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Abstract

We address in this paper a nonlinear parabolic system, which is built

to retain the main mathematical difficulties of the P1 radiative diffusion

physical model. We propose a finite volume fractional-step scheme for

this problem enjoying the following properties. First, we show that each

discrete solution satisfies a priori L∞-estimates, through a discrete maxi-

mum principle; by a topological degree argument, this yields the existence

of a solution, which is proven to be unique. Second, we establish uniform

(with respect to the size of the meshes and the time step) L2-bounds for

the space and time translates; this proves, by the Kolmogorov theorem,

the relative compactness of any sequence of solutions obtained through

a sequence of discretizations the time and space steps of which tend to

zero; the limits of converging subsequences are then shown to be a solution

to the continuous problem. Estimates of time translates of the discrete

solutions are obtained through the formalization of a generic argument,

interesting for its own sake.

Key words : P1 radiative transfer model, finite volumes, parabolic sys-

tems, convergence analysis.

1 Introduction

We address in this paper the following nonlinear parabolic system:
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∂u

∂t
− ∆u+ u4 − ϕ = 0 for (x, t) ∈ Ω × (0, T ),

ϕ− ∆ϕ− u4 = 0 for (x, t) ∈ Ω × (0, T ),

u(x, 0) = u0(x) for x ∈ Ω,

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ),

∇ϕ · n = 0 for (x, t) ∈ ∂Ω × (0, T ),

(1)
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where Ω is a connected bounded subset of R
d, d = 2 or d = 3, which is supposed to

be polygonal (d = 2) or polyhedral (d = 3), T < ∞ is the final time, u and ϕ are
two real-valued functions defined on Ω × [0, T ) and ∂Ω stands for the boundary of
Ω of outward normal n. The initial value for u, denoted by u0, is supposed to lie in
L∞(Ω) ∩ H1

0(Ω) and to satisfy u0(x) ≥ 0 for almost every x ∈ Ω.

This system of partial differential equations is inspired from a simplified radiative
transfer physical model, the so-called P1 model, sometimes used in computational
fluid dynamics for the simulation of high temperature optically thick flows, as en-
countered for instance in fire modelling (see e.g. [11] for an exposition of the theory,
[10, 2, 9, 12] for recent developments and applications or the documentation of the
CFX or FLUENT commercial codes for a synthetic description). In this context,
the unknown u stands for the temperature, ϕ for the radiative intensity and the first
equation is the energy balance. System (1) has been derived with the aim of retain-
ing the main mathematical difficulties of the initial physical model; in particular,
adding a convection term in the first equation would only require minor changes in
the theory developed hereafter.

In this short paper, we give a finite volume scheme for the discretization of (1)
and prove the existence and uniqueness of the discrete solution and its convergence
to a solution of (1), thus showing that this problem indeed admits a solution, in a
weak sense which will be defined.

2 The finite volume scheme

Even though the arguments developed in this paper are valid for any general admis-
sible discretization in the sense of Definition 9.1, p. 762 in [4], we choose, for the
sake of simplicity, to restrict the presentation to simplicial meshes. We thus sup-
pose given a triangulation M of Ω, that is a finite collection of d-simplicial control
volumes K, pairwise disjoint, and such that Ω̄ = ∪K∈MK̄; the mesh is supposed
to be conforming in the sense that two neighbouring simplices share a whole face
(i.e. there is no hanging node). In addition, we assume that, for any K ∈ M, the
circumcenter xK of K lies in K; note that, for each neighbouring control volumes
K and L, the segment [xK , xL] is orthogonal to the face K|L separating K from L.

For each simplex K, we denote by E(K) the set of the faces of K and by |K| the
measure of K. The set of faces of the mesh E is split into the set Eint of internal ones
(i.e. separating two control volumes) and the set Eext of faces included in the domain
boundary. For each internal face σ = K|L, we denote by |σ| the (d-1)-dimensional
measure of σ and by dσ the distance d(xK , xL); for an external face σ of a control
volume K, dσ stands for distance from xK to σ. The regularity of the mesh is
characterized by the parameter θM defined by:

θM := min
K∈M

ρK

hK
(2)

where ρK and hK stands for the diameter of the largest ball included in K and the
diameter of K, respectively.
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We denote by HM(Ω) ⊂ L2(Ω) the space of functions which are piecewise con-
stant over each control volume K ∈ M. For all u ∈ HM(Ω) and for all K ∈ M, we
denote by uK the constant value of u in K. The space HM(Ω) is equipped with the
following Euclidean structure. For (u, v) ∈ (HM(Ω))2, we define the following inner
product:

[u, v]M :=
∑

σ∈Eint (σ=K|L)

|σ|

dσ
(uL − uK)(vL − vK) +

∑

σ∈Eext (σ∈E(K))

|σ|

dσ
uK vK . (3)

Thanks to the discrete Poincaré inequality (5) given below, this scalar product
defines a norm on HM(Ω):

‖u‖1,M := [u, u]
1/2
M . (4)

The following discrete Poincaré inequality holds (see lemma 9.1, p. 765, in [4]):

‖u‖L2(Ω) ≤ diam(Ω) ‖u‖1,M ∀u ∈ HM(Ω). (5)

We also define the following semi-inner product and semi-norm:

< u, v >M:=
∑

σ∈Eint (σ=K|L)

|σ|

dσ
(uL − uK)(vL − vK), |u|1,M :=< u, u >

1/2
M .

These inner products can be seen as discrete analogues to the standard H1-inner
product, with, in the first one, an implicitly assumed zero boundary condition.
For any function u ∈ HM(Ω), we also define the following discrete H−1-norm:

‖u‖−1,M := sup
v∈HM(Ω), v 6=0

∫

Ω
u v dx

‖v‖1,M
.

By inequality (5), the ‖ · ‖−1,M-norm is controlled by the L2(Ω)-norm.

The discrete Laplace operators associated with homogeneous Dirichlet and Neu-
mann boundary conditions, denoted by ∆M,D(·) and ∆M,N(·) respectively, are de-
fined as follows:

∀ψ ∈ HM(Ω),

(∆M,N(ψ))K =
1

|K|

∑

σ=K|L

|σ|

dσ
(ψL − ψK),

(∆M,D(ψ))K = (∆M,N(ψ))K +
1

|K|

∑

σ∈Eext∩E(K)

|σ|

dσ
(−ψK).

(6)

The links between these operators and the above defined inner products is clarified
by the following identities:

∀ψ ∈ HM(Ω),
∑

K∈M

−|K| ψK (∆M,N(ψ))K =< ψ,ψ >M

and
∑

K∈M

−|K| ψK (∆M,D(ψ))K = [ψ,ψ]M.
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Finally, we suppose given a partition of the interval (0, T ), which we assume
regular for the sake and simplicity, with t0 = 0, . . . , tn = n δt, . . . tN = T .

A each time tn, an approximation of the solution (un, ϕn) ∈ HM(Ω)×HM(Ω) is
given by the following finite volume scheme:

∀K ∈ M,
∣
∣
∣
∣
∣
∣
∣

(i)
un+1
K − unK

δt
− (∆M,D(un+1))K + |un+1

K | (un+1
K )3 − ϕnK = 0,

(ii) ϕn+1
K − (∆M,N(ϕn+1))K − (un+1

K )4 = 0.

(7)

In the first equation, the term u4 is discretized as |un+1
K | (un+1

K )3 to ensure positivity
(see proof of Proposition 3.1 and Remark 1 below). The scheme is initialized as
follows:

∀K ∈ M, u0
K =

1

|K|

∫

K
u0(x) dx (8)

and ϕ0 is given by (7)-(ii), where we set n+ 1 = 0.

3 A priori L
∞ estimates, existence and uniqueness of

the discrete solution

We prove in this section the following result.

Proposition 3.1

1. The scheme (7) has a unique solution.

2. For 0 ≤ n ≤ N , the unknown ϕn satisfies the following estimate:

∀K ∈ M, 0 ≤ ϕnK ≤

[

max
L∈M

unL

]4

.

3. For 1 ≤ n ≤ N , the unknown un satisfies the following estimate:

∀K ∈ M, 0 ≤ unK ≤ max
L∈M

un−1
L .

Proof Step one: positivity of the unknowns.

We first observe that, from its definition (8) and thanks to the fact that u0 is non-
negative, u0 is a non-negative function. Let us suppose that this property still holds
at time step n. We write the second equation of the scheme (7) as:

ϕnK − (∆M,N(ϕn))K = (unK)4.

This set of relations is a linear system for ϕn, the matrix of which is an M-matrix:
indeed, from the definition (6) of ∆M,N(·), it can be easily checked that its diagonal
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is strictly dominant and has only positive entries, and all its off-diagonal entries are
non-positive. Since the right-hand side of this equation is non-negative, ϕn is also
non-negative. The first equation of the scheme (7) now can be recast as:

[
1

δt
+ |un+1

K | (un+1
K )2

]

un+1
K − (∆M,D(un+1))K =

1

δt
unK + ϕnK . (9)

This set of relations can be viewed as a matrix system for the unknown un+1 the
matrix of which depends on un+1 but is also an M-matrix whatever un+1 may be.
Since we know that ϕn ≥ 0, the right-hand side of this equation is by assumption
non-negative and so is un+1 too.

Step two: upper bounds.

Let ϕ̄ be a constant function of HM(Ω). From the definition (6) of ∆M,N(·), we see
that ∆M,N(ϕ̄) = 0 and the second relation of the scheme thus implies:

(ϕn+1 − ϕ̄)K − (∆M,N(ϕn+1 − ϕ̄))K = (un+1
K )4 − ϕ̄K .

Choosing for the constant value of ϕ̄ the quantity (maxK∈M un+1
K )4 yields a non-

positive right-hand side, and so, from the above mentionned property of the matrix
of this linear system, (ϕn+1 − ϕ̄)K ≤ 0, ∀K ∈ M, which equivalently reads:

ϕn+1
K ≤ (max

L∈M
un+1
L )4, ∀K ∈ M. (10)

Let us now turn to the estimate of the first unknown un+1. Let K0 be a control
volume where un+1 reaches its maximum value. From the definition (6) of ∆M,D(·),
it appears that:

−(∆M,D(un+1))K0 ≥ 0.

The first relation of the scheme reads:

1

δt
(un+1
K0

− unK0
) − (∆M,D(un+1))K0 +

[

|un+1
K0

| (un+1
K0

)3 − ϕnK0

]

= 0. (11)

By the inequality (10), we see that supposing that un+1
K0

> maxK∈M unK yields that
the first and third term of the preceding relation are positive, while the second one
is non-negative, which is in contradiction with the fact that their sum is zero.

Step three: existence of a solution.

Let us suppose that we have obtained a solution to the scheme up to time step n.
Let the function F (·) be defined as follows:

∣
∣
∣
∣
∣
∣
∣
∣

R
card(M) × [0, 1] −→ R

card(M),

((uK)K∈M, α) 7→ (vK)K∈M such that:

∀K ∈ M, vK =
1

δt
(uK − unK) − (∆M,D(u))K + α

[
|uK | (uK)3 − ϕnK

]
.

The solution un+1 of the first relation of the scheme is the solution to:

F ((un+1
K )K∈M, 1) = 0. (12)
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First, we observe that the function F0, which maps R
card(M) onto R

card(M) and is
defined by F0((uK)K∈M) = F ((uK)K∈M, 0), is affine and one-to-one. Second, we
see from their proofs that the estimates on un+1 proven in step one and step two
for α = 1 in fact holds uniformly for α ≥ 0. The existence of a solution to (12) then
follows by a topological degree argument (see e.g. [3]).
Finally, the existence (and uniqueness) of the solution to the second equation of the
scheme, which is a linear system, follows from the above mentionned properties of
the associated matrix.

Step four: uniqueness of the solution.

Let us suppose that the solution is unique up to step n and that there exist two
solutions un+1 and vn+1 to the first equation of the scheme. By the identity a4−b4 =
(a− b) (a3 + a2b+ ab2 + +b3), the difference δu = un+1 − vn+1 satisfies the following
system of equations:

∀K ∈ M,

[
1

δt
+

(
(un+1
K )3 + (un+1

K )2vn+1
K + un+1

K (vn+1
K )2 + (vn+1

K )3
)
]

δuK

−(∆M,D(δu))K = 0.

Since we know from the precedent analysis that both un+1
K and vn+1

K are non-
negative, this set of relations can be seen as a matrix system for δu the matrix
of which is an M-matrix; we thus get δu = 0, which proves the uniqueness of the
solution. �

Remark 1 We see from Relation (9) that the discretization of u4 as a product of
a positive quantity (here |un+1|p) and (un+1)q (where p + q = 4) with q odd (i.e.
q = 3 or q = 1) is essential to prove the non-negativity of un+1; note that we have
indeed observed in practice some (non-physical) negative values when this term is
discretized as (un+1)4.

4 Convergence to a solution of the continuous problem

Let HD be the space of piecewise constant functions over each K × In, for K ∈ M
and In = [tn, tn+1), 0 ≤ n ≤ N − 1. To each sequence (un)n=0,N of functions of
HM(Ω), we associate the function u ∈ HD defined by u(x, t) = un(x) for tn ≤ t <

tn+1, 0 ≤ n ≤ N − 1. In addition, for any u ∈ HD, we define ∂t,D(u) ∈ HD by
∂t,D(u)(x, t) = ∂t,D(u)n(x) for tn ≤ t < tn+1, 0 ≤ n ≤ N − 1 where the function
∂t,D(u)n ∈ HM(Ω) is defined by:

∂t,D(u)n(x) :=
un+1(x) − un(x)

δt

(
i.e. ∂t,D(u)nK =

un+1
K − unK

δt
, ∀K ∈ M

)
.

International Journal on Finite Volumes 6
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For any function u ∈ HD, we define the following norms and semi-norms:

‖u‖2
L2(0,T ; H1

M
) := δt

N∑

n=0

‖un‖2
1,M,

‖u‖2
L2(0,T ; H−1

M
)
:= δt

N−1∑

n=0

‖un‖2
−1,M,

|u|2L2(0,T ; H1
M

) := δt

N∑

n=0

|un|21,M.

The norms ‖ · ‖L2(0,T ; H1
M

) and | · |L2(0,T ; H1
M

) can be seen as discrete equivalents

of the L2(0, T ; H1(Ω))-norm, and ‖ · ‖L2(0,T ; H−1
M

) may be considered as a discrete

L2(0, T ; H−1(Ω))-norm.

The following result provides estimates of the solution to the considered scheme.

Proposition 4.1 (Estimates in energy norms) Let u and ϕ be the functions
of HD associated to (un)0≤n≤N ∈ HM(Ω)N+1 and (ϕn)0≤n≤N ∈ HM(Ω)N+1 respec-
tively, themselves being given by the scheme (7) and the initial condition (8). Then
the following estimate holds:

‖u‖L2(0,T ; H1
M

) + ‖∂t,D(u)‖L2(0,T ; H−1
M

) + ‖ϕ‖L2((0,T )×Ω)

+|ϕ|L2(0,T ; H1
M

) + ‖∂t,D(ϕ)‖L2((0,T )×Ω) ≤ ce,
(13)

where the real number ce only depends on Ω, the initial data u0(·) and (as a de-
creasing function) on the parameter θM characterizing the regularity of the mesh,
defined by (2).

Proof First, we recall that, by a standard reordering of the summations, we have,
for any function u ∈ HM(Ω):

−
∑

K∈M

|K| uK (∆M,D(u))K = ‖u‖2
1,M, −

∑

K∈M

|K| uK (∆M,N(u))K = |u|21,M.

Multiplying by 2 δt |K|un+1
K Equation (7)-(i), using the equality 2a (a − b) = a2 +

(a − b)2 − b2, summing over each control volume of the mesh and using the first of
the preceding identities yields, for 0 ≤ n ≤ N − 1:

‖un+1‖2
L2(Ω) + ‖un+1 − un‖2

L2(Ω) − ‖un‖2
L2(Ω) + 2 δt ‖un+1‖2

1,M

+2 δt

∫

Ω
(un+1)5 dx = 2 δt

∫

Ω
ϕnun+1 dx.

By Proposition 3.1, un+1 is non-negative and ϕnK ≤ ū4
0, ∀K ∈ M, where ū0 stands

for maxK∈M u0
K and is thus bounded by the L∞-norm of on the initial data u0(·).

Therefore, we get:

‖un+1‖2
L2(Ω) − ‖un‖2

L2(Ω) + 2 δt ‖un+1‖2
1,M ≤ 2 δt ū4

0

∫

Ω
un+1 dx.

International Journal on Finite Volumes 7
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By Cauchy-Schwarz’ inequality, Young’s inequality and the discrete Poincaré in-
equality (5), we thus obtain:

‖un+1‖2
L2(Ω) − ‖un‖2

L2(Ω) + δt ‖un+1‖2
1,M ≤ δt |Ω|diam(Ω)2 ū8

0.

Summing from n = 0 to n = N − 1, we get:

‖uN‖2
L2(Ω) +

N∑

n=1

δt ‖un‖2
1,M ≤ T |Ω|diam(Ω)2 ū8

0 + ‖u0‖2
L2(Ω).

Since, by assumption, u0 ∈ H1
0(Ω), the discrete H1 norm of u0, ‖u0‖1,M is bounded

by c‖u0‖H1(Ω) where the real number c only depends on Ω and, in a decreasing way,
on the parameter θM characterizing the regularity of the mesh (see e.g. Lemma 3.3
in [7]). Together with the preceding relation, this provides the control of the first
term in (13).

We now turn to the estimate of ‖∂t,D(u)‖L2(0,T ; H−1
M

). Let v be a function of

HM(Ω); multiplying by |K| vK the first equation of the scheme (7)-(i) and summing
over K ∈ M, we get for 0 ≤ n ≤ N − 1:

∫

Ω
∂t,D(u)n v dx = −[un+1, v]M −

∫

Ω

[
(un+1)4 − ϕn

]
v dx.

By the fact that, as both (un+1)4 and ϕn are non-negative functions bounded by ū4
0,

the difference is itself bounded by ū4
0, using the Cauchy-Schwarz inequality and the

discrete Poincaré inequality (5), we get:

∫

Ω
∂t,D(u)n v dx ≤

[

‖un+1‖1,M + ū4
0 |Ω|1/2 diam(Ω)

]

‖v‖1,M,

and so:
‖∂t,D(u)n‖−1,M ≤ ‖un+1‖1,M + ū4

0 |Ω|1/2 diam(Ω),

which, by the bound of ‖u‖L2(0,T ; H1
M

), yields the control of the second term in (13).

As far as ϕ is concerned, the second equation of the scheme (7)-(ii) and the
initialization (8) yields for 0 ≤ n ≤ N :

‖ϕn‖2
L2(Ω) + |ϕn|21,M ≤

∫

Ω
ū4

0 ϕ
n dx.

Thus, by Young’s inequality, we get:

1

2
‖ϕn‖2

L2(Ω) + |ϕn|21,M ≤
1

2
|Ω| ū8

0.

Multiplying by δt and summing over the time steps, this provides the estimates of
‖ϕ‖L2((0,T )×Ω) and |ϕ|L2(0,T ; H1

M
) we are searching for.

To obtain a control on ∂t,D(ϕ), we need a sharper estimate on ∂t,D(u). Our start-
ing point is once again Equation (7)-(i), which we multiply this time by |K| ∂t,D(u)n

International Journal on Finite Volumes 8
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before summing over K ∈ M, to get for 0 ≤ n ≤ N − 1, once again by the identity
a2−b2 ≤ a2 +(a−b)2−b2 = 2 a (a−b) and invoking the Cauchy-Schwarz inequality:

‖∂t,D(u)n‖2
L2(Ω) +

1

2 δt

(
‖un+1‖2

1,M − ‖un‖2
1,M

)
≤ |Ω|1/2 ū4

0 ‖∂t,D(u)n‖L2(Ω),

so, by Young’s inequality:

‖∂t,D(u)n‖2
L2(Ω) +

1

δt

(
‖un+1‖2

1,M − ‖un‖2
1,M

)
≤ |Ω| ū8

0.

Multiplying by δt and summing over the time steps yields:

‖∂t,D(u)‖2
L2((0,T )×Ω) + ‖uN‖2

1,M ≤ |Ω|T ū8
0 + ‖u0‖2

1,M, (14)

which provides an estimate for ‖∂t,D(u)‖L2((0,T )×Ω). Taking now the difference of
the second equation of the scheme (7)-(ii) at two consecutive time steps and using
(8) for the first one, we obtain for 0 ≤ n ≤ N − 1:

∀K ∈ M, ∂t,D(ϕ)nK − (∆M,N(∂t,D(ϕ)n))K =
(un+1
K )4 − (unK)4

δt

=
[
(un+1
K )3 + (un+1

K )2 unK + un+1
K (unK)2 + (unK)3

]
∂t,D(u)nK .

Multiplying by |K| ∂t,D(ϕ)nK over each control volume of the mesh and summing
yields:

‖∂t,D(ϕ)n‖2
L2(Ω) + |∂t,D(ϕ)n|21,M ≤ 4ū3

0 ‖∂t,D(u)n‖L2(Ω) ‖∂t,D(ϕ)n‖L2(Ω),

which, using Young’s inequality, multiplying by δt and summing over the time steps
yields the desired estimate for ‖∂t,D(ϕ)‖L2((0,T )×Ω), thanks to (14). �

We are now in position to prove the following existence and convergence result.

Theorem 4.2 Let (u(m))m∈N and (ϕ(m))m∈N be a sequence of solutions to (7) with
a sequence of discretizations such that the space and time step, h(m) and δt(m)

respectively, tends to zero. We suppose that the parameters θM(m) characterizing the
regularity of the meshes of this sequence are bounded away from zero, i.e. θM(m) ≥
θ > 0, ∀m ∈ N. Then there exists a subsequence, still denoted by (u(m))m∈N and
(ϕ(m))m∈N and two functions ũ and ϕ̃ such that:

1. u(m) and ϕ(m) tends to ũ and ϕ̃ respectively in L2((0, T ) × Ω),

2. ũ and ϕ̃ are solution to the continuous problem (1) in the following weak sense:

ũ ∈ L∞((0, T ) × Ω) ∩ L2(0, T ; H1
0(Ω)), ϕ̃ ∈ L∞((0, T ) × Ω) ∩ L2(0, T ; H1(Ω))

and:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∫

0,T

∫

Ω

[

−
∂ψ

∂t
ũ+ ∇ũ · ∇ψ + (ũ4 − ϕ̃)ψ

]

dx dt =

∫

Ω
ψ(x, 0)u0(x) dx,

∀ψ ∈ C∞
c ([0, T ) × Ω),

∫

0,T

∫

Ω

[
(ϕ̃− ũ4)ψ + ∇ϕ̃ · ∇ψ

]
dx dt = 0, ∀ψ ∈ C∞

c ([0, T ) × Ω̄).

(15)
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Proof The following estimates of the space translates can be found in [4], Lemma
9.3, p. 770 and Lemma 18.3, p. 851:

∀v ∈ HM, ∀η ∈ R
d,

‖v̂(· + η) − v̂(·)‖2
L2(Rd) ≤ ‖v‖2

1,M |η| [|η| + c(Ω)h] ,

‖v̂(· + η) − v̂(·)‖2
L2(Rd) ≤ |η|

[
|v|21,M (|η| + 2h) + 2 |∂Ω| ‖v‖L∞(Ω)

]
,

where v̂ stands for the extension by zero of v to R
d and the real number c(Ω) only

depends on the domain.

For m given, let û(m) and ϕ̂(m) be the functions of L∞(Rd × R) obtained by ex-
tending u(m) and ϕ(m) by 0 from Ω× [0, T ) to R

d×R. The estimates of Proposition
4.1 of ‖u(m)‖L2(0,T ; H1

M
) and |ϕ(m)|L2(0,T ; H1

M
), together with the L∞-bound for ϕ(m),

thus allow to bound independently of m the space translates of û(m) and ϕ̂(m) in the
L2((0, T ) ×Ω)-norm. In addition, Theorem A.2 applied with ‖ · ‖∗ equal to ‖ · ‖1,M

for u(m) and with ‖ · ‖∗ equal to ‖ · ‖L2(Ω) for ϕ(m), together with the estimates

of ‖u(m)‖L2(0,T ; H1
M

), ‖∂t,D(u)(m)‖L2(0,T ; H−1
M

), ‖ϕ‖L2((0,T )×Ω) and ‖∂t,D(ϕ)‖L2((0,T )×Ω)

of Proposition 4.1 allows to bound the time translates of û(m) and ϕ̂(m), still inde-
pendently of m and in the L2((0, T ) × Ω)-norm. In addition, by Proposition 3.1,
the sequences (û(m))m∈N and (ϕ̂(m))m∈N are uniformly bounded in L∞((0, T ) × Ω),
and thus in L2((0, T ) × Ω). By Kolmogorov theorem (see e.g. [4], Theorem 14.1, p.
833), these sequences are relatively compact and strongly converge in L2((0, T )×Ω)
to, respectively, ũ and ϕ̃. Moreover, the uniform bounds of ‖u(m)‖L2(0,T ; H1

M
) and

|ϕ(m)|L2(0,T ; H1
M

) prove, by Theorem 14.2 and Theorem 14.3, p. 833 and p.834, in

[4], that ũ and ϕ̃ lie respectively in L2(0, T ; H1
0(Ω)) and L2(0, T ; H1(Ω)).

To prove that ũ and ϕ̃ are solution to the continuous problem, it remains to
prove that (15) holds. This proof is rather standard (see e.g. the proof of Theorem
18.1 pp. 858–862 in [4] for a similar, although more complicated, problem) and we
only give here the main arguments. Let ψ be a function of C∞

c ([0, T )×Ω). We define
ψnK by ψnK = ψ(xK , t

n). Multiplying the first equation of (7) by δt |K| ψn+1
K and

summing up over the control volumes and the time steps, we get for any element of
the sequence of discrete solutions:

N−1∑

n=0

∑

K∈M

δt |K| ψn+1
K

[

un+1
K − unK

δt
− (∆M,D(un+1))K + (un+1

K )4 − ϕnK

]

= T1 + T2 + T3 = 0,
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where, for enhanced readability, the superscript (m) has been omitted and:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T1 =
N−1∑

n=0

∑

K∈M

|K| ψn+1
K

[
un+1
K − unK

]
,

T2 =

N−1∑

n=0

∑

K∈M

−δt |K| ψn+1
K (∆M,D(un+1))K ,

T3 =
N−1∑

n=0

∑

K∈M

δt |K| ψn+1
K

[
(un+1
K )4 − ϕnK

]
.

Reordering the summations and using the fact that ψ(·, T ) = 0, we get for T1:

T1 = −
∑

K∈M

|K| ψ1
K u0

K +
N−1∑

n=1

∑

K∈M

|K| unK
[
ψnK − ψn+1

K

]
.

The first term of the right hand side reads:

T1,1 = −

∫

Ω
u0(x)ψ(x, 0) dx +

∑

K∈M

∫

K
(u0(x) − u0

K)ψ(x, 0) dx

+
∑

K∈M

|K| u0
K

[
1

|K|

∫

K
ψ(x, 0) dx− ψ(xK , δt)

]

︸ ︷︷ ︸

Rψ

.

On one hand, u0 converges to u0 in L1Ω and ψ(·, 0) ∈ C∞
c (Ω), so the second term

of T1,1 tends to zero with h; on the other hand, since u0
K ≤ ū0, ∀K ∈ M and, from

the regularity of ψ, |Rψ| ≤ cψ (δt+h), the third term of T1,1 also tends to zero with
δt and h. Let us now turn to the second term in the expression of T1:

T1,2 =
N−1∑

n=1

∑

K∈M

|K| unK
[
ψnK − ψn+1

K

]
= −

∫ T

δt

∫

Ω
u(x, t)

∂ψ

∂t
(x, t) dx dt

+
N−1∑

n=1

∑

K∈M

δt |K| unK (Rψ)nK

with:

(Rψ)nK =
1

δt |K|

∫ tn+1

tn

∫

K

∂ψ

∂t
(x, t) dx dt−

ψ(xK , t
n+1) − ψ(xK , t

n)

δt
,

and thus |(Rψ)nK | ≤ cψ (δt + h). Since unK ≤ ū0, ∀K ∈ M and 0 ≤ n ≤ N , we get:

T1 → −

∫

Ω
u0(x)ψ(x, 0) dx−

∫ T

0

∫

Ω
ũ(x, t)

∂ψ

∂t
(x, t) dx dt as m→ ∞.

Reordering the summations in T2 and using the fact that ψ(·, T ) = 0, we obtain:

T2 =

N−2∑

n=0

∑

K∈M

−δt |K| un+1
K (∆M,D(ψn+1))K

= −

∫ T

δt

∫

Ω
u(x, t) ∆ψ(x, t) dx dt+

N−2∑

n=0

∑

K∈M

−δt |K| un+1
K

∑

σ∈E(K)

|σ| (Rψ)n+1
σ ,
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where the residual term (Rψ)n+1
σ is the difference of the mean value of ∇ψ · n over

σ× (tn+1, tn+2) and its finite volume approximation. The fact that the second term
in the right hand side of this relation tends to zero is thus a classical consequence of
the control of ‖u‖L2(0,T ; H1

M
) and the consistency of the diffusive fluxes (Rψ)n+1

σ (see

Theorem 9.1, pp. 772–776, in [4]) and yields, as ũ is known to belong to H1
0(Ω):

T2 →

∫ T

0

∫

Ω
∇ũ(x, t) · ∇ψ(x, t) dx dt as m→ ∞.

Finally, T3 reads:

T3 =

∫ T

δt

∫

Ω
ψ(x, t)

[
u(x, t)4 − ϕ(x, t− δt)

]

−

N−2∑

n=0

∑

K∈M

δt |K|
[
(un+1
K )4 − ϕnK

]
(Rψ)n+1

K

with:

(Rψ)n+1
K =

1

δt |K|

∫ tn+2

tn+1

∫

K
ψ(x, t) dx dt− ψ(xK , t

n+1).

The second term tends to zero by the L∞-estimates for u and ϕ and the regularity
of ψ. Since u(m) tends to ũ in L2((0, T )×Ω) and is bounded in L∞((0, T )×Ω), u(m)

converges to ũ in L2(0, T ; Lp(Ω)), for any p ∈ [1,+∞); in addition, from the time
translates estimates, ϕ(m)(·, · − δt) also converge to ϕ̃. We thus get:

T3 →

∫ T

0

∫

Ω
ψ(x, t)

[
ũ(x, t)4 − ϕ̃(x, t)

]
dx dt as m→ ∞.

Gathering the results for T1, T2 and T3, we obtain the first relation of (15). The sec-
ond relation is obtained using the same arguments; the convergence of the diffusion
term in case of Neumann boundary conditions poses an additional difficulty which
is solved in Theorem 10.3, pp. 810–815, in [4]. �

The uniqueness of the solution to the problem under consideration is left beyond
the scope of the present paper. Note however that such a result would imply, by a
standard argument, the convergence of the whole sequence to the solution.

5 Conclusion

We propose in this paper a finite volume scheme for a problem capturing the essential
difficulties of a simple radiative transfer model (the so-called P1 model), which
enjoys the following properties: the discrete solution exists, is unique, and satisfies a
discrete maximum principle; in addition, it converges (possibly up to the extraction
of a subsequence) to a solution of the continuous problem, which yields, as a by-
product, that such a solution indeed exists. For the proof of this latter result, we
state and prove an abstract estimate allowing to bound the time translates of a finite
volume discrete function, as a function of (possibly discrete) norms of the function
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itself and of its discrete time derivative; although this estimate is underlying in some
already available analysis (see chapter IV in [4], [5] or [6]), this formulation is new
and should be useful to tackle new problems. Variants of the presented numerical
scheme are now successfully running for the modelling of radiative transfer in the
ISIS free software [8] developed at IRSN and devoted to the simulation of fires in
confined buildings (see [1]), as nuclear power plants.

A Estimation of time translates

The objective of this appendix is to state and prove an abstract result allowing to
bound the time translates of a discrete solution. We begin by a technical lemma.

Lemma A.1 Let (tn)0≤n≤N be such that t0 = 0, tn = nδt, tN = T , τ be a positive
real number and χnτ : R → R be the function defined by χnτ (t) = 1 if t < tn ≤ t+ τ

and χnτ (t) = 0 otherwise. Then, for any family of real numbers (αn)n=1,N and,
respectively, for any real number t, we have the following identities:

(i)

∫

R

[
N∑

n=1

αnχ
n
τ (t)

]

dt = τ

N∑

n=1

αn,

(ii)

∫ t+δt

t

[
N∑

n=1

χnτ (s)

]

ds ≤ τ.

Proof The function χnτ (t) is equal to one for t ∈ [tn − τ, tn), so we have:

∫

R

[
N∑

n=1

αnχ
n
τ (t)

]

dt =

N∑

n=1

αn

∫ tn

tn−τ
dt.

To obtain the inequality (ii), we remark that t ∈ [tn − τ, tn) is equivalent to
t − tn ∈ [−τ, 0) and so χnτ (t) = 1 is equivalent to χ0

τ (t − tn) = 1 (under the
assumption t0 = 0). We thus have:

∫ t+δt

t

[
N∑

n=1

χnτ (s)

]

ds =

N∑

n=1

∫ t−tn+δt

t−tn
χ0
τ (s) ds ≤

∫

R

χ0
τ (s) ds = τ.

�

We now introduce some notations. Let HM(Ω) and HD be the discrete functional
spaces introduced in section 2 and 4 respectively. We suppose given a norm ‖ · ‖∗ on
HM(Ω), over which we also define the dual norm ‖ · ‖∗ with respect to the L2-inner
product:

∀u ∈ HM(Ω), ‖u‖∗ := sup
v∈HM(Ω), v 6=0

∫

Ω
u v dx

‖v‖∗
.
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These two spatial norms may be associated to a corresponding norm on HD as
follows:

∀u ∈ HD, u = (un)0≤n≤N , ‖u‖2
L2(0,T ; HM,∗) =

N∑

n=0

δt ‖un‖2
∗,

and ‖u‖2
L2(0,T ; H∗

M
) =

N−1∑

n=0

δt ‖un‖∗2
.

We are now in position to state the following result.

Theorem A.2 Let u be a function of HD and τ a real number. We denote by û

the extension by zero of u to R
d × R. Then we have:

‖û(·, · + τ) − û(·, ·)‖2
L2(Rd×R)

≤ τ
[

2 ‖u‖2
L2(0,T ; HM,∗)

+
1

2
‖∂t,D(u)‖2

L2(0,T ; H∗
M

) + 2 ‖u‖2
L∞(0,T ; L2(Ω))

]

.

Proof Let u be a function of HD and t ∈ R. Let τ be a real number that we
suppose positive. The following identity holds:

û(·, t+ τ) − û(·, t) = χ0
τ (t) u

0 +

N−1∑

n=1

χnτ (t)
[
un − un−1

]
− χNτ (t) uN−1.

For s ∈ R we define n(s) by: n(s) = −1 if s < 0, n(s) is the index such that
tn(s) ≤ s < tn(s)+1 for 0 ≤ s < tN , n(s) = N + 1 for t ≥ tN . Let n0(t) and n1(t) be
given by n0(t) = n(t), n1(t) = n(t + τ). We adopt the convention u−1 = uN = 0.
With this notation, we have for u(·, t+τ)−u(·, t) the following equivalent expression:

u(·, t+ τ) − u(·, t) = un1(t) − un0(t),

and thus:
∫

Ω
[u(x, t+ τ) − u(x, t)]2 dx =

∫

Ω

[

un1(t) − un0(t)
]

[

χ0
τ (t) u

0 +
N−1∑

n=1

χnτ (t)
[
un − un−1

]
− χNτ (t) uN−1

]

dx.

Developping, we get:
∫

Ω
[u(x, t+ τ) − u(x, t)]2 dx = T1(t) + T2(t) + T3(t)

with: ∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T1(t) = χ0
τ (t)

∫

Ω

[

un1(t) − un0(t)
]

u0 dx,

T2(t) =

N−1∑

n=1

χnτ (t)

∫

Ω

[

un1(t) − un0(t)
] [
un − un−1

]
dx,

T3(t) = −χNτ (t)

∫

Ω

[

un1(t) − un0(t)
]

uN−1 dx.
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We first estimate the integral of T1(t) over R. Since χ0
τ (t) is equal to 1 in the interval

[−τ, 0) and 0 elsewhere, and since un0(t) = 0 for any negative t, we get:

∫

R

T1(t) dt =

∫ 0

−τ

∫

Ω
un1(t) u0 dx dt ≤ τ ‖u‖2

L∞(0,T ; L2(Ω)).

By the same arguments, we get the same bound for the integral of T3(t):

∫

R

T3(t) dt ≤ τ ‖u‖2
L∞(0,T ; L2(Ω)).

From the definition of the ‖ · ‖∗ norm, we get:

T2(t) ≤ δt

N−1∑

n=1

χnτ (t) ‖∂t,D(u)n−1‖∗ ‖un1(t) − un0(t)‖∗,

and thus, by Young’s inequality:

T2(t) ≤ δt

N−1∑

n=1

χnτ (t)

[
1

2
‖∂t,D(u)n−1‖∗

2
+ ‖un0(t)‖2

∗ + ‖un1(t)‖2
∗

]

.

Integrating over the time, we get:

∫

R

T2(t) dt ≤ T2,1 + T2,2 + T3,3,

where the term T2,1 reads and, by Lemma A.1 (Relation (i)), satisfies:

T2,1 =
δt

2

∫

R

N−1∑

n=1

χnτ (t) ‖∂t,D(u)n−1‖∗
2
dt =

τ

2

N−2∑

n=0

δt ‖∂t,D(u)n‖∗2

≤
τ

2
‖∂t,D(u)‖2

L2(0,T ; H∗
M

).

Since un0(t) = um for tm ≤ t < tm+1, the term T2,2 reads and satisfies, once again
by Lemma A.1 (Relation (ii)):

T2,2 = δt

N−1∑

m=0

[
∫ tm+1

tm

N−1∑

n=1

χnτ (t) dt

]

‖um‖2
∗ ≤ τ

N−1∑

m=0

δt ‖um‖2
∗ = τ ‖u‖2

L2(0,T ; HM,∗).

Finally, un1(t) = um for tm − τ ≤ t < tm+1 − τ , and thus, by the same argument:

T2,3 = δt

N−1∑

m=0

[
∫ tm+1−τ

tm−τ

N−1∑

n=1

χnτ (t) dt

]

‖um‖2
∗ ≤ τ

N−1∑

m=0

δt ‖um‖2
∗ = τ ‖u‖2

L2(0,T ; HM,∗).

This concludes the proof for positive τ . The case of negative τ follows by symmetry.
�
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