Finite Projective Spaces, Geometric Spreads of Lines and Multi-Qubits

Metod Saniga

To cite this version:

Metod Saniga. Finite Projective Spaces, Geometric Spreads of Lines and Multi-Qubits. 2010. hal00477098v1

HAL Id: hal-00477098
 https://hal.science/hal-00477098v1

Preprint submitted on 28 Apr 2010 (v1), last revised 25 Jun 2010 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Finite Projective Spaces, Geometric Spreads of Lines and Multi-Qubits

Metod Saniga
Astronomical Institute, Slovak Academy of Sciences SK-05960 Tatranská Lomnica, Slovak Republic

(28 April 2010)

Abstract

Given a $(2 N-1)$-dimensional projective space over $\mathrm{GF}(2), \mathrm{PG}(2 N-1,2)$, and its geometric spread of lines, there exists a remarkable mapping of this space onto $\mathrm{PG}(N-1,4)$ where the lines of the spread correspond to the points and subspaces spanned by pairs of lines to the lines of $\mathrm{PG}(N-1,4)$. Under such mapping, a non-degenerate quadric surface of the former space has for its image a non-singular Hermitian variety in the latter space, this quadric being hyperbolic or elliptic in dependence on N being even or odd, respectively. We employ this property to show that generalized Pauli groups of N-qubits also form two distinct families according to the parity of N and to put the role of symmetric operators into a new perspective. The $N=4$ case is taken to illustrate the issue.

MSC Codes: 51Exx, 81R99
PACS Numbers: 02.10.Ox, 02.40.Dr, 03.65.Ca
Keywords: Finite Projective Spaces; Spreads of Lines; Pauli Groups of N-Qubits

Let $\operatorname{PG}(d, q)$ be a d-dimensional projective space over $\operatorname{GF}(q), q$ being a power of a prime. A t-spread \mathcal{S} of $\mathrm{PG}(d, q)$ is a set of t-dimensional subspaces of $\operatorname{PG}(d, q)$ which partitions its point-set [1]. If the elements of \mathcal{S} in a subspace V form a t-spread on V, one says that \mathcal{S} induces a t-spread on V. A t-spread \mathcal{S} is called geometric (or normal) if it induces a t-spread on each $(2 t+1)$ dimensional subspaces of $\operatorname{PG}(d, q)$ spanned by a pair of its elements. It is a well-known fact that $\mathrm{PG}(d, q)$ possesses a t-spread iff $(t+1) \mid(d+1)$; moreover, this condition is also sufficient for $\operatorname{PG}(d, q)$ to have a geometric t-spread. B. Segre showed [2] that a geometric t-spread of $\operatorname{PG}(N(t+1)-1, q), N \geq 2$, gives rise to a projective space $\mathrm{PG}\left(N-1, q^{t+1}\right)$ as follows: the points of this space are the elements of \mathcal{S} and its lines are the $(2 t+1)$-dimensional subspaces spanned by any two distinct elements of \mathcal{S}, with incidence inherited from $\mathrm{PG}(N(t+1)-1, q)$. For a particular case of $t=1$ (i. e., a spread of lines), Dye [3] demonstrated that a non-degenerate quadric surface of $\operatorname{PG}(2 N-1, q)$ has always a (geometric) spread of lines, its image is a non-singular Hermitian variety $\mathrm{H}\left(N-1, q^{2}\right)$ of $\mathrm{PG}\left(N-1, q^{2}\right)$, and - most importantly - this quadric is hyperbolic or elliptic according as N is even or odd, respectively. We shall now show that this last property has for $q=2$ a very interesting physical implication.

It is already a firmly established fact [4, 5] that the commutation relations between the elements of the generalized Pauli group of N-qubits, $N \geq 2$, can be completely reformulated in the geometrical language of symplectic polar space of rank N and order two, $\mathrm{W}(2 N-1,2)$; the generalized Pauli operators (discarding the identity) answer to the points of $\mathrm{W}(2 N-1,2)$, a maximally commuting subset has its representative in a maximal totally isotropic subspace of
$\mathrm{W}(2 N-1,2)$ and commuting translates into collinear. One of the most natural representations of $\mathrm{W}(2 N-1,2)$ is that in terms of the points and the set of totally isotropic subspaces of $\mathrm{PG}(2 N-1,2)$ endowed with a symplectic polarity. Employing this representation, it has been found in [5] that in the real case the symmetric elements/operators of the N-qubit Pauli group always lie on a $h y$ perbolic quadric in the ambient space $\operatorname{PG}(2 N-1,2)$. Combining this fact with Dye's result, we arrive at our main observation: it is only for N even when all symmetric generalized Pauli operators of $W(2 N-1,2)$ can be mapped to the points of an Hermitian variety of the space $\operatorname{PG}(N-1,4)$ associated through a geometric spread of lines with the ambient space $P G(2 N-1,2)$. $]$ Hence, in this regard, when it comes to generalized Pauli groups 'even-numbered' multiqubits are found to stand on a slightly different footing than 'odd-numbered' ones.

We shall finish this letter by briefly mentioning an especially interesting even case, $N=4$. Here, a hyperbolic quadric $\mathrm{Q}^{+}(7,2)$ formed by the symmetric operators is well known for its puzzling triality swapping points and two systems of generators and has for its spread-induced image an Hermitian surface $\mathrm{H}(3,4)$ of $\mathrm{PG}(3,4)$. This Hermitian surface is, in turn, nothing but the generalized quadrangle GQ(4,2) in disguise (see, e.g., [6]), the dual of which - $\operatorname{GQ}(2,4)$ - was found to play a prominent role in the so-called black-holequbit correspondence, by fully encoding the $E_{6(6)}$ symmetric entropy formula describing black holes and black strings in $D=5$ [7]. Our finding thus, inter alia, not only opens up an unexpected window through which also four-qubit Pauli group, like its lower rank cousins, could find its way into some black hole entropy formula(s), but also puts the role of symmetric operators into a new perspective. It is also important to keep in mind this remarkable three-to-one correspondence, i.e., that it is always a triple of operators of $\mathrm{PG}(2 N-1,2)$ which comprises a single point of $\mathrm{PG}(N-1,4)$.

Acknowledgements

This work was partially supported by the VEGA grant agency, projects Nos. 2/0092/09 and $2 / 0098 / 10$. The idea exposed in this paper originated from discussions with Prof. Hans Havlicek, Dr. Boris Odehnal (Vienna University of Technology) and Dr. Petr Pracna (J. Heyrovský Institute of Physical Chemistry, Prague).

References

[1] Eisfeld J and Storme M. (Partial) t-spreads and minimal t covers in finite projective spaces. Lecture notes available from http://cage.rug.ac.be/~fdc/intensivecourse2/storme2.ps.
[2] Segre B. Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann Mat Pura Appl 1964;64:1-76.
[3] Dye RH. Maximal subgroups of finite orthogonal groups stabilizing spreads of lines. J London Math Soc 1986;33:279-293.
[4] Saniga M and Planat M. Multiple qubits as symplectic polar spaces of order two. Adv Studies Theor Phys 2007;1:1-4 (arXiv:quant-ph/0612179).

[^0][5] Havlicek H, Odehnal B, and Saniga M. Factor-group-generated polar spaces and (multi)qudits. SIGMA 2009;5:096 (arXiv:0903.5418).
[6] Payne SE, and Thas JA. Finite Generalized Quadrangles. Pitman: Boston - London - Melbourne; 1984; see also Thas K. Symmetry in Finite Generalized Quadrangles. Birkhäuser: Basel; 2004.
[7] Lévay P, Saniga M, Vrana P, and Pracna P. Black hole entropy and finite geometry. Phys Rev D 2009;79:084036 (arXiv:0903.0541).

[^0]: ${ }^{1}$ Note that in this case also $\mathrm{PG}(N-1,4)$ is odd-dimensional.

