Figure 1: Designing a BCI with OpenViBE.

Brain activity measurements: This step consists in measuring the brain ac-

tivity of the BCI user. To date, about half a dozen different kinds of brain signals

have been identified as suitable for a BCI, i.e., easily observable and controllable

(Wolpaw et al., 2002). Measuring the brain activity for a BCI system is mainly

performed using electroencephalography (EEG) since it is a cost-effective and
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non-invasive method which provides a high temporal resolution (Wolpaw et al.,

2002). Our software already supports various EEG acquisition devices but also

supports a magnetoencephalography (MEG) machine (see Section 11 for a list of

supported devices).

Preprocessing: The preprocessing step aims at denoising the acquired sig-

nals and/or at enhancing a specific brain signal (Bashashati, Fatourechi, Ward, &

Birch, 2007). For example, our software proposes different kinds of preprocess-

ing algorithms such as temporal filters and spatial filters (independent component

analysis, surface Laplacian, etc.).

Feature Extraction: Once signals have been preprocessed, features can be

extracted. These features consist in a few values that describe the relevant infor-

mation embedded in the signals (Bashashati et al., 2007) such as the power of the

signals in specific frequency bands (Pfurtscheller & Neuper, 2001). These fea-

tures are then gathered into a vector called “feature vector”. Examples of features

available in OpenViBE include band power features or power spectral densities.

Classification: The feature vector is fed into an algorithm known as “clas-

sifier”. A classifier assigns a class to each feature vector, this class being an

identifier of the brain signal that has been recognized. In general, the classifier

is trained beforehand using a set of feature vectors from each class. An exam-

ple of classifier used for BCI would be the Linear Discriminant Analysis (Lotte,

Congedo, Lécuyer, Lamarche, & Arnaldi, 2007). It should be noted that, due to

the high variability and noisiness of EEG signals, classification rates of 100 % are

very rarely attained, even for a BCI using two mental states. OpenViBE proposes
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several classifiers such as Linear Discriminant Analysis (Lotte, Congedo, et al.,

2007) or Fuzzy Inference Systems (Lotte, Lécuyer, Lamarche, & Arnaldi, 2007).

Translation into a command: Once the class of the signal has been identified,

it can be associated to a command which is sent to a computer in order to control,

for instance, a robot (Millán, 2008) or a prosthesis (Wolpaw et al., 2002). The

number of possible commands in current EEG-based BCI systems typically varies

between 1 and 4.

Feedback: Finally, feedback should be provided to the user so that he can

determine whether he correctly performed the brain signal. This is an important

step as it helps the user to control his brain activity (Lotte, Renard, & Lécuyer,

2008)(Neuper, Scherer, Wriessnegger, & Pfurtscheller, 2009). Feedback can be

simple visual or audio cues, e.g., gauges. To this aim, our software proposes

classical raw signal, spectra, time/frequency visualisation modules. Alternatively,

more advanced feedback can be provided such as the modification of a virtual

environment (Leeb et al., 2007) to which OpenViBE send commands.

6 Tools

Our system includes a number of usefull tools for its various users: the acquisi-

tion server, the designer, 2D visualization tools and sample scenarios of BCI or

neurofeedback.

The acquisition server provides a generic interface to various kinds of ac-

quisition machines, e.g., EEG or MEG systems. Such an abstraction allows the
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author to create hardware independent scenarios, thanks to the use of a generic

acquisition box. This box receives the data via the network from the acquisition

server, which is actually connected to the hardware and transforms these data in a

generic way. The way the acquisition server gets connected to the device mostly

depends on the hardware manufacturer’s way to access his device. Some devices

will be shipped with a specific Software Development Kit, some others will pro-

pose a communication protocol over a network/serial/USB connection. Finally,

some devices will need a proprietary acquisition software that delivers the mea-

sures to our own acquisition server.

The designer is mainly dedicated to the author and enables him to build com-

plete scenarios based on existing software modules using a dedicated graphical

language and a simple Graphical User Interface (GUI) as shown in Figure 2. The

author has access to a list of existing modules in a panel, and can drag and drop

them in the scenario window. Each module appears as a rectangular box with

inputs (on top) and outputs (at the bottom). Double clicking on a box displays

its configuration panel. Boxes are manually connectable through their inputs and

outputs. The designer also allows the author to configure the arrangement of vi-

sualization windows (i.e., visualization modules included in the scenario). An

embedded player engine allows the author to test and debug his scenario in real

time. In doing so, the author can receive a continuous feedback on boxes status

and their processing times. Such a feedback may be useful to balance the compu-

tational load.

The 2D visualization features of the platform are available as specific boxes
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Figure 2: The OpenViBE designer with a sample scenario. The tool enables the

graphical design of a BCI system by adding and connecting boxes representing

processing modules without writing a single line of code.

and include brain activity related visualizations. These boxes can access all the

platform functionalities, and particularly the whole stream content for the con-

nected inputs. Most 2D visualization boxes display input data in a widget and do

not produce output. Our system offers a wide range of visualization paradigms

such as raw signal display, gauges, power spectrum, time-frequency map and 2D

topography in which EEG activity is projected on the scalp surface in two dimen-

sions (see figure 3). OpenViBE also provides a visualization tool which displays

instructions to a user according to the protocol of the famous Graz motor imagery-

based BCI (Pfurtscheller & Neuper, 2001).

Existing and pre-configured ready-to-use scenarios are proposed to assist
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Figure 3: Examples of 2D displays: raw signals and time-frequency map display

widgets

the author. As the creation of new scenarios has been made fast and easy, the num-

ber of available scenarios is expected to rapidly increase. Currently, five complete

scenarios are available:

• Hand motor imagery based BCI: this scenario allows to use OpenViBE as

an interaction peripheral using imagined movements of the left and right

hand. This scenario is inspired from the well-known Graz-BCI of the Graz

University (Pfurtscheller & Neuper, 2001) (see section 9).

• Self-paced BCI based on foot movements: this scenario represents a BCI

based on real or imagined foot movements that can be used in a self-paced

way. This means the subject can interact with the application at any time,

contrary to most existing BCI (see section 9).

• Neurofeedback: this scenario shows the power of the brain activity in a

specific frequency band, and helps a subject in the task of self-training to

control that power.
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• Real-time visualization of brain activity in 2D/3D: this scenario enables the

user to visualize his own brain activity evolving in real-time on a 2D or

3D head model. This scenario can be used together with inverse solution

methods (Baillet, Mosher, & Leahy, 2001), in order to visualize the brain

activity in the whole brain volume, not only on the scalp surface, as in

(Arrouët et al., 2005) (see Figure 6).

• P300-speller: this scenario implements the famous P300-speller (Farwell

& Donchin, 1988)(Donchin, Spencer, & Wijesinghe, 2000), an application

which enables a user to spell letters by using only his brain activity, and

more precisely the event related potential known as the P300 (Wolpaw et

al., 2002) (see Figure 4 and Figure 6). It should be noted that OpenViBE

can also be used to design other P300-based BCI, and not only the P300-

speller. Interested readers may refer to (Sauvan, Lécuyer, Lotte, & Casiez,

2009) for another example of a P300-based BCI designed with OpenViBE.

Figure 5 summarizes how users interact with software and hardware compo-

nents. For example, the operator uses both the acquisition server and the designer;

the brain activity acquisition device feeds the acquisition server and the analysis

is performed on the computer hosting the designer. This results in a dedicated

embedded visualization that monitors the user’s brain activity.
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Figure 4: Examples of visualization widgets available in OpenViBE. Left: The

P300-speller. Right: 2D visualization of brain activity in real-time, on the scalp.

7 Connection with Virtual Reality

The platform includes a number of embedded 3D visualization widgets and is able

to interact with external VR applications thanks to standard communication pro-

tocols. However, OpenViBE does not aim at offering a complete set of scenegraph

managing capabilities, nor at embedding a VR application builder. Consequently,

OpenViBE users should be aware of what the platform is in charge of, and what

is left to external applications communicating with OpenViBE.

OpenViBE as an interaction device for external Virtual Reality applica-

tions: our platform can first be used as an interaction peripheral for any general

purpose application in real and virtual environments. As such, some of the data

processed by the scenario need to be exposed to the outside world. There are two

ways this goal can be achieved.

One way is to propose specific boxes which can expose parameters in a “con-

sidered as standard” way. For example, the platform includes a VRPN module
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Figure 5: Relations between users, hardware and software components.

(Taylor et al., 2001) that acts as a server and sends analogic and button values.

This is a convenient way to interact with existing VR applications. The advantage

stands in that VR application developers do not have to perform major modifica-

tions on their application to have it controlled by a BCI user. Examples of VR

applications using OpenViBE and the VRPN plugin are given in section 9.

The other way is to build an application using the platform as a third-party

peripheral management library. The developer has access to the whole exposed

data and is able to process and display it in his own application.

OpenViBE for direct visualization and interaction with 3D models: In

order to perform 3D visualization, with or without VR displays, the OpenViBE

kernel hides a scenegraph manager and exposes a number of functionalities such

as color, position, transparency and scale settings for 3D objects, as well as mesh
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management capabilities. This allows developers to easily and quickly develop

3D plugins using a simplified 3D Application Programming Interface (API). This

API offers the required functionalities to load and dynamically modify a 3D scene

based on the input data and allows direct visualization and interaction with 3D

models.

OpenViBE for real-time visualization of brain activity: OpenViBE is also

used to visualize brain activity in real-time or to get immmersive neurofeedback.

In order to achieve this, the scenegraph manager is used by several visualisation

widgets. Figure 6 shows two examples of what our platform offers in terms of

embedded 3D widgets for real-time visualization of brain activity: a 3D topo-

graphic map which displays the recorded potentials mapped onto a 3D head and a

voxelized reconstruction of the inside brain activity, based on scalp measures.

8 OpenViBE internals

This section describes the software architecture of the platform. In order to design

an extensible software, we followed the approach of already existing and widely

used VR softwares such as Virtools (Virtools website, 2007). In such softwares,

the classical kernel and plugin architecture ensures maximum extensibility. A new

plugin can be dynamically added and used by the kernel for the applications’ ben-

efit, without the need to rebuild the application or the kernel itself. Additionally,

composing scenarios based on elementary components ensures maximum flexi-

bility and reusability.
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Figure 6: 3D display of brain activity. Left: 3D topographic display of brain

activity in real-time, on the scalp. Right: Voxel reconstruction of brain activity

inside the brain, based on scalp measures.

Therefore, each application of our platform relies on a common kernel which

delegates tasks to a number of dedicated plug-ins as shown in Figure 7. Moreover,

the kernel offers the concept of box, allowing the creation of powerful tools such

as the designer authoring tool. Each of these components are presented in the

following sections.

8.1 The box concept

The box is a key component of the platform. It consists of an elementary compo-

nent in charge of a fraction of the whole processing pipeline. It exposes inputs and

outputs to other boxes. Each box can be notified on clock ticks and upon input data
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Figure 7: Software architecture.

arrival. The behavior of a box can be adapted to the needs of each algorithm (for

instance, acquisition algorithms typically react to clock signals whereas process-

ing algorithms typically react to input arrival). The characteristics and constraints

that are common to all boxes include reasonable granularity to allow quick soft-

ware components rearrangement. Newly developed boxes are immediately avail-

able to the user thanks to the plugin system (see section 8.3).

8.2 The kernel

The kernel provides global services to applications through several managers,

each of them providing a set of specialized services.

For example, the plug-in manager makes the platform extensible. This man-

ager is able to dynamically load plug-in modules (e.g., .DLL files under Windows,
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or .so files under Linux) and collect extensions from them, such as scenario se-

rializers, algorithms and boxes (see section 8.3). The plug-in system allows to

quickly and efficiently expand functionalities. The communication interface be-

tween these extensions and the kernel itself is defined so that they can easily be

shared, used and replaced when needed.

Another example is the scenario manager which helps creating and config-

uring scenarios. For instance, the manager can add or remove boxes, change their

settings and connect them altogether. The scenario manager can handle multiple

scenarios simultaneously. The designer authoring tool takes advantage of this in

order to edit them in multiple tabs.

Finaly, the visualization manager is responsible for displaying 2D or 3D

graphical information and setting their position and size in a window. Indeed,

multiple visualization windows may be used. The windows arrangement in space

is done by the visualization manager at editing time, thanks to the designer ap-

plication, and saved to a file. Basic signal display windows are provided with a

2D rendering context (see Figure 3), while more advanced rendering is performed

thanks to the encapsulated 3D library (see section 7).

Several other managers exist such as the player manager for an easy setup of

a runtime session, the configuration manager for a convenient way to configure

the whole platform with text files and the type manager which ensures coherency

and possibly conversions of all data types (e.g. box settings or connectors). In-

terested readers will find more information about those managers in the software

documentation (INRIA, 2009).
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8.3 Plug-ins

Our platform includes three different families of plug-in:

The driver plug-ins allow to add acquisition devices to the acquisition server.

A driver basically reads the signal from the device through a specific Software

Development Kit or a physical connection, and injects this signal into OpenViBE

in a generic way. The rest of the processing pipeline is therefore independent of

the acquisition hardware.

The algorithm plug-ins are a generic abstraction for any extension that could

be added to the platform (e.g., add new feature extraction or signal processing

methods). Algorithms are the developer’s atomic objects. The developer may

compose several algorithms in order to achieve a complex task. This kind of plu-

gin allows to massively share and reuse software components, even in an offline

context where time is handled at a different scale (e.g., EEG file reading or signal

visualization widgets).

The box plug-ins are the software components each box relies on. Boxes are

the author’s atomic objects. The developer describes them in a simple structure

that notably contains the box prototype (its name, input/output connectors and set-

tings). The box is responsible for the actual processing, i.e., it reads from inputs,

computes data to produce a result and writes to outputs. The box generally com-

bines several algorithm plug-ins together to perform its processing. This ensures

fast development thanks to the re-usability of components.

Additionally, it should be stressed that a specific box is available to developers:

a box that accepts Matlab code. This box aims at providing a tool to quickly
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develop and test some algorithms using the Matlab language. As soon as the

prototype gets functional, it can be implemented in C++ for better performances.

9 Examples of implementation

In this section, we illustrate the capabilities of our software and the way to use

it as an interaction device with two immersive applications: the “Handball” and

the “Use-the-force” applications. The description of the “Handball” application

includes a special emphasis on the way OpenViBE is used to design the BCI and

its associated scenarios.

9.1 The “Handball” application

The Handball VR application is an immersive 3D game in which the user can con-

trol a virtual ball by using a BCI based on imagined hand movements. The game

objective is to bring this ball into a goal cage. As such, this application enables

to illustrate the use of OpenVIBE for the design of a very popular kind of BCI,

namely a motor-imagery based BCI (Pfurtscheller & Neuper, 2001), and its use

for interaction with a VR application. This section briefly describes the BCI sys-

tem and the VR game, then it details how OpenViBE is used in the implementation

of this application and reports on an online experiment with real subjects.
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9.1.1 BCI system

For this application, we used a motor-imagery based BCI which is inspired from

the well known Graz BCI (Pfurtscheller & Neuper, 2001). Such BCI have been

used successfully with several VR applications (Friedman et al., 2007; Leeb et al.,

2006). With this system, the user has to perform imagined movements of his left

or right hand to generate the brain signals expected by the BCI.

It is established that performing an imagined hand movement triggers EEG

power variations in the µ (≃ 8-13 Hz) and β (≃ 13-30 Hz) frequency bands,

over the motor cortices (Pfurtscheller & Neuper, 2001). Consequently, to identify

these specific variations, the BCI uses logarithmic Band Power (BP) for feature

extraction. Such features are simply computed by band-pass filtering the signal

in subject-specific frequency bands (roughly in the µ and β bands), squaring it,

averaging it over a given time-window and computing its logarithm. Such features

are extracted from the EEG channels located over the motor cortex. The generated

feature vector is then passed to an efficient and widely used classifier, the Linear

Discriminant Analysis (LDA), which will identify the signal class, i.e., “left” or

“right”, depending on the hand chosen for the imagined movement. In order to

improve the performance of the BCI, we also used temporal and spatial filtering

as preprocessing (see section 9.1.3 for details).
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9.1.2 Virtual reality game

The VE for this application was a virtual gymnasium equipped with a handball

playing court and its two goal cages. The two goals were located on each side of

the screen (see Figure 8); virtual ball was also located in this VE and could be

controlled by the user as part of the game. Each time the BCI system recognized

an imagined left hand movement in the brain activity, an event was sent to the VE,

and the ball rolls towards the left goal. By symetry, the detection of an imagined

right hand movement triggers the ball to roll towards the right goal. It should be

noted that this application operated in a synchronous mode, which means the user

could move the ball only during specific time periods, instructed by the system.

As part of this game, the player’s objective was to bring the ball into one of these

two goals, as instructed by the application. More precisely, a game session was

composed of 40 trials, among which 20 instructed the user to score in the left goal

and 20 in the right goal. The order of the trials was randomized within a session.

A trial was arranged as follows: at the beginning fo the trial (t=0s), the ball was

located at the center of the playing ground, i.e., at the center of the screen. At t=2s,

the ball color changed from red to green to indicate the user he should get ready to

perform motor imagery to move the ball. At t=3.25s, a downward pointing arrow

appears above one of the two goals to indicate the target goal. From t=4s to t=8s

the user can move the ball continuously by using motor imagery and should try

to reach the target goal. At the end of the trial, the ball automatically goes back

to the screen center. The user scores a point if, at the end of the trial, the ball is

closer to the target goal than to the other. A trial is followed by a short rest period
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of random duration. It should be noted that the experimental paradigm used in this

application is equivalent to that of the Graz BCI protocol (Pfurtscheller & Neuper,

2001)

Figure 8: The Handball VR application. The user can move the virtual ball to-

wards the left or right by imagining left or right hand movements.

9.1.3 Implementation with OpenViBE

As mentioned previously, before using a BCI, an offline training phase is required

in order to calibrate the system. This training phase needs a set of sample EEG

signals. Consequently, the implementation of the BCI of this application is di-

vided into four OpenViBE scenarios: three scenarios for the calibration of the
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BCI (acquisition of training data, selection of subject-specific frequency bands

and classifier training) and one scenario for the online use of the BCI.

Step 1: Acquisition of training data. This phase aims at collecting training

EEG data recorded while the subject performs imagined left or right hand move-

ments. The scenario corresponding to this phase simply consists in the assembly

of four boxes. The first one is a generic network acquisition box which acquires

the recorded EEG signals. The second is a file writer box, which writes these EEG

signals into a file using the GDF (General Data Format) format (Schlogl, 2006).

The next box is a visualization box which to displays the instructions that the user

will have to follow. These instructions are: perform an imagined movement of the

left or right hand, rest, etc. Finally, a stimulation box is used. This box generates

events according to an XML file passed as parameter. These events are sent to the

visualization box, which will display the corresponding instructions, and to the

file writer box, which will store the events in order to know when the subject was

asked to perform imagined movements. These events are generated according to

the Graz BCI protocol (Pfurtscheller & Neuper, 2001).

Step 2: Offline training. This phase consists in determining the optimal BCI

parameters for the subject, i.e., the optimal frequency bands for discriminating the

two brain states using BP features, and the parameters of the LDA classifier. The

optimal frequency bands are obtained using a statistical analysis on the training

EEG signals, as in (Zhong, Lotte, Girolami, & Lécuyer, 2008)(Lotte, Lécuyer,

et al., 2007). The LDA classifier is then trained on the BP features extracted

from the EEG training data. This offline training phase is decomposed into two
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scenarios: one for selecting the optimal frequency bands and one for training the

classifier. For these two scenarios, three specific boxes are necessary: a GDF

file reader, in charge of reading the data recorded during the previous phase, a

statistical analysis box that will estimate the best frequency bands in which to

extract the BP features, and a LDA training box to train the classifier on these

features. All obtained parameters are saved for further use, i.e., during the online

phase. It is worth noting that once the training is achieved, two pieces of scenario

are generated: one contains the assembly of boxes that are necessary to extract

BP features in the selected frequency bands and another contains the trained LDA

classifier.

Step 3: Online use of the BCI. The last phase is the online use of the BCI.

The OpenViBE scenario corresponding to this phase is displayed in Figure 9. In

this scenario, we can observe the classical steps of a BCI which are represented

as boxes. The measurement of cerebral activity is represented by the “Generic

network acquisition” box. The preprocessing step corresponds to two boxes: 1)

the “Temporal filter” box, which filters the data in the 3-45 Hz frequency band

(here using a butterworth filter) and 2) the “Spatial filter” box, which applies a

discrete surface Laplacian filter to the data (Wolpaw et al., 2002) in order to build

two Laplacian channels over the left and right motor cortices. The feature ex-

traction step is represented by the “Time based epoching” box, which builds an

EEG segment representing the last second of data, each 1/16 second, and by the

“Temporal filter”, “Simple DSP” and “Signal Average” boxes which are used to

compute the BP features in the frequency bands identified in the previous phase.
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Figure 9: OpenViBE scenario for the Handball application. This scenario per-

forms the online processing of the recorded EEG data in order to identify left or

right imagined hand movements. The output of this processing is sent to the VR

application by using VRPN.

Here the “Simple DSP” box allows us to apply any mathematical formula (such

as log-transform or squaring) to the incoming data. These features are then aggre-

gated into a feature vector (“Feature aggregator” box). Note that all these boxes

for feature extraction are generated and assembled automatically when running

the offline training scenarios, and as such do not need to be assembled by hand.

The “LDA classifier” box is the classification step and uses the LDA trained dur-

ing the previous phase. Finally, the output of this classifier is sent through the
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VRPN server (“Analog VRPN Server” box) to the VR application which trans-

lates it into a command used to interact with the VE and to provide feedback

to the subject. The “XML stimulation player” box is used here to generate the

instructions, i.e., which movement (left or right) the subject has to imagine. In-

structions are used here in order to measure the subject performances. This box

sends events to the VR application, using the “Button VRPN server” box which

will then provide the corresponding stimuli to the subject. It should be noted that,

as most existing BCI, this BCI is synchronous which means the user can interact

with the application only during specific time periods, imposed by the system.

9.1.4 An online experiment with the “Handball” application

In order to illustrate the use of our BCI platform and its suitability to design BCI-

based interaction devices for VR, we performed a pilot study with two male sub-

jects (23 and 25 year old). They participated in an online experiment with the

“Handball” application in order to assess whether BCI implemented with Open-

VIBE could be used to interact with a VR application. The two subjects had

previously participated in a few motor imagery BCI experiments. It was however

the first time they used this specific BCI-based VR application. The subjects’

brain activity was recorded using 10 EEG channels (FC3, FC4, C5, C3, C1, C2,

C4, C6, CP3, CP4), located over the left and right motor cortices, using a Nexus

32b EEG machine from the Mind Media company. The experiment took place in

an immersive virtual reality room equipped with a 3 meters curved wall on which

the VE was projected. Subjects were equipped with stereoscopic glasses. The VE
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was displayed at a frame rate of 96 Hz.

The two subjects first participated in sessions during which the EEG signals

were recorded and stored (step 1 above). These EEG signals were then used to

train the LDA classifier (step 2 above). Once a suitable classifier was obtained,

the two subjects participated in two game sessions each, as described in section

9.1.2 (step 3 above). Subject 1 reached a score of 82.5 % (33/40) in his two game

sessions whereas subject 2 reached a performance of 70 % (28/40) for the first ses-

sion and 87.5 % (35/40) for the second session. By comparison, the score expected

by a randomly performing system would be 50 % (20/40). These performances

suggest that the subjects were actually having control over the VR application

thanks to the BCI. Both subjects also reported that they found the application re-

ally entertaining and motivating, which is in line with results from the literature

reporting that VR can increase the motivation during BCI experiments (Friedman

et al., 2007). Naturally, these results should be moderated by the small number of

subjects involved but they still suggest that OpenViBE can be used to design BCI

system for interaction with VE. Further evaluations of this application with more

subjects is part of ongoing works.

9.2 The “Use-the-force” application.

In addition to the “Handball” VR application, we have developed another VR ap-

plication based on OpenViBE. This application is known as the “Use-the-force”

application, and is an entertaining VR application inspired by the famous “Star

warsT M” movie. The aim of this application was to explore the design of self-
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paced BCI (see below) and to further validate the OpenViBE platform with many

users and in real-life conditions, outside laboratories. In the “Use-the-force” ap-

plication, subjects could lift a virtual space-ship (a “TIE-fighter”) by performing

real or imagined foot movements. Indeed, it is well known that, briefly after a

real or imagined foot movement, a specific brain signal is generated in the user’s

brain: an Event Related Synchronization (ERS) in the Beta rhythm, i.e., a brisk

increase of EEG amplitude in the 16-24 Hz frequency band (Pfurtscheller, 1999).

Interestingly, this brain signal is mainly located in the central area of the brain,

and is therefore potentially detectable with a single electrode (electrode Cz).

Using OpenViBE, we have designed a BCI system that can detect this Beta

ERS in electrode Cz, in a self-paced way, i.e., at any time and not only during

specific periods. This BCI simply consists of the estimation of a Band Power fea-

ture in the 16-24 Hz band, followed by a comparison of this feature value with a

threshold in order to detect whether an ERS occured. In the VR application, each

time a ERS was detected, the virtual spaceship was lifted up at a speed propor-

tional to the amplitude of the ERS. Figure 10 illustrates this application in action

in an immersive VR room.

We have evaluated this application with 21 subjects who had no previous BCI

experience, during a VR exhibition, i.e., in real-life conditions, with a very noisy

environment. Our results showed that despite the use of a single electrode and

a simple BCI, and despite the fact that the subjects were naive, untrained and

in a very noisy environment, more than half of them were able to control the

virtual spaceship using real foot movement from the very first time, and similarly
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a quarter of them could control it using imagined movement, from the very first

time. More details about this experiment can be found in (Lotte et al., 2008). In

summary, the conducted experiments with this second VR application showed the

capability of the OpenViBE platform to design BCI and to use them in real-life

conditions. Moreover, regarding the challenging conditions of the experiment (a

single EEG channel, no subject training, very noisy environment, etc), the results

obtained appeared as very promising.

Figure 10: The “Use-the-force” application. In this application, the user can lift

a virtual spaceship by performing real or imagined foot movements. ( c©CNRS

Photothèque/Hubert Raguet).

34



10 Performance tests

To evaluate OpenViBE performances during online operation, we used two differ-

ent scenarios that were run on three different hardware configurations. Configura-

tion A is an Intel(R) Xeon(TM) CPU 3.80 GHz computer with 4 GB of RAM and

running GNU/Linux Fedora Core 6. Configuration B is an Intel(R) Core(TM)2

CPU T7400 2.16GHz laptop with 2 GB of RAM and running GNU/Linux Fe-

dora Core 5. Configuration C is an Intel(R) Core(TM) 2 DUO CPU E6850 3GHz

computer with 4 GB of RAM and running GNU/Linux Ubuntu 9.04 Jaunty.

The first scenario is the Handball VR application scenario which represents a

realistic implementation of a BCI. Indeed, the BCI used in the Handball VR ap-

plication consists of frequency and spatial filtering as preprocessing, followed by

feature extraction with band-power estimation, and completed by a LDA as clas-

sifier. This design corresponds to well known BCI systems such as the Graz BCI

(Ramoser, Muller-Gerking, & Pfurtscheller, 2000)(Pfurtscheller & Neuper, 2001)

or the Berlin BCI (Blankertz et al., 2006). The main difference between these

two BCI and the Handball application BCI lies in the spatial filter used: the Graz-

BCI uses bipolar and Laplacian derivations, our BCI uses a Laplacian derivation

and the Berlin BCI uses the Common Spatial Patterns (CSP) algorithm. However,

these three spatial filters are all simple linear spatial filters and, as such, require

similar computation times. Further differences between these three BCI exist in

the machine learning algorithms employed to calibrate these BCI. However, as

machine learning for BCI calibration is an offline operation, it is not of concern
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here.

The OpenViBE scenario for the BCI of the handball application is composed

of 34 OpenViBE boxes. It consists in processing 11 channels (10 EEG channels

+ a reference channel) sampled at 512 Hz and acquired in blocks of 32 samples.

The signal processing pipeline is identical to the one described in section 9.1.1.

The average processor load was computed every second during five minutes (300

measures). The global average over the five minutes is presented in Table 1, for

each configuration.

In the second scenario, we tried to reach the limits of the platform. The sce-

nario consisted in reading a 512 channels EEG file followed by multiple butter-

worth band-pass filters. We added as many band-pass filters as possible while still

keeping a processor load below 100 %. Such a scenario could be used when ana-

lyzing multiple frequency bands for a large number of channels, e.g., to design a

magnetoencephalography-based BCI (Mellinger et al., 2007). Indeed, MEG sys-

tem are generally composed of hundreds of channels. As in the first scenario,

the average processor load was computed every second during five minutes. The

number of filters we were able to process in real-time and the associated global

processor load average are displayed in Table 1.

Taken together our results suggests that our system is able to address realistic

use cases such as a motor imagery based BCI. They also show that our system

is able to apply a large number of signal processing algorithms (e.g., band-pass

filters) while still keeping the real-time constraints.
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Computer Processor load Maximum number of Processor load

configuration on scenario 1 filters on scenario 2 on scenario 2

A 7.17% 6 144 98.26%

B 6.80% 7 680 88.13%

C 3.45% 19 896 97.93%

Table 1: Performance tests: processor load of scenario 1 and maximum number of

filters of scenario 2 with corresponding processor load under different hardware

configurations.

11 Current state of the platform

The OpenViBE software can be downloaded for free at http://openvibe.inria.fr

under the terms of L-GPL6. The software currently runs on Microsoft Windows

2000/XP/Vista/7 and GNU/Linux. Several acquisition devices are already sup-

ported. Those include for instance Brainamp Standard, g.Tec g.USBamp, Mind-

Media NeXus32B, MicroMed IntraEEG and CTF/VSF MEG 7.

Existing boxes include generic network acquisition, file reading and writing,

signal processing and filtering, feature extraction and basic classifications, in ad-

dition to most common visualization paradigms (e.g., raw signals, spectra, time

frequency analysis, 2D/3D topography). It also provides the necessary tools to

easily use 3D objects in immersive VE, within the platform, in order to design

advanced feedback or visualizations. The software is delivered with ready-to-use

scenarios. For instance it proposes a scenario of a BCI based on imagined hand

movements that could already be used as an interaction device for various appli-

6Plug-ins relying on GPL are available separately under GPL terms
7A complete list of supported devices can be found on the OpenViBE website

http://openvibe.inria.fr
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cations in real and virtual environments.

12 Conclusion

In this paper we have presented the OpenViBE platform, a free and open-source

platform to design, test and use Brain-Computer Interfaces in real or virtual en-

vironments. Our platform provides the necessary tools for real-time data acquisi-

tion, processing and display of brain signals. The key features of the platform are

1) a high modularity, 2) embedded tools for visualization and feedback based on

VR and 3D displays, 3) BCI design made available to non-programmers thanks

to the OpenViBE designer that enables to setup a complete BCI without writing a

single line of code and 4) various tools offered to the different types of user, such

as the acquisition server or the pre-configured scenarios. OpenViBE also offers

the possibility to be used easily as an interaction device with any real or virtual

environment. The platform capabilities were illustrated on two entertaining VR

applications based on a BCI. In the first application, users could move a virtual

ball by imagining hand movements, while in the second one they could lift a vir-

tual spaceship by using real or imagined foot movements. The evaluation of the

platform performances has shown its suitability for real-time applications. We be-

lieve that OpenViBE could prove a valuable and useful tool to design innovative

BCI-based interaction devices for both VR and real-life applications. This could

include applications such as video games and assistive devices. Interested readers

can refer to the OpenViBE web site to follow the evolution of the platform and
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download it for free (INRIA, 2009).

Future work. The OpenViBE platform being an open-source software, it is

aimed at being continuously improved and extended, hopefully also by contribu-

tors from many different institutions. Currently, our labs are working to propose

new functionalities for the authoring tools in order to increase the productivity

of end users (both for authors and operators). Efforts will be also dedicated to

the growth of the platform by adding, for example new algorithms for detecting

more efficiently a higher number of signals or new visualization techniques of

brain activity in VR. Lastly, distributed computing over dedicated hardware will

be implemented in the kernel thanks to the box concept.
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