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Abstract

A number of analysis tools have been developed for the estimation of brain at-
rophy using MRI. Since brain atrophy is being increasingly used as a marker
of disease progression in many neuro-degenerative diseases such as Multiple
Sclerosis and Alzheimer’s Disease, the validation of these tools is an impor-
tant task. However, this is complex, in the real scenario, due to the absence
of gold standards for comparison. In order to create gold standards, we first
propose an approach for the realistic simulation of brain tissue loss that relies
on the estimation of a topology preserving B-spline based deformation fields.
Using these gold standards, an evaluation of the performance of three stan-
dard brain atrophy estimation methods (SIENA, SIENAX and BSI-UCD),
on the basis of their robustness to various sources of error (bias-field inhomo-
geneity, noise, geometrical distortions, interpolation artefacts and presence
of lesions), is presented. Our evaluation shows that, in general, bias-field
inhomogeneity and noise lead to larger errors in the estimated atrophy than
geometrical distortions and interpolation artefacts. Experiments on 18 dif-
ferent anatomical models of the brain after simulating whole brain atrophies
in the range of 0.2 − 1.5% indicate that, in the presence of bias-field in-
homogeneity and noise, a mean error of 0.64% ± 0.53, 4.00% ± 2.41 and
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1.79%±0.97 may be expected in the atrophy estimated by SIENA, SIENAX
and BSI-UCD, respectively.

Key words: Brain atrophy simulation, Atrophy estimation, Evaluation.

1. Introduction

Brain atrophy is a common feature of many neuro-degenerative diseases
such as Multiple Sclerosis (MS)[1] and Alzheimer’s disease (AD) [2, 3]. The
emergence of brain atrophy is related to a combination of multiple factors.
For instance in MS, factors such as axonal injury, loss of myelin and others
related to astrogliosis, remyelination and water-compartment change, influ-
ence the occurrence of atrophy in the brain in a combined fashion. Although
it is difficult to determine the individual influence of these factors on atro-
phy, it has been shown to be a sensitive marker of disease evolution in several
chronic diseases. Studies have reported annual global brain atrophy rates in
MS (in both early and late stages) between 0.5% and 0.8% [4] and between
1% and 2.8% for AD patients [3]. It should be pointed out here that sensitive
methods are required to accurately estimate the small atrophy that occurs
in the brain.

Magnetic Resonance Imaging (MRI) acquisitions and image processing
techniques have helped in this effort of quantification and provide ways of
measuring the brain volume loss. In the literature, the currently available
image processing methods for brain atrophy estimation have been differenti-
ated based on several criteria. Pelletier et al. [5] suggest the classification of
methods for brain atrophy analysis into two groups depending on their re-
liance on registration or segmentation. Registration-based methods include
brain edge motion analysis (“Boundary Shift Integral” (BSI) [6], “Struc-
tural Image Evaluation, using Normalization, of Atrophy” (SIENA) [7, 8]),
Voxel-Based Morphometry (“Statistical Parametric Mapping” (SPM) [9]),
Template-Driven Segmentation ([10]) and Local Jacobian Analysis ([11, 12,
13]). Segmentation-based methods rely on different brain atrophy measure-
ments such as the “Brain Parenchymal Fraction” (BPF) ([14, 15]) and “Brain
to IntraCranial Capacity Ratio” (BICCR) ([16]). When using brain atrophy
as a marker of disease evolution, two types of analyzes are conducted: lon-
gitudinal and cross-sectional. In longitudinal studies, repeated brain scans
of the same individual are considered over time. These studies track disease
progression by giving an estimate of the atrophy rate. Examples of widely
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used methods for longitudinal studies are BSI [6] and SIENA [7]. Cross-
sectional studies are used to know the state of the disease at a given time
by providing an estimate of brain volume at one point in time. SIENAX [8]
is a popular method utilized by cross-sectional studies. Another pertinent
grouping classifies the methods based according to the estimated atrophy:
global or local. A global atrophy estimation method, such as BSI [6] or
SIENA [7], gives an estimate of overall decrease or rate of decrease in the
brain volume. Global measures are used in population studies to separate
the patient group from the normals or in cases when one just wants to know
whether the brain has undergone an atrophy globally. Local measurements
(Jacobian Integration [11], SPM [9]) make it possible to have a regional (or
voxel by voxel) estimate of the atrophy in the brain. Local measures are
interesting since they allow us to decipher which parts of the brain are more
affected by atrophy in the course of a pathology.

The accuracy and reliability of brain atrophy estimation methods are af-
fected by a number of factors. Non-destructive biologic factors such as inflam-
mation, edema, steroid therapy, dehydration, alcohol consumption, cerebral
vascular disease and normal aging [5] may contribute to a change in brain
volume. Factors such as lesion growth or change in tissue intensity may lead
to a change in the brain tissue appearance over time. MRI artefacts during
acquisition also have a strong impact on brain atrophy measurements: mo-
tion artefacts, sequence variations, partial volume effect, noise in images and
bias field inhomogeneity. Another source of error are geometrical distortions
which result from errors in the gradient field strength and non-linearity of
gradient fields in the MR scanner[17, 11]. Finally, other sources of errors are
more method specific depending on the pre-processing algorithms that are
used and include, for instance, inaccuracies in registration and segmentation
of images.

Since brain atrophy is now being increasingly used as a marker of disease
progression in many pathologies, the validation of these tools is a key prob-
lem. However, in the real scenario, the non-availability of the ground truth
complicates the evaluation and comparison of these techniques [5]. In the lit-
erature, a number of attempts have been made to assess and compare these
methods using real and simulated data. In Table 1, we list several studies on
neuro-degenerative diseases, their evaluation frameworks and findings.

The most commonly used evaluation criteria are discussed in the following
paragraph. Refer to Table 1 for a list of references where these criteria have
been used in the literature.
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1. Same day scan-rescan: Tests on two scans of the same subject ob-
tained on the same day should yield zero atrophy. Ideally, the spread
of the true brain volume changes in such cases should be negligible and
the deviations from zero represent measurement uncertainties of the
methods.

2. Consistency : This is a way of measuring the variability in atrophy es-
timation. Consistency can be measured using several approaches. A
way of checking the consistency of a method is to measure volume loss
for two (or more) baseline scans with respect to the same 1 year repeat
scan. All such comparisons should lead to the same volume change
estimation. Another approach is incremental atrophy summation com-
parison which is often used to validate a method in the absence of
a ground truth. Consistency has to be interpreted with caution as a
consistent method may not necessarily be accurate.

3. Patient-control separation: The basic idea is to carry out a population
study between two groups that are known to be characterized by differ-
ent atrophy rates. A reliable atrophy estimation method is expected to
be able to reliably discriminate between the two groups in a statistical
analysis. However, the information that can be gathered from such a
metric is limited, for instance, we cannot infer anything about the error
(accuracy) or bias in the measurement of atrophy.

4. Evaluation using simulated ground truth: This involves simulation of a
known atrophy value in the brain. Recently, some methods have been
proposed for the creation of ground truth data with simulated brain
atrophy relying on bio-mechanical models [12, 13] or Jacobian maps
[18, 19]. Such an evaluation framework is of great interest since it allows
the assessment of method performance with respect to several sources
of errors such as motion artefacts, noise or bias field inhomogeneity.
This type of evaluation also makes it possible to provide a numerical
estimate of the accuracy of a method in terms of the measured error.
We will focus on this criterion in our study.

In this paper, we propose a topology preserving non-rigid registration
based framework that enables us to simulate brain images with realistic
atrophy (Section 2). Section 3 describes the framework we use to assess
three popular freely available brain atrophy estimation methods (BSI-UCD,
SIENA and SIENAX). The experimental setup is described in Section 4.
Results of atrophy simulation on BrainWeb images [20] using the proposed
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framework are presented in Section 5. In Section 6, we present an analysis
of the performance of these methods on the basis of their robustness to bias
field inhomogeneity, noise, geometrical distortions and interpolation artefacts
using the simulated brain images. Influence of lesion load is also investigated.
We also study the effect of anatomical variability on atrophy estimation by
simulating the same atrophy on a cohort of 18 BrainWeb images.

2. Proposed approach for atrophy simulation

Designing methods that simulate realistic atrophy is of great importance
for evaluating atrophy measurement techniques, since it is a way of generating
ground truth data. In the literature, the currently available approaches for
the simulation of brain atrophy can be classified into two groups: Jacobian-
based methods and Bio-mechanical-based approaches. In [18], Karacali et

al. have proposed a Jacobian-based method in which deformation fields are
estimated in order to induce the desired volume variations in the regions
of interest. This is done by minimizing the sum of squared differences be-
tween the Jacobian of the transformation and the desired level of atrophy at
each voxel. An additional penalization term is also considered in order to
prevent corner Jacobians from being negative to ensure that the estimated
deformation field preserves topology. However, the penalization term can-
not guarantee this property since this is only a necessary condition but not
sufficient for ensuring topology preservation. Besides, the framework that is
proposed initially is not capable of estimating large atrophy, thus requiring
an iterative strategy that estimates the deformation in an incremental way,
as a composition of several estimated transformations.

Pieperhoff et al. have recently presented a similar approach relying on
“Local Volume Ratio (LVR)” [19]. LVR refers to the ratio of the distorted
voxel volume in the source brain to the voxel volume in the target brain.
Pieperhoff et al. use a similar cost function as proposed by Karacali et al.

but LVR is used instead of the Jacobian. They also consider an additional
regularization term that ensures that the estimated transformation is smooth.
Unfortunately, none of these methods address the problem of enforcing skull
invariance, which is a desirable property for the simulation of realistic brain
atrophy.

The bio-mechanical-based approach proposed by Camara et al. [12] re-
lies on a bio-mechanical model to deform brain tissues using a finite-element
approach. A 3D mesh of labeled brain structures from an atlas is warped
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Approach Pathology Studied Method(s) Evaluated Criteria Used Conclusions

Gunter et al.[21] AD GMM, BSI Patient/Control separation *Bias field correction had no effect on group separation,
*GMM better than BSI for whole brain and
ventricular measurements

Paling et al.[22] AD BSI Same-day scan-rescan, *BSI accuracy lies between 2 − 4ml (1σ),
(late-onset dementia) Patient/Control separation *Group separation (p < 0.0001)

(Zero-atrophy metric)

Boyes et al.[11] AD BSI, JI Same-day scan-rescan, *Both measures are well correlated,
Consistency, *JI better estimates simulated tissue loss

Patient/Control separation,
Scaled Atrophy

Smith et al.[23] AD SIENA, SIENAX, BSI Using PBVC as metric, *BSI-SIENA (0.2% error rate), SIENAX-SIENA correlate well,
Patient/Control separation, *SIENA over-estimates atrophy as compared to BSI,

Same-day scan-rescan, *BSI-SIENA: similar sensitivity,
Incremental atrophy summation *SIENAX: less sensitive in group separation

with first-last differencing

Camara et al.[13] AD BSI, SIENA, JI Mean Absolute Difference *SIENA-BSI correlate well,
of PBVC values with *FFD performed better than fluid registration
simulated atrophies

Pieperhoff et al.[19] CBD DFM Specificity, *Noise/Bias field inhomogeneity
Sensitivity lead to different errors in volume change measurements,

(using simulated atrophy) *Error of DFM comparable to SIENA, BSI

Table 1: Summary of the previous works on the evaluation of atrophy estimation approaches.
AD: Alzheimer’s disease, CBD: Cortico-basal degeneration, GMM: Gradient Matching Method, JI: Jacobian Integration, FFD: Free-Form

Deformations, DFM: Deformable Field Morphometry
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onto the considered image using a fluid registration method. Atrophy is
then simulated by a Finite Element Method (FEM) solver by considering a
thermoelastic model of soft tissue deformation. This framework also incorpo-
rates the skull invariance constraint. Let us also notice that the interpolation
strategy used to derive a dense deformation field from the set of displace-
ment vectors in this work, does not ensure that the final transformation is a
one-to-one mapping.

It is important to point out that the way tissue loss occurs in the brain is
still not very well understood. It is more likely to be driven by physiological
aspects rather than bio-mechanical ones. However, the use of bio-mechanical
modeling may be interesting to account for the consequences of tissue loss
on the brain shape, for instance, on the orientation of the gyri. Although
approaches based on bio-mechanical models of brain tissues may appear at-
tractive, one can wonder whether such models are actually more relevant
than the one proposed by Karacali et al. [18] or Pieperhoff et al. [19].

Here, we present an alternative to the methods discussed above. The
proposed approach estimates a deformation field that preserves topology so
that the Jacobian is at each voxel, as close as possible to the desired local
level of atrophy. Topology preservation ensures that connected structures
remain connected and that the neighborhood relationship between struc-
tures is maintained, which are desired properties when simulating atrophy.
By enforcing this constraint, the space of possible solutions is restricted to
physically acceptable deformations. It also prevents the appearance or disap-
pearance of existing or new structures. For instance, topology preservation
also has its disadvantages as it restricts closed structures such as sulci from
opening up when atrophy is simulated. Contrary to Karacali et al. [18] who
consider the sum of squared differences between the Jacobian of the trans-
formation and the desired level of atrophy, we consider the logarithm of the
Jacobian so that dilations (1 < J < +∞) and contractions (0 < J < 1) have
a similar influence on the objective function. The interest of considering the
logarithm of the Jacobian has already been highlighted in [24]. Besides, addi-
tional constraints are introduced in order to make sure that the skull remains
invariant by the estimated transformation. An overview of the existing at-
rophy simulation approaches and of the proposed approach is presented in
Table 2.

First, we describe the B-spline based deformation model that is considered
and then the associated optimization problem.
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2.1. The multi-resolution deformation model

Let s
∆
= [x, y, z]t ∈ Ω ⊂ R

3. The mapping h : Ω 7→ Ω writes h (s) = s +
u (s), where u is the displacement vector field. We consider a decomposition
of the displacement vector field u over a sequence of nested subspaces V1 ⊂
. . . ⊂ Vl ⊂ Vl+1 ⊂ . . ., defining a multi-resolution approximation of u. Space
V1 defines the coarsest scale representation. Any deformation field at scale
l may also be expressed as a deformation field at a finer scale l + 1. A
basis of Vl may be generated from a scaling function Φ. To handle a 3-D
deformation field, three multi-resolution decompositions are considered, one
for each component of the displacement. Every element of the basis of Vl

writes

Φl
i,j,k (x, y, z) = Φl

i (x) Φl
j (y) Φl

k (z)

= 23l/2 Φ
(

2lx − i
)

Φ
(
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)

Φ
(
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)

.

At scale l, i.e., in space Vl, the displacement field u
l is parametrized by the

vector a
l ∆
=
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as (see [25] for more details):
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











. (1)

First degree polynomial B-spline scaling functions Φ have been considered in
the current implementation [25]. We refer the reader to [25, 26] for additional
details on the deformation model.

2.2. Optimization problem

Let ΩJ ⊂ Ω be the area where the desired simulated atrophy level J (s)
(the value of the Jacobian at each voxel s ∈ ΩJ ) is user-specified. To
estimate the corresponding deformation field u, we consider the following
objective function:

Eu,J,λ =

∫

ΩJ

|log (Ju (s)) − log (J (s))|2 ds + λ C

∫

Ω

EReg (u (s)) ds, (2)

where Ju stands for the Jacobian of u, Ereg is a regularization term that
ensures that the estimated transformation is smooth, λ is the weight of the
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regularization term and C is a scaling factor computed at the beginning of
each scale so that the data term and regularization term are comparable [26].
Among the many regularization terms proposed in the literature, we choose
membrane energy.

EReg (u(s)) =
(

∂ux(s)
∂x

)2

+
(

∂ux(s)
∂y

)2

+
(

∂ux(s)
∂z

)2

+
(

∂uy(s)

∂x

)2

+
(

∂uy(s)

∂y

)2

+
(

∂uy(s)

∂z

)2

+
(

∂uz(s)
∂x

)2

+
(

∂uz(s)
∂y

)2

+
(

∂uz(s)
∂z

)2

.

(3)
Contrary to Karacali et al. [18] who consider an additional term that prevents
the violation of the topology preservation condition, we directly solve the
following constrained optimization problem, which ensures exact topology
preservation in the underlying continuous domain:

û = arg min
∀s∈Ω, 0<Ju(s)<+∞

Eu,J,λ. (4)

The procedure for solving this optimization problem is quite involved and is
detailed in [25]. The estimation is done in a hierarchical way until the desired
final scale lf , the optimization procedure at scale l being initialized with the
solution at scale l − 1. Instead of considering a gradient descent algorithm
as in [25], we use the Levenberg-Marquardt optimization procedure [27] in
order to improve the convergence rate.

To simulate realistic atrophy, it is desirable to enforce the skull to remain
invariant under the simulated transformation. This constraint has been con-
sidered in [12] but not in [18]. In our framework, a simple technique is used
to ensure that the deformation field vanishes on the skull. This is accom-
plished by carrying out the optimization procedure only for those B-spline
parameters that do not affect the skull, while setting the other parameters to
zero. This limits the optimization as depending on the resolution voxels far
away from the skull are fixed. Nonetheless, we adopt this approach because
it is capable of completely guaranteeing that the skull will remain in place
after the application of the estimated transformation.

Finally, to obtain the warped image, it is more convenient to consider
the backward transformation so that standard interpolation techniques can
be used for the regularly sampled data. Inversion is performed by using the
algorithm described in [28].
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Study Approach for Atrophy Simulation Topology Preservation Skull Invariance Evaluated Methods Simulated artefacts

Camara et al. [12] Bio-mechanical framework Not guaranteed Yes *SIENAX *Rician Noise
*Rotational Motion
*Pulsatile Motion

Camara et al. [13] Bio-mechanical framework Not guaranteed Yes *SIENA *Rician Noise
*BSI
*B-spline Free Form Deformations
*Non-rigid Fluid Registration

Karacali et al. [18] Jacobian-based framework Consider a necessary but not No - -
sufficient condition

Pieperhoff el al. [19] Jacobian-based framework Consider a necessary but not No *SIENA *Noise
sufficient condition *BSI *Bias field inhomogeneity

*Elastic registration
Present Study Jacobian-based framework Yes Yes *SIENA *Gaussian Noise

*BSI *Bias field inhomogeneity
*SIENAX *Geometrical distortions

*interpolation artefacts
*Presence of lesions

Table 2: A survey of works on evaluation of brain atrophy methods using a simulated ground truth.
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Figure 1: Proposed atrophy simulation framework and the evaluation framework showing
the addition of various artefacts to the simulated images in order to carry out the validation
procedure. This figure shows the various steps involved in the simulation of atrophy
(Section 2) followed by the addition of various artefacts (Section 3). Here “Output” refers
to the images that we simulate for various evaluation experiments. Experiment 1, 2, 3, 4,
5 and 6 refers to the experiments for evaluation of atrophy estimation algorithms on the
basis of bias field inhomogeneity, noise, bias field inhomogeneity and noise, geometrical
distortions, interpolation artefacts and effect of lesions, respectively.

3. Evaluation Framework

3.1. Simulation of artefacts

In order to conduct a realistic evaluation of the methods, we create a
set of images (with different artefacts) from the baseline BrainWeb image1

and images on which atrophy is simulated. We use BrainWeb images in
our experiments since the ground truth segmentation of the brain tissues is
available. Our evaluation framework is depicted in Fig 1.

1http://www.bic.mni.mcgill.ca/brainweb/
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The simulation procedures of the artefacts that are considered in this
paper are desribed below:

• Bias Field Inhomogeneity : It arises due to inhomogeneity in RF and
results in a smooth multiplicative variation of the RF levels throughout
the image. Here, the baseline image as well as the atrophied images are
degraded using two different intensity non-uniformity (INU) fields (20%
INU) available with BrainWeb. Let B be the bias field. The image (Y )
degraded by the bias field (B) is simulated as Y (s) = X(s).B(s) for
each voxel s and the artefact-free image X.

• Noise: RF emission from the patient’s body and the measurement chain
of the MR scanner are responsible for noise in the images. It results in
an irregular granular pattern on the image2. In this work, a Gaussian
noise is added to all brain scans, such that a signal to noise ratio (SNR)
of 15dB is achieved. Gaussian noise provides a good approximation
to the noise present in MRI when signal-to-noise ratio is larger than
2 dB[29]. Note that this approximation holds in all our simulations
(even for the CSF region which may have a low intensity in T1 images
as compared to grey or white matter) because a signal-to-noise ratio
greater than 2 dB is maintained.

• Geometrical Distortions : They result from errors in gradient field strength
and non-linearity of gradient fields in the MR scanner. It introduces im-
age deformations other than the actual anatomical changes in the brain
and this affects the accuracy of the atrophy estimation procedures.
Assuming that the undistorted brain image is available, measuring ge-
ometrical distortions means performing a point to point registration
between the distorted image 3D coordinate x′ and the undistorted im-
age 3D coordinate x. Let T be the transformation that represents the
geometrical distortions then:

x′ = Tx (5)

Holden et al. [17] suggest that geometrical distortions can be modeled
as a fourth degree polynomial as follows:

x′ = P0 + P1x + P2x
2 + P3x

3 + P4x
4 (6)

2http://www.e-mri.org/quality-artefacts/signal-to-noise-ratio.html
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where Pd refers to the coefficient of degree d of the polynomial. To
simulate these distortions, we need a rough numerical idea of the ge-
ometrical distortions that occur in the real scenario. Due to the un-
availability of any undistorted image, we resort to registering two brain
scans of a healthy subject that were taken on the same day. The regis-
tration parameters represent the geometrical distortions as well as any
rotation and/or translation due to head movement between the two
scans. We use “Automated Image Registration (AIR) [30]” algorithm
(version 5.2.5) to perform the registration. Since AIR is a polynomial
based registration, we directly obtain the registration parameters in
the form of polynomial coefficients, for the simulation of geometrical
distortions. Note that only relative geometrical distortions between the
two scans are estimated. This artefact is simulated only on the baseline
image that is compared with other atrophied images that are free of
any geometrical distortions.

The simulated field is illustrated in Fig 2. This field induces a mean
displacement of 1.57±0.66 mm in the whole head area and of 1.22±0.54
mm in the brain area. In order to make sure that the simulated field
is realistic, we compared our geometrical distortion field to the one
in [31] who demonstrate a phantom based geometrical distortion field
which is determined based on T1 weighted acquisitions. The range of
displacements in [31] is 0− 5 mm gradually increasing from the center
to the periphery. Our displacement field varies smoothly in the range
0− 6.5 mm, also showing an increase from the center to the periphery.
As a result of the simulated transformation, the brain volume of the
baseline scan undergoes a decrease of 2% globally.

• Interpolation Noise: The idea is to investigate and quantify the change
in the estimation of atrophy due to the introduction of an extra inter-
polation step. This is important because interpolation is used during
registration which is an inevitable step for most of the longitudinal at-
rophy estimation techniques. To simulate this artefact, we rotate all
the images by 1◦ using fifth order B-spline interpolation.

• Presence of Lesions : Lesions in the brain may arise due to a number of
factors such as stroke, tumors, arteriovenous malformations, MS, injury
or congenital brain abnormalities. The presence of lesions in the brain
may have an adverse effect on the analysis of atrophy. For example,
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(a) (b) (c)

Figure 2: The modulus (in mm) of the simulated geometrical distortion field (a) Coronal
(b) Sagittal (c) Axial views. The simulated deformations vary in the range of 0− 6.5 mm.

the mis-classification of white matter lesions as CSF/gray matter or
partial volume effects may lead to inaccuracies in volume estimation.
To evaluate the effect of lesions, we use the MS database of BrainWeb
containing a normal brain and images with mild, moderate and severe
degrees of lesions. Due to the unavailability of noise-free images with
lesions, the experiments are performed on normal as well as images
with lesions that are degraded with 3% of noise [20]. Since the images
under test contain the same amount of noise, it can be assumed that
any variability between the results with different lesion loads is due to
the presence of lesions only.

3.2. Evaluated Brain Atrophy Estimation Methods

Several approaches have been proposed in the literature to estimate brain
atrophy. Popular methods include “Boundary Shift Integral” (BSI) [6],
“Structural Image Evaluation, using Normalization, of Atrophy”, SIENA
[7, 8], for longitudinal evaluation and SIENAX [8] for cross-sectional mea-
surements. We choose to study these methods since they are freely available
and have been used in a number of studies earlier [21, 22, 11, 23, 13]. SIENA,
SIENAX and BSI are described briefly in the following section.

3.2.1. SIENA

SIENA is a widely used automated tool that estimates longitudinal brain
atrophy [7, 8]. This algorithm begins by extracting the brain and skull from
the baseline and repeat scans using the Brain Extraction Tool (BET) [32].
The brains are then affine registered using the skull images to constrain the
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scaling. The affine transformation, thus obtained, is first divided into two
halfway transformations that are then applied to the brain scans to re-sample
them into a common space. This avoids asymmetric blurring of the scans due
to interpolation. Next, tissue type segmentation is performed in order to find
brain/non-brain edge points [33]. At this step, bias field correction is also
applied. The percentage brain volume change (PBVC) is then computed by
estimating the mean perpendicular edge displacement over the entire brain,
from one time point to another. The key step of this algorithm is to estimate
the displacement of the edges between the scans. Errors in segmentation and
registration of the edge points thus affect the quality of the results obtained
using SIENA.

3.2.2. SIENAX

SIENAX [8] attempts to estimate cross-sectional atrophy using a single
time point scan. Unlike SIENA that indicates the rate of disease progression,
this tool gives an estimate of the current extent of disease progression [23].
In this study, SIENAX is used for longitudinal measurements. Brain volume
is estimated for each of the two given scans and then the percentage decrease
in brain volume from time point one to two is calculated.

To begin with, the brain and skull images are extracted from the given
scan. The MNI152 standard brain is affine registered to the given brain, using
the extracted skull and the standard brain skull to constrain the scaling. At
this step, a volumetric scaling factor is calculated which is required for brain
normalization at the final stage of the algorithm. Next, tissue type segmenta-
tion [33] is performed on the original (unregistered) extracted brain, up to a
sub-voxel accuracy. The total brain volume is derived from this segmentation
result. To normalize for head size, the brain volume is multiplied with the
volumetric scaling factor derived earlier. In all our analyzes with SIENAX
unnormalized brain volume is used as the real brain volume is required for
comparison with the ground truths. It may be noted that for SIENAX the
brain volume change is directly calculated from the segmentation; so inaccu-
racies in segmentation, (for instance, mis-classification of lesions) affect the
performance of this method.

3.2.3. BSI-UCD

Another popular tool for estimating cerebral atrophy from two time point
brain scans is BSI [6]. In this approach, the repeat scan and the baseline scan
are registered using an affine transformation. In the original BSI implemen-
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tation [6], an affine registration procedure that determines the spatial scaling
factors based on the cranial surface between the two scans is used. The reg-
istered scans are then intensity normalized in order to compare the intensity
values. At this stage, the brain is segmented using an iterative morphological
technique, where the sizes of the morphological operators is selected man-
ually. The idea is to remove all non-brain tissue including CSF, in order
to define a boundary region on which the boundary shift integral is com-
puted. The brain atrophy is estimated by calculating the amount by which
the boundary of the brain tissue has moved over a period of time.

Due to the unavailability of the original BSI implementation, we use the
BSI implementation developed by Imaging of Dementia and Aging lab, Uni-
versity of California, Davis (BSI-UCD) 3. The calculation of the boundary
shift integral is done in exactly the same way as described in [6] but different
pre-processing algorithms are used. The bias correction of BSI-UCD 4 is a
template based bias correction procedure in which a template, which is as-
sumed to be bias-free, is compared to the subject image. The corresponding
voxel intensities are compared in the template and the subject image in order
to identify the non-uniformities. An affine registration method is also a part
of the package5. The affine registration procedure of BSI-UCD does not esti-
mate spatial scaling factors using the cranial surface in order to compensate
for spatial scaling. In order to avoid any confusion, we will refer to the BSI
implementation that we use as BSI-UCD in the paper.

4. Experimental Setup

In this paper, we use the SIENA and SIENAX implementations avail-
able as a part of the FMRIB Software Library (FSL)6 version 4.1 [34].
As mentioned earlier, we use the BSI implementation developed by Imag-
ing of Dementia and Aging lab, University of California, Davis (BSI-UCD).
The bias correction and registration (with Cross-Correlation matching cri-
terion) provided by the BSI-UCD package are used in all the experiments
with BSI unless mentioned otherwise. While the implementations of SIENA
and SIENAX are completely automated, the implementation of BSI-UCD

3http://neuroscience.ucdavis.edu/idealab/software/index.php
4http://neuroscience.ucdavis.edu/idealab/software/bias_correction.php
5http://neuroscience.ucdavis.edu/idealab/software/linear_coreg.php
6http://www.fmrib.ox.ac.uk/fsl/fsl/list.html
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requires manual intervention, in order to obtain a gray-white matter mask,
for delineating the brain boundaries on which the boundary shift integral is
calculated. This problem is automatically alleviated in our case since the
gray-white matter mask of the baseline image is available (with BrainWeb).
This mask can then be warped, using the transformation estimated for at-
rophy simulation, for obtaining masks of the atrophied images. Moreover,
the Brain Extraction Tool (BET) [32] of the FSL library is used to perform
brain extraction for BSI-UCD, SIENA and SIENAX in all our experiments.
Note that two types of masks are required by BSI-UCD. One is the “brain
mask” (Fig. 3(b)) such as the one obtained as an output of BET after the
removal of the non-brain tissue. This mask is used by the bias correction and
the registration steps of the BSI-UCD algorithm. Another mask defining the
gray-white matter (the atrophy affected areas of the brain) boundaries (Fig.
3(c)). This is used by the final step of the BSI-UCD algorithm (atrophy
calculation using movement of boundaries with time).

The experiments are conducted using the default parameters of SIENA,
SIENAX and BSI-UCD so that the comparison is not biased as a result
of manual intervention. For SIENAX, the “unnormalized” brain volume
estimates are used for all subsequent calculations and comparisons.

The time required for one experiment of simulation of atrophy using the
proposed approach is 2 hours. The computational times (including the time
required for pre-processing) when performing one experiment with SIENA,
SIENAX and BSI-UCD are approximately 1 hour, 20 minutes and 1 hour,
respectively. All the experiments are conducted on an Intel Dual Core 2.40
GHz processor with images of size 256 × 256 × 256.

A summary of the brain extraction, registration and bias field correction
algorithms used for SIENA, SIENAX and BSI in this work is illustrated in
the Table 3.

Table 3: Summary of the brain extraction, registration and bias field correction algorithms
used for SIENA, SIENAX and BSI in this work.

SIENA SIENAX BSI
Brain extraction BET[32] BET[32] BET[32]

Registration Type Affine(FLIRT [35]) Affine(FLIRT [35]) Affine5

Similarity Criterion Correlation Ratio Correlation Ratio Cross-correlation
for Registration

Final Interpolation Tri-linear Tri-linear Tri-linear
Bias-Field Correction With Segmentation With Segmentation Template based4

(EM based)[33] (EM based)[33]
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(a) (b) (c)

Figure 3: (a) A T1-weighted image (b) Brain mask (extracted by BET) and (c) Gray-
White matter mask of the brain computed from the T1-weighted image shown in (a).

5. Results on Simulation of Atrophy and Discussion

In this section, we study the performance of the proposed atrophy sim-
ulation algorithm. First, we investigate the influence of considering the log-
arithm of the Jacobian in the objective function (Log-norm) instead of the
standard sum of squared differences (L2-norm). To this end, we simulate
several rates of uniform atrophy (20% and 50%) and hypertrophy (25% and
100%) without considering any invariance constraint. Histograms of the Ja-
cobian values of the estimated deformation fields are represented in Fig. 4.
We can see that the use of the logarithm for simulating a large atrophy (Fig.
4(b)) yields a smaller dispersion of Jacobian values as compared to the L2

norm. This dispersion increases when simulating large hypertrophies (Fig.
4(d)). When simulating small atrophies or hypertrophies, the use of the log-
arithm or the sum of squared differences tends to yield similar results (Fig.
4(a) and (c)). The distributions of the simulated Jacobian values also high-
light the fact that using the Log-norm yields to a constant relative dispersion
of the Jacobian values (the dispersion varies linearly with the desired Jaco-
bian value) which is not the case with the L2 norm. Hence, the Log-norm is
more consistent as opposed to the L2 norm.

A quantitative analysis of the ability of the proposed algorithm to simu-
late the desired atrophy has also been done (see Table 4). Simulations have
been done by considering a uniform atrophy over gray and white matter
using the Brainweb image. In all our experiments, we use 7 levels in the
multi-resolution deformation model. The final scale amounts to considering
a regular grid of control points with a spacing of 2× 2 × 2 voxels (each con-
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(a) (b)

(c) (d)

Figure 4: Distributions of Jacobian values obtained when simulating uniform atrophies
[(a) 20% (J = 0.8) and (b) 50% (J = 0.5)] and hypertrophies [(c) 25% (J = 1.25) and (d)
100% (J = 2)].

trol point corresponding to the center of a B-spline function). We can notice
that, on the average, the desired atrophy is well achieved without and with
the skull constraint. It can also be seen that, without the skull constraint,
the standard deviation of the Jacobian values decreases when the desired
atrophy rate increases. An inverse trend is observed when considering the
skull constraint. This is due to the fact that the Jacobian values tend to
be equal to one in the neighborhood of the skull and do not vary abruptly
in order to warrant topology preservation. Thus, the Jacobian values of the
voxels located on the brain boundary are far from the desired atrophy. Fig. 5
elucidates this point using an error map (the absolute difference between the
desired Jacobian map and the one obtained by our algorithm).

Notice that the proposed simulation algorithm can easily achieve very
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Table 4: Influence of considering the skull constraint on the mean and standard deviation
of Jacobian values of the simulated deformation fields.

Desired Atrophy Without skull constraint With skull constraint
10%(J=0.9) 0.9017 ± 0.0021 0.9032 ± 0.0115
20%(J=0.8) 0.8015 ± 0.0021 0.8019 ± 0.0202
30%(J=0.7) 0.7011 ± 0.0020 0.7032 ± 0.0349
40%(J=0.6) 0.6008 ± 0.0018 0.6025 ± 0.0797
50%(J=0.5) 0.5005 ± 0.0017 0.5140 ± 0.2088

Figure 5: Error map illustrating the absolute difference between the desired and the
obtained Jacobian maps for 50% (J = 0.5) of atrophy. The gray levels (from black to
white) depict the errors in the range of 0 − 5.5 (from low to high). Note the high error
near the skull surface. Also, one must remember that an atrophy of 50% in the brain is
an extreme case of brain tissue loss.

high atrophy, contrary to the method proposed in [18], which requires the
estimation of a large atrophy in an incremental way. For example, it has been
possible to simulate a uniform atrophy of 99.9%(J = 0.001), without the skull
constraint, with an obtained average Jacobian value of 0.00106 ± 0.000716.
Such an atrophy rate is obviously unrealistic, but it highlights the ability of
the proposed method to converge to the desired solution, even for very low
Jacobian values, while still preserving the topology.

An example of a simulated atrophied image is shown in Fig. 6.

Table 5: Table showing the desired and the obtained mean and standard deviation values
of the Jacobian for various parts of a brain in which non-uniform atrophies are simulated
using the proposed atrophy simulation approach. The desired and the achieved atrophy
values are also shown.

Area of interest Desired Jacobian Obtained Jacobian Desired Atrophy Achieved Atrophy
Ventricles 1.0408 ± 0.0195 1.0444 ± 0.0110 +4.08% +4.44%

Cortex and cerebellum 0.9520 ± 0.0086 0.9562 ± 0.0092 −4.80% −4.38%
Hippocampus 0.9648 ± 0.0096 0.9682 ± 0.0101 −3.52% −3.18%
White Matter 0.9911 ± 0.0141 0.9936 ± 0.0280 −0.89% −0.64%

Brain 0.9675 ± 0.0220 0.9673 ± 0.0658 −3.25% −3.27%

Experiments have also been conducted for the simulation of non-uniform
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(a) (b) (c)

Figure 6: (a) Original BrainWeb image (b) Simulated image with 10% of globally uniform
atrophy (c) Difference between images (a) and (b). Note that there is no deformation on
the skull between (a) and (b).

(a) (b) (c)

Figure 7: Simulation of non-uniform atrophies (a) Desired Jacobian map (b) Jacobian
map obtained by using our algorithm (c) Error map. The gray levels (from black to
white) depict the values of the Jacobian (from low to high) in the range of 0.94− 1.08 for
the maps shown in (a) and (b) and for the error map (c) in the range of 0 − 0.12.

atrophies. To this end, we utilize the “Internet Brain Segmentation Reposi-
tory” 7. This database provides manual segmentation of the brain in several
brain structures. We simulate different atrophies in some structures of the
same brain including the hippocampus, the cortex, the cerebellum, the ven-
tricles and in the rest of the brain without considering the skull constraint.
In order to ensure that the simulated atrophy rates corroborate with the at-
rophies in real cases, we refer to [36] and [13], which mention atrophy rates
observed in various parts of the brains of Alzheimer’s disease patients. We

7http://www.cma.mgh.harvard.edu/ibsr/
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(a) (b) (c)

Figure 8: Simulation of atrophy in a brain with an increase in the MS lesion size: (a)
Original BrainWeb image with moderate lesions (b) Image with 10% of global atrophy
and 100% of MS lesion increase (c) Difference between images (a) and (b).

illustrate the desired and the obtained Jacobians with the corresponding er-
ror map in Fig. 7. Table 5 shows the desired and obtained Jacobian values
for various areas of interest with the corresponding atrophy rates. It can be
seen that the algorithm is able to reach the desired atrophy accurately.

The proposed simulation framework is also versatile and can be used to
simulate a more complicated pattern of atrophy. For instance, it can be used
to simulate simultaneously a global brain atrophy and a change in a given
pathological area such as multiple sclerosis lesion evolution or tumor growth.
The BrainWeb MS moderate lesion database is used for this experiment.
The simulation is done by first simulating the hypertrophy in MS lesion area
while constraining the gray matter and the cerebrospinal fluid to be invariant
in order to ensure that lesions evolve inside the white matter. Then, global
atrophy is simulated, while only constraining the skull to be invariant, and
the estimated deformation field is combined with the previous one. Notice
that the global atrophy will modify the hypertrophy rate of the lesions. This
has to be taken into account when simulating MS lesion increase in order to
get the desired volume change. In Fig. 8, we present a simulation of 10% of
global brain atrophy and 100% of MS lesion volume increase.

6. Evaluation Results of SIENA, SIENAX and BSI-UCD and Dis-

cussion

Our evaluation is divided into two parts. The first part consists of the
simulation of a number of atrophies on a single normal brain image from
BrainWeb to study the robustness of SIENA, SIENAX and BSI-UCD to
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various artefacts. In the second part, we present results with these algorithms
for 18 different normal brains (from BrainWeb [37]) to examine the effect of
anatomical variability on these methods. Atrophy is simulated using the
Log-norm in both the cases. The experiments are detailed in the following
sections. In the forthcoming discussion, we would use the term “error” to
represent the absolute difference between the ground truth and the estimated
Percentage Brain Volume Change (PBVC), unless stated otherwise.

6.1. Experiments on One Normal BrainWeb Image

For this part of the experiments, the results are obtained by simulat-
ing brain atrophy ranging between 0-1% (step size 0.1%) and 1-10% (step
size 1%). Although, the brain atrophy range of 0-1% is more relevant to
neuro-degenerative pathologies, we also present results for larger brain vol-
ume changes, in order to better assess the accuracy of these methods. Fig.
9(a) shows the percentage brain volume change (PBVC) between any two
brain scan pairs, B1 and B2, such that the simulated atrophy on brain B1 is
less than that of B2 (for the simulated atrophy ranges of 0-1% and 1-10%).
For example, if the simulated atrophy on B2 is 10%, then it is compared with
all simulated atrophies of 1 − 9% (on B1). Fig. 9(a) compares the methods
under consideration with respect to the ground truth, for the noise-free case.

6.1.1. Effect of Bias Field Inhomogeneity and Noise

In order to comprehend the effect of these artefacts, we create three sets
of images using the baseline BrainWeb image and the simulated images with
atrophy.

1. The baseline image as well as the atrophied images are degraded us-
ing different intensity non-uniformity (INU) fields (20% INU) available
with BrainWeb.

2. A second set of images is obtained by adding Gaussian noise to all the
brain scans, such that a signal to noise ratio (SNR) of 15dB is achieved.

3. We create a third set of images that are degraded by bias field inho-
mogeneity followed by noise using the same parameters as in 1 and
2.

Fig. 9 (b-d) show the PBVC estimation for SIENA, SIENAX and BSI-
UCD for observations degraded with bias field, noise, both bias field and
noise, respectively. The absolute errors in the estimated PBVC for the three
methods are depicted using boxplots in Fig. 10 for the noise-free case and

23



for images degraded with bias-field inhomogeneity and noise. Note that the
boxplots are shown separately for atrophy ranges of 0 − 1% and 1 − 10%.
This is done to capture the trends in the observed errors properly as Fig. 9
clearly shows that the errors in the estimated PBVC are dependent on the
simulated atrophy value.

For low atrophy values (less than 1%), SIENA, SIENAX and BSI-UCD
show a similar performance in terms of error in PBVC measured with respect
to the ground truth (See Fig. 9(a)). Fig. 10(a) illustrates that, for the noise-
free case, the maximum errors in the estimated PBVC values for SIENA,
SIENAX and BSI-UCD are 0.15%, 0.24% and 0.34%, respectively for the
low atrophy values. Also, Fig. 9(a) shows that SIENA overestimates the
atrophy, while BSI-UCD underestimates it for large atrophy values when no
artefact is added. For this range of atrophy, Fig. 10(b) shows that SIENAX
(maximum error 1%) outperforms SIENA and BSI-UCD (maximum error
3.7%).

As can be seen from Fig. 9, the introduction of bias field inhomogene-
ity (b) and both noise and bias field inhomogeneity (d) leads to a visible
increase in errors for all the three methods. The maximum errors obtained
with SIENA, SIENAX and BSI-UCD for the atrophy range 0−1% and 1−10%
are 1.55%, 5.60%, 3.35% and 5.70%, 5.83%, 9.22%, respectively when using
images corrupted with bias-field inhomogeneity and noise (Fig. 10(c-d)). The
errors that are discerned here are very large as compared to the simulated
values of atrophy. A prominent reason for this is incorrect brain extraction
while using BET due to the addition of bias field inhomogeneity, mostly at
the boundary of the brain. In our observation, the addition of noise over
bias field inhomogeneity leads to a significant change in the brain extraction
as compared to the brain extraction performed when only bias field inho-
mogeneity is added. However, for the observations that are degraded with
Gaussian noise only, we do not observe any gross errors in the extraction
of brain. Brain extraction is crucial for SIENAX because segmentation is
performed on the brain image, that is directly related to the calculation of
the brain volume. Although, SIENA uses a combined brain mask from the
two examinations to evaluate the change in brain volume, it is seen that non-
brain areas are included in the calculations if they were included in one of
the examinations. This is a reason of the degradation of the performance of
SIENA since it leads to errors in detection of the brain/non-brain boundaries.
It is evident that registration of the two examinations is an important step
for SIENA and BSI-UCD because it determines the relative edge position
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(for SIENA) and corresponding intensity values (for BSI-UCD). We would
like to point out that bias field correction integrated with the segmentation
algorithm FAST [33] is performed for SIENA and SIENAX. In our experi-
ments on BSI-UCD, a bias field correction provided with the implementation
of BSI-UCD is applied after the registration has been performed. Since the
bias field correction step comes after the brain extraction and registration
steps are performed, the error in these steps possibly propagate to the final
result. We note that, for BSI-UCD too, brain extraction is an important
step since the final result depends on getting a good mask of the brain. Our
experiments also suggest that an improper extraction of the boundary of the
brain leads to a mis-calculation of the boundary shift integral (∼ 2 − 3% in
some cases). Note that for a pathology like MS, where the annual atrophy is
small, an error of 0.5% in PBVC, for instance, is quite significant, specially
when it is not consistent over repeated measurements.

A striking observation is that addition of Gaussian noise leads to a de-
crease in the mean absolute errors in the measurements of SIENA and SIENAX
(Table 7). As described previously, SIENA and SIENAX algorithms are sen-
sitive to the extraction of brain boundaries. When we compare the brains
extracted by BET, for the noise-free and noise-only case, the extracted brains
of some of the noise-free images contain some parts of the brain in addition
(such as some extra length of the brain stem, CSF), which are not present
in the noise-only extracted brains in some images. The extracted brains for
the noise-only case are closer to the BrainWeb ground-truth as compared to
the ones in the noise-free case. Noise may affect the subsequent steps also.
For BSI-UCD, the errors in the PBVC values show an increase of around
0.5% and 1% for simulated atrophy of less than 1% and between 1% and
10%, respectively, with respect to the noise-free case. Although, BET is
used with BSI-UCD also, an increase in the error is seen for BSI-UCD for
the noise-only case which may be due to the pre-processing steps or due to
the use of image intensities directly for the calculation of the boundary shift
integral. Note that such phenomena are random and may arise due to the
noise that is added. It is also informative to determine whether these differ-
ences are statistically significant. A two-sample paired t-test indicates that
for SIENA (p < 0.001) and BSI (p < 0.001) there are significant differences
in the absolute errors with respect to the ground truth for the noise-free
and noise-only case at the 95% level. For SIENAX these differences are not
significant (p = 0.1258) at the 95% level.
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6.1.2. Effect of Geometrical Distortions

Geometrical distortions are simulated as described in section 3.1. Fig.
11 shows the PBVC comparison for SIENA, SIENAX and BSI-UCD, re-
spectively with the ground truth when the geometrically distorted BrainWeb
image is compared with simulated images for different atrophy rates. For
our experiments, we simulate 4th degree polynomial distortions. SIENA
constrains the affine registration, which corresponds to a 1st degree polyno-
mial, using the skull, attempting to correct for the geometrical distortions.
SIENAX uses the same registration as SIENA. However, the purpose of reg-
istration for SIENAX is to calculate the scaling factor to normalize the brain
volume with respect to the MNI brain atlas. As mentioned earlier, in our
study only unnormalized results are considered. With the affine registra-
tion of BSI-UCD, one can expect that the scaling distortions are somewhat
corrected. On comparing the three methods, we find that SIENA is least
affected by the simulated distortions: when compared to the ground-truths,
a mean absolute error of 0.07% is observed in the PBVC values. SIENAX
and BSI-UCD digress more from the ground truth where mean absolute er-
rors of 1.68% (SIENAX) and 0.82% (BSI-UCD) in the estimated PBVC are
observed. The mean absolute errors are calculated for the simulated atrophy
range of 0−1%. The fact that an additional volume decrease of 2% is induced
due to the simulation of these distortions indicates that the distortion cor-
rection of SIENA is effective. An increase in errors for SIENAX with respect
to the noise-free case is expected because the distortions are not rectified.
As for BSI-UCD, the error indicates that the geometrical distortions can not
be corrected for only using an affine transformation. The annual atrophy
rate in MS and other neuro-degenerative diseases is comparable to the es-
timation error caused by geometrical distortions. Hence, correction of such
distortions is crucial in order to guarantee the accuracy of these measurement
techniques.

6.1.3. Effect of Interpolation

The effect of introducing an additional interpolation step to the images
on the PBVC obtained with the three methods is shown in Fig. 12. We see
that SIENA and SIENAX remain generally unaffected, when compared to
the noise-free case shown in Fig. 9(a). For both these methods, the error in
estimation is less than 0.23% for the atrophy range of 0-1%. For the higher
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range (1-10%), the error is less than 3.4% and 1% for SIENA and SIENAX,
respectively. While the error in PBVC increases for BSI-UCD for atrophy
values lower than 1% (maximum error 1.1), it decreases for atrophy values
between 1-10% (maximum error 1.7%), as compared to the noise-free case
shown in Fig. 9(a).

6.1.4. Effect of Lesions

To determine the effect of presence of lesions on atrophy, SIENA, SIENAX
and BSI-UCD algorithms are run for 6 cases (ranging from “normal” brain
to “severe” lesions). These are illustrated in Table 6. In all these cases,
no additional atrophy is simulated. Hence, it is expected that ideally the
atrophy estimated between the various cases listed in Table 6 is close to zero.
The deviations from zero thus represent the change in estimated atrophy due
to the presence of lesions. It can be noticed from the Table 6 that lesions
can lead to a significant non-desired change of up to 0.2% when comparing a
normal brain with the same brain with lesions using SIENA. SIENAX is more
affected by the presence of lesions when a normal brain is compared with the
same brain with lesions (maximum PBVC is ∼ 0.4%). However, when two
brains with lesions are compared the errors are lesser for both SIENA and
SIENAX as depicted in Table 6. A maximum error of 0.78% is observed when
testing the influence of lesions on the atrophy estimated by BSI-UCD. As we
pointed out earlier, a gray-white matter mask must be provided to BSI-UCD
in order to define the brain boundaries on which the boundary shift integral is
calculated, which in our case is the ground truth mask. The images that are
used for this experiment contain some lesions close to brain boundaries which
can affect the atrophy calculation. However, only the presence of lesions is
not expected to have a large effect on the estimated atrophy by BSI-UCD in
the experiments here. Note that the experiments are conducted with images
degraded by noise, which is mainly responsible for the poor performance
of BSI-UCD (see Table 6). Our experiments on images degraded with noise
have already illustrated the sensitivity of BSI-UCD towards presence of noise
(see Table 7).

Table 7 summarizes the results corresponding to various sources of error
discussed in this section.
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Table 6: PBVC obtained using SIENA, SIENAX and BSI-UCD for establishing the effect of
lesions on atrophy measurements. In the first column “Normal-Mild” means that atrophy
is estimated between BrainWeb normal image and the mild lesion case

Case SIENA SIENAX BSI-UCD
Normal-Mild 0.1177 0.4574 0.3632

Normal-Moderate 0.2070 0.4309 0.4245
Normal-Severe 0.1487 0.3868 0.4573
Mild-Moderate -0.0078 -0.0263 0.7757

Mild-Severe -0.0246 -0.0702 0.7121
Moderate-Severe -0.0589 0.0439 0.7696

Table 7: Summary of the results discussed in this section for the simulated atrophy range
0 − 1% in one BrainWeb image. This table illustrates the mean error in the estimated
PBVC for various artefacts. Note that, for presence of lesions, the error represents the
non-desired change that is observed when comparisons are done using different versions of
the same brain with varying lesion load. Refer to section 6.1.4 for details.

Artefact SIENA SIENAX BSI-UCD

Noise-free 0.0615 ± 0.0407 0.0815 ± 0.0710 0.1072 ± 0.0899
Bias Field Inhomogeneity 0.2940 ± 0.4343 0.8420 ± 0.7502 1.0412 ± 0.3827

Noise 0.0292 ± 0.0226 0.0673 ± 0.0433 0.4400 ± 0.1082
Bias Field Inhomogeneity and Noise 0.3492 ± 0.3812 2.0277 ± 1.4622 0.9131 ± 0.7993

Interpolation artefacts 0.0628 ± 0.0401 0.0814 ± 0.0539 0.2209 ± 0.1619
Geometrical Distortions 0.0745 ± 0.0562 1.6840 ± 0.1233 0.8273 ± 0.3495

Presence of Lesions 0.0941 ± 0.0772 0.2359 ± 0.2089 0.5837 ± 0.1886

6.2. Experiments on Multiple Normal Brains

In this section, we present the results of our experimentation on several
anatomical models of normal brains provided by BrainWeb [37]. The Brain-
Web images have been obtained from the brain images of normal adults. Each
image is created by registering and averaging T1, T2 and PD weighted MRI
images for each subject. A fuzzy minimum distance classification is used
to separate the white matter, gray matter, CSF and fat from the average
volumes for each case.

These experiments are rendered on 18 normal brains by simulating two
patterns of atrophy: uniform and non-uniform over the brain.

• Uniform atrophy case: For every subject, 4 atrophy levels, 0.2%, 0.5%,
1% and 1.5%, are simulated in a globally uniform fashion in the brain.

• Non-uniform atrophy case: In every brain, a slowly varying atrophy
in the gray matter and a uniform atrophy in the white matter is
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simulated. Three such patterns are simulated using three different
slowly varying fields. The simulated gray matter and white matter
atrophies are (range of gray matter atrophy/ white matter atrophy/
global atrophy): 0.4% − 0.8%/0.2%/0.25%, 0.4% − 0.6%/1.5%/0.3%
and 0.3% − 0.7%/0.5%/0.57% which we will refer to as A, B and C,
respectively in the following discussion.

In both cases, we choose these values of atrophy so that the whole brain sim-
ulated atrophies are consistent with the atrophies observed in many typical
neuro-degenerative diseases (0.5% − 1%). The atrophied images are com-
pared with the baseline images for all the 18 anatomies. Two comparisons
are performed, one involving noise-free images and the other images degraded
with bias field inhomogeneity and noise. The parameters of the applied bias
field inhomogeneity and noise are the same as in Section 6.1.1.

Fig. 13(a-d) illustrate the outcome of this experiment, for noise-free (a),
(c) and “noisy” images (b), (d) for the uniform and non-uniform atrophy
cases. The figure depicts the mean and standard deviation of absolute error
in the estimated PBVC with respect to the ground truth for the 18 brains.
The mean error and the standard deviation for a particular value of simulated
atrophy are calculated as follows:

Let Eki =| PBV CGT ki − PBV CEstimatedki | where k = 1 . . . 18 and i =
0.2%, 0.5%, 1%, 1.5%; A,B,C.

µi = Eki (7)

σi =

√

√

√

√

1

n

n
∑

k=0

(Eki − µi)2 (8)

where PBV CGT ki and PBV CEstimatedki are the ground truth and estimated
PBVC, respectively. n represents the number of experiments (in this case
n = 18). Ideally, one expects the mean error and standard deviation to be
close to zero. Notice that the error in the estimation of PBVC is dependent on
the amount of simulated atrophy for the noise-free case, Fig. 13(a) the error
being higher for higher values of atrophy. The error in PBVC increases in
the following order : SIENA, SIENAX and BSI-UCD. However, the standard
deviation is the lowest for SIENA and of a similar order for SIENAX and
BSI-UCD. A different trend is seen for the noisy case shown in Fig. 13(b).
In this case, the error in the PBVC increases in the following order : SIENA,
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BSI-UCD and SIENAX. The standard deviation is much higher for SIENAX
as compared to SIENA and BSI-UCD. Similar results can be identified in
the non-uniform atrophy case Fig. 13(c) and (d) with the exception that the
performance of SIENA is comparable to that of SIENAX when non-uniform
atrophies are simulated and noise-free images are used for conducting the
experiments (Fig. 13(c)).

As we said before, the addition of bias field inhomogeneity and noise is
responsible for errors in brain extraction. Particularly, when the atrophy
under consideration is small (like in our experiment here), incorrect brain
extraction can lead to misleading results. A disproportionate increase in
error for SIENAX can be explained as following. Different bias field inhomo-
geneities are added to all the 18 baseline images and the simulated images.
It is observed that whenever a strong bias field is present in a part of the
image, some parts of the brain (corresponding to a volume of around 10000
mm3 in some brains) are not detected by BET. The bias fields added to
some of the simulated images also lead to the inclusion of non-brain parts.
Hence, the PBVC estimated by SIENAX is erroneous, which is reflected by
the mean of the error. Two factors contribute to the change in error in BSI-
UCD: incorrect extraction of brain and perturbation of intensity values due
to the addition of noise and bias field inhomogeneity. As mentioned in Sec-
tion 6.1.1, the increase in error of SIENA can be attributed to the inclusion
of non-brain parts, while finding the brain/non-brain boundary. Although
similar in nature, SIENA does not lose performance in the noisy case as much
as BSI-UCD due to the use of edges instead of intensity values to find the
PBVC and also the fact that the final PBVC given by SIENA is the average
of PBVC in both directions (first time point to second time point and the
reverse), which can compensate to an extent for small errors in one of the
directions.

It is also interesting to calculate the overall mean and the standard devi-
ation of error in the estimated atrophy using these 18 cases for the simulated
atrophy range 0.2−1.5% (uniform atrophy case) and for the range 0.2−0.57%
(non-uniform atrophy case). This provides an idea of the accuracy and pre-
cision of the methods under consideration. The overall mean and standard
deviation of error of the methods for the different cases are tabulated in Table
8. It is observed that SIENA performs better than SIENAX and BSI-UCD
when noise-free and noisy images are used since it shows lowest mean and
standard deviation of error. SIENAX performs better than BSI-UCD in the
noise-free case. However, BSI-UCD outperforms SIENAX in the noisy case.
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The same trend can be noticed for the noise-free uniform and the non-uniform
atrophy cases, except that the performances of SIENA as well as SIENAX
are comparable in the non-uniform atrophy case. Also, note that the absolute
error is less, when non-uniform atrophy is simulated, for SIENAX and BSI-
UCD, with respect to the corresponding error values in the uniform atrophy
case. A two sample t-test between the absolute errors observed when non-
uniform and uniform atrophies are simulated for the same simulated atrophy
range (0.2% − 0.5%) shows that for all the three methods these differences
are significant (at the 95% significance level, p << 0.001).

Table 8: Overall mean and standard deviation of absolute error in PBVC of SIENA,
SIENAX and BSI-UCD for uniformly and non-uniformly simulated atrophy. Noisy obser-
vations are images degraded with noise and bias field inhomogeneity.

Uniform Atrophy Non-uniform Atrophy
Method Noise-free Observations Noisy Observations Noise-free Observations Noisy Observations

SIENA 0.0944 ± 0.0656 0.6382 ± 0.5306 0.1545 ± 0.0948 0.4472 ± 0.3074
SIENAX 0.4492 ± 0.2210 4.0073 ± 2.4087 0.1510 ± 0.0629 3.4483 ± 1.7303
BSI-UCD 1.1881 ± 0.2418 1.7948 ± 0.9743 0.6715 ± 0.1891 1.5255 ± 0.6828

As mentioned earlier in this section, the errors in the estimated atrophy
by SIENAX in the “noisy” case show an abrupt increase (as compared to the
noise-free case) due to incorrect segmentation of brain by BET. In order
to gain a better insight into this problem, voxel by voxel error in brain
segmentation for the 18 baseline images is investigated. Fig. 14 shows the
voxel by voxel mean error for the noise-free and noisy baseline images. It can
be seen that in the noisy case the mean error is high near the cerebellum since
this part is not taken into account by BET. This is due to a strong bias-field
inhomogeneity in that area in some of the images. We also observed that the
skull is not properly stripped for one of the cases and can be distinctly seen in
Fig. 14(b). In BET, the detection of the brain boundary is dependent on local
calculation of an intensity threshold, which is disturbed by the perturbation
of intensity values, due to the existence of inhomogeneity in intensities. The
results show that bias-field inhomogeneity is a major factor that contributes
to the errors in brain segmentation.

We also conduct some additional experiments on BSI-UCD, in order to ex-
plain the high error that is observed. Studies on BSI (such as [13]) have
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stated the mean absolute error to be around 0.2% which is lower than what
can be seen in our analysis (See Table 8). Three experiments are performed
with BSI-UCD using noise-free images on which non-uniform atrophy is sim-
ulated. To ascertain the effect of pre-processing (registration and bias-field
correction) on the final BSI-UCD calculation, we skip these steps from the
BSI-UCD analysis in the first experiment. These steps can be passed over as
the images are bias free and the BrainWeb images are already registered to
the same space. For the second experiment, the BSI-UCD algorithm is run
normally as has been done for all our experiments with BSI-UCD. Finally,
an experiment is conducted by replacing the registration of the BSI-UCD
with an in-house Mutual Information based affine registration algorithm.
These results are demonstrated in Fig. 15. It can be seen that when no
pre-processing is used the BSI-UCD algorithm works better than the other
two cases where images are pre-processed. This is expected since the Brain-
Web images are already registered. The mean absolute error in the measured
atrophy for the first experiment (no pre-processing) is 0.15%, which is in ac-
cordance with what has been reported in [13]. There is a reduction in the
error with our in-house affine registration as compared to the registration
of BSI-UCD, indicating that registration is a critical step when employing
BSI-UCD and registration parameters should be carefully selected. We have
also performed experiments that test the influence of the bias-field correc-
tion algorithm on the estimated error. Results, obtained on the noise-free
case, show that there is no significant difference between the results when
the bias-field correction is not performed.

7. Comparison with other studies

In this section, we compare the results of evaluation with other works.
Camara et al. [13], who utilize the same criterion as in our study, report the
mean absolute errors in the estimated atrophy as 0.27% and 0.22% for SIENA
and BSI, respectively. These values do not agree with the mean absolute
errors that we obtain in our work (SIENA: 0.64%, BSI-UCD: 1.79%) in a
real scenario (where experiments are conducted after a deliberate addition
of bias-field inhomogeneity and noise after the simulation of atrophy). The
experiments are performed on real images. We believe that the difference
in the quality of the images could be responsible for the differences in the
results. As we have said before, bias-field inhomogeneity along with noise can
degrade the performance of SIENA, SIENAX and BSI-UCD in a large way.
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Also, the results may vary depending on the implementation of BSI used
in the simulations. It is shown in the previous section that the registration
algorithm should be carefully chosen so as to guarantee a good performance
by BSI.

Let us compare our results with noise-free observations to the results of
Camara et al. [13]. In our analysis, a mean absolute error of 0.09% is observed
when using noise-free observations, which is less than what was obtained by
Camara et al. (0.27%) for SIENA. We obtain higher mean absolute errors for
BSI (Current study: 0.67%, Camara: 0.23%). Note that the mean absolute
errors can only be compared to those studies who use simulated ground truths
as us. The employment of other criteria of evaluation by Smith et al. [23] and
Boyes et al. [11] makes it incorrect to compare their mean absolute errors
with our estimates.

Our results also illustrate that SIENA has a tendency of overestimating
atrophy while BSI-UCD underestimates it and that the error in the mea-
sured atrophy is larger for higher values of atrophy (See Fig. 9). The least
squares fitted scaling factors are GT(Ground Truth)=SIENA∗0.89; GT=BSI-
UCD∗1.88; SIENA=BSI-UCD∗2.15 (for noise-free observations). A similar
trend has been observed in Smith et al. [23] (SIENA=BSI∗1.20) and Camara
et al. [13] (GT=SIENA∗0.90; GT=BSI∗1.18; SIENA=BSI∗1.29). The scal-
ing factors in our study with BSI-UCD have a higher value than the other
studies. This can be explained by the fact that we use a different implemen-
tation of BSI and the quality of images too is not the same. We obtain a
weak correlation of r = 0.42, p = 0.0015 between SIENA and BSI-UCD while
other studies show a much better correlation (Smith: r = 0.87, p < 0.0001,
Camara: r = 0.97). Our results indicate a better correlation between the at-
rophy measured by SIENA and SIENAX (r = 0.89; p < 0.0001) as compared
to Smith et al. (r = 0.71; p < 0.0001).

8. Conclusions

In this paper, we evaluated the performance of three popular methods for
the estimation of cerebral atrophy using gold standards. To create the gold
standards, we have proposed a topology preserving scheme to simulate atro-
phy using a B-spline based deformation model. Additional constraints were
introduced to ensure that the skull remains invariant in the simulated image.
The proposed framework for atrophy simulation can efficiently generate a de-
formation field that fits a given Jacobian map, while taking into account the
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invariance constraints. The ability of the method to simulate uniform and
non-uniform atrophies accurately was demonstrated using various examples.

We also assessed the performance of three freely available algorithms
(SIENA, SIENAX and BSI-UCD) by simulating atrophy on BrainWeb im-
ages. Our analysis consisted of two steps: the simulation of atrophies on
a single BrainWeb image to examine the robustness of the three methods
to bias field inhomogeneity, noise, geometrical distortions and interpolation
artefacts; statistical analysis of the results obtained on 18 different anatom-
ical models of the brain. From the various tests that were performed, we
draw the following conclusions:

• Experiments in the presence of bias-field inhomogeneity and noise

– Our experiments related to a single BrainWeb image on which a
number of atrophies in the range 0 − 1% were simulated, showed
that the mean error in the estimated PBVC for SIENA was 0.06%±
0.04 and 0.35%±0.38 for noise-free and images degraded with bias-
field inhomogeneity and noise, respectively. The errors were much
higher for SIENAX and BSI-UCD.

– Complementary experiments on 18 different BrainWeb images,
where uniform atrophy was simulated, indicated that, in the pres-
ence of bias-field inhomogeneity and noise, a mean error of 0.64%±
0.53 may be expected in the atrophy estimated by SIENA. This
is contrastingly high as compared to the results for the noise-free
case for SIENA (0.09%±0.07). The errors obtained with SIENAX
and BSI-UCD were considerably high as compared to SIENA.
These errors were also larger than the overall errors (mean ab-
solute differences) obtained by Camara et al. [13] for SIENA and
BSI (∼ 0.2%).

Both sets of experiments showed that, SIENA is the best performer
with respect to the error in the estimated PBVC in the noise-free case
as well as when the images are degraded with bias field inhomogeneity
and noise. The errors that we observed here are comparable to the
whole brain annual atrophy rates (0.5− 2.8%) that have been reported
for various pathologies. This highlights the need for more sensitive
methods.

We also concluded that bias field inhomogeneity and noise were re-
sponsible for incorrect brain extraction that considerably affected the
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accuracy of all the methods. A good bias field correction algorithm is
essential in order to improve the performance of the methods. The two
sets of tests that we performed also indicated that SIENA and BSI-
UCD are capable of estimating the longitudinal atrophy more accu-
rately than SIENAX in a real scenario, where the images are corrupted
with bias field inhomogeneity and noise. We would like to remind the
reader that SIENAX has been developed for performing cross-sectional
studies. Hence, one has to be careful when interpreting the longitudinal
atrophy estimated through SIENAX.

• Geometrical distortions lead to mean absolute errors of around 0.07%
in SIENA, 0.82% in BSI-UCD and 1.68% in SIENAX.

• Interpolation artefacts did not have a noticeable impact on the results
of SIENA and SIENAX as compared to the noise-free case.

• The presence of lesions on atrophy estimation by SIENA, SIENAX and
BSI-UCD was also evaluated. A maximum error of 0.2%, 0.45% and
0.46% was observed with SIENA, SIENAX and BSI-UCD, respectively,
when comparing image of a normal brain with the same brain with
lesions.

The bottlenecks for SIENA are registration of the two given examinations
and segmentation of the boundary voxels (that is affected by the accuracy of
the brain extraction). Since SIENA measures atrophy by measuring the dis-
placement of the brain surface edge points after registering the two brains,
it needs an accurate registration algorithm. Accurate segmentation would
better localize the brain edges and thereby improve the accuracy of SIENA.
The critical steps for BSI-UCD are the registration of the two brain exami-
nations and the manual extraction of a gray-white matter mask to determine
the boundaries of the brain on which the volume change is calculated. For
SIENAX, the bottleneck is the brain extraction stage. Since, SIENAX esti-
mates brain volume directly by counting the number of brain voxels, a better
brain extraction method would improve the accuracy of SIENAX (see for in-
stance, [38]). In our opinion, brain atrophy estimation is still an open issue
and accurate algorithms are needed to measure the small atrophy that occurs
in neuro-degenerative diseases.
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(a) (b)

(c) (d)

Figure 9: PBVC comparison of SIENA, SIENAX and BSI-UCD with the ground truth for
(a) Noise-free images and those degraded by (b) Bias field inhomogeneity only (c) Noise
only and (d) Bias field inhomogeneity and Noise. (Refer to section 6.1.1.)
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(a) (b)

(c) (d)

Figure 10: Boxplot showing absolute errors in the estimated PBVC by SIENA, SIENAX
and BSI-UCD with respect to the ground truth for (a-b) Noise-free images and (c-d) Those
degraded by Bias field inhomogeneity and Noise. The ends of the boxes show the lower
quartile and upper quartile values. The red line denotes the median. The lines extending
from each end of the boxes show the maximum and minimum values of the data.
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Figure 11: PBVC comparison for SIENA, SIENAX and BSI-UCD, respectively with the
ground truth when the geometrically distorted BrainWeb image is compared with simu-
lated images for different atrophy rates.

Figure 12: PBVC comparison of SIENA, SIENAX and BSI-UCD, respectively, with the
ground truth when images are rotated by 1◦ to add an extra interpolation (B-Spline 5th
order) step.
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Figure 13: Bar plot showing the mean absolute error and its standard deviation in the
estimated PBVC (in percentage) with respect to the ground truth for SIENA, SIENAX
and BSI-UCD for the Uniform atrophy case using (a) Noise-free images (b) With images
degraded with bias field inhomogeneity and noise and for the Non-uniform atrophy case
using (c) Noise-free images (d) With images degraded with bias field inhomogeneity and
noise. A (−0.25%), B (−0.3%) and C (−0.57%) are different patterns of simulated non-
uniform atrophy.
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(a) (b)

Figure 14: Mean error in the segmentation of brain for (a) the Noise-free case. (b) when
using Images degraded by bias field inhomogeneity and noise for the 18 baseline images.
The gray levels (from black to white) depict the mean error values in the range of 0.2282−
0.6702 and 1.5986 − 6.4160 in images shown in (a) and (b) respectively.

A B C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BSI−UCD

Simulated Atrophy

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (

%
)

 

 BSI−UCD(1)

BSI−UCD(2)

BSI−UCD(3)

Figure 15: Bar plot showing the mean absolute error and the standard deviation in the es-
timated PBVC (in percentage) when the BSI-UCD algorithm is run with no pre-processing
(BSI-UCD(1)), normal BSI-UCD algorithm (BSI-UCD(2)) and by replacing the registra-
tion algorithm of BSI-UCD with an in-house affine registration algorithm (BSI-UCD(3)).
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