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Efficient Emptiness Check for Timed Büchi Automata

The Büchi non-emptiness problem for timed automata concerns deciding if a given automaton has an infinite non-Zeno run satisfying the Büchi accepting condition. The standard solution to this problem involves adding an auxiliary clock to take care of the non-Zenoness. In this paper, we show that this simple transformation may sometimes result in an exponential blowup. We propose a method avoiding this blowup.

Introduction

Timed automata [START_REF] Alur | A theory of timed automata[END_REF] are widely used to model real-time systems. They are obtained from finite automata by adding clocks that can be reset and whose values can be compared with constants. The crucial property of timed automata is that their emptiness is decidable. This model has been implemented in verification tools like Uppaal [START_REF] Behrmann | Uppaal 4.0[END_REF] or Kronos [START_REF] Bozga | Kronos: a mode-checking tool for real-time systems[END_REF], and used in industrial case studies [START_REF] Havelund | Formal modeling and analysis of an audio/video protocol: An industrial case study using UPPAAL[END_REF][START_REF] Bérard | Analysing the pgm protocol with UPPAAL[END_REF][START_REF] Jessen | Guided controller synthesis for climate controller using UPPAAL TiGA[END_REF].

While most tools concentrate on the reachability problem, the questions concerning infinite executions of timed automata are also of interest. In the case of infinite executions one has to eliminate so called Zeno runs. These are executions that contain infinitely many steps taken in a finite time interval. For obvious reasons such executions are considered unrealistic. In this paper we study the problem of deciding if a given timed automaton has a non-Zeno run passing through accepting states infinitely often. We call this problem Büchi non-emptiness problem.

This basic problem has been of course studied already in the paper introducing timed automata. It has been shown that using so called region abstraction the problem can be reduced to the problem of finding a path in a finite region graph satisfying some particular conditions. The main difference between the cases of finite and infinite executions is that in the latter one needs to decide if the path that has been found corresponds to a non Zeno run of the automaton.

Subsequent research has shown that the region abstraction is very inefficient for reachability problems. Another method using zones instead of regions has been proposed. It is used at present in all timed-verification tools. While simple at the first sight, the zone abstraction was delicate to get right. This is mainly because the basic properties of regions do not transfer to zones. The zone abstraction also works for infinite executions, but unlike for regions, it is impossible to decide if a path in a zone graph corresponds to a non-Zeno run of the automaton.

There exists a simple solution to the problem of Zeno runs that amounts to transforming automata in such way that every run passing through an accepting state infinitely often is non-Zeno. An automaton with such a property is called strongly non-Zeno. The transformation is easy to describe and requires addition of one new clock. This paper is motivated by our experiments with an implementation of this construction. We have observed that this apparently simple transformation can give a big overhead in the size of a zone graph.

In this paper we closely examine the transformation to strongly non-Zeno automata [START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF], and show that it can inflict a blowup of the zone graph; and this blowup could even be exponential in the number of clocks. To substantiate, we exhibit an example of an automaton having a zone graph of polynomial size, whose transformed version has a zone graph of exponential size. We propose another solution to avoid this phenomenon. Instead of modifying the automaton, we modify the zone graph. We show that this modification allows us to detect if a path can be instantiated to a non-Zeno run. Moreover the size of the modified graph is |ZG(A)|.|X|, where |ZG(A)| is the size of the zone graph and |X| is the number of clocks.

In the second part of the paper we propose an algorithm for testing the existence of accepting non-Zeno runs in timed automata. The problem we face highly resembles the emptiness testing of finite automata with generalized Büchi conditions. Since the most efficient solutions for the latter problem are based on the Tarjan's algorithm, we take the same way here. We present an algorithm whose running time is bounded by |ZG(A)|.|X| 2 . We also report on the experiments performed with a preliminary implementation of this algorithm.

Related work

The zone approach has been introduced in Petri net context [START_REF] Berthomieu | An enumerative approach for analyzing time petri nets[END_REF], and then adapted to the framework of timed automata [START_REF] Dill | Timing assumptions and verification of finite-state concurrent systems[END_REF]. The advantage of zones over regions is that they do not require to consider every possible unit time interval separately. The delicate point about zones was to find a right approximation operator. Indeed while regions are both pre-and post-stable, zones are not pre-stable, and some care is needed to guarantee post-stability. Post-stability is enough for correctness of the reachability algorithm, and for testing if a path in the zone graph can be instantiated to a run of the automaton. It is however not possible to determine if a path can be instantiated to a non-Zeno run. The solution involving adding one clock has been discussed in [START_REF] Tripakis | Verifying progress in timed systems[END_REF][START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF][START_REF] Alur | Decision problems for timed automata: A survey[END_REF]. Recently, Tripakis [START_REF] Tripakis | Checking timed büchi emptiness on simulation graphs[END_REF] has shown a way to extract an accepting run from a zone graph of the automaton. Combined with the construction of adding one clock this gives a solution to our problem. A different approach has been considered in [START_REF] Gómez | Efficient detection of zeno runs in timed automata[END_REF] where syntactic conditions are proposed for a timed automaton to be free from Zeno runs. Notice that for obvious complexity reasons, any such condition must be either not complete, or of the same algorithmic complexity as the emptiness test itself. Organization of the paper In the next section we formalize our problem, and discuss region and zone abstractions. As an intermediate step we give a short proof of the above mentioned result from [START_REF] Tripakis | Checking timed büchi emptiness on simulation graphs[END_REF]. Section 3 explains the problems with the transformation to strongly non-Zeno automata, and describes our alternative method. The following section is devoted to a description of the algorithm.

The Emptiness Problem for Timed Büchi Automata

Timed Büchi Automata

Let X be a set of clocks, i.e., variables that range over R ≥0 , the set of nonnegative real numbers. Clock constraints are conjunctions of comparisons of variables with integer constants, e.g. (x ≤ 3 ∧ y > 0). Let Φ(X) denote the set of clock constraints over clock variables X.

A clock valuation over X is a function ν : X → R ≥0 . We denote R X ≥0 for the set of clock valuations over X, and 0 : X → {0} for the valuation that associates 0 to every clock in X. We write ν |= φ when ν satisfies φ, i.e. when every constraint in φ holds after replacing every x by ν(x).

For a valuation ν and δ ∈ R ≥0 , let (ν + δ) be the valuation such that

(ν + δ)(x) = ν(x) + δ for all x ∈ X. For a set R ⊆ X, let [R]ν be the valuation such that ([R]ν)(x) = 0 if x ∈ R and ([R]ν)(x) = ν(x) otherwise.
A Timed Büchi Automaton (TBA) is a tuple A = (Q, q 0 , X, T, Acc) where Q is a finite set of states, q 0 ∈ Q is the initial state, X is a finite set of clocks, Acc ⊆ Q is a set of accepting states, and

T ⊆ Q × Φ(X) × 2 X × Q is a finite set of transitions (q, g, R, q ′ )
where g is a guard, and R is a reset of the transition.

A configuration of A is a pair (q, ν) ∈ Q × R X ≥0 ; with (q 0 , 0) being the initial configuration. A discrete transition between configurations (q, ν) t ⇀ (q ′ , ν ′ ) for t = (q, g, R, q ′ ) is defined when ν g and ν ′ = [R]ν. We also have delay transitions between configurations: (q, ν) δ ⇁ (q, ν + δ) for every q, ν and δ ∈ R ≥0 . We write (q, ν)

δ,t -→ (q ′ , ν ′ ) if (q, ν) δ ⇁ (q, ν + δ) t ⇀ (q ′ , ν ′ ).
A run of A is a finite or infinite sequence of configurations connected by δ,t -→ transitions, starting from the initial state q 0 and the initial valuation ν 0 = 0:

(q 0 , ν 0 ) δ0,t0 ---→ (q 1 , ν 1 ) δ1,t1 ---→ • • •
A run σ satisfies the Büchi condition if it visits accepting configurations infinitely often, that is configurations with a state from Acc. The duration of the run is the accumulated delay: i≥0 δ i . A run σ is Zeno if its duration is bounded.

Definition 1. The Büchi non-emptiness problem is to decide if A has a non-Zeno run satisfying the Büchi condition.

The class of TBA we consider is usually known as diagonal-free TBA since clock comparisons like xy ≤ 1 are disallowed. Since we are interested in the Büchi non-emptiness problem, we can consider automata without an input alphabet and without invariants since they can be simulated by guards.

The Büchi non-emptiness problem is known to be Pspace-complete [START_REF] Alur | A theory of timed automata[END_REF].

Regions and region graphs

A simple decision procedure for the Büchi non-emptiness problem builds from A a graph called the region graph and tests if there is a path in this graph satisfying certain conditions. We will define two types of regions.

Fix a constant M and a finite set of clocks X. Two valuations ν, ν ′ ∈ R X ≥0 are region equivalent w.r.t. M , denoted ν ∼ M ν ′ iff for every x, y ∈ X:

1. ν(x) > M iff ν ′ (x) > M ; 2. if ν(x) ≤ M , then ⌊ν(x)⌋ = ⌊ν ′ (x)⌋; 3. if ν(x) ≤ M , then {ν(x)} = 0 iff {ν ′ (x)} = 0; 4. if ν(x) ≤ M and ν(y) ≤ M then {ν(x)} ≤ {ν(y)} iff {ν ′ (x)} ≤ {ν ′ (y)}.
The first three conditions ensure that the two valuations satisfy the same guards. The last one enforces that for every δ ∈ R ≥0 there is δ ′ ∈ R ≥0 , such that valuations ν + δ and ν ′ + δ ′ satisfy the same guards.

We will also define diagonal region equivalence (d-region equivalence for short) that strengthens the last condition to

4 d . for every integer c ∈ (-M, M ): ν(x) -ν(y) ≤ c iff ν ′ (x) -ν ′ (y) ≤ c
This region equivalence is denoted by ∼ d M . Observe that it is finer than ∼ M . A region is an equivalence class of ∼ M . We write [ν] ∼ M for the region of ν, and R M for the set of all regions with respect to M . Similarly, for d-region equivalence we write:

[ν] d ∼ M and R d M .
If r is a region or a d-region then we will write r g to mean that every valuation in r satisfies the guard g. Observe that all valuations in a region, or a d-region, satisfy the same guards.

For an automaton A, we define its region graph, RG(A), using ∼ M relation, where M is the biggest constant appearing in the guards of its transitions. Nodes of RG(A) are of the form (q, r) for q a state of A and r ∈ R M a region. There is a transition (q, r)

t -→ (q ′ , r ′ ) if there are ν ∈ r, δ ∈ R ≥0 and ν ′ ∈ r ′ with (q, ν) δ,t -→ (q ′ , ν ′ ).
Observe that a transition in the region graph is not decorated with a delay. The graph RG d (A) is defined similarly but using the ∼ d M relation. It will be important to understand the properties of pre-and post-stability of regions or d-regions [START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF]. We state them formally. A transition (q, r) t -→ (q ′ , r ′ ) in a region graph or a d-region graph is:

-Pre-stable if for every ν ∈ r there are ν ′ ∈ r ′ , δ ∈ R ≥0 s.t. (q, ν)

δ,t -→ (q ′ , ν ′ ).
-Post-stable if for every ν ′ ∈ r ′ there are ν ∈ r, δ ∈ R ≥0 s.t. (q, ν)

δ,t -→ (q ′ , ν ′ ).
The following lemma (cf. [START_REF] Bouyer | Forward analysis of updatable timed automata[END_REF]) explains our interest in ∼ d M relation. Lemma 1 (Pre and post-stability). Transitions in RG d (A) are pre-stable and post-stable. Transitions in RG(A) are pre-stable but not necessarily poststable.

Consider two sequences

(q 0 , ν 0 ) δ0,t0 ---→ (q 1 , ν 1 ) δ1,t1 ---→ • • • (1) (q 0 , r 0 ) t0 -→ (q 1 , r 1 ) t1 -→ • • • (2)
where the first is a run in A, and the second is a path in RG(A) or RG d (A). We say that the first is an instance of the second if ν i ∈ r i for all i ≥ 0. Equivalently, we say that the second is an abstraction of the first. The following lemma is a direct consequence of the pre-stability property.

Lemma 2. Every path in RG(A) is an abstraction of a run of A, and conversely, every run of A is an instance of a path in RG(A). Similarly for RG d (A).

This lemma allows us to relate the existence of an accepting run of A to the existence of paths with special properties in RG(A) or RG d (A). We say that a path as in (2) satisfies the Büchi condition if it has infinitely many occurrences of states from Acc. The path is called progressive if for every clock x ∈ X:

-either x is almost always above M : there is n with r i x > M for all i > n; -or x is reset infinitely often and strictly positive infinitely often: for every n there are i, j > n such that r i (x = 0) and r j (x > 0).

Theorem 1 ([1]

). For every TBA A, L(A) = ∅ iff RG(A) has a progressive path satisfying the Büchi condition. Similarly for RG d (A).

While this theorem gives an algorithm for solving our problem, it turns out that this method is very impractical. The number of regions [START_REF] Alur | A theory of timed automata[END_REF] and constructing all of them, or even searching through them on-the-fly, has proved to be very costly.

RA(A) is O(|X|!2 |X| M |X| )

Zones and zone graphs

Timed verification tools use zones instead of regions. A zone is a set of valuations defined by a conjunction of two kinds of constraints : comparison of the difference between two clocks with a constant, or comparison of the value of a single clock with a constant. For example (xy ≥ 1) ∧ (y < 2) is a zone. While at first sight it may seem that there are more zones than regions, this is not the case if we count only those that are reachable from the initial valuation.

Since zones are sets of valuations defined by constraints, one can define discrete and delay transitions directly on zones. For δ ∈ R ≥0 , we have (q, Z) δ ⇁ (q, Z ′ ) if Z ′ is the smallest zone containing the set of all the valuations ν + δ with ν ∈ Z. Similarly, for a discrete transition we put (q, Z) t ⇀ (q ′ , Z ′ ) if Z ′ is the set of all the valuations ν ′ such that (q, ν) t ⇀ (q ′ , ν ′ ) for some ν ∈ Z; Z ′ is a zone in this case. Moreover zones can be represented using Difference Bound Matrices (DBMs), and transitions can be computed efficiently on DBMs [START_REF] Dill | Timing assumptions and verification of finite-state concurrent systems[END_REF]. The problem is that the number of reachable zones is not guaranteed to be finite [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF].

In order to ensure that the number of reachable zones is finite, one introduces abstraction operators. We mention the three most common ones in the literature. They refer to region graphs, RG(A) or RG d (A), and use the constant M that is the maximal constant appearing in the guards of A.

-Closure M (Z): the smallest union of regions containing Z; -Closure d M (Z): similarly but for d-regions; -Approx M (Z): the smallest union of d-regions that is convex and contains Z.

The following lemma establishes the links between the three abstraction operators, and is very useful to transpose reachability results from one abstraction to the other.

Lemma 3 ([6]). For every zone

Z: Z ⊆ Closure d M (Z) ⊆ Approx M (Z) ⊆ Closure M (Z).
A symbolic zone S is a zone approximated with one of the above abstraction operators. Now, similar to region graphs, we define simulation graphs where after every transition a specific approximation operation is used, that is each node in the simulation graph is of the form (q, S) with S being a symbolic zone . So we have three graphs corresponding to the three approximation operations.

Take an automaton A and let M be the biggest constant appearing in the guards of its transitions. In the simulation graph SG(A) the nodes are of the form (q, Closure M (Z)) where q is a state of A and Z is a zone. The initial node is (q 0 , Closure M (Z 0 )), with q 0 the initial state of A, and Z 0 the zone setting all the variables to 0. The transitions in the graph are (q, Closure M (Z))

t -→ (q ′ , Closure M (Z ′ )) where Z ′ is the set of valuations ν ′ such that there exist ν ∈ Closure M (Z) and δ ∈ R ≥0 satisfying (q, ν) δ,t -→ (q ′ , ν ′ ). Similarly for SG d (A)
and SG a (A) but replacing Closure M with operations Closure d M and Approx M , respectively. The notions of an abstraction of a run of A, and an instance of a path in a simulation graph are defined in the same way as that of region graphs.

Tools like Kronos or Uppaal use Approx M abstraction. The two others are less interesting for implementations since the result may not be convex. Nevertheless, they are useful in proofs. The following lemma (cf. [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF]) says that transitions in SG(A) are post-stable with respect to regions. Lemma 4. Let (q, S) t -→ (q ′ , S ′ ) be a transition in SG(A). For every region r ′ ⊆ S ′ , there is a region r ⊆ S such that (q, r)

t -→ (q ′ , r ′ ) is a transition in RG(A).
We get a correspondence between paths in simulation graphs and runs of A.

Theorem 2 ([16]

). Every path in SG(A) is an abstraction of a run of A, and conversely, every run of A is an instance of a path in SG(A). Similarly for SG d and SG a .

Proof. We first show that a path in SG(A) is an abstraction of a run of A. Take a path (q 0 , S 0 ) t0 -→ (q 1 , S 1 ) t1 -→ . . . in SG(A). Construct a DAG with nodes (i, q i , r i ) such that r i is a region in S i . We put an edge from (i, q i , r i ) to (i + 1, q i+1 , r i+1 ) if (q i , r i ) ti -→ (q i+1 , r i+1 ). By Lemma 4, every node in this DAG has at least one predecessor, and the branching of every node is bounded by the number of regions. Hence, this DAG has an infinite path that is a path in RG(A). By Lemma 2 this path can be instantiated to a run of A.

To conclude the proof one shows that a run of A can be abstracted to a path in SG d (A). Then using Lemma 3 this path can be converted to a path in SG a (A), and later to one in SG(A). We omit the details.

Observe that this theorem does not guarantee that a path we find in a simulation graph has an instantiation that is non-Zeno. It is indeed impossible to guarantee this unless some additional conditions on paths or automata are imposed.

In the subsequent sections, we are interested only in the simulation graph SG a . Observe that the symbolic zone obtained by the approximation of a zone using Approx M is in fact a zone. Hence, we prefer to call it a zone graph and denote it as ZG a . Every node of ZG a is of the form (q, Z) where Z is a zone.

Finding non Zeno paths

As we have remarked above, in order to use Theorem 2 we need to be sure that a path we get can be instantiated to a non-Zeno run. We discuss the solutions proposed in the literature, and then offer a better one. Thanks to pre-stability of the region graph, the progress criterion on regions has been defined in [START_REF] Alur | A theory of timed automata[END_REF] for selecting runs from RG(A) that have a non-Zeno instantiation (see Section 2.2). Notice that the semantics of TBA in [START_REF] Alur | A theory of timed automata[END_REF] constrains all delays δ i to be strictly positive, but the progress criterion can be extended to the stronger semantics that is used nowadays (see [START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF] for instance). However, since zone graphs are not pre-stable, this method cannot be directly extended to zone graphs.

Adding one clock

A common solution to deal with Zeno runs is to transform an automaton into a strongly non-Zeno automaton, i.e. such that all runs satisfying the Büchi condition are guaranteed to be non-Zeno. We present this solution here and discuss why, although simple, it may add an exponential factor in the decision procedure.

The transformation of A into a strongly non-Zeno automaton SN Z(A) proposed in [START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF] adds one clock z and duplicates accepting states. One copy of the state is as before but is no longer accepting. The other copy is accepting, but it can be reached only when z ≥ 1. Moreover when it is reached z is reset to 0. The only transition from this second copy leads to the first copy. (See V k and W k on Figure 1 for an example.) This construction ensures that at least one unit of time has passed between two visits to an accepting state. A slightly different construction is mentioned in [START_REF] Alur | Decision problems for timed automata: A survey[END_REF]. Of course one can also have other modifications, and it is impossible to treat all the imaginable constructions at once. Our objective here is to show that the constructions proposed in the literature produce a phenomenon that causes proliferation of zones that can sometimes be exponential in the number of clocks. The discussion below will focus on the construction from [START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF], but the one from [START_REF] Alur | Decision problems for timed automata: A survey[END_REF] suffers from the same problem.

The problem comes from the fact that the constraint z ≥ 1 may be a source of rapid multiplication of the number of zones in the zone graph of SN Z(A). Consider V k and W k from Figure 1 for k = 2. Starting at the state b 2 of V 2 in the zone 0 ≤ y ≤ x 1 ≤ x 2 , there are two reachable zones with state b 2 . Moreover, if we reset x 1 followed by y from the two zones, we reach the same zone 0

≤ y ≤ x 1 ≤ x 2 . In contrast starting in b 2 of W 2 = SN Z(V 2 ) from . . . c k 0 c k 1 . . . c k k c k y . . . {x k } {x k-1 } {x1} {y} R k b k a k . . . . . . y ≤ d {x1, . . . , x k-1 } V k b k a k 1 a k 2 . . . . . . y ≤ d ∧ z ≥ 1 {z} y ≤ d ∧ z < 1 {x1, . . . , x k-1 } W k = SN Z(V k ) Rn Vn . . . R2 V2 An Rn Wn . . . R2 W2 Bn Fig. 1. Gadgets for A n and B n = SN Z(A n ). 0 ≤ y ≤ x 1 ≤ x 2 ≤
z gives at least d zones, and resetting x 1 followed by y still yields d zones.

We now exploit this fact to give an example of a TBA A n whose zone graph has a number of zones linear in the number of clocks, but B n = SN Z(A n ) has a zone graph of size exponential in the number of clocks. A n is constructed from the automata gadgets V k and R k as shown in Figure 1. Observe that the role of R k is to enforce an order 0 Let us now consider B n , the strongly non-Zeno automaton obtained from A n following [START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF]. Every gadget V k gets transformed to W k . While exploring W k , one introduces a distance between the clocks x k-1 and x k . So when leaving it one gets zones with x kx k-1 ≥ c, where c ∈ {0, 1, 2, . . . , d}. The distance between x k and x k-1 is preserved by R k . In consequence, W n produces at least d + 1 zones. For each of these zones W n-1 produces d + 1 more zones. In the end, the zone graph of B n has at least (d + 1) n-1 zones at the state b 2 .

≤ y ≤ x 1 ≤ • • • ≤ x k between clock
We have thus shown that A n has O(n) zones while B n = SN Z(A n ) has an exponential number of zones even when the constant d is 1. Observe that the construction shows that even with two clocks the number of zones blows exponentially in the binary representation of d. Note that the automaton A n does not have a non-Zeno accepting run. Hence, every search algorithm is compelled to explore all the zones of B n .

A more efficient solution

Our solution stems from a realization that we only need one non-Zeno run satisfying the Büchi condition and so in a way transforming an automaton to strongly non-Zeno is an overkill. We propose not to modify the automaton, but to introduce additional information to the zone graph ZG a (A). The nodes will now be triples (q, Z, Y ) where Y ⊆ X is the set of clocks that can potentially be equal to 0. It means in particular that other clock variables, i.e. those from X -Y are assumed to be bigger than 0. We write (X -Y ) > 0 for the constraint saying that all the variables in X -Y are not 0. Definition 2. Let A be a TBA over a set of clocks X. The guessing zone graph GZG a (A) has nodes of the form (q, Z, Y ) where (q, Z) is a node in ZG a (A) and Y ⊆ X. The initial node is (q 0 , Z 0 , X), with (q 0 , Z 0 ) the initial node of ZG a (A). There is a transition (q, Z, Y )

t -→ (q ′ , Z ′ , Y ∪ R) in GZG a (A) if there is a transition (q, Z) t -→ (q ′ , Z ′
) in ZG a (A) with t = (q, g, R, q ′ ), and there are valuations ν ∈ Z, ν ′ ∈ Z ′ , and δ such that ν + δ (X -Y ) > 0 and

(q, ν)

δ,t
-→ (q, ν ′ ). We also introduce a new auxiliary letter τ , and put transitions

(q, Z, Y ) τ -→ (q, Z, Y ′ ) for Y ′ = ∅ or Y ′ = Y .
Observe that the definition of transitions reflects the intuition about Y we have described above. Indeed, the additional requirement on the transition (q, Z, Y ) t -→ (q ′ , Z ′ , Y ∪ R) is that it should be realizable when the clocks outside Y are strictly positive; so there should be a valuation satisfying (X -Y ) > 0 that realizes this transition. As we will see later, this construction entails that from a node (q, Z, ∅) every reachable zero-check is preceded by the reset of the variable that is checked, and hence nothing prevents a time elapse in this node. A node of the form (q, Z, ∅) is called clear. We call a node (q, Z, Y ) accepting if it contains an accepting state q.

Example. Figure 2 depicts a TBA A 1 along with its zone graph ZG a (A 1 ) and its guessing zone graph GZG a (A 1 ) where τ -loops have been omitted.

a b x ≥ 1 x ≤ 1 {x} A1 a, x = 0 b, x ≥ 1 x ≥ 1 x ≤ 1 {x} ZG a (A1) a, x = 0, {x} a, x = 0, ∅ b, x ≥ 1, {x} b, x ≥ 1, ∅ x ≥ 1 τ x ≥ 1 x ≤ 1 {x} τ x ≤ 1 { x } GZG a (A1)
Fig. 2. A TBA A 1 and the guessing zone graph GZG a (A 1 ).

Notice that directly from the definition it follows that a path in GZG a (A) determines a path in ZG a (A) obtained by removing τ transitions and the third component from nodes.

A variable x is bounded by a transition of GZG a (A) if the guard of the transition implies x ≤ c for some constant c. More precisely: for (q, Z, Y ) (q,g,R,q ′ ) ------→ (q ′ , Z ′ , Y ′ ), the guard g implies (x ≤ c). A variable is reset by the transition if it belongs to the reset set R of the transition.

We say that a path is blocked if there is a variable that is bounded infinitely often and reset only finitely often by the transitions on the path. Otherwise the path is called unblocked.

Theorem 3.

A TBA A has a non-Zeno run satisfying the Büchi condition iff there exists an unblocked path in GZG a (A) visiting both an accepting node and a clear node infinitely often.

The proof of Theorem 3 follows from Lemmas 5 and 6 below. We omit the proof of the first of the two lemmas and concentrate on a more difficult Lemma 6. It is here that the third component of states is used.

At the beginning of the section we had recalled that the progress criterion in [START_REF] Alur | A theory of timed automata[END_REF] characterizes the paths in region graphs that have non-Zeno instantiations. We had mentioned that it cannot be directly extended to zone graphs since their transitions are not pre-stable. Lemma 6 below shows that by slightly complicating the zone graph we can recover a result very similar to Lemma 4.13 in [START_REF] Alur | A theory of timed automata[END_REF]. Lemma 5. If A has a non-Zeno run satisfying the Büchi condition, then in GZG a (A) there is an unblocked path visiting both an accepting node and a clear node infinitely often. Lemma 6. Suppose GZG a (A) has an unblocked path visiting infinitely often both a clear node and an accepting node then A has a non-Zeno run satisfying the Büchi condition.

Proof. Let σ be a path in GZG a (A) as required by the assumptions of the lemma (without loss of generality we assume every alternate transition is a τ transition):

(q 0 , Z 0 , Y 0 ) τ -→ (q 0 , Z 0 , Y ′ 0 ) t0 -→ • • • (q i , Z i , Y i ) τ -→ (q i , Z i , Y ′ i ) ti -→ • • •
Take a corresponding path in ZG a (A) and one instance ρ = (q 0 , ν 0 ), (q 1 , ν 1 ) . . . that exists by Theorem 2. If it is non-Zeno then we are done. Suppose ρ is Zeno. Let X r be the set of variables reset infinitely often on σ. By assumption on σ, every variable not in X r is bounded only finitely often. Since ρ is Zeno, there is an index m such that the duration of the suffix of the run starting from (q m , ν m ) is bounded by 1/2, and no transition in this suffix bounds a variable outside X r . Let n > m be such that every variable from X r is reset between m and n. Observe that ν n (x) < 1/2 for every x ∈ X r .

Take positions i, j such that i, j > n, Y i = Y j = ∅ and all the variables from X r are reset between i and j. We look at the part of the run ρ:

(q i , ν i ) δi,ti ---→ (q i+1 , ν i+1 ) δi+1,ti+1
------→ . . . (q j , ν j ) and claim that every sequence of the form

(q i , ν ′ i ) δi,ti ---→ (q i+1 , ν ′ i+1 ) δi+1,ti+1 ------→ . . . (q j , ν ′ j )
is a part of a run of A provided there is ζ ∈ R ≥0 such that the following three conditions hold for all k = i, . . . , j:

1. ν ′ k (x) = ν k (x) + ζ + 1/2 for all x ∈ X r , 2. ν ′ k (x) = ν k (x) + 1/2 if
x ∈ X r and x has not been reset between i and k. 3. ν ′ k (x) = ν k (x) otherwise, i.e., when x ∈ X r and x has been reset between i and k.

Before proving this claim, let us explain how to use it to conclude the proof. The claim shows that in (q i , ν i ) we can pass 1/2 units of time and then construct a part of the run of A arriving at (q j , ν ′ j ) where ν ′ j (x) = ν j (x) for all variables in X r , and ν ′ j (x) = ν j (x) + 1/2 for other variables. Now, we can find l > j, so that the pair (j, l) has the same properties as (i, j). We can pass 1/2 units of time in j and repeat the above construction getting a longer run that has passed 1/2 units of time twice. This way we construct a run that passes 1/2 units of time infinitely often. By the construction it passes also infinitely often through accepting nodes.

It remains to prove the claim. Take a transition (q k , ν k )

δ k ,t k ---→ (q k+1 , ν k+1 ) and show that (q k , ν ′ k ) δ k ,t k ---→ (q k+1 , ν ′ k+1
) is also a transition allowed by the automaton. Let g and R be the guard of t k and the reset of t k , respectively.

First we need to show that ν ′ k + δ k satisfies the guard of t k . For this, we need to check if for every variable x ∈ X the constraints in g concerning x are satisfied. We have three cases:

-If x ∈ X r then x is not bounded by the transition t k , that means that in g the constraints on x are of the form (x > c) or (x ≥ c). Since (ν k + δ k )(x) satisfies these constraints so does (ν

′ k + δ k )(x) ≥ (ν k + δ k )(x). -If x ∈ X r
and it is reset between i and k then ν ′ k (x) = ν k (x) so we are done. -Otherwise, we observe that x ∈ Y k . This is because Y i = ∅, and then only variables that are reset are added to Y . Since x is not reset between i and k, it cannot be in Y k . By definition of transitions in GZG a (A) this means that g ∧ (x > 0) is consistent. We have that 0

≤ (ν k + δ k )(x) < 1/2 and 1/2 ≤ (ν ′ k + δ k )(x) < 1. So ν ′ k + δ k satisfies all the constraints in g concerning x as ν k + δ k does.
This shows that there is a transition (q k , ν ′ k )

δ ′ k ,t k ---→ (q k+1 , ν ′ ) for the uniquely determined ν ′ = [R](ν ′ k + δ k ). It is enough to show that ν ′ = ν ′ k+1 .
For variables not in X r it is clear as they are not reset. For variables that have been reset between i and k this is also clear as they have the same values in ν ′ k+1 and ν ′ . For the remaining variables, if a variable is not reset by the transition t k then condition (2) holds. If it is reset then its value in ν ′ becomes 0; but so it is in ν ′ k+1 , and so the third condition holds. This proves the claim.

Finally, we provide an explanation as to why the proposed solution does not produce an exponential blowup. At first it may seem that we have gained nothing because when adding arbitrary sets Y we have automatically caused exponential blowup to the zone graph. We claim that this is not the case for the part of GZG a (A) reachable from the initial node, namely a node with the initial state of A and the zone putting every clock to 0.

We say that a zone orders clocks if for every two clocks x, y, the zone implies that at least one of x ≤ y, or y ≤ x holds.

Lemma 7. If a node with a zone Z is reachable from the initial node of the zone graph ZG a (A) then Z orders clocks. The same holds for GZG a (A).

Suppose that Z orders clocks. We say that a set of clocks Y respects the order given by Z if whenever y ∈ Y and Z implies x ≤ y then x ∈ Y . Lemma 8. If a node (q, Z, Y ) is reachable from the initial node of the zone graph GZG a (A) then Y respects the order given by Z.

Lemma 7 follows since a transition from a zone that orders clocks gives back a zone that orders clocks, and the Approx M operator approximates it again to a zone that orders clocks. Notice that the initial zone clearly orders clocks. The proof of Lemma 8 proceeds by an induction on the length of a path. The above two lemmas give us the desired bound. The theorem follows directly from the above two lemmas. Of course, imposing that zones have ordered clocks in the definition of GZG a (A) we would get the same bound for the entire GZG a (A).

Algorithm

We use Theorem 3 to construct an algorithm to decide if an automaton A has a non-Zeno run satisfying the Büchi condition. This theorem requires to find an unblocked path in GZG a (A) visiting both an accepting state and a clear state infinitely often. This problem is similar to that of testing for emptiness of automata with generalized Büchi conditions as we need to satisfy two infinitary conditions at the same time. The requirement of a path being unblocked adds additional complexity to the problem. The best algorithms for testing emptiness of automata with generalized Büchi conditions are based on strongly connected components (SCC) [START_REF] Schwoon | A note on on-the-fly verification algorithms[END_REF][START_REF] Gaiser | Comparison of algorithms for checking emptiness on büchi automata[END_REF]. So this is the way we take here.

We apply a variant of Tarjan's algorithm for detecting maximal SCCs in GZG a (A). During the computation of the maximal SCCs, we keep track of whether an accepting node and a clear node have been seen. For the unblocked condition we use two sets of clocks U B Γ and R Γ that respectively contain the clocks that are bounded and the clocks that are reset in the SCC Γ . At the end of the exploration of Γ we check if:

1. we have passed through an accepting node and a clear node, 2. there are no blocking clocks: U B Γ ⊆ R Γ .

If the two conditions are satisfied then we can conclude saying that A has an accepting non-Zeno run. Indeed, a path passing infinitely often through all the nodes of Γ would satisfy the conditions of Theorem 3, giving a required run of A. If the first condition does not hold then the same theorem says that Γ does not have a witness for a non-Zeno run of A satisfying the Büchi condition.

The interesting case is when the first condition holds but not the second. We can then discard from Γ all the edges blocking clocks from U B Γ -R Γ , and reexamine it. If Γ without discarded edges is still an SCC then we are done. If not we restart our algorithm on Γ with the discarded edges removed. Observe that we will not do more than |X| restarts, as each time we eliminate at least one clock. If after exploring the entire graph, the algorithm has not found a subgraph satisfying the two conditions then it declares that there is no run of A with the desired properties. Its correctness is based on Theorem 3.

Recall that by Theorem 4 the size of GZG a (A) is |ZG a (A)| • |X|. The complexity of the algorithm follows from the complexity of Tarjan's algorithm and the remark about the number of recursive calls being bounded by the number of clocks. We hence obtain the following. 

Conclusions

Büchi non-emptiness problem is one of the standard problems for timed automata. Since the paper introducing the model, it has been widely accepted that addition of one auxiliary clock is an adequate method to deal with the problem of Zeno paths. This technique is also used in the recently proposed zone based algorithm for the problem [START_REF] Tripakis | Checking timed büchi emptiness on simulation graphs[END_REF].

In this paper, we have argued that in some cases the auxiliary clock may cause exponential blowup in the size of the zone graph. We have proposed another method that is based on a modification of the zone graph. The resulting graph grows only by a factor that is linear in the number of clocks. In our opinion, the efficiency gains of our method outweigh the fact that it requires some small modifications in the code dealing with zone graph exploration.

It is difficult to estimate how often introducing the auxiliary clock may cause an exponential blowup. The example in Figure 1 suggests that the problem appears when there is a blocked cycle containing an accepting state. A prototype implementation of our algorithm shows that a blowup occurs in the Train-Gate example (e.g. [START_REF] Gómez | Efficient detection of zeno runs in timed automata[END_REF]) when checking for bounded response to train access requests. For 2 trains, the zone graph has 988 zones whereas after adding the auxiliary clock it blows to 227482 zones. The guessing zone graph has 3840 zones. To be fair, among the 227482 zones, 146061 are accepting with a self-loop, so in this example any on-the-fly algorithm should work rather quickly. Our prototype visits 1677 zones (in 0.42s). The example from Figure 1 with n = 10 and d = 1 has a zone graph with 151 zones and a guessing zone graph with 1563 zones. Its size grows to 36007 when adding the extra clock. Raising d to 15, we obtain 151, 1563 and 135444 zones respectively, which confirms the expected blowup.

It is possible to apply the modification to the zone graph on-the-fly. It could also be restricted only to strongly connected components having "zero checks". This seems to be another source of big potential gains. We are currently working on an on-the-fly optimized algorithm. The first results are very encouraging. Often our prototype implementation solves the emptiness problem at the same cost as reachability when the automaton has no Zeno accepting runs. For instance, the zone graph for Fischer's protocol with 4 processes has 46129 zones and is computed in 14.22s1 . To answer the mutual exclusion problem it is necessary to visit the entire zone graph. Our algorithm does it in 15.77s. Applying the construction from [START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF] we get the graph with 96913 zones, and it takes 37.10s to visit all of them. Hence, even in this example, where all the runs are non-Zeno, adding one clock has a noticeable impact. In this section, we describe the zone graphs of the gadgets V and W shown in Figure 3. Observe that they correspond to gadgets V 2 and W 2 in Figure 1. Figure 4 gives the set of zones obtained by successive transitions of V starting from the zone (b, 0 ≤ y ≤ x 1 ≤ x 2 ). After two traversals of the cycle formed by b and a in V, we reach a zone that was already seen. Hence we have just two different zones with the state b. ZG(W) in Figure 5 gives the sequence of transitions in the zone graph of W starting from the zone (l 0 , 0 ≤ y ≤ x 1 ≤ x 2 ≤ z). After a certain point, every traversal induces an extra distance between the clocks y and z. Clearly, there are at least d zones in this case.

b 0 ≤ y ≤ x1 ≤ x2 a 0 ≤ y ≤ x1 ≤ x2 ∧ y ≤ d b 0 = x1 ≤ y ≤ x2 a 0 ≤ x1 ≤ y ≤ x2 ∧ y ≤ d . . . . . . . . . y ≤ d {x1} y ≤ d {x1} Fig. 4. Part of ZG(V). . . . . . . b 0 ≤ y ≤ x1 ≤ x2 ≤ z a1 0 = z ≤ y ≤ x1 ≤ x2 ∧ y ≤ d a2 0 ≤ z ≤ y ≤ x1 ≤ x2 . . . b 0 = x1 ≤ z ≤ y ≤ x2 a1 0 = z ≤ x1 ≤ y ≤ x2 ∧ y -z ≥ 1 ∧ y ≤ d a2 0 ≤ z ≤ x1 ≤ y ≤ x2 ∧ y -z ≥ 1 . . . b 0 = x1 ≤ z ≤ y ≤ x2 ∧ y -z ≥ 1 . . . . . . . . . b 0 = x1 ≤ z ≤ y ≤ x2 ∧ y -z ≥ d -1 a1 0 = z ≤ x1 ≤ y ≤ x2 ∧ y -z = d ∧ y = d a2 0 ≤ z ≤ x1 ≤ y ≤ x2 ∧ y -z = d . . . b 0 = x1 ≤ z ≤ y ≤ x2 ∧ y -z = d y ≤ d ∧ z ≥ 1 {z} {x 1 } y ≤ d ∧ z ≥ 1 {z} {x 1 } y ≤ d ∧ z ≥ 1 {z} {x 1 } y ≤ d ∧ z ≥ 1 {z} {x 1 } Fig. 5. Part of ZG(W).
Take now the automaton B n considered in Figure 1. The set of zones obtained with the state b k is 0

= x 1 = . . . = x k-1 ≤ z ≤ y ≤ x k ≤ . . . ≤ x n ∧ x n -x n-1 ≥ c 1 ∧ x n-1 -x n-2 ≥ c 2 . . . . . . ∧ x k+2 -x k+1 ≥ c n-k-1 ∧ x k+1 -x k ≥ c n-k ∧ y -z ≥ c n-k+1
where c i ∈ {0, 1, 2, . . . , d} for i ∈ {1, . . . , nk + 1}. So the zone graph has at least (d + 1) n-k+1 zones at the state b k . Hence, the zone graph of SN Z(B n ) contains at least (d + 1) n-1 zones.

B Another example of a blowup

We take a simple automaton U, shown in Figure 6. Due to the inherent non determinism, one obtains n! zones at a that describe an ordering of the form x i1 ≤ x i2 . . . ≤ x in with {i 1 , i 2 , . . . , i n } = {1, 2, . . . , n}. U has a Zeno cycle between a and b, with b being the only accepting state. Obviously, any algorithm that searches for a non-Zeno accepting cycle has to explore the entire zone graph. Consequently, an algorithm that first transforms U into a strongly non-Zeno automaton needs to explore at least n!(d-1) n zones. This is because the modified automaton SN Z(U) yields a zone graph that includes zones describing distances, similar to the case shown in Figure 3. Note that the zone graph of U has O(n!) number of zones. We hence see an exponential blowup in this case too, although it is somehow hiden in the size of the original graph. 

C Examples of guessing zone graphs

At the beginning of Section3 we had recalled that the progress criterion in [START_REF] Alur | A theory of timed automata[END_REF] characterizes the paths in region graphs that have non-Zeno instantiations. We had mentioned that it cannot be directly extended to zone graphs since their transitions are not pre-stable. Theorem 3 and Lemma 6 show that by slightly complicating the zone graphs we can recover a result very similar to Lemma 4.13 in [START_REF] Alur | A theory of timed automata[END_REF]. We would like to illustrate the construction with several examples. -----→ a time must not elapse in b. This emphasizes that ZG a (A 1 ) is not pre-stable since not all valuations in (b, x ≥ 1) have a successor following this transition. Notice that GZG a (A 1 ) is also not pre-stable. Moreover, the third component Y does not help to detect that time cannot elapse in b as in GZG a (A 1 ) the transition is allowed for both Y = {x} and Y = ∅. However, as soon as an SCC contains a transition x ≥ 1 and a transition that resets x, it has a non-Zeno run, and the third component does not play any role.

C.1 On Pre-and Post-Stability

The third component is only useful for the case where an SCC contains no transition with a guard implying x > 0 for some clock x that is also reset on some transition in the SCC. In such a case, zero checks may prevent time to elapse. We illustrate this case on the next two examples that emphasize how the third component added to the states of the zone graph allows to distinguish between Zeno runs and non-Zeno runs.

C.2 A Zeno TBA with Zero Checks

The TBA A 2 below only has one infinite run that is Zeno as time does not elapse at all. This is detected in GZG a (A 2 ) as all states in the only non-trivial SCC have Y = {x, y} as the third component. This means that from every state there exists a reachable zero check that is not preceded by the corresponding reset, hence preventing time to elapse. Notice that the correctness of this argument relies on the fact that for every (q, Z, Y ) in GZG a (A 2 ), and for every transition t = (q, g, R, q ′ ), even if t is fireable in ZG a (A 2 ) from (q, Z), it must also be fireable under the supplementary hypothesis (X -Y ) > 0 given by Y in GZG a (A 2 ). Notice that τ -loops in GZG a (A 2 ) have not been represented for clarity of the figure.

C.3 A non-Zeno TBA with Zero Checks

The TBA A 3 below admits a non-Zeno run. This can be read from GZG a (A 3 ) since the SCC composed of the four zones with Y = {x, y} on the one hand, and (z 2 , ∅) and (z 3 , {y}) on the other hand, contains a clear state. This is precisely the state where time can elapse as every reachable zero check is preceded by the corresponding reset. 

D Proofs from Section 3

Proof (Of Lemma 5). Let ρ be a non-Zeno run of A:

(q 0 , ν 0 ) δ0,t0 ---→ (q 1 , ν 1 ) δ1,t1 ---→ • • • By Theorem 2, it is a concretization of a path σ in ZG a (A):

(q 0 , Z 0 ) t0 -→ (q 1 , Z 1 ) t1 -→ • • •
Let σ ′ be the following sequence:

(q 0 , Z 0 , Y 0 ) τ -→ (q 0 , Z 0 , Y ′ 0 ) t0 -→ (q 1 , Z 1 , Y 1 ) τ -→ (q 1 , Z 1 , Y ′ 1 ) t1 -→ • • •
where Y 0 = X, Y i is determined by the transition, and Y ′ i = Y i unless δ i > 0 when we put Y ′ i = ∅. We need to see that this is indeed a path in GZG a (A).

  values. By induction on k one can compute that there are only two zones at locations b k since R k+1 made the two zones in b k+1 collapse into the same zone in b k . Hence the number of nodes in the zone graph of A n is O(n).

Theorem 4 .

 4 Let |ZG a (A)| be the size of the zone graph, and |X| be the number of clocks in A. The number of reachable nodes of GZG a (A) is bounded by |ZG a (A)|.(|X| + 1).

Theorem 5 .

 5 The above algorithm is correct and runs in time O(|ZG a (A)|.|X| 2 ).

Fig. 3 .

 3 Fig. 3. Construction adding one clock

Fig. 6 .

 6 Fig. 6. The TBAs U and SN Z(U).

Figure 2

 2 Figure 2 depicts a TBA A 1 along with ZG a (A 1 ) and GZG a (A 1 ) (where the τ -loops have been omitted). In order to fire transition b x≤1,{x}

2 z2

 2 : (1, 0 = x ≤ y), ∅ z2, {x} z2, {x, y} z1 : (0, 0 = x = y), ∅ z1, {x, y} z3 : (2, 0 = y ≤ x), ∅ z3, {y} z3, {x,Reachable part of GZG a (A 2 )

  2, 0 = x = y), ∅ z2, {x, y} z3 : (0, 0 = y ≤ x), ∅ z3, {y} z3, {x, y} z4 : (1, 0 = x ≤ y), ∅ z4, {x} z4, {x, y} z1 : (0, 0 = x = y), ∅ z1, {x, y} {x} Reachable part of GZG a (A 3 )Notice that τ -loops in GZG a (A 3 ) have not been represented for clarity of the figure.

On a

2.4GHz Intel Core 2 Duo MacBook with 2GB of memory.

For this we need to see that every transition (q i , Z i , Y ′ i ) t0 -→ (q i+1 , Z i+1 , Y i+1 ) is realizable from a valuation ν such that ν (X -Y ′ i ) > 0. But an easy induction on i shows that actually ν i (X -Y ′ i ) > 0. Since σ is non-Zeno there are infinitely many i with Y ′ i = ∅. It is also straightforward to check that ρ is unblocked.

Proof (Of Lemma 7). First notice that in the initial zone, all the clocks are equal to each other. Now, consider any zone Z that orders clocks. Let (q, Z) t -→ (q ′ , Z ′ ) be a transition of ZG a . This means that (q, Z)

. Directly from the definition of transitions we have that Z ′ 1 orders clocks. It remains to check that, the clock ordering in

. Suppose not, then for an ordering constraint c satisfied by Z ′ , Z ′ ∧ c would be a smaller convex zone in R d M that contains Z ′ 1a contradiction. Finally, for every node (q, Z, Y ) in GZG a (A), (q, Z) is reachable in ZG a (A).

Proof (Of Lemma 8). The proof is by induction on the length of a path. In the initial node (q 0 , Z 0 , X), the set X obviously respects the order as it is the set of all clocks. Now take a transition (q, Z, Y ) t -→ (q ′ , Z ′ , Y ′ ) with Y respecting the order in Z. We need to show that Y ′ respects the order in Z ′ . By the definition of transitions in GZG a (A) there are ν ∈ Z, ν ′ ∈ Z ′ and δ such that (q, ν) δ,t -→ (q ′ , ν ′ ) and ν + δ (X -Y ) > 0. Take y ∈ Y ′ and suppose that Z ′ implies x ≤ y for some clock x. There are three cases depending on which of the variables y, x are being reset by the transition.

If x is reset by the transition then, by definition x ∈ Y ′ . If y is reset then Z ′ implies y = 0. Hence Z ′ implies that x = 0. Since x is not reset, Z implies x = 0. We are done, since Y preserves the ordering.

The remaining case is when none of the variables is reset by the transition. As ν ′ ∈ Z ′ , we have that ν ′ x ≤ y; and in consequence ν x ≤ y. Since Z orders clocks and ν ∈ Z, we must have that Z implies x ≤ y. As y has not been reset, y ∈ Y . By assumption that Y orders clocks, x ∈ Y .