
HAL Id: hal-00477149
https://hal.science/hal-00477149

Submitted on 28 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Emptiness Check for Timed Büchi Automata
Frédéric Herbreteau, B. Srivathsan, Igor Walukiewicz

To cite this version:
Frédéric Herbreteau, B. Srivathsan, Igor Walukiewicz. Efficient Emptiness Check for Timed Büchi
Automata. CAV - 22nd International Conference on Computer Aided Verification - 2010, Jul 2010,
Edinburgh, United Kingdom. pp.148-161, �10.1007/978-3-642-14295-6_15�. �hal-00477149�

https://hal.science/hal-00477149
https://hal.archives-ouvertes.fr

Efficient Emptiness Check for Timed Büchi

Automata

F. Herbreteau, B. Srivathsan, and I. Walukiewicz

LaBRI (Université de Bordeaux -CNRS)

Abstract. The Büchi non-emptiness problem for timed automata con-
cerns deciding if a given automaton has an infinite non-Zeno run satis-
fying the Büchi accepting condition. The standard solution to this prob-
lem involves adding an auxiliary clock to take care of the non-Zenoness.
In this paper, we show that this simple transformation may sometimes
result in an exponential blowup. We propose a method avoiding this
blowup.

1 Introduction

Timed automata [1] are widely used to model real-time systems. They are ob-
tained from finite automata by adding clocks that can be reset and whose values
can be compared with constants. The crucial property of timed automata is that
their emptiness is decidable. This model has been implemented in verification
tools like Uppaal [3] or Kronos [7], and used in industrial case studies [12,4,13].

While most tools concentrate on the reachability problem, the questions con-
cerning infinite executions of timed automata are also of interest. In the case
of infinite executions one has to eliminate so called Zeno runs. These are ex-
ecutions that contain infinitely many steps taken in a finite time interval. For
obvious reasons such executions are considered unrealistic. In this paper we
study the problem of deciding if a given timed automaton has a non-Zeno run
passing through accepting states infinitely often. We call this problem Büchi
non-emptiness problem.

This basic problem has been of course studied already in the paper introduc-
ing timed automata. It has been shown that using so called region abstraction
the problem can be reduced to the problem of finding a path in a finite region
graph satisfying some particular conditions. The main difference between the
cases of finite and infinite executions is that in the latter one needs to decide if
the path that has been found corresponds to a non Zeno run of the automaton.

Subsequent research has shown that the region abstraction is very ineffi-
cient for reachability problems. Another method using zones instead of regions
has been proposed. It is used at present in all timed-verification tools. While
simple at the first sight, the zone abstraction was delicate to get right. This
is mainly because the basic properties of regions do not transfer to zones. The
zone abstraction also works for infinite executions, but unlike for regions, it is
impossible to decide if a path in a zone graph corresponds to a non-Zeno run of
the automaton.

2 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

There exists a simple solution to the problem of Zeno runs that amounts to
transforming automata in such way that every run passing through an accepting
state infinitely often is non-Zeno. An automaton with such a property is called
strongly non-Zeno. The transformation is easy to describe and requires addition
of one new clock. This paper is motivated by our experiments with an imple-
mentation of this construction. We have observed that this apparently simple
transformation can give a big overhead in the size of a zone graph.

In this paper we closely examine the transformation to strongly non-Zeno
automata [17], and show that it can inflict a blowup of the zone graph; and this
blowup could even be exponential in the number of clocks. To substantiate, we
exhibit an example of an automaton having a zone graph of polynomial size,
whose transformed version has a zone graph of exponential size. We propose
another solution to avoid this phenomenon. Instead of modifying the automaton,
we modify the zone graph. We show that this modification allows us to detect if
a path can be instantiated to a non-Zeno run. Moreover the size of the modified
graph is |ZG(A)|.|X|, where |ZG(A)| is the size of the zone graph and |X| is
the number of clocks.

In the second part of the paper we propose an algorithm for testing the exis-
tence of accepting non-Zeno runs in timed automata. The problem we face highly
resembles the emptiness testing of finite automata with generalized Büchi con-
ditions. Since the most efficient solutions for the latter problem are based on the
Tarjan’s algorithm, we take the same way here. We present an algorithm whose
running time is bounded by |ZG(A)|.|X|2. We also report on the experiments
performed with a preliminary implementation of this algorithm.

Related work The zone approach has been introduced in Petri net context [5], and
then adapted to the framework of timed automata [9]. The advantage of zones
over regions is that they do not require to consider every possible unit time
interval separately. The delicate point about zones was to find a right approxi-
mation operator. Indeed while regions are both pre- and post-stable, zones are
not pre-stable, and some care is needed to guarantee post-stability. Post-stability
is enough for correctness of the reachability algorithm, and for testing if a path
in the zone graph can be instantiated to a run of the automaton. It is however
not possible to determine if a path can be instantiated to a non-Zeno run. The
solution involving adding one clock has been discussed in [15,17,2]. Recently, Tri-
pakis [16] has shown a way to extract an accepting run from a zone graph of the
automaton. Combined with the construction of adding one clock this gives a solu-
tion to our problem. A different approach has been considered in [11] where syn-
tactic conditions are proposed for a timed automaton to be free from Zeno runs.
Notice that for obvious complexity reasons, any such condition must be either
not complete, or of the same algorithmic complexity as the emptiness test itself.

Organization of the paper In the next section we formalize our problem, and dis-
cuss region and zone abstractions. As an intermediate step we give a short proof
of the above mentioned result from [16]. Section 3 explains the problems with
the transformation to strongly non-Zeno automata, and describes our alternative
method. The following section is devoted to a description of the algorithm.

Efficient Emptiness Check for Timed Büchi Automata 3

2 The Emptiness Problem for Timed Büchi Automata

2.1 Timed Büchi Automata

Let X be a set of clocks, i.e., variables that range over R≥0, the set of non-
negative real numbers. Clock constraints are conjunctions of comparisons of
variables with integer constants, e.g. (x ≤ 3 ∧ y > 0). Let Φ(X) denote the
set of clock constraints over clock variables X.

A clock valuation over X is a function ν : X → R≥0. We denote R
X
≥0 for

the set of clock valuations over X, and 0 : X → {0} for the valuation that
associates 0 to every clock in X. We write ν |= φ when ν satisfies φ, i.e. when
every constraint in φ holds after replacing every x by ν(x).

For a valuation ν and δ ∈ R≥0, let (ν + δ) be the valuation such that (ν +
δ)(x) = ν(x) + δ for all x ∈ X. For a set R ⊆ X, let [R]ν be the valuation such
that ([R]ν)(x) = 0 if x ∈ R and ([R]ν)(x) = ν(x) otherwise.

A Timed Büchi Automaton (TBA) is a tuple A = (Q, q0, X, T,Acc) where
Q is a finite set of states, q0 ∈ Q is the initial state, X is a finite set of clocks,
Acc ⊆ Q is a set of accepting states, and T ⊆ Q×Φ(X)× 2X ×Q is a finite set
of transitions (q, g, R, q′) where g is a guard, and R is a reset of the transition.

A configuration of A is a pair (q, ν) ∈ Q×R
X
≥0; with (q0,0) being the initial

configuration. A discrete transition between configurations (q, ν)
t

⇀ (q′, ν′) for
t = (q, g, R, q′) is defined when ν � g and ν′ = [R]ν. We also have delay transi-

tions between configurations: (q, ν)
δ
⇁ (q, ν + δ) for every q, ν and δ ∈ R≥0. We

write (q, ν)
δ,t
−→ (q′, ν′) if (q, ν)

δ
⇁ (q, ν + δ)

t
⇀ (q′, ν′).

A run of A is a finite or infinite sequence of configurations connected by
δ,t
−→

transitions, starting from the initial state q0 and the initial valuation ν0 = 0:

(q0, ν0)
δ0,t0
−−−→ (q1, ν1)

δ1,t1
−−−→ · · ·

A run σ satisfies the Büchi condition if it visits accepting configurations infinitely
often, that is configurations with a state from Acc. The duration of the run is
the accumulated delay:

∑
i≥0 δi. A run σ is Zeno if its duration is bounded.

Definition 1. The Büchi non-emptiness problem is to decide if A has a non-
Zeno run satisfying the Büchi condition.

The class of TBA we consider is usually known as diagonal-free TBA since
clock comparisons like x − y ≤ 1 are disallowed. Since we are interested in
the Büchi non-emptiness problem, we can consider automata without an input
alphabet and without invariants since they can be simulated by guards.

The Büchi non-emptiness problem is known to be Pspace-complete [1].

2.2 Regions and region graphs

A simple decision procedure for the Büchi non-emptiness problem builds from A
a graph called the region graph and tests if there is a path in this graph satisfying
certain conditions. We will define two types of regions.

4 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Fix a constant M and a finite set of clocks X. Two valuations ν, ν′ ∈ R
X
≥0

are region equivalent w.r.t. M , denoted ν ∼M ν′ iff for every x, y ∈ X:

1. ν(x) > M iff ν′(x) > M ;
2. if ν(x) ≤ M , then ⌊ν(x)⌋ = ⌊ν′(x)⌋;
3. if ν(x) ≤ M , then {ν(x)} = 0 iff {ν′(x)} = 0;
4. if ν(x) ≤ M and ν(y) ≤ M then {ν(x)} ≤ {ν(y)} iff {ν′(x)} ≤ {ν′(y)}.

The first three conditions ensure that the two valuations satisfy the same
guards. The last one enforces that for every δ ∈ R≥0 there is δ′ ∈ R≥0, such that
valuations ν + δ and ν′ + δ′ satisfy the same guards.

We will also define diagonal region equivalence (d-region equivalence for short)
that strengthens the last condition to

4d. for every integer c ∈ (−M,M): ν(x) − ν(y) ≤ c iff ν′(x) − ν′(y) ≤ c

This region equivalence is denoted by ∼d
M . Observe that it is finer than ∼M .

A region is an equivalence class of ∼M . We write [ν]∼M
for the region of

ν, and RM for the set of all regions with respect to M . Similarly, for d-region
equivalence we write: [ν]d∼M

and Rd
M . If r is a region or a d-region then we will

write r � g to mean that every valuation in r satisfies the guard g. Observe that
all valuations in a region, or a d-region, satisfy the same guards.

For an automaton A, we define its region graph, RG(A), using ∼M relation,
where M is the biggest constant appearing in the guards of its transitions. Nodes
of RG(A) are of the form (q, r) for q a state of A and r ∈ RM a region. There

is a transition (q, r)
t
−→ (q′, r′) if there are ν ∈ r, δ ∈ R≥0 and ν′ ∈ r′ with

(q, ν)
δ,t
−→ (q′, ν′). Observe that a transition in the region graph is not decorated

with a delay. The graph RGd(A) is defined similarly but using the ∼d
M relation.

It will be important to understand the properties of pre- and post-stability

of regions or d-regions [17]. We state them formally. A transition (q, r)
t
−→ (q′, r′)

in a region graph or a d-region graph is:

– Pre-stable if for every ν ∈ r there are ν′ ∈ r′, δ ∈ R≥0 s.t. (q, ν)
δ,t
−→ (q′, ν′).

– Post-stable if for every ν′ ∈ r′ there are ν ∈ r, δ ∈ R≥0 s.t. (q, ν)
δ,t
−→ (q′, ν′).

The following lemma (cf. [6]) explains our interest in ∼d
M relation.

Lemma 1 (Pre and post-stability). Transitions in RGd(A) are pre-stable
and post-stable. Transitions in RG(A) are pre-stable but not necessarily post-
stable.

Consider two sequences

(q0, ν0)
δ0,t0
−−−→ (q1, ν1)

δ1,t1
−−−→ · · · (1)

(q0, r0)
t0−→ (q1, r1)

t1−→ · · · (2)

where the first is a run in A, and the second is a path in RG(A) or RGd(A). We
say that the first is an instance of the second if νi ∈ ri for all i ≥ 0. Equivalently,
we say that the second is an abstraction of the first. The following lemma is a
direct consequence of the pre-stability property.

Efficient Emptiness Check for Timed Büchi Automata 5

Lemma 2. Every path in RG(A) is an abstraction of a run of A, and con-
versely, every run of A is an instance of a path in RG(A). Similarly for RGd(A).

This lemma allows us to relate the existence of an accepting run of A to the
existence of paths with special properties in RG(A) or RGd(A). We say that a
path as in (2) satisfies the Büchi condition if it has infinitely many occurrences
of states from Acc. The path is called progressive if for every clock x ∈ X:

– either x is almost always above M : there is n with ri � x > M for all i > n;
– or x is reset infinitely often and strictly positive infinitely often: for every n

there are i, j > n such that ri � (x = 0) and rj � (x > 0).

Theorem 1 ([1]). For every TBA A, L(A) 6= ∅ iff RG(A) has a progressive
path satisfying the Büchi condition. Similarly for RGd(A).

While this theorem gives an algorithm for solving our problem, it turns
out that this method is very impractical. The number of regions RA(A) is
O(|X|!2|X|M |X|) [1] and constructing all of them, or even searching through
them on-the-fly, has proved to be very costly.

2.3 Zones and zone graphs

Timed verification tools use zones instead of regions. A zone is a set of valuations
defined by a conjunction of two kinds of constraints : comparison of the difference
between two clocks with a constant, or comparison of the value of a single clock
with a constant. For example (x− y ≥ 1)∧ (y < 2) is a zone. While at first sight
it may seem that there are more zones than regions, this is not the case if we
count only those that are reachable from the initial valuation.

Since zones are sets of valuations defined by constraints, one can define dis-

crete and delay transitions directly on zones. For δ ∈ R≥0, we have (q, Z)
δ
⇁

(q, Z ′) if Z ′ is the smallest zone containing the set of all the valuations ν + δ

with ν ∈ Z. Similarly, for a discrete transition we put (q, Z)
t

⇀ (q′, Z ′) if Z ′ is

the set of all the valuations ν′ such that (q, ν)
t

⇀ (q′, ν′) for some ν ∈ Z; Z ′ is
a zone in this case. Moreover zones can be represented using Difference Bound
Matrices (DBMs), and transitions can be computed efficiently on DBMs [9]. The
problem is that the number of reachable zones is not guaranteed to be finite [8].

In order to ensure that the number of reachable zones is finite, one introduces
abstraction operators. We mention the three most common ones in the literature.
They refer to region graphs, RG(A) or RGd(A), and use the constant M that
is the maximal constant appearing in the guards of A.

– ClosureM (Z): the smallest union of regions containing Z;
– Closured

M (Z): similarly but for d-regions;
– ApproxM (Z): the smallest union of d-regions that is convex and contains Z.

The following lemma establishes the links between the three abstraction op-
erators, and is very useful to transpose reachability results from one abstraction
to the other.

6 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Lemma 3 ([6]). For every zone Z: Z ⊆ Closured
M (Z) ⊆ ApproxM (Z) ⊆

ClosureM (Z).

A symbolic zone S is a zone approximated with one of the above abstraction
operators. Now, similar to region graphs, we define simulation graphs where after
every transition a specific approximation operation is used, that is each node in
the simulation graph is of the form (q, S) with S being a symbolic zone . So we
have three graphs corresponding to the three approximation operations.

Take an automaton A and let M be the biggest constant appearing in the
guards of its transitions. In the simulation graph SG(A) the nodes are of the
form (q,ClosureM (Z)) where q is a state of A and Z is a zone. The initial node
is (q0,ClosureM (Z0)), with q0 the initial state of A, and Z0 the zone setting

all the variables to 0. The transitions in the graph are (q,ClosureM (Z))
t
−→

(q′,ClosureM (Z ′)) where Z ′ is the set of valuations ν′ such that there exist

ν ∈ ClosureM (Z) and δ ∈ R≥0 satisfying (q, ν)
δ,t
−→ (q′, ν′). Similarly for SGd(A)

and SGa(A) but replacing ClosureM with operations Closured
M and ApproxM ,

respectively. The notions of an abstraction of a run of A, and an instance of a
path in a simulation graph are defined in the same way as that of region graphs.

Tools like Kronos or Uppaal use ApproxM abstraction. The two others are less
interesting for implementations since the result may not be convex. Nevertheless,
they are useful in proofs. The following lemma (cf. [8]) says that transitions in
SG(A) are post-stable with respect to regions.

Lemma 4. Let (q, S)
t
−→ (q′, S′) be a transition in SG(A). For every region

r′ ⊆ S′, there is a region r ⊆ S such that (q, r)
t
−→ (q′, r′) is a transition in

RG(A).

We get a correspondence between paths in simulation graphs and runs of A.

Theorem 2 ([16]). Every path in SG(A) is an abstraction of a run of A, and
conversely, every run of A is an instance of a path in SG(A). Similarly for SGd

and SGa.

Proof. We first show that a path in SG(A) is an abstraction of a run of A.

Take a path (q0, S0)
t0−→ (q1, S1)

t1−→ . . . in SG(A). Construct a DAG with
nodes (i, qi, ri) such that ri is a region in Si. We put an edge from (i, qi, ri) to

(i+1, qi+1, ri+1) if (qi, ri)
ti−→ (qi+1, ri+1). By Lemma 4, every node in this DAG

has at least one predecessor, and the branching of every node is bounded by
the number of regions. Hence, this DAG has an infinite path that is a path in
RG(A). By Lemma 2 this path can be instantiated to a run of A.

To conclude the proof one shows that a run of A can be abstracted to a
path in SGd(A). Then using Lemma 3 this path can be converted to a path in
SGa(A), and later to one in SG(A). We omit the details.

Observe that this theorem does not guarantee that a path we find in a sim-
ulation graph has an instantiation that is non-Zeno. It is indeed impossible to

Efficient Emptiness Check for Timed Büchi Automata 7

guarantee this unless some additional conditions on paths or automata are im-
posed.

In the subsequent sections, we are interested only in the simulation graph
SGa. Observe that the symbolic zone obtained by the approximation of a zone
using ApproxM is in fact a zone. Hence, we prefer to call it a zone graph and
denote it as ZGa. Every node of ZGa is of the form (q, Z) where Z is a zone.

3 Finding non Zeno paths

As we have remarked above, in order to use Theorem 2 we need to be sure that
a path we get can be instantiated to a non-Zeno run. We discuss the solutions
proposed in the literature, and then offer a better one. Thanks to pre-stability
of the region graph, the progress criterion on regions has been defined in [1] for
selecting runs from RG(A) that have a non-Zeno instantiation (see Section 2.2).
Notice that the semantics of TBA in [1] constrains all delays δi to be strictly
positive, but the progress criterion can be extended to the stronger semantics
that is used nowadays (see [17] for instance). However, since zone graphs are not
pre-stable, this method cannot be directly extended to zone graphs.

3.1 Adding one clock

A common solution to deal with Zeno runs is to transform an automaton into a
strongly non-Zeno automaton, i.e. such that all runs satisfying the Büchi condi-
tion are guaranteed to be non-Zeno. We present this solution here and discuss
why, although simple, it may add an exponential factor in the decision procedure.

The transformation of A into a strongly non-Zeno automaton SNZ(A) pro-
posed in [17] adds one clock z and duplicates accepting states. One copy of the
state is as before but is no longer accepting. The other copy is accepting, but
it can be reached only when z ≥ 1. Moreover when it is reached z is reset to 0.
The only transition from this second copy leads to the first copy. (See Vk and
Wk on Figure 1 for an example.) This construction ensures that at least one unit
of time has passed between two visits to an accepting state. A slightly different
construction is mentioned in [2]. Of course one can also have other modifications,
and it is impossible to treat all the imaginable constructions at once. Our objec-
tive here is to show that the constructions proposed in the literature produce a
phenomenon that causes proliferation of zones that can sometimes be exponen-
tial in the number of clocks. The discussion below will focus on the construction
from [17], but the one from [2] suffers from the same problem.

The problem comes from the fact that the constraint z ≥ 1 may be a source
of rapid multiplication of the number of zones in the zone graph of SNZ(A).
Consider Vk and Wk from Figure 1 for k = 2. Starting at the state b2 of V2

in the zone 0 ≤ y ≤ x1 ≤ x2, there are two reachable zones with state b2.
Moreover, if we reset x1 followed by y from the two zones, we reach the same
zone 0 ≤ y ≤ x1 ≤ x2. In contrast starting in b2 of W2 = SNZ(V2) from

8 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

. . . ck
0 ck

1
. . . ck

k ck
y

. . .
{xk} {xk−1} {x1} {y}

Rk

bk

ak

.

y ≤ d {x1, . . . , xk−1}

Vk

bk

ak
1 ak

2

.

y ≤ d ∧
z ≥ 1

{z}
y ≤ d ∧
z < 1

{x1, . . . , xk−1}

Wk = SNZ(Vk)

Rn Vn
. . . R2 V2An Rn Wn

. . . R2 W2Bn

Fig. 1. Gadgets for An and Bn = SNZ(An).

0 ≤ y ≤ x1 ≤ x2 ≤ z gives at least d zones, and resetting x1 followed by y still
yields d zones.

We now exploit this fact to give an example of a TBA An whose zone graph
has a number of zones linear in the number of clocks, but Bn = SNZ(An) has a
zone graph of size exponential in the number of clocks. An is constructed from
the automata gadgets Vk and Rk as shown in Figure 1. Observe that the role
of Rk is to enforce an order 0 ≤ y ≤ x1 ≤ · · · ≤ xk between clock values. By
induction on k one can compute that there are only two zones at locations bk

since Rk+1 made the two zones in bk+1 collapse into the same zone in bk. Hence
the number of nodes in the zone graph of An is O(n).

Let us now consider Bn, the strongly non-Zeno automaton obtained from An

following [17]. Every gadget Vk gets transformed to Wk. While exploring Wk,
one introduces a distance between the clocks xk−1 and xk. So when leaving it one
gets zones with xk − xk−1 ≥ c, where c ∈ {0, 1, 2, . . . , d}. The distance between
xk and xk−1 is preserved by Rk. In consequence, Wn produces at least d + 1
zones. For each of these zones Wn−1 produces d + 1 more zones. In the end, the
zone graph of Bn has at least (d + 1)n−1 zones at the state b2.

We have thus shown that An has O(n) zones while Bn = SNZ(An) has
an exponential number of zones even when the constant d is 1. Observe that
the construction shows that even with two clocks the number of zones blows
exponentially in the binary representation of d. Note that the automaton An does
not have a non-Zeno accepting run. Hence, every search algorithm is compelled
to explore all the zones of Bn.

3.2 A more efficient solution

Our solution stems from a realization that we only need one non-Zeno run satis-
fying the Büchi condition and so in a way transforming an automaton to strongly

Efficient Emptiness Check for Timed Büchi Automata 9

non-Zeno is an overkill. We propose not to modify the automaton, but to intro-
duce additional information to the zone graph ZGa(A). The nodes will now be
triples (q, Z, Y) where Y ⊆ X is the set of clocks that can potentially be equal
to 0. It means in particular that other clock variables, i.e. those from X −Y are
assumed to be bigger than 0. We write (X − Y) > 0 for the constraint saying
that all the variables in X − Y are not 0.

Definition 2. Let A be a TBA over a set of clocks X. The guessing zone graph
GZGa(A) has nodes of the form (q, Z, Y) where (q, Z) is a node in ZGa(A)
and Y ⊆ X. The initial node is (q0, Z0, X), with (q0, Z0) the initial node of

ZGa(A). There is a transition (q, Z, Y)
t
−→ (q′, Z ′, Y ∪ R) in GZGa(A) if there

is a transition (q, Z)
t
−→ (q′, Z ′) in ZGa(A) with t = (q, g, R, q′), and there

are valuations ν ∈ Z, ν′ ∈ Z ′, and δ such that ν + δ � (X − Y) > 0 and

(q, ν)
δ,t
−→ (q, ν′). We also introduce a new auxiliary letter τ , and put transitions

(q, Z, Y)
τ
−→ (q, Z, Y ′) for Y ′ = ∅ or Y ′ = Y .

Observe that the definition of transitions reflects the intuition about Y
we have described above. Indeed, the additional requirement on the transition

(q, Z, Y)
t
−→ (q′, Z ′, Y ∪R) is that it should be realizable when the clocks outside

Y are strictly positive; so there should be a valuation satisfying (X − Y) > 0
that realizes this transition. As we will see later, this construction entails that
from a node (q, Z, ∅) every reachable zero-check is preceded by the reset of the
variable that is checked, and hence nothing prevents a time elapse in this node.
A node of the form (q, Z, ∅) is called clear. We call a node (q, Z, Y) accepting if
it contains an accepting state q.

Example. Figure 2 depicts a TBA A1 along with its zone graph ZGa(A1) and
its guessing zone graph GZGa(A1) where τ -loops have been omitted.

a

b

x ≥ 1
x ≤ 1
{x}

A1

a, x = 0

b, x ≥ 1

x ≥ 1
x ≤ 1
{x}

ZG
a(A1)

a, x = 0, {x} a, x = 0, ∅

b, x ≥ 1, {x} b, x ≥ 1, ∅

x ≥ 1

τ

x ≥ 1
x ≤ 1
{x}

τ

x ≤ 1{x}

GZG
a(A1)

Fig. 2. A TBA A1 and the guessing zone graph GZGa(A1).

Notice that directly from the definition it follows that a path in GZGa(A)
determines a path in ZGa(A) obtained by removing τ transitions and the third
component from nodes.

10 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

A variable x is bounded by a transition of GZGa(A) if the guard of the tran-

sition implies x ≤ c for some constant c. More precisely: for (q, Z, Y)
(q,g,R,q′)
−−−−−−→

(q′, Z ′, Y ′), the guard g implies (x ≤ c). A variable is reset by the transition if
it belongs to the reset set R of the transition.

We say that a path is blocked if there is a variable that is bounded infinitely
often and reset only finitely often by the transitions on the path. Otherwise the
path is called unblocked.

Theorem 3. A TBA A has a non-Zeno run satisfying the Büchi condition iff
there exists an unblocked path in GZGa(A) visiting both an accepting node and
a clear node infinitely often.

The proof of Theorem 3 follows from Lemmas 5 and 6 below. We omit the
proof of the first of the two lemmas and concentrate on a more difficult Lemma 6.
It is here that the third component of states is used.

At the beginning of the section we had recalled that the progress criterion
in [1] characterizes the paths in region graphs that have non-Zeno instantia-
tions. We had mentioned that it cannot be directly extended to zone graphs
since their transitions are not pre-stable. Lemma 6 below shows that by slightly
complicating the zone graph we can recover a result very similar to Lemma 4.13
in [1].

Lemma 5. If A has a non-Zeno run satisfying the Büchi condition, then in
GZGa(A) there is an unblocked path visiting both an accepting node and a clear
node infinitely often.

Lemma 6. Suppose GZGa(A) has an unblocked path visiting infinitely often
both a clear node and an accepting node then A has a non-Zeno run satisfying
the Büchi condition.

Proof. Let σ be a path in GZGa(A) as required by the assumptions of the lemma
(without loss of generality we assume every alternate transition is a τ transition):

(q0, Z0, Y0)
τ
−→ (q0, Z0, Y

′
0)

t0−→ · · · (qi, Zi, Yi)
τ
−→ (qi, Zi, Y

′
i)

ti−→ · · ·

Take a corresponding path in ZGa(A) and one instance ρ = (q0, ν0), (q1, ν1) . . .
that exists by Theorem 2. If it is non-Zeno then we are done.

Suppose ρ is Zeno. Let Xr be the set of variables reset infinitely often on
σ. By assumption on σ, every variable not in Xr is bounded only finitely often.
Since ρ is Zeno, there is an index m such that the duration of the suffix of the
run starting from (qm, νm) is bounded by 1/2, and no transition in this suffix
bounds a variable outside Xr. Let n > m be such that every variable from Xr

is reset between m and n. Observe that νn(x) < 1/2 for every x ∈ Xr.
Take positions i, j such that i, j > n, Yi = Yj = ∅ and all the variables from

Xr are reset between i and j. We look at the part of the run ρ:

(qi, νi)
δi,ti
−−−→ (qi+1, νi+1)

δi+1,ti+1

−−−−−−→ . . . (qj , νj)

Efficient Emptiness Check for Timed Büchi Automata 11

and claim that every sequence of the form

(qi, ν
′
i)

δi,ti
−−−→ (qi+1, ν

′
i+1)

δi+1,ti+1

−−−−−−→ . . . (qj , ν
′
j)

is a part of a run of A provided there is ζ ∈ R≥0 such that the following three
conditions hold for all k = i, . . . , j:

1. ν′
k(x) = νk(x) + ζ + 1/2 for all x 6∈ Xr,

2. ν′
k(x) = νk(x) + 1/2 if x ∈ Xr and x has not been reset between i and k.

3. ν′
k(x) = νk(x) otherwise, i.e., when x ∈ Xr and x has been reset between i

and k.

Before proving this claim, let us explain how to use it to conclude the proof. The
claim shows that in (qi, νi) we can pass 1/2 units of time and then construct
a part of the run of A arriving at (qj , ν

′
j) where ν′

j(x) = νj(x) for all variables
in Xr, and ν′

j(x) = νj(x) + 1/2 for other variables. Now, we can find l > j, so
that the pair (j, l) has the same properties as (i, j). We can pass 1/2 units of
time in j and repeat the above construction getting a longer run that has passed
1/2 units of time twice. This way we construct a run that passes 1/2 units of
time infinitely often. By the construction it passes also infinitely often through
accepting nodes.

It remains to prove the claim. Take a transition (qk, νk)
δk,tk−−−→ (qk+1, νk+1)

and show that (qk, ν′
k)

δk,tk−−−→ (qk+1, ν
′
k+1) is also a transition allowed by the

automaton. Let g and R be the guard of tk and the reset of tk, respectively.
First we need to show that ν′

k + δk satisfies the guard of tk. For this, we
need to check if for every variable x ∈ X the constraints in g concerning x are
satisfied. We have three cases:

– If x 6∈ Xr then x is not bounded by the transition tk, that means that in g
the constraints on x are of the form (x > c) or (x ≥ c). Since (νk + δk)(x)
satisfies these constraints so does (ν′

k + δk)(x) ≥ (νk + δk)(x).
– If x ∈ Xr and it is reset between i and k then ν′

k(x) = νk(x) so we are done.
– Otherwise, we observe that x 6∈ Yk. This is because Yi = ∅, and then only

variables that are reset are added to Y . Since x is not reset between i and
k, it cannot be in Yk. By definition of transitions in GZGa(A) this means
that g ∧ (x > 0) is consistent. We have that 0 ≤ (νk + δk)(x) < 1/2 and
1/2 ≤ (ν′

k +δk)(x) < 1. So ν′
k +δk satisfies all the constraints in g concerning

x as νk + δk does.

This shows that there is a transition (qk, ν′
k)

δ′
k,tk

−−−→ (qk+1, ν
′) for the uniquely

determined ν′ = [R](ν′
k + δk). It is enough to show that ν′ = ν′

k+1. For variables
not in Xr it is clear as they are not reset. For variables that have been reset
between i and k this is also clear as they have the same values in ν′

k+1 and ν′.
For the remaining variables, if a variable is not reset by the transition tk then
condition (2) holds. If it is reset then its value in ν′ becomes 0; but so it is in
ν′

k+1, and so the third condition holds. This proves the claim.

12 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Finally, we provide an explanation as to why the proposed solution does
not produce an exponential blowup. At first it may seem that we have gained
nothing because when adding arbitrary sets Y we have automatically caused
exponential blowup to the zone graph. We claim that this is not the case for the
part of GZGa(A) reachable from the initial node, namely a node with the initial
state of A and the zone putting every clock to 0.

We say that a zone orders clocks if for every two clocks x, y, the zone implies
that at least one of x ≤ y, or y ≤ x holds.

Lemma 7. If a node with a zone Z is reachable from the initial node of the zone
graph ZGa(A) then Z orders clocks. The same holds for GZGa(A).

Suppose that Z orders clocks. We say that a set of clocks Y respects the order
given by Z if whenever y ∈ Y and Z implies x ≤ y then x ∈ Y .

Lemma 8. If a node (q, Z, Y) is reachable from the initial node of the zone
graph GZGa(A) then Y respects the order given by Z.

Lemma 7 follows since a transition from a zone that orders clocks gives back
a zone that orders clocks, and the ApproxM operator approximates it again to
a zone that orders clocks. Notice that the initial zone clearly orders clocks. The
proof of Lemma 8 proceeds by an induction on the length of a path. The above
two lemmas give us the desired bound.

Theorem 4. Let |ZGa(A)| be the size of the zone graph, and |X| be the num-
ber of clocks in A. The number of reachable nodes of GZGa(A) is bounded by
|ZGa(A)|.(|X| + 1).

The theorem follows directly from the above two lemmas. Of course, imposing
that zones have ordered clocks in the definition of GZGa(A) we would get the
same bound for the entire GZGa(A).

4 Algorithm

We use Theorem 3 to construct an algorithm to decide if an automaton A has
a non-Zeno run satisfying the Büchi condition. This theorem requires to find
an unblocked path in GZGa(A) visiting both an accepting state and a clear
state infinitely often. This problem is similar to that of testing for emptiness of
automata with generalized Büchi conditions as we need to satisfy two infinitary
conditions at the same time. The requirement of a path being unblocked adds
additional complexity to the problem. The best algorithms for testing emptiness
of automata with generalized Büchi conditions are based on strongly connected
components (SCC) [14,10]. So this is the way we take here.

We apply a variant of Tarjan’s algorithm for detecting maximal SCCs in
GZGa(A). During the computation of the maximal SCCs, we keep track of
whether an accepting node and a clear node have been seen. For the unblocked
condition we use two sets of clocks UBΓ and RΓ that respectively contain the
clocks that are bounded and the clocks that are reset in the SCC Γ . At the end
of the exploration of Γ we check if:

Efficient Emptiness Check for Timed Büchi Automata 13

1. we have passed through an accepting node and a clear node,
2. there are no blocking clocks: UBΓ ⊆ RΓ .

If the two conditions are satisfied then we can conclude saying that A has an
accepting non-Zeno run. Indeed, a path passing infinitely often through all the
nodes of Γ would satisfy the conditions of Theorem 3, giving a required run of
A. If the first condition does not hold then the same theorem says that Γ does
not have a witness for a non-Zeno run of A satisfying the Büchi condition.

The interesting case is when the first condition holds but not the second.
We can then discard from Γ all the edges blocking clocks from UBΓ − RΓ , and
reexamine it. If Γ without discarded edges is still an SCC then we are done. If
not we restart our algorithm on Γ with the discarded edges removed. Observe
that we will not do more than |X| restarts, as each time we eliminate at least
one clock. If after exploring the entire graph, the algorithm has not found a
subgraph satisfying the two conditions then it declares that there is no run of A
with the desired properties. Its correctness is based on Theorem 3.

Recall that by Theorem 4 the size of GZGa(A) is |ZGa(A)| · |X|. The com-
plexity of the algorithm follows from the complexity of Tarjan’s algorithm and
the remark about the number of recursive calls being bounded by the number
of clocks. We hence obtain the following.

Theorem 5. The above algorithm is correct and runs in time O(|ZGa(A)|.|X|2).

5 Conclusions

Büchi non-emptiness problem is one of the standard problems for timed au-
tomata. Since the paper introducing the model, it has been widely accepted
that addition of one auxiliary clock is an adequate method to deal with the
problem of Zeno paths. This technique is also used in the recently proposed zone
based algorithm for the problem [16].

In this paper, we have argued that in some cases the auxiliary clock may cause
exponential blowup in the size of the zone graph. We have proposed another
method that is based on a modification of the zone graph. The resulting graph
grows only by a factor that is linear in the number of clocks. In our opinion,
the efficiency gains of our method outweigh the fact that it requires some small
modifications in the code dealing with zone graph exploration.

It is difficult to estimate how often introducing the auxiliary clock may cause
an exponential blowup. The example in Figure 1 suggests that the problem
appears when there is a blocked cycle containing an accepting state. A prototype
implementation of our algorithm shows that a blowup occurs in the Train-Gate
example (e.g. [11]) when checking for bounded response to train access requests.
For 2 trains, the zone graph has 988 zones whereas after adding the auxiliary
clock it blows to 227482 zones. The guessing zone graph has 3840 zones. To be
fair, among the 227482 zones, 146061 are accepting with a self-loop, so in this
example any on-the-fly algorithm should work rather quickly. Our prototype
visits 1677 zones (in 0.42s). The example from Figure 1 with n = 10 and d = 1

14 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

has a zone graph with 151 zones and a guessing zone graph with 1563 zones. Its
size grows to 36007 when adding the extra clock. Raising d to 15, we obtain 151,
1563 and 135444 zones respectively, which confirms the expected blowup.

It is possible to apply the modification to the zone graph on-the-fly. It could
also be restricted only to strongly connected components having “zero checks”.
This seems to be another source of big potential gains. We are currently working
on an on-the-fly optimized algorithm. The first results are very encouraging. Of-
ten our prototype implementation solves the emptiness problem at the same cost
as reachability when the automaton has no Zeno accepting runs. For instance,
the zone graph for Fischer’s protocol with 4 processes has 46129 zones and is
computed in 14.22s1. To answer the mutual exclusion problem it is necessary
to visit the entire zone graph. Our algorithm does it in 15.77s. Applying the
construction from [17] we get the graph with 96913 zones, and it takes 37.10s to
visit all of them. Hence, even in this example, where all the runs are non-Zeno,
adding one clock has a noticeable impact.

References

1. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In
SFM-RT’04, volume 3185 of LNCS, pages 1–24, 2004.

3. G. Behrmann, A. David, K. G Larsen, J. Haakansson, P. Pettersson, W. Yi, and
M. Hendriks. Uppaal 4.0. In QEST’06, pages 125–126, 2006.

4. B. Bérard, B. Bouyer, and A. Petit. Analysing the pgm protocol with UPPAAL.
Int. Journal of Production Research, 42(14):2773–2791, 2004.

5. B. Berthomieu and M. Menasche. An enumerative approach for analyzing time
petri nets. In IFIP Congress, pages 41–46, 1983.

6. P. Bouyer. Forward analysis of updatable timed automata. Formal Methods in

System Design, 24(3):281–320, 2004.

7. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
a mode-checking tool for real-time systems. In CAV’98, volume 1427 of LNCS,
pages 546–550. Springer, 1998.

8. C. Daws and S. Tripakis. Model checking of real-time reachability properties using
abstractions. In TACAS’98, volume 1384 of LNCS, pages 313–329, 1998.

9. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proc. Int. Workshop on Automatic Verification Methods for Finite State Sys-

tems, volume 407 of LNCS, pages 197–212. Springer, 1990.

10. A. Gaiser and S. Schwoon. Comparison of algorithms for checking emptiness on
büchi automata. In MEMICS’09, pages 69–77, 2009.

11. R. Gómez and H. Bowman. Efficient detection of zeno runs in timed automata. In
FORMATS’07, volume 4763 of LNCS, pages 195–210, 2007.

12. K. Havelund, A. Skou, K. Larsen, and K. Lund. Formal modeling and analysis of
an audio/video protocol: An industrial case study using UPPAAL. In RTSS’97,
pages 2–13, 1997.

1 On a 2.4GHz Intel Core 2 Duo MacBook with 2GB of memory.

Efficient Emptiness Check for Timed Büchi Automata 15

13. J. J. Jessen, J. I. Rasmussen, K. G. Larsen, and A. David. Guided controller
synthesis for climate controller using UPPAAL TiGA. In FORMATS’07, volume
4763, pages 227–240. Springer, 2007.

14. S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In
TACAS’05, volume 3440 of LNCS, pages 174–190, 2005.

15. S. Tripakis. Verifying progress in timed systems. In Formal Methods for Real-Time

and Probabilistic Systems, volume 1601 of LNCS, pages 299–314, 1999.
16. S. Tripakis. Checking timed büchi emptiness on simulation graphs. ACM Trans-

actions on Computational Logic, 10(3), 2009.
17. S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed büchi automata empti-

ness efficiently. Formal Methods in System Design, 26(3):267–292, 2005.

16 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

b

a

.

y ≤ d {x1}

V

b

a1 a2

.

y ≤ d ∧
z ≥ 1

{z}
y ≤ d ∧
z < 1

{x1}

W = SNZ(V)

Fig. 3. Construction adding one clock

A Details of zone calculation from Section 3.1

In this section, we describe the zone graphs of the gadgets V and W shown
in Figure 3. Observe that they correspond to gadgets V2 and W2 in Figure 1.
Figure 4 gives the set of zones obtained by successive transitions of V starting
from the zone (b, 0 ≤ y ≤ x1 ≤ x2). After two traversals of the cycle formed
by b and a in V, we reach a zone that was already seen. Hence we have just
two different zones with the state b. ZG(W) in Figure 5 gives the sequence of
transitions in the zone graph of W starting from the zone (l0, 0 ≤ y ≤ x1 ≤ x2 ≤
z). After a certain point, every traversal induces an extra distance between the
clocks y and z. Clearly, there are at least d zones in this case.

b

0 ≤ y ≤ x1 ≤ x2

a

0 ≤ y ≤ x1 ≤ x2

∧ y ≤ d

b

0 = x1 ≤ y ≤ x2

a

0 ≤ x1 ≤ y ≤ x2

∧ y ≤ d

. . .

. . .

. . .

y ≤ d

{x1}

y ≤ d

{x1}

Fig. 4. Part of ZG(V).

Efficient Emptiness Check for Timed Büchi Automata 17

. . .

. . .

b
0 ≤ y ≤ x1 ≤ x2 ≤ z

a1

0 = z ≤ y ≤ x1 ≤ x2

∧ y ≤ d

a2

0 ≤ z ≤ y ≤ x1 ≤ x2

. . .
b

0 = x1 ≤ z ≤ y ≤ x2

a1

0 = z ≤ x1 ≤ y ≤ x2

∧ y − z ≥ 1 ∧ y ≤ d

a2

0 ≤ z ≤ x1 ≤ y ≤ x2

∧ y − z ≥ 1

. . .
b

0 = x1 ≤ z ≤ y ≤ x2

∧ y − z ≥ 1

.

. . .
b

0 = x1 ≤ z ≤ y ≤ x2

∧ y − z ≥ d − 1

a1

0 = z ≤ x1 ≤ y ≤ x2

∧ y − z = d ∧ y = d

a2

0 ≤ z ≤ x1 ≤ y ≤ x2

∧ y − z = d

. . .
b

0 = x1 ≤ z ≤ y ≤ x2

∧ y − z = d

y ≤ d

∧ z ≥ 1

{z}

{x1}

y ≤ d

∧ z ≥ 1

{z}

{x1}

y ≤ d

∧ z ≥ 1

{z}

{x1}

y ≤ d

∧ z ≥ 1

{z}

{x1}

Fig. 5. Part of ZG(W).

Take now the automaton Bn considered in Figure 1. The set of zones obtained
with the state bk is

0 = x1 = . . . = xk−1 ≤ z ≤ y ≤ xk ≤ . . . ≤ xn

∧ xn − xn−1 ≥ c1

∧ xn−1 − xn−2 ≥ c2

...
...

∧ xk+2 − xk+1 ≥ cn−k−1

∧ xk+1 − xk ≥ cn−k

∧ y − z ≥ cn−k+1

where ci ∈ {0, 1, 2, . . . , d} for i ∈ {1, . . . , n − k + 1}.
So the zone graph has at least (d+1)n−k+1 zones at the state bk. Hence, the

zone graph of SNZ(Bn) contains at least (d + 1)n−1 zones.

B Another example of a blowup

We take a simple automaton U , shown in Figure 6. Due to the inherent non
determinism, one obtains n! zones at a that describe an ordering of the form
xi1 ≤ xi2 . . . ≤ xin

with {i1, i2, . . . , in} = {1, 2, . . . , n}. U has a Zeno cycle

18 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

between a and b, with b being the only accepting state. Obviously, any algorithm
that searches for a non-Zeno accepting cycle has to explore the entire zone graph.
Consequently, an algorithm that first transforms U into a strongly non-Zeno
automaton needs to explore at least n!(d−1)n zones. This is because the modified
automaton SNZ(U) yields a zone graph that includes zones describing distances,
similar to the case shown in Figure 3. Note that the zone graph of U has O(n!)
number of zones. We hence see an exponential blowup in this case too, although
it is somehow hiden in the size of the original graph.

a b

y ≤ d

{x1}

{x2}

{xk}

...

a

b1

b2

y ≤ d

∧ z ≥ 1
{z}

y ≤ d

{x1}

{x2}

{xk}

...

Fig. 6. The TBAs U and SNZ(U).

C Examples of guessing zone graphs

At the beginning of Section3 we had recalled that the progress criterion in [1]
characterizes the paths in region graphs that have non-Zeno instantiations. We
had mentioned that it cannot be directly extended to zone graphs since their
transitions are not pre-stable. Theorem 3 and Lemma 6 show that by slightly
complicating the zone graphs we can recover a result very similar to Lemma 4.13
in [1]. We would like to illustrate the construction with several examples.

C.1 On Pre- and Post-Stability

Figure 2 depicts a TBA A1 along with ZGa(A1) and GZGa(A1) (where the

τ -loops have been omitted). In order to fire transition b
x≤1,{x}
−−−−−→ a time must

not elapse in b. This emphasizes that ZGa(A1) is not pre-stable since not all
valuations in (b, x ≥ 1) have a successor following this transition. Notice that

Efficient Emptiness Check for Timed Büchi Automata 19

GZGa(A1) is also not pre-stable. Moreover, the third component Y does not
help to detect that time cannot elapse in b as in GZGa(A1) the transition is
allowed for both Y = {x} and Y = ∅. However, as soon as an SCC contains a
transition x ≥ 1 and a transition that resets x, it has a non-Zeno run, and the
third component does not play any role.

The third component is only useful for the case where an SCC contains no
transition with a guard implying x > 0 for some clock x that is also reset on
some transition in the SCC. In such a case, zero checks may prevent time to
elapse. We illustrate this case on the next two examples that emphasize how
the third component added to the states of the zone graph allows to distinguish
between Zeno runs and non-Zeno runs.

C.2 A Zeno TBA with Zero Checks

The TBA A2 below only has one infinite run that is Zeno as time does not elapse
at all. This is detected in GZGa(A2) as all states in the only non-trivial SCC have
Y = {x, y} as the third component. This means that from every state there exists
a reachable zero check that is not preceded by the corresponding reset, hence
preventing time to elapse. Notice that the correctness of this argument relies
on the fact that for every (q, Z, Y) in GZGa(A2), and for every transition t =
(q, g, R, q′), even if t is fireable in ZGa(A2) from (q, Z), it must also be fireable
under the supplementary hypothesis (X − Y) > 0 given by Y in GZGa(A2).

01 2

{x}

{y}y = 0

x = 0

A2

z2 : (1, 0 = x ≤ y), ∅ z2, {x} z2, {x, y}

z1 : (0, 0 = x = y), ∅ z1, {x, y}

z3 : (2, 0 = y ≤ x), ∅ z3, {y} z3, {x, y}

{x}

{y}

{x}

{y}

y = 0

x = 0

τ

τ

τ

τ

τ

Reachable part of GZGa(A2)

Notice that τ -loops in GZGa(A2) have not been represented for clarity of
the figure.

20 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

C.3 A non-Zeno TBA with Zero Checks

The TBA A3 below admits a non-Zeno run. This can be read from GZGa(A3)
since the SCC composed of the four zones with Y = {x, y} on the one hand, and
(z2, ∅) and (z3, {y}) on the other hand, contains a clear state. This is precisely
the state where time can elapse as every reachable zero check is preceded by the
corresponding reset.

01 2

{x}

x = 0y = 0

{y}

A3

z2 : (2, 0 = x = y), ∅ z2, {x, y}

z3 : (0, 0 = y ≤ x), ∅ z3, {y} z3, {x, y}

z4 : (1, 0 = x ≤ y), ∅ z4, {x} z4, {x, y}

z1 : (0, 0 = x = y), ∅ z1, {x, y}

{x}

x = 0

{x}

{y}
{y}

{x} {x}

x = 0

{x}

y = 0

τ

τ

τ

τ

τ

τ

Reachable part of GZGa(A3)

Notice that τ -loops in GZGa(A3) have not been represented for clarity of
the figure.

D Proofs from Section 3

Proof (Of Lemma 5). Let ρ be a non-Zeno run of A:

(q0, ν0)
δ0,t0
−−−→ (q1, ν1)

δ1,t1
−−−→ · · ·

By Theorem 2, it is a concretization of a path σ in ZGa(A):

(q0, Z0)
t0−→ (q1, Z1)

t1−→ · · ·

Let σ′ be the following sequence:

(q0, Z0, Y0)
τ
−→ (q0, Z0, Y

′
0)

t0−→ (q1, Z1, Y1)
τ
−→ (q1, Z1, Y

′
1)

t1−→ · · ·

where Y0 = X, Yi is determined by the transition, and Y ′
i = Yi unless δi > 0

when we put Y ′
i = ∅. We need to see that this is indeed a path in GZGa(A).

Efficient Emptiness Check for Timed Büchi Automata 21

For this we need to see that every transition (qi, Zi, Y
′
i)

t0−→ (qi+1, Zi+1, Yi+1) is
realizable from a valuation ν such that ν � (X −Y ′

i) > 0. But an easy induction
on i shows that actually νi � (X − Y ′

i) > 0.
Since σ is non-Zeno there are infinitely many i with Y ′

i = ∅. It is also straight-
forward to check that ρ is unblocked.

Proof (Of Lemma 7). First notice that in the initial zone, all the clocks are equal

to each other. Now, consider any zone Z that orders clocks. Let (q, Z)
t
−→ (q′, Z ′)

be a transition of ZGa. This means that (q, Z)
δ
⇁ (q, Z ′′)

t
⇀ (q′, Z ′

1) for some δ,
Z ′′ and Z ′

1 with Z ′ = Approx (Z ′
1). Directly from the definition of transitions we

have that Z ′
1 orders clocks. It remains to check that, the clock ordering in Z ′

1 is
preserved in Z ′ = ApproxM (Z ′

1). Suppose not, then for an ordering constraint c
satisfied by Z ′, Z ′ ∧ c would be a smaller convex zone in Rd

M that contains Z ′
1 –

a contradiction. Finally, for every node (q, Z, Y) in GZGa(A), (q, Z) is reachable
in ZGa(A).

Proof (Of Lemma 8). The proof is by induction on the length of a path. In the
initial node (q0, Z0, X), the set X obviously respects the order as it is the set

of all clocks. Now take a transition (q, Z, Y)
t
−→ (q′, Z ′, Y ′) with Y respecting

the order in Z. We need to show that Y ′ respects the order in Z ′. By the
definition of transitions in GZGa(A) there are ν ∈ Z, ν′ ∈ Z ′ and δ such that

(q, ν)
δ,t
−→ (q′, ν′) and ν + δ � (X − Y) > 0. Take y ∈ Y ′ and suppose that Z ′

implies x ≤ y for some clock x. There are three cases depending on which of the
variables y, x are being reset by the transition.

If x is reset by the transition then, by definition x ∈ Y ′. If y is reset then
Z ′ implies y = 0. Hence Z ′ implies that x = 0. Since x is not reset, Z implies
x = 0. We are done, since Y preserves the ordering.

The remaining case is when none of the variables is reset by the transition.
As ν′ ∈ Z ′, we have that ν′

� x ≤ y; and in consequence ν � x ≤ y. Since Z
orders clocks and ν ∈ Z, we must have that Z implies x ≤ y. As y has not been
reset, y ∈ Y . By assumption that Y orders clocks, x ∈ Y .

	Efficient Emptiness Check for Timed Büchi Automata

