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We consider an Axiom A diffeomorphism or a Markov map of an interval and the invariant set Ω * of orbits which never falls into a fixed hole. We study various aspects of the symbolic representation of Ω * and of its nonwandering set Ω nw . Our results are on the cardinality of the set of topologically transitive components of Ω nw and their structure. We also prove that Ω * is generically a subshift of finite type in several senses.

Introduction

Let f be an Axiom A diffeomorphism of a compact s-dimensional Riemannian manifold M . We cut out an open hole H (with a finite number of simply connected components) out of M and consider the invariant set of nonwandering points whose orbits (forward and backwards) never fall in the hole. In part of this article we will consider noninvertible interval maps, in this case we consider the set of points whose forward orbit never falls in the hole. We fix a Markov partition, this yields a natural representation of the nonwandering set as a subshift of finite type. We will consider the subshift corresponding to the set of points which do not fall in the hole, we call this subshift an exclusion subshift. We are interested in several questions about the topological structure of exclusion subshifts and their nonwandering sets. More precisely for which holes are exclusion shifts subshifts of finite type (SFT), sofic shifts, or coded systems? As we vary the hole what is the typical type of an exclusion subshift? How many transitive components can the nonwandering set of an exclusion shift have?

After giving background definitions in section 2, we show in section 3 that every SFT and every β-shift are exclusion shifts, but certain sofic systems are not. In particular there are exclusion shifts which are sofic and ones which are not sofic. In this section we also show that the Bakers map and multiplication by n are universal in the sense that any rectangular (resp. interval) exclusion subshift can be constructed there. In section 4, we give a criterion for when the hole leads to a SFT. We apply this criterion to several different classes of holes (rectangles, polyhedra, holes with continuous boundary) with corresponding topologies/measures to show that the "typical" hole leads to a SFT. In section 5, we compare the nonwandering set for the orbits which do not fall in the hole and the nonwandering set of the exclusion shift. In section 6, we prove the finiteness of the number of transitive components in the one dimensional case and give an explicit upper bound in terms of the number of holes. In section 7, we show that an exclusion subshift has at most countably many topologically transitive components with dense periodic points and exclusion subshifts are always coded systems on such topological transitive components.

Dynamical systems with holes have been studied extensively by physicists. Cvitanovich and his coworkers have investigated how to characterize the exclusion subshift in various settings (see the survey [START_REF] Cvitanović | Dynamical averaging in terms of periodic orbits[END_REF]). They have introduced the notion of a pruning front which corresponds to ∂H in our setting. Some aspects of Cvitanovich's work have been carried out by Carvalho in a mathematical framework for Smale's horseshoe [START_REF] Carvalho | Pruning fronts and the formation of horseshoes[END_REF]. Another kind of question about dynamical systems with holes have also been extensively studied by physicists, namely construction of a physical semi-invariant measure and the understanding of the speed of mass disappearance into the holes (the escape rate formula) [START_REF] Gaspard | Chaotic scattering theory, thermodynamic formalism, and transport coefficients[END_REF]. Starting with the work of Pianigiani and Yorke [START_REF] Pianigiani | Expanding maps on sets which are almost invariant: decay and chaos[END_REF] a series of mathematical works have confirmed the expectations of the physicists in many settings (see the survey [START_REF] Demers | Young Escape rates and conditionally invariant measures[END_REF] for details). Bunimovich and Yurchenko have studied an aspect of this question close to the spirit of our article [START_REF] Bunimovich | Where to place a hole to achieve a maximal escape rate[END_REF].

Definitions

In this article, we consider Axiom A diffeomorphisms f : M → M of compact s-dimensional (s ≥ 2) Riemannian manifolds M , i.e., the nonwandering set Λ of f is hyperbolic and periodic points are dense in Λ. Sometimes we will, for the purpose of illustration, also consider the n-fold Baker's map which is not formally Axiom A since it is not a diffeomorphism. The n-fold Baker's map B : [0, 1) 2 → [0, 1) 2 is defined by B(x, y) = (nx mod 1, (y + i)/n) if x ∈ [i/n, (i + 1)/n). We will call the "partition" {[i/n, (i + 1)/n] : i = 0, 1, . . . , n -1} the standard Markov partition.

To recall the definition of a subshift of finite type consider the alphabet {1, 2, . . . , n} and a finite collection of forbidden words of length m (m fixed). The subset of all sequences in {1, . . . , n} Z where the forbidden words never appear is called a subshift of finite type (SFT). In the one sided case we call this a one sided subshift of finite type.

In this article, we will consider a Markov partition P and the resulting coding by a SFT (Σ P , σ), see [START_REF] Lind | Symbolic dynamics and coding[END_REF] for a definition. A Markov partition is called proper if each element of the partition is the closure of its interior. Let π : Σ P → M be the projection map.

Throughout this article the word hole refers to an open set H ⊂ M whose boundary ∂H = H\H consists of a finite union of compact topological co-dimension 1 manifolds and H = int(H). In particular this implies that H has a finite number of simply connected components. Fix a hole H and consider the invariant set Ω * = Ω * H of points whose orbit (forward and backwards) never falls in the hole.

For a continuous map g of a compact topological space M a point x ∈ M is called nonwandering if for any neighborhood U of x there exists a positive integer n such that g n U ∩ U = ∅. The set of nonwandering point of g is always closed, invariant and nonempty. The nonwandering set of f | Ω * is denoted by Ω nw . Let Σ * = Σ * H = π -1 Ω * with the following convention 1 : if x ∈ Ω * is on the boundary of the hole and π -1 (x) is not unique, then we only consider those preimages π -1 (x) to be in Σ * which can be approximated from outside the closure of H, i.e., those s ∈ π -1 (x) such that ∃{x j } ⊂ M \ H such that x j → x and ∃s j ∈ π -1 (x j ) with s j → s. We call the subshift Σ * an exclusion subshift. Furthermore let Σ nw be the set of nonwandering points of σ| Σ * . As we will see in Section 5, π(Σ nw ) = Ω nw and thus Σ nw is the nonwandering set of π -1 (Ω nw ).

If M is two dimensional, we call a hole H a rectangle like hole if it is the finite union of holes with local product structure, i.e., H = ∪ n i=1 H i such that for any x, y ∈ H i ∩ Λ the intersection of the local stable manifold W s loc (x) with the local unstable manifold W u loc (y) is a unique point belonging to

H i . Two holes H, H ′ are called equivalent if Ω nw H = Ω nw H ′ .
It is easy to show that any rectangle like hole is equivalent to one whose boundary consist of a finite union of local stable and unstable manifolds. We call the corresponding exclusion shift a rectangle exclusion shift RES.

We will also consider the one dimensional situation, where M is an interval or a circle. We will consider maps which we will call Markov maps (the assumptions may be somewhat stronger than the usual usage of this term in other articles). A Markov map is a topologically transitive, uniformly expanding continuous maps of the circle or piecewise continuous maps of the interval which when considered as a map of the circle is continuous and which has a finite generating Markov partition P whose elements consist of intervals. Since the map is not invertible we only require that the forward orbit never falls into a hole. If the hole consists of a finite union of intervals, we call the corresponding exclusion shift an interval exclusion shift IES. Our standard example in this framework is the multiplication by a positive integer f (x) = nx mod 1.

Since we study only topological properties of exclusion shifts, the uniformly expanding assumption is convenient, but not necessary. It can removed from the assumption and replaced by a topological conjugacy to a uniformly hyperbolic map. This topological conjugacy takes a hole which is an interval to an interval and thus, preserves the notion of interval exclusion shift. Similarly, the assumption of Axiom A in higher dimensions can be replaced by a topological conjugacy to an Axiom A map, this preserves the notion of open hole.

SFTs and sofic systems

Proposition 3.1. Every SFT is an exclusion subshift.

Proof. Consider a SFT Σ. Let n be the cardinality of the alphabet of Σ and m the length of the forbidden blocks. Consider a horseshoe map f with n-branches. We consider the standard Markov partition for f . Define H ′ to be the (finite) union of Markov rectangles (for f m ) which correspond to the forbidden m-blocks which define Σ. Markov rectangles are by definition closed. Since a horseshoe is a Cantor set it is totally disconnected, thus we can find an open hole H containing H ′ such that the intersection of H with the horseshoe is exactly H ′ . This yields Σ as an exclusion subshift.

Remark: the same construction works for the n-fold Bakers map, except that we define the hole H to be the interior of H ′ and use the coding convention from section 2.

The following theorem shows that the Bakers map is "universal" for rectangle like holes and multiplication by n is "universal" for interval holes.

Theorem 3.2. 1) Any subshift which is representable as a RES for some Axiom A diffeomorphism is representable as a RES for the Bakers map.

2) Any subshift which is representable as an interval exclusion subshift for some Markov map is representable as an interval exclusion subshift for multiplication by n.

Proof. The relationship between the various objects constructed in this proof are summarized in diagram (3.1). Fix the Axiom A system g : M → M , the Markov partition Q yielding a SFT Σ, and the rectangle like hole H ⊂ M yielding the RES Σ * . Let B : [0, 1) 2 → [0, 1) 2 be the Bakers map with the standard Markov partition P.

The idea of the proof is quite simple. By Proposition 3.1 we can find a rectangle like hole for the Bakers map which yields Σ as a RES for B. Then lift the hole H to the Σ and then project to a hole for the Bakers map.

Denote the projection π : Σ → Λ g where Λ g is the nonwandering set of g. The set Ω * H,g of points whose g orbit never falls into H by definition satisfies Σ * = π -1 (Ω * H,g ). Remember that H = ∪H i with each hole H i having product structure. Let H i,j be the interior of the intersection of H i with the jth element of the Markov partition, note that H ⊂ ∪H i,j and if some H i intersects several Markov partition elements this inclusion is strict. None the less the coding convention implies that Ω * ∪H i,j ,g = Ω * H,g . By Proposition 3.1 we can find an rectangle like hole H ′ ⊂ [0, 1) 2 which yields Σ as a RES for (B, P). Let Ω * H ′ ,B be the set of points whose B orbit never fall into H ′ and let π ′ : Σ → Ω * H ′ ,B be the projection. Consider H symb i,j

:= {s ∈ Σ : π(s) ∈ H i,j } = π -1 (H i,j ). Note that H symb i,j is open since π is continuous and H i,j is open. Let H ′′ i,j := π ′ (H symb i,j
) and 

H ′′ = ∪ i,j H ′′ i,j .
← ---Σ * π ′ ---→Ω * H ′′ ,B ∩ ∩ ∩ Λ g π ← ---Σ π ′ ---→ Ω * H ′ ,B (3.1)
The proof in the 1-dimensional case is similar.

Let Σ + even be the one sided even shift, that is the set of all 0-1 half infinite sequences with the constraint that the number of consecutive ones which occur in between two zeros is always even. Proposition 3.3. The one sided even shift Σ + even is not an interval exclusion system. Proof. By Theorem 3.2 it is enough to consider the doubling map i.e., M := Σ 1 , f (x) := 2x mod 1, P = {[0, 1 2 ], [ 1 2 , 1]}. Suppose we have a hole which is a union of intervals and yields Σ + even as an exclusion system. Consider the point x n = 01 2n+1 0 ∞ . The whole orbit of x n , except x n itself is in Σ + even . Thus x n must lie in the hole. Let y n = 01 2n 0 ∞ . Clearly y n ∈ Σ + even and x n-1 < y n < x n . Thus the hole must consist of an infinite number of intervals, i.e., Σ + even can not be an IES.

Let Σ even be the two sided even shift, that is the set of all 0-1 biinfinite sequences with the constraint that the number of consecutive ones which occur in between two zeros is always an even number.

Proposition 3.4. The even shift Σ even is not a RES. Proof. By Theorem 3.2 it is enough to consider the two fold Bakers map B. Let x n = 0 ∞ .1 2n+1 0 ∞ (here the decimal point marks the position between the -1st and 0th elements of the sequence). The point x n is not in the even shift, it must fall into the hole under some iteration of B.

We treat several cases, first of all suppose that x n falls into the hole at the boundary of M . Then at the instant that x n falls into the hole all the 1's are to the right (or all are to the left) of the decimal point (i.e., B j x n ∈ ∂M with j ≤ 0 or j ≥ 2n + 1). Note that the intersection of the rectangular holes with the boundary consists of a finite union of intervals. Thus we can apply the argumentation of the previous example to conclude that it is impossible to have an infinite number of the x n fall into the hole when they are on the boundary of M .

In other words, all but finitely many x n fall into the hole away from the boundary of M . For such an x n consider the code a at the instance of falling into the hole. It has the form 0 ∞ 1 p .1 q+1 0 ∞ where p + q = 2n.

Consider the sequence (u i ) i∈Z with u i = 0 ∞ 1 2i 01 p-1 .1 q+1 0 ∞ and the sequence (v i ) i∈Z with v i = 0 ∞ 1 p .1 q 01 2i 0 ∞ . These two sequences get arbitrary near from the left and the bottom to a and all their elements are in the even shift. Thus a must be a corner of the hole. This contradicts the assumption that the number of corners of the hole is finite.

A closed shift invariant subset of {1, 2, . . . , n} Z (resp. {1, 2, . . . , n} N ) is called sofic if it a factor of a SFT. The even shift is an example of a sofic system. A subshift Σ is called a coded system if it can be represented by an irreducible countable labeled graph [START_REF] Blanchard | Systemes codés[END_REF]. We do not know if every sofic system, or even if every coded system is an exclusion subshift. However, if we drop the requirement that the boundary consists of co-dimension 1 manifolds then we get that all subshifts are exclusion subshifts in a weaker sense than considered in this article: they are the complement of an open hole without any further assumptions on the boundary. To see this simply define the hole to be the complement of the invariant set which gives rise to the subshift. Consider the dynamical system h β : [0, 1) → [0, 1) given by h β x = βx mod 1. Suppose β ∈ (1, 2] and consider the "partition" I 0 := [0, β -1 ] and

I 1 := [β -1 , 1]. Given ω, α ∈ {0, 1} N we say ω < α if there exists a positive integer N such that ω i = α i for i = 0, 1, . . . , N -1 and ω N = 0 < α N = 1.
It is well known that the code β of the orbit of β satisfies σ n β < β for all n > 0. The set of all sequences which are the code of some orbit is called the one sided β-shift, it is characterized by [START_REF] Blanchard | β-Shifts and symbolic dynamics[END_REF] {x ∈ {0, 1} N : σ n x < β for all n > 0}.

The natural extension of the one sided β-shift is called the two sided β-shift. Theorem 3.5. Every one sided β-shift is a IES and every two sided β-shift is a RES.

Proof. Let g : [0, 1) → [0, 1) be defined by g(x) = 2x mod 1. Inspired by the above a number β is called a β-number if g n β < β for all n > 0. If β is a β-number then the set X β := {x ∈ [0, 1) : g n x < β ∀n > 0} is conjugate (up to a countable number of points) to the one sided β-shift. If H ⊂ [0, 1) is the interval (β, 1) then the set of points whose forward g orbit never falls in H is exactly X β . Now let f be the Bakers map. Fix a β-number β and let H ⊂ M be the rectangular hole {(x, y) :

x > β, 0 ≤ y ≤ 1}. Let (x -i , y -i ) = f -i (x, y).
Since the hole stretches from the bottom to the top of M it is easy to see that (x, y) ∈ Ω * if and only if g n (x -i ) < β for all n ≥ 0 and all i ≥ 0. Thus the exclusion shift in this example is exactly the two sided β-shift. We remark that the two sided β-shift is of finite type, sofic, or not sofic if and only if the one sided one has the same property. It is well known that the β-shift is of finite type if the binary expansion of β is finite, it is sofic if it eventually periodic and otherwise it is not sofic [START_REF] Blanchard | β-Shifts and symbolic dynamics[END_REF].

Remark: The notion of β-shifts can be extended to β > 2. The theorem extends easily to this case, for β ∈ (n -1, n] we must use the map g = nx mod 1 and the n-fold Baker's map.

Genericity results

4.1.

A criterion for SFTs. In this subsection we give the criterion which will be applied throughout the rest of the section to prove genericity of SFTs in various settings.

Proposition 4.1. If for each x ∈ ∂H there is an i such that f i x ∈ H then Σ * is a SFT.
Proof. Fix a generating Markov partition P and let

P (n) := ∨ n i=-n f i P. Let P (n) x := {P ∈P (n) :x∈P } P . If x ∈ ∂H and f i x ∈ H then since P is generating by continuity there is a n(x) such that f i P (n(x)) x ⊂ H.
Since ∂H is compact we can cover ∂H by a finite collection of the sets P (n(x)) x to obtain a neighborhood N of ∂H such that N ∩ Ω = ∅. Since we used a finite collection of P x , the hole H ′ := N ∪ H consists of a finite union of element of P (N ) for some sufficiently large integer N and thus Σ * is a SFT.

4.2.

Results in the Hausdorff metric. Let s denote the Hausdorff dimension of M . Consider the set C of all holes such that ∂H is a continuous, i.e., there is a continuous map h :

S s-1 → M whose image is ∂H. For H ∈ C let H ǫ := ∪ x∈∂H B(x, ǫ). For H 1 , H 2 ∈ C we define d(H 1 , H 2 ) := inf ǫ > 0 : H 1 ⊂ H ǫ 2 , H 2 ⊂ H ǫ 1 .
A set is called totally disconnected if no two points are in the same connected component. Lemma 4.2. If the set Ω H is totally disconnected then for every ε > 0 there is a hole

H ′ ∈ C with d(H ′ , H) < ε and an open neighborhood U ⊂ C of H ′ such that for all holes H ′′ ∈ U the subshift Σ * is a SFT. Proof. Consider the set V := {H ′ ∈ C : H ⊂ H ′ , d(H, H ′ ) < ǫ}.
Since Ω H is totally disconnected there are holes

H ′ ∈ V such that ∂H ′ ∩ Ω H = ∅. Since Ω H ⊂ Ω H ′ such
an H ′ satisfies the requirements of Proposition 4.1 and so defines a SFT.

Next we will show that an open set U of holes satisfy the requirements of Proposition 4.1. We claim that we can find an open set O ⊂ H ′ with d(O, H ′ ) > 0 and a positive integer N such that for all x ∈ ∂H there exists an integer i, satisfying |i| ≤ N such that f i x ∈ O. To see this note that for each x ∈ ∂H ′ there is an n(x) > 0 such that f n(x) ∈ H ′ . By continuity of f we can choose ε(x) > 0 so small that for all y ∈ B(x, ε(x)) we have f n(x) y ∈ H ′ and d(f n(x) y, ∂H ′ )d(f n(x) x, ∂H ′ )/2. By compactness of ∂H ′ we can cover it by a finite number of such balls

{B(x i , ε(x i )}. Then O is ∪f n(x i ) B(x i , ε(x i )).
Then, just as in the proof of Proposition 4.1 there is a neighborhood U of ∂H ′ such that for each x ∈ U for some i satisfying |i| ≤ N we have f i x ∈ O. This immediately implies that we can choose a small neighborhood U ⊂ O of H ′ such that for any hole H ′′ ∈ U the boundary of H ′′ satisfies the requirements of Proposition 4.1 and thus the corresponding shift Σ ′′ is a SFT. Proof. Consider an arbitrary hole H ∈ C and the associated invariant set Ω H . If x is a generic point in the sense that it visits (in both forward and backwards time) any cylinder set (defined by the Markov partition) with the correct frequency, then W s (x) and W u (x) completely fall into H and thus are both disjoint from Ω H . Both W s (x) and W u (x) are curves which are dense in M , thus since M is two dimensional the complement of their union is totally disconnected. Since Ω H is a subset of this set it is also totally disconnect. Applying Lemma 4.2 finishes the proof. 4.3. Rectangle like holes. In this section we assume that M is two dimensional and that f is a C 2 Axiom A attractor and µ is its SBRmeasure, i.e. µ has absolutely continuous conditional measures on unstable manifolds. Recall that a hole is a rectangle like hole if ∂H consists of a finite number of curves, each of which is a piece of a stable or unstable manifold of f . We assume that at each point where two curves meet, that one is stable, the other is unstable. Thus the number of corners is always even, and if we fix an orientation of the boundary we only need to give the coordinates of every other corner point to describe a rectangle like hole. If we fix the number 2n of corners of a rectangle like hole (n ≥ 2) then we can parametrize the set of all such rectangles by an open subset R (n) of M 2n . We will consider the Lebesgue measure on R (n) . Theorem 4.4. For every n ≥ 2, the set of rectangle like holes with 2n corners for which Σ * is a SFT is of full Lebesgue measure and contains an open dense subset of R (n) .

Similarly for the one dimensional case one can show that for any k the set of holes which are a union of k-intervals for which Σ + is a SFT is of full Lebesgue measure and contains an open dense subset of the set of all such holes. Proof. Consider the set G of generic points in the same sense as in the proof of Theorem 4.3. The set G is of full Lebesgue measure. Suppose H is a rectangle like hole with the property that every other corner point (those which are noted in the description of H ∈ R (n) ) is in G. Such a hole satisfies the requirements of Proposition 4.1 and thus Ω is a SFT. Clearly the set of such holes is dense and of full measure. The proof of openness is the same as in the proof of the previous theorem.

Polyhedral holes.

In this section we suppose that M is s-dimensional and has a flat structure (i.e., M ⊂ R s or M ⊂ T s ). We consider holes which are the interior of arbitrary polyhedron, i.e. a hole whose boundary consists of straight line segments. Fix the number of corners n. The set of n-gons is an open subset of M n which we denote by P (n) . We consider the Lebesgue measure on M n . We call a polyhedral hole H ∈ P (n) large if the Hausdorff dimension of the associated invariant set Ω is strictly less than one. Let P (n) ⊂ P (n) be the set of all large polyhedral holes. Theorem 4.5. For every n the set of large polyhedral holes for which Σ * is a SFT is of full Lebesgue measure in P (n) and contains an open dense subset of P (n) .

For natural families of maps (hyperbolic toral automorphisms, bakers map, horseshoes) it is not hard to see that the set of large polygonal holes for which Ω is uncountable has positive measure for all even n. For horseshoes we can show this for all n.

Proof. We note that if

H ⊂ H ′ then Σ * H ′ ⊂ Σ * H .
Thus if H is a large hole then so is H ′ . Our proof is local. Fix an open set B. Consider the set Σ * B of points which never fall into B. Suppose B is large enough that a := dim(Ω B ) < 1. This implies that dim(proj θ (Ω B )) = a < 1 for Lebesgue almost every θ ∈ S s-1 ([18], Theorem 6.9). We will call such θ generic. Here proj θ denotes the orthogonal projection from M onto L θ , the line through the origin in the direction θ ∈ S s-1 .

Consider the set of co-dimension one hyperplanes with normal direction θ and parametrize these hyperplanes by a parameter t ∈ R ≡ l θ . For any generic θ, since a < 1 the set proj θ (Ω B ) is totally disconnected and thus for a.e. t, the hyperplane with parameter t will be disjoint from Ω B . We will also refer to this hyperplane as generic. Now consider any polyhedron H which contains B in it's interior and for which all the faces are contained in generic hyperplanes. The faces of this polyhedron do not intersect the set Ω B . thus we can apply Proposition 4.1 to conclude that Σ * is a SFT. The set of such polyhedra is locally of full dθ × dt measure. It is easy to conclude that it is also locally of full Lebesgue measure. Sets of full measure are also locally dense. Lemma 4.2 implies that it is also open.

Remark: We believe that the set of polyhedral holes defining a SFT is of full measure and contains an open and dense set. Our strategy of proof can not be used since the projection onto a line L θ of a set of dimension greater than one has positive one dimensional measure for a.e. θ.

Transitive components of Σ nw

A homeomorphism f of a compact metric space M is called topologically transitive if there exists a dense orbit, or equivalently if every proper closed f -invariant subset is nowhere dense. A closed invariant set X (i.e., f -1 X = f X = X) is called a topological transitive component if X contains a dense orbit and there is no closed invariant set X ′ X containing a dense orbit. Note that for noninvertible maps studied in the last section we will modify this definition.

In [START_REF] Lind | Symbolic dynamics and coding[END_REF] a different definition of topologically transitive is used, they call f topologically transitive if there exists a point whose forward and backward orbits are both dense. We call this notion strong topological transitivity. In particular, they prove that a subshift is strongly topologically transitive if and only if it is irreducible, (i.e., for any pair of cylinders U, V there exists n0 such that σ n U ∩ V = ∅).

We call a subshift a nonwandering subshift of finite type if it is the nonwandering set of a subshift of finite type. In this section we are interested in the nonwandering set Σ nw of Σ * and will be considering the approximation of Σ nw by nonwandering subshifts of finite type. The nonwandering set of a subshift of finite type is the (finite) disjoint union of irreducible subshifts of finite type. Each of these components is strongly topologically transitive, and thus topologically transitive. Thus the decomposition into topologically transitive components for a nonwandering subshift of finite type is equivalent to the usual decomposition into irreducible components. In particular, in this case, strong and normal topological transitivity are equivalent. We illustrate this with an example. Consider the SFT Σ * defined in Figure 1a. The SFT Σ * has infinitely many topologically transitive components: for each j ≥ 1 the orbit of the point

x j := 1 ∞ 2 j .3 ∞ is dense orbit in the transi- tive component O(x j ) ∪ {1 ∞ } ∪ {3 ∞ }. There are two other transitive components, O(1 ∞ .2 ∞ ) ∪ {1 ∞ } ∪ {2 ∞ } and O(2 ∞ .3 ∞ ) ∪ {2 ∞ } ∪ {3 ∞ }.
There are only three strong topological transitive components of Σ * , they are the three fixed points which form the nonwandering set Σ nw 123 1a) A SFT 2 13 1b) It's nonwandering set shown in Figure 1b. These 3 fixed points are the usual topologically transitive components of Σ nw , they are disjoint.

Furthermore periodic points are dense in a topologically transitive component of a nonwandering SFT or in a topologically transitive component of an Axiom A diffeomorphism.

Turning back to the general case, let F + be the set of points whose forward images do not fall into a hole and similarly F -is defined with backward images. Remember that

Ω * = F + ∩ F -. Proposition 5.1. N W (f | F + ) ⊂ Ω * and N W (f -1 | F -) ⊂ Ω * . Proof. Fix x ∈ N W (f | F + ).
Suppose that x ∈ F -, thus we can choose i > 0 to be the first time such that f -i x is in the hole. Choose U a neighborhood of x so small that f -i U is contained in the hole. Choose n = n(U ) > 0 such that f n (U ∩ F + ) ∩ (U ∩ F + ) = ∅. Choose a point y in this intersection, i.e. y and f -n y are in U ∩F + . Let z = f -n y, then z and f n z are in U ∩F + . By choosing U even smaller we may assume that n > i. Since f n z ∈ U and f -i U ⊂ H we get f -i (f n z) = f n-i z ∈ H. This is a contradcition since z ∈ F + and ni > 0. Thus x ∈ F + . The other containment is proven similarly.

Throughout the rest of the article the projection of a symbolic point will be denoted by the same letter without a hat, for example x = π(x). Proposition 5.2. Σ nw = π -1 (Ω nw ).

Proof. Consider x ∈ Σ nw . Since x is nonwandering for any n < 0 < m there exists j > 0 such that the cylinder U := [x] m n satisfies σ j U ∩ U = ∅. Let ŷ be a point of this intersection. For any neighborhood V of x := π(x) we can find n < 0 < m such that the cylinder π(U) ⊂ V.

Thus y := π(ŷ) ∈ f j V ∩ V. It follows that π(Σ nw ) ⊂ Ω nw .
To finish we need to show that π is onto. Choose any x ∈ Ω nw . First suppose there is a unique x ∈ Σ * such that π(x) = x. By the nonwandering of (Ω nw , f ) for any neighborhood V of x there exists j > 0 such that f j V ∩ V = ∅. Given a cylinder U := [x] m n we can choose a neighborhood V of x such that π -1 (V) ⊂ U. Thus σ j U ∩ U ⊃ π -1 (f j V∩V) = ∅ and therefore x is nonwandering and the claim follows.

Note that for any neighborhood V of x there are times 0 < j 1 < j 2 < • • • such that f j i V ∩ V = ∅. Now suppose that the coding of x is not unique, i.e., there are several points xi ∈ Σ * such that π(x i ) = x. It is well known that the number of such points is uniformly bounded by a constant L, which depends only on the dimension of M . In this case, if we try to argue as in the previous paragraph, we can not choose V such that π -1 (V) ⊂ U. For i ∈ {1, . . . , L} let U i , be a cylinder set containing xi such that π

-1 V ⊂ U := ∪ L i=1 U i . Thus σ j i U ∩ U ⊃ π -1 (f j i V ∩ V) = ∅.
Note that the point x is on the boundary of the sets π(U i ) for all i. We can assume all the U i are cylinders of the same length, thus we can refine our original Markov partition P by intersecting with a finite number of Markov partitions f i P yielding a new Markov partition (which we will call P) such that each of the sets V i := π(U i ) is an element of the P. Suppose that x is in the stable boundary of the V i 's. Then by the Markov property for each j i and each l we have f j i V l has a Markov intersection with some V k and for fixed j i the map l → k is invertible. Fixing V k we iterate and produce a sequence of Markov intersections f j i V l i with V k . By the pigeonhole principle some l must appear as an l i twice. This implies f j i 1 V l has a Markov intersection with f j i 2 V l , but since both of these sets have a Markov intersection with V k we can conclude that σ j i 1 -j i 2 V k has a Markov intersection with V k . Since this is true for any V k we conclude in this case that each of the points xi is nonwandering.

If x is in the unstable bound of the V i 's then since σ is invertible and σ j i U ∩ U = ∅ we have σ -j i U ∩ U = ∅. Now we can repeat the above argument.

Finiteness of topological transitive components in dimension 1

Suppose that M is one dimensional, i.e., an interval or circle, (f, P) is as described in section 2 and H = ∪ p i=1 H i where the H i are disjoint open intervals. By the continuity assumption on f we can always think of M as the circle. The definitions of Ω * , Ω nw , Σ * and Σ nw are similar to the corresponding definitions in the invertible case with the difference that since f is not invertible, we only require that the forward orbit does not fall into H. The set (Ω nw ) c := I\Ω nw is open. Let H ext i be the maximal interval containing H i which is a subset of (Ω nw ) c and

H ext = ∪ r i=1 H ext i .
It is possible that several H i amalgamate into one H ext j , thus r ≤ p. Call H ext the extended hole. We also assume that our Markov partition is fine enough such that the left and right end points of each of the H ext i are in different elements of the Markov partition.

This assumption can be made without loss of generality by replacing P by P ∨ f P ∨ • • • ∨ f n P for a large enough n.

Since our maps are not invertible, we must modify the definition of topologically transitive component: a closed forward invariant (i.e., f (X) = X) set is called topologically transitive if it has a forward orbit which is dense and there is no closed forward invariant set X ′ X containing a dense orbit. We gather here some simple facts about topologically transitive components of continuous maps which we will use. Proposition 6.1. Suppose f is a continuous map of the interval or circle.

1) If a topologically transitive component contains an isolated point, then this point is periodic and the component coincides with this periodic orbit.

2) Each topologically transitive component is finite or uncountable.

3) Any dense orbit in a forward invariant set is recurrent. 4) Topologically transitive components are nonwandering.

Proof. 1) Let X denote the topologically transitive component. If z is isolated and the orbit of x is dense then f i x = z for some i ≥ 0. The point x is also isolated, if not then by continuity z is not isolated. If the orbit of x is not periodic then since x is isolated we have f X = X \ {x} and X is not forward invariant. This contradiction implies that x is periodic. Since x's orbit is dense, it must coincide with the topologically transitive component.

2) We claim that if the set of nonwandering points of a topologically transitive component is not a finite set, then it must be a perfect set (i.e., it equals the set of its limit points). It is well known that the nonwandering set is closed. Since there is a dense forward orbit {f i x : i ≥ 0}, any nonwandering point is a limit point of this orbit. It is well known that perfect sets are uncountable.

3) If X is finite then this is clear. Suppose X is uncountable and the forward orbit of x is dense in X. By part (1) the point x can not be isolated. Since x is not isolated and the forward orbit of x is dense this orbit must come arbitrarily close to x to be dense, i.e., the orbit is recurrent.

4) By definition every topologically transitive component X is forward invariant and has a forward dense orbit {f i x : i ≥ 0}. For any y ∈ X and any neighborhood U of y there is a positive i such that f i x ∈ U. Since x is recurrent, there is a n such that f i+n x ∈ U as well, which shows that f n U ∩ U = ∅. Lemma 6.2. The set of points whose forward orbit never hits the extended hole H ext is exactly the nonwandering set of the set of points whose forward orbit never hits H, i.e., Ω *

H ext = Ω nw H . Proof. Consider G := ∪ n≥0 f -n H ext . The set G consists of a countable union of intervals and is dense in M . The complement of G is a Cantor set. Clearly Ω nw H ⊂ G c ⊂ Ω * H ext .
For each x ∈ G let n(x) ≥ 0 be the first time f n x ∈ H and let k(x) be the corresponding component H ext k(x) . By continuity n and k are locally constant. Consider a point x ∈ G and let G(x) be the maximal interval containing x for which n and k are constant. We call G(x) the gap of x. The image

f n(x) G(x) ⊂ H ext k(x)
and by maximality it is onto. The main theorem of this section is: Theorem 6.3. Every interval exclusion system has at most 4r topologically transitive components.

To prove this theorem we will first prove that the number of topologically transitive components is at most 2r in the case of a SFT (Theorem 6.4). In the general case we will deduce that the number of topologically transitive components which stay a bounded distance away from the boundary of the extended hole is also bounded by 2r. In Proposition 6.5 we develop a local concatenation technique (similar to bracketing for hyperbolic maps) for orbits which accumulate at a boundary point of the extended hole. This yields a correspondence between topologically transitive components which accumulate on the boundary of the extended hole and the boundary points of the extended hole (Proposition 6.7) and gives the upper bound of 2r on such components.

Let {X i : X i ⊂ M } be the topologically transitive components of f | Ω nw and {Y i : Y i ⊂ Σ} the topologically transitive components of σ| Σ nw . Let I be the index set of the topologically transitive components of f | Ω nw . Theorem 6.4. Suppose that the interval exclusion system is a SFT. Then the number of topologically transitive components of Ω nw is at most 2r.

Proof. If M is the circle we puncture it at a point of ∂P to view it as an interval. This allows us to define an order of M . Each topologically transitive component X i is closed, thus we can define a i := min(X i ) and b i := max(X i ). Since Σ nw is a nonwandering SFT, it has only a finite number of topologically transitive components Y i and these components are disjoint. For the moment, we suppose that all the points a i and b i have unique coding (i.e. the orbits of a i and b i do not intersect ∂P). With this additional assumption the disjointness of the Y i implies that a i and b i do not belong to any transitive component other than X i . This implies that there are gaps G a i (G b i ) on the left (right) side of a i (b i ). Fix x ∈ G a i . As we saw above all z between x and a i fall into the same hole at the same time n(z). By the continuity of f this implies that f n(z) a i ∈ ∂H ext . A similar statement holds for

G b i .
Consider the order on Σ nw which is compatible with the order on Ω nw . This order can always be defined in an inductive manner by simply considering the relative order of the elements of P (n) := ∨ n i=0 f i P. If f is locally order preserving then this is simply the lexicographical order on Σ nw . Fix an i ∈ I. Consider the symbolic coding of a i and b i . Call these codings s = (s j ) j∈N and t = (t j ) j∈N (here the dependence on i is suppressed since i is fixed). We claim that if X i is uncountable then s is not a preimage of t and vice versa t is not a preimage of s. To see this fix a higher block coding which defines Markov transition graph of Σ nw . The fact that a i is defined via a minimum implies that if there are several followers of the symbol s j in the Markov graph, then s j+1 is minimal follower in the sense that in the order it is smaller than all other followers. In a similar fashion the sequence t is maximal.

If s is a preimage of t or vice versa, then s and t are eventually maximal and minimal at the same time. This means that starting from the point that they agree the maximal follower of s j is also the minimal follower of s j , so there is only one follower of s j . Thus s and t are eventually periodic and the Y i is simply this periodic orbit. In particular Y i is finite, finishing the proof of the claim.

If X i is uncountable, then we have just shown the disjointness of the codes of a i and b i . Since we are still assuming that the points a i and b i have unique coding this implies the disjointness of their f -orbits. Thus at least two points of X i lie on ∂H ext .

On the other hand if X i is at most countable, then by Proposition 6.1 it is finite and consists of a single periodic orbit. The points a i and b i lie on this orbit.

Under the above assumptions we have shown that for every uncountable X i there are at least two points of X i on ∂H ext and for every at most countable X i there is at least one such point. Thus, since the endpoints can only belong to a single X i we have shown ♯{i ∈ I : X i at most countable} + 2♯{i ∈ I : X i uncountable} ≤ 2r.

Finally we turn to the case when some of the a i and b i have nonunique coding. Note that each point can have at most 2 codes. Repeat the above proof with (at most) 4r codes corresponding the these points. This proof shows that if two topologically transitive components intersect at an a i or b i then the coding of this intersection point is different in each of the components. Now suppose that the coding of a i is not unique and that two topologically transitive components intersect at a i . Remember that f n(z) a i ∈ ∂H ext . Consider the two Markov partition elements P 1 , P 2 which share the point a i . One of these elements, say P 1 satisfies f n(z) P 1 ⊂ H ext . This implies that the point a i is isolated in the corresponding topologically transitive component. By Proposition 6.1 this topologically transitive component consists of the orbit of a i and this orbit is periodic. Thus it is part of the other topologically transitive component.

Suppose that X is a topologically transitive component of Ω nw . Fix x ∈ X such that the orbit of x is dense in X. Consider any x = x1 x2 • • • ∈ Σ nw such that π(x) = x. Let {c (j) } be the boundary points of the extended hole H ext . If the point c (j) is not on the boundary of a Markov partition element then let ĉ(j) = π -1 c (j) ∈ Σ nw , in the case when c (j) is on the boundary we define ĉ(j) to be the preimage of c (j) which is the coding of the orbit defined from the exterior of the extended hole. For each k ≥ 0 we define n k (x) in the following way: n k (x) is the length of the longest initial block of one of the ĉ(j) which agrees with the initial block of the same length of σ k x, i.e., xi+k = ĉ(j)

i for i = 0, 1, . . . , n k (x) -1. We call n k (x) the flag of x at time k (see figure 2). We remark that n k (x) < ∞ if f k x ∈ ∂H. By Proposition 6.1 either x is an isolated periodic point which hits ∂H or it visits ∂H only a finite number of times. In the second case since by Proposition 6.1 x is recurrent, we can assume by replacing x by f i x for sufficiently large i that the orbit of x does not visit ∂H at all.

Since x is fixed we will drop the x dependence of the notations. We define a partial order on flags

n k ≺ n k ′ if k ′ < k and n k ′ + k ′ ≥ n k + k
and in this case we say that the flag n k is covered by the flag n k ′ . If To prove this fact we need the following lemma. Proof of Proposition 6.5. For concreteness suppose we concatenate x with ŷ to produce a point ẑ. First of all, if j ≥ k then f j z = f j y, thus since y never falls in a hole, z can not fall in a hole after time k. Suppose f j z ∈ H for some j < k. Since the n k (x) flag of x is uncovered, we have ẑj . . . ẑj+n j (x) = xj . . . xj+n j (x) and j + n j (x) < k + n k (x). Thus applying the previous lemma to a = f j y and b = f j z yields a contradiction and finishes the proof.

Assume that we start with a fine enough Markov partition that each c (j) belongs to a different element of the time zero partition. We define the color of the uncovered flag of x at time k to be the unique c (j) such that the initial blocks of length n k (x) of ĉ(j) and σ k x coincide.

Let X be a (nonwandering) topologically transitive component and x ∈ X a dense orbit. Define I(X) = I(X, x) := {c (j) : the uncovered flags of x of color j are of unbounded length}.

Proposition 6.7. 1) If X ∩ ∂H ext = ∅ then I(X) is nonempty. 2) If I(X) ∩ I(Y ) = ∅ then X = Y .
Proof of Proposition 6.7. 1) First note that lim sup{n k (x) : the color of the flag at time k is j} = ∞ for any c

(j) ∈ X ∩ ∂H ext . Any chain of covered flags n k 1 ≺ n k 2 ≺ n k 3 ≺ • • • contains a maximal element
since the k i 's are decreasing and bounded from below (positive). The maximal element is an uncovered flag, and it is longer than any of the flags it covers. Thus if the covered flags have unbounded length, then the uncovered flags also have unbounded length. Thus I(X) = ∅.

2) Fix two topologically transitive components, X and Y with dense orbits x and y. Consider c := c (j) ∈ I(X, x) ∩ I(Y, y).

First consider the case when the forward orbit of x contains c. Proposition 6.1 (3) implies that the forward orbit of c is dense, so we may assume x = c. Let ω(y) denote the forward limit set of the orbit of y. Since c ∈ ω(y) then by continuity w(c) ⊂ ω(y), thus X ⊂ Y . Since topologically transitive components must be maximal it follows that X = Y . Similarly we can conclude that X = Y if the forward orbit of y contains c. Now suppose that the forward orbits of x and y do not hit the point c. We will recursively construct a point ẑ ∈ Σ nw such that the orbit of z = π(ẑ) is dense in X ∪ Y . The idea of the construction is the following. Take longer and longer segments of x and ŷ's orbit, so that the union of these segments is dense in X and Y . Proposition 6.5 gives a condition when one can concatenate segments of the orbit of x and ŷ together. Since I(X) ∩ I(Y ) = ∅ we can apply Proposition 6.5 to arbitrarily long (i.e., arbitrarily dense) orbit segments.

More formally fix a positive sequence ε m → 0. Let x(m, n) be the finite sequence xm , xm+1 , . . . , xn . Define x(m, n) similarly to be x m , x m+1 , . . . , x n . Let n k := n k (x) and m l := n l (ŷ) be a sequence of the uncovered flags of color j with unbounded length and with c (j) ∈ I(X) ∩ I(Y ). Consider the first time t 1 such that the orbit segment x(0, t 1 ) is ǫ 1 dense in X. Consider the smallest integer k 1 such that k 1 ≥ t 1 such that the x-flag n k 1 is uncovered and of color j. Consider now the first time l 1 such that the y-flag m l 1 satisfies m l 1 ≥ n k 1 . Let s 1 be the smallest integer such the orbit segment y(m l 1 , s 1 ) is at least ǫ 1 dense in Y . Next fix i 1 ≥ s 1 so that the y-flag m i 1 is uncovered and of color j. Finally consider the first time p 1 such that the x-flag n p 1 satisfies n p 1 ≥ m i 1 . For two finite strings a, b we denote a ⋆ b the string a concatenated with b. Thus Proposition 6.5 guarantees that ẑ1

:= x(0, k 1 ) ⋆ ŷ(l 1 , i 1 ) ⋆ x(p 1 , ∞) ∈ Σ * .
Let z 1 = π(ẑ 1 ). For i ∈ {0, 1, . . . , k 1 } the symbolic codes of f i x and f i z 1 agree for at least n k 1 symbols and for i ∈ {l 1 , . . . , i 1 } the symbolic codes of f i y and f i z 1 agree for at least n i 1 symbols. Thus, since f is uniformly hyperbolic, we can find constants C > 0 and λ ∈ (0, 1) which depend only on f and P, such that

|f i x -f i z 1 | < Cλ k 1 for i ∈ {0, 1, . . . , k 1 } and |f i y -f i z 1 | < Cλ i 1 for i ∈ {l 1 , l 1 + 1, . . . , i 1 }. Thus the orbit segment z 1 (0, i 1 ) is at least ǫ 1 + Cλ min (k 1 ,i 1 ) dense in X ∪ Y .
Now we repeat this procedure. Consider the first time t 2 such that the orbit segment x(p 1 , t 2 ) is ǫ 2 dense in X. Consider the smallest integer k 2 such that k 2 ≥ t 2 such that the x-flag n k 2 is uncovered and of color j. Consider now the first time l 2 such that the y-flag m l 2 satisfies m l 2 ≥ n k 2 . Let s 2 the smallest integer such the orbit segment y(m l 2 , s 2 ) is at least ǫ 2 dense in Y . Next fix i 2 ≥ s 2 so that the y-flag m i 2 is uncovered of color j. Finally consider the first time p 2 such that the x-flag n p 2 satisfies n p 2 ≥ m i 2 . Thus Proposition 6.5 guarantees that the orbit

ẑ2 := x(0, k 1 ) ⋆ ŷ(l 1 , i 1 ) ⋆ x(p 1 , k 2 ) ⋆ ŷ(l 2 , i 2 ) ⋆ x(p 2 , ∞) ∈ Σ * .
As above the orbit segment z 2 (p 1 , i 2 ) is at least ǫ 2 + Cλ min (k 2 ,i 2 ) dense in X ∪ Y .

Define ẑn ∈ Σ * similarly. Clearly the limit ẑ := lim n→∞ ẑn exists. Since Σ * is closed, we have ẑ ∈ Σ * . We have k n → ∞ since ǫ n → 0. Thus orbit of z = π(ẑ) is dense in X ∪ Y . In particular, z is nonwandering and thus z ∈ Σ nw .

Proof of Theorem 6.3. If Σ nw is not a SFT we approximate H ext from the outside by Markov holes H (n) as follows. Let P be the generating Markov partition, then P (n) := ∨ n i=-n f i P is also a generating Markov partition. Let H (n) := int(∪ {P∈P (n) : P∩H =∅} P). Clearly H (1) ⊃ H (2) ⊃ • • • and H ⊂ ∩ n H (n) . Furthermore, we have diam(P (n) ) → 0 as n → ∞ and thus ∩ n H (n) = H. The exclusion system Σ nw(n) := Σ nw H (n) is a SFT. Clearly Σ nw (1) 

⊂ Σ nw(2) ⊂ • • • . Let Σnw := n Σ nw (n) .
Clearly Σnw ⊂ Σ nw .

The number of transitive component of ∪ n Σ nw (n) is less than or equal to the limsup of the number of components of the approximating sequence. Applying Theorem 6.4 this limsup is at most 2r.

The orbit of any point in Σ nw \ ∪ n Σ nw (n) accumulates on ∂H ext . Applying Theorem 6.7 we see that there is at most one such topologically transitive component for each color c (j) , i.e. 2r.

Coded systems

A subshift Σ is called a coded system if it is topologically conjugate to the shift on an irreducible countable labeled graph [START_REF] Blanchard | Systemes codés[END_REF]. Equivalently, Σ is called coded if Σ contains an increasing sequence of irreducible subshifts of finite type (SFTs) whose union is dense in Σ [START_REF] Blanchard | Sofic constant-to-one extensions of subshifts of finite type[END_REF]. This alternative definition indicates that topologically transitive components of hole systems should be coded since we can approximate holes from the outside by Markov holes. It turns out that this is true under mild assumptions. We begin by a preparatory proposition. Remember that a nonwandering subshift of finite type consists of a finite union of irreducible shifts of finite type. Proposition 7.1. A subshift Σ which contains an increasing sequence of nonwandering subshifts of finite type whose union is dense in Σ has at most countably many topologically transitive components and each topologically transitive component is coded.

Proof. Suppose Σ = ∪ n Σ (n) where Σ (n) is a nonwandering subshift of finite type. If each Σ (n) was topologically transitive then Σ would be coded. Let A (n) i be the topologically transitive components of Σ (n) . The A where the union is taken over a directed path in one of the trees (we call this a path limit). Noticing that such a path is uniquely defined by the root of the tree since the out degree is always one, implies that there are at most countably many such paths and thus σ| Σ has at most countably many topologically transitive components. This finishes the proof of the countability of the claim of the theorem.

Suppose C ⊂ Σ is a topologically transitive component of σ| Σ . To see that C is coded we will define a new filtration. Since Σ (n) is a manifolds, thus the quotes on the work exclusion. By Proposition 7.1 Σnw has at most countably many topologically transitive components and each component is coded.

Since Σ nw(n) is an nonwandering SFT disjoint from H, periodic points disjoint from H are dense in Σ nw(n) , and thus they are also dense in Σnw . Thus by definition any topologically transitive component which is a subset of Σnw is an aTTC. On the other hand if x ∈ Σ nw \ Σ then x is not an accumulation point of periodic points x n which avoid H since any such periodic point necessarily belongs to Σ nw(n) for some n. Thus we have shown that every aTTC is contained in Σnw .

We can construct a hole such that any periodic orbit is an nTTC. However we do not know if less trivial nTTCs can exist, and in particular if non coded nTTCs can exist and if uncountably many nTTCs can exist.

We actually have a stronger property than coded since our subshifts are well approximable from outside as well as inside.

Open problems.

Many interesting open problems remain. The results on the characterization of topologically transitive components in multi-dimensional case are much less satisfactory than in the one dimensional case. It is hard to see how to obtain more precise results without stronger assumptions.

In the one dimensional case, is it possible to classify those interval exclusion subshifts which are SFTs via the arithmetical properties of the boundary points of the intervals.

One would like to develop a relationship between the escape rate properties and topological and/or metric invariants of the invariant set.

Theorem 4 . 3 .

 43 In the two dimensional case the set of H ∈ C for which Σ * is a SFT is open and dense.

xi xj xk 2 )

 2 The flag at xj is covered by the flag at xi , the flag at xk is uncovered by the flags at xi or at xj . a flag is not covered by any other flag we say it is uncovered. The motivation for this terminology is the following lemma: Proposition 6.5. If the flag of x is uncovered at time k then we can concatenate x's initial segment of length k with any orbit in Σ nw whose initial segment agrees with the next n k entries of x and the concatenated orbit belongs to Σ * (it may be wandering and thus not belong to Σ nw ).

Lemma 6 . 6 .

 66 Let c ∈ ∂H ext and ĉ0 ĉ1 . . . be the code of c. Suppose a ∈ H ext has coding â = ĉ0 ĉ1 . . . ĉl-1 âl âl+1 . . . with âl = ĉl . Any point b with coding b = ĉ0 ĉ1 . . . ĉl-1 âl bl+1 bl+2 . . . satisfies b ∈ H ext . Proof. The hole H ext consists of a finite union of intervals. We have assumed that the Markov partition P is fine enough that the left and right end points of each of these intervals is in a different partition element. The point c is in the Markov partition element [ĉ 0 ĉ1 . . . ĉl-1 ]. Since a ∈ H ext and âl = ĉl the point ĉ is not in the Markov partition element [ĉ 0 ĉ1 . . . ĉl-1 âl ]. Thus b ∈ H ext .

.

  In other words the transitive components A (n) i form an at most countable union of directed trees with each nodes out degree is exactly one. Each topologically transitive component of σ| Σ contains a set ∪A (n) i

  Clearly the set of points Ω * H ′′ ,B whose B orbit never falls into H ′′ satisfies Ω * H ′′ ,B ⊂ π ′ (Σ * ). With our coding convention we have π ′-1 (Ω * H ′′ ,B ) = Σ * , i.e. Σ * is a RES for B with respect to the hole H ′′ .

	H,g Ω *	π

  Thus the boundary points of G(x) get mapped onto the boundary points of H ext k . In particular they are in the set Ω nw H by definition of the set H ext k . We have shown that G c is a Cantor set and all of its boundary points are in Ω nw H , i.e., nonwandering. Since the boundary points of a Cantor set are dense in itself, every point in G c is nonwandering, i.e., G c ⊂ Ω nw H . Thus the claim follows.

This convention is not needed in the case that the coding is always unique, for example for horseshoes.

nonwandering subshift of finite type, it has finitely many topologically transitive components A (n) i which are pairwise disjoint. Consider those components A (n) i : i = 1, . . . , k n which are strictly contained in C. We can assume that the A

for all n. We only need to show that

2)

The rest of the proof is devoted to establishing this equality.

If equation (7.2) is not true, there is a n 0 such that for all n ≥ n 0 we can find another A (n) i ⊂ C, which we denote without loss of generality

In the terminology introduced above this means we can find two disjoint paths in the trees whose path limits are both contained in C.

Fix n ≥ n 0 . For i = 1, 2 consider a finite word

where each symbol and each transition which characterize A (n) i appear in w i . Since C is topologically transitive, there is a point x ∈ C where the words w 1 and w 2 both appear in x. Thus, we can find l (which we assume positive without loss of generality) so that x ∈ σ l w 1 ∩ w 2 .

We form a new SFT Σ as follows. We start by defining a SFT with the allowed transitions being exactly the transitions x i x i+1 for i = 0, . . . , N for sufficiently large N . This defines a SFT Σ, but it may be reducible. If N is sufficiently large, then all the transitions of A We call a topologically transitive component A approximable (aTTC) if periodic points whose orbit avoids H are dense in A otherwise we call A non approximable (nTTC). Theorem 7.2. Every aTTC is coded. There are at most countably many such topologically transitive components.

Proof. Let Σ nw be an exclusion subshift, i.e., f is an Axiom A map, P a fixed proper, generating Markov partition, and H an open hole with boundary consisting of a finite union of compact co-dimension 1 manifolds. We approximate by Markov holes as in the proof of Theorem 6.3, the only difference is that for the "exclusion" system Σ nw(n) := Σ nw H (n) the boundary of H (n) may not be the union of compact co-dimension 1