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Abstract

Given a (2N−1)-dimensional projective space over GF(2), PG(2N−1, 2), and its geometric
spread of lines, there exists a remarkable mapping of this space onto PG(N−1, 4) where the
lines of the spread correspond to the points and subspaces spanned by pairs of lines to the
lines of PG(N − 1, 4). Under such mapping, a non-degenerate quadric surface of the former
space has for its image a non-singular Hermitian variety in the latter space, this quadric
being hyperbolic or elliptic in dependence on N being even or odd, respectively. We employ
this property to show that generalized Pauli groups of N -qubits also form two distinct fam-
ilies according to the parity of N and to put the role of symmetric operators into a new
perspective. The N = 4 case is taken to illustrate the issue.
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Let PG(d, q) be a d-dimensional projective space over GF(q), q being a
power of a prime. A t-spread S of PG(d, q) is a set of t-dimensional subspaces
of PG(d, q) which partitions its point-set [1]. If the elements of S in a subspace
V form a t-spread on V , one says that S induces a t-spread on V . A t-spread
S is called geometric (or normal) if it induces a t-spread on each (2t + 1)-
dimensional subspaces of PG(d, q) spanned by a pair of its elements. It is a
well-known fact that PG(d, q) possesses a t-spread iff (t+1)|(d+1); moreover,
this condition is also sufficient for PG(d, q) to have a geometric t-spread. B.
Segre showed [2] that a geometric t-spread of PG(N(t + 1) − 1, q), N ≥ 2,
gives rise to a projective space PG(N − 1, qt+1) as follows: the points of this
space are the elements of S and its lines are the (2t+1)-dimensional subspaces
spanned by any two distinct elements of S, with incidence inherited from
PG(N(t + 1) − 1, q). For a particular case of t = 1 (i. e., a spread of lines),
Dye [3] demonstrated that a non-degenerate quadric surface of PG(2N − 1, q)
has always a (geometric) spread of lines, its image is a non-singular Hermitian
variety H(N−1, q2) of PG(N−1, q2), and — most importantly — this quadric
is hyperbolic or elliptic according as N is even or odd, respectively. We shall
now show that this last property has for q = 2 a very interesting physical
implication.

It is already a firmly established fact [4, 5] that the commutation relations
between the elements of the generalized Pauli group ofN -qubits, N ≥ 2, can be
completely reformulated in the geometrical language of symplectic polar space
of rank N and order two, W(2N − 1, 2); the generalized Pauli operators (dis-
carding the identity) answer to the points of W(2N − 1, 2), a maximally com-
muting subset has its representative in a maximal totally isotropic subspace of
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W(2N−1, 2) and commuting translates into collinear. One of the most natural
representations of W(2N−1, 2) is that in terms of the points and the set of to-
tally isotropic subspaces of PG(2N−1, 2) endowed with a symplectic polarity.
Employing this representation, it has been found in [5] that in the real case the
symmetric elements/operators of the N -qubit Pauli group always lie on a hy-

perbolic quadric in the ambient space PG(2N−1, 2). Combining this fact with
Dye’s result, we arrive at our main observation: it is only for N even when all

symmetric generalized Pauli operators of W(2N − 1, 2) can be mapped to the

points of an Hermitian variety of the space PG(N − 1, 4) associated through

a geometric spread of lines with the ambient space PG(2N − 1, 2).1 Hence, in
this regard, when it comes to generalized Pauli groups ‘even-numbered’ multi-
qubits are found to stand on a slightly different footing than ‘odd-numbered’
ones.

We shall finish this letter by briefly mentioning an especially interesting
even case, N = 4. Here, a hyperbolic quadric Q+(7, 2) formed by the sym-
metric operators is well known for its puzzling triality swapping points and
two systems of generators and has for its spread-induced image an Hermitian
surface H(3, 4) of PG(3, 4). This Hermitian surface is, in turn, nothing but the
generalized quadrangle GQ(4, 2) in disguise (see, e. g., [6]), the dual of which
— GQ(2, 4) — was found to play a prominent role in the so-called black-hole-
qubit correspondence, by fully encoding the E6(6) symmetric entropy formula
describing black holes and black strings in D = 5 [7]. Our finding thus, inter
alia, not only opens up an unexpected window through which also four-qubit
Pauli group, like its lower rank cousins, could find its way into some black hole
entropy formula(s), but also puts the role of symmetric operators into a new
perspective. It is also important to keep in mind this remarkable three-to-one

correspondence, i. e., that it is always a triple of operators of PG(2N − 1, 2)
which comprises a single point of PG(N − 1, 4).
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