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TOPOLOGICAL AND SYMBOLIC DYNAMICS FOR

HYPERBOLIC SYSTEMS WITH HOLES

STEFAN BUNDFUSS, TYLL KRÜGER, AND SERGE TROUBETZKOY

Abstract. We consider an Axiom A diffeomorphism or a Markov
map of an interval and the invariant set Ω∗ of orbits which never
falls into a fixed hole. We study various aspects of the symbolic
representation of Ω∗ and of its nonwandering set Ωnw. Our re-
sults are on the cardinality of the set of topologically transitive
components of Ωnw and their structure. We also prove that Ω∗ is
generically a subshift of finite type in several senses.

1. Introduction

Let f be an Axiom A diffeomorphism of a compact s-dimensional
Riemannian manifold M . We cut out an open hole H (with a finite
number of simply connected components) out of M and consider the
invariant set of nonwandering points whose orbits (forward and back-
wards) never fall in the hole. In part of this article we will consider
noninvertible interval maps, in this case we consider the set of points
whose forward orbit never falls in the hole. We fix a Markov parti-
tion, this yields a natural representation of the nonwandering set as
a subshift of finite type. We will consider the subshift corresponding
to the set of points which do not fall in the hole, we call this subshift
an exclusion subshift. We are interested in several questions about
the topological structure of exclusion subshifts and their nonwandering
sets. More precisely for which holes are exclusion shifts subshifts of
finite type (SFT), sofic shifts, or coded systems? As we vary the hole
what is the typical type of an exclusion subshift? How many transitive
components can the nonwandering set of an exclusion shift have?

After giving background definitions in section 2, we show in section
3 that every SFT and every β-shift are exclusion shifts, but certain
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sofic systems are not. In particular there are exclusion shifts which are
sofic and ones which are not sofic. In this section we also show that
the Bakers map and multiplication by n are universal in the sense that
any rectangular (resp. interval) exclusion subshift can be constructed
there. In section 4, we give a criterion for when the hole leads to a
SFT. We apply this criterion to several different classes of holes (rect-
angles, polyhedra, holes with continuous boundary) with corresponding
topologies/measures to show that the “typical” hole leads to a SFT. In
section 5, we compare the nonwandering set for the orbits which do not
fall in the hole and the nonwandering set of the exclusion shift. In sec-
tion 6, we prove the finiteness of the number of transitive components
in the one dimensional case and give an explicit upper bound in terms
of the number of holes. In section 7, we show that an exclusion subshift
has at most countably many topologically transitive components with
dense periodic points and exclusion subshifts are always coded systems
on such topological transitive components.

Dynamical systems with holes have been studied extensively by phy-
sicists. Cvitanovich and his coworkers have investigated how to char-
acterize the exclusion subshift in various settings (see the survey [13]).
They have introduced the notion of a pruning front which corresponds
to ∂H in our setting. Some aspects of Cvitanovich’s work have been
carried out by Carvalho in a mathematical framework for Smale’s horse-
shoe [7]. Another kind of question about dynamical systems with holes
have also been extensively studied by physicists, namely construction of
a physical semi-invariant measure and the understanding of the speed of
mass disappearance into the holes (the escape rate formula) [19]. Start-
ing with the work of Pianigiani and Yorke [24] a series of mathematical
works have confirmed the expectations of the physicists in many set-
tings (see the survey [15] for details). Bunimovich and Yurchenko have
studied an aspect of this question close to the spirit of our article [6].

2. Definitions

In this article, we consider Axiom A diffeomorphisms f : M → M
of compact s-dimensional (s ≥ 2) Riemannian manifolds M , i.e., the
nonwandering set Λ of f is hyperbolic and periodic points are dense
in Λ. Sometimes we will, for the purpose of illustration, also consider
the n-fold Baker’s map which is not formally Axiom A since it is not a
diffeomorphism. The n-fold Baker’s map B : [0, 1)2 → [0, 1)2 is defined
by B(x, y) = (nx mod 1, (y + i)/n) if x ∈ [i/n, (i + 1)/n). We will
call the “partition” {[i/n, (i + 1)/n] : i = 0, 1, . . . , n− 1} the standard
Markov partition.



DIFFEOMORPHISMS WITH HOLES 3

To recall the definition of a subshift of finite type consider the al-
phabet {1, 2, . . . , n} and a finite collection of forbidden words of length
m (m fixed). The subset of all sequences in {1, . . . , n}Z where the for-
bidden words never appear is called a subshift of finite type (SFT). In
the one sided case we call this a one sided subshift of finite type.

In this article, we will consider a Markov partition P and the re-
sulting coding by a SFT (ΣP , σ), see [22] for a definition. A Markov
partition is called proper if each element of the partition is the closure
of its interior. Let π : ΣP →M be the projection map.

Throughout this article the word hole refers to an open set H ⊂ M
whose boundary ∂H = H̄\H consists of a finite union of compact topo-
logical co-dimension 1 manifolds and H = int(H). In particular this
implies that H has a finite number of simply connected components.
Fix a hole H and consider the invariant set Ω∗ = Ω∗

H of points whose
orbit (forward and backwards) never falls in the hole.

For a continuous map g of a compact topological space M a point x ∈
M is called nonwandering if for any neighborhood U of x there exists
a positive integer n such that gnU ∩ U 6= ∅. The set of nonwandering
point of g is always closed, invariant and nonempty. The nonwandering
set of f |Ω∗ is denoted by Ωnw. Let Σ∗ = Σ∗

H = π−1Ω∗ with the following
convention1: if x ∈ Ω∗ is on the boundary of the hole and π−1(x) is
not unique, then we only consider those preimages π−1(x) to be in
Σ∗ which can be approximated from outside the closure of H, i.e.,
those s ∈ π−1(x) such that ∃{xj} ⊂ M \ H such that xj → x and
∃sj ∈ π−1(xj) with sj → s. We call the subshift Σ∗ an exclusion
subshift. Furthermore let Σnw be the set of nonwandering points of
σ|Σ∗ . As we will see in Section 5, π(Σnw) = Ωnw and thus Σnw is the
nonwandering set of π−1(Ωnw).

If M is two dimensional, we call a hole H a rectangle like hole if it is
the finite union of holes with local product structure, i.e., H = ∪n

i=1Hi

such that for any x, y ∈ Hi∩Λ the intersection of the local stable man-
ifold W s

loc(x) with the local unstable manifold W u
loc(y) is a unique point

belonging to Hi. Two holes H,H ′ are called equivalent if Ωnw
H = Ωnw

H′ . It
is easy to show that any rectangle like hole is equivalent to one whose
boundary consist of a finite union of local stable and unstable mani-
folds. We call the corresponding exclusion shift a rectangle exclusion
shift RES.

We will also consider the one dimensional situation, where M is an
interval or a circle. We will consider maps which we will call Markov

1This convention is not needed in the case that the coding is always unique, for
example for horseshoes.
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maps (the assumptions may be somewhat stronger than the usual usage
of this term in other articles). A Markov map is a topologically tran-
sitive, uniformly expanding continuous maps of the circle or piecewise
continuous maps of the interval which when considered as a map of the
circle is continuous and which has a finite generating Markov partition
P whose elements consist of intervals. Since the map is not invertible
we only require that the forward orbit never falls into a hole. If the
hole consists of a finite union of intervals, we call the corresponding
exclusion shift an interval exclusion shift IES. Our standard example
in this framework is the multiplication by a positive integer f(x) = nx
mod 1.

Since we study only topological properties of exclusion shifts, the
uniformly expanding assumption is convenient, but not necessary. It
can removed from the assumption and replaced by a topological conju-
gacy to a uniformly hyperbolic map. This topological conjugacy takes
a hole which is an interval to an interval and thus, preserves the notion
of interval exclusion shift. Similarly, the assumption of Axiom A in
higher dimensions can be replaced by a topological conjugacy to an
Axiom A map, this preserves the notion of open hole.

3. SFTs and sofic systems

Proposition 3.1. Every SFT is an exclusion subshift.

Proof. Consider a SFT Σ. Let n be the cardinality of the alphabet
of Σ and m the length of the forbidden blocks. Consider a horseshoe
map f with n-branches. We consider the standard Markov partition
for f . Define H ′ to be the (finite) union of Markov rectangles (for fm)
which correspond to the forbidden m-blocks which define Σ. Markov
rectangles are by definition closed. Since a horseshoe is a Cantor set it
is totally disconnected, thus we can find an open hole H containing H ′

such that the intersection of H with the horseshoe is exactly H ′. This
yields Σ as an exclusion subshift. �

Remark: the same construction works for the n-fold Bakers map, ex-
cept that we define the hole H to be the interior of H ′ and use the
coding convention from section 2.

The following theorem shows that the Bakers map is “universal” for
rectangle like holes and multiplication by n is “universal” for interval
holes.

Theorem 3.2. 1) Any subshift which is representable as a RES for
some Axiom A diffeomorphism is representable as a RES for the Bakers
map.
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2) Any subshift which is representable as an interval exclusion subshift
for some Markov map is representable as an interval exclusion subshift
for multiplication by n.

Proof. The relationship between the various objects constructed in this
proof are summarized in diagram (3.1). Fix the Axiom A system g :
M →M , the Markov partition Q yielding a SFT Σ, and the rectangle
like hole H ⊂ M yielding the RES Σ∗. Let B : [0, 1)2 → [0, 1)2 be the
Bakers map with the standard Markov partition P .

The idea of the proof is quite simple. By Proposition 3.1 we can find
a rectangle like hole for the Bakers map which yields Σ as a RES for
B. Then lift the hole H to the Σ and then project to a hole for the
Bakers map.

Denote the projection π : Σ → Λg where Λg is the nonwandering
set of g. The set Ω∗

H,g of points whose g orbit never falls into H by

definition satisfies Σ∗ = π−1(Ω∗
H,g).

Remember that H = ∪Hi with each hole Hi having product struc-
ture. Let Hi,j be the interior of the intersection of Hi with the jth
element of the Markov partition, note that H ⊂ ∪Hi,j and if some
Hi intersects several Markov partition elements this inclusion is strict.
None the less the coding convention implies that Ω∗

∪Hi,j ,g = Ω∗
H,g.

By Proposition 3.1 we can find an rectangle like hole H ′ ⊂ [0, 1)2

which yields Σ as a RES for (B,P). Let Ω∗
H′,B be the set of points whose

B orbit never fall into H ′ and let π′ : Σ→ Ω∗
H′,B be the projection.

Consider Hsymb
i,j := {s ∈ Σ : π(s) ∈ Hi,j} = π−1(Hi,j). Note that

Hsymb
i,j is open since π is continuous and Hi,j is open. Let H ′′

i,j :=

π′(Hsymb
i,j ) and H ′′ = ∪i,jH

′′
i,j. Clearly the set of points Ω∗

H′′,B whose
B orbit never falls into H ′′satisfies Ω∗

H′′,B ⊂ π′(Σ∗). With our coding

convention we have π′−1(Ω∗
H′′,B) = Σ∗, i.e. Σ∗ is a RES for B with

respect to the hole H ′′.

Ω∗
H,g

π
←−−−Σ∗ π′

−−−→Ω∗
H′′,B

∩ ∩ ∩

Λg
π
←−−− Σ

π′

−−−→Ω∗
H′,B (3.1)

The proof in the 1-dimensional case is similar. �

Let Σ+
even be the one sided even shift, that is the set of all 0-1 half

infinite sequences with the constraint that the number of consecutive
ones which occur in between two zeros is always even.
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Proposition 3.3. The one sided even shift Σ+
even is not an interval

exclusion system.

Proof. By Theorem 3.2 it is enough to consider the doubling map i.e.,
M := Σ1, f(x) := 2x mod 1, P = {[0, 1

2
], [1

2
, 1]}. Suppose we have

a hole which is a union of intervals and yields Σ+
even as an exclusion

system. Consider the point xn = 012n+10∞. The whole orbit of xn,
except xn itself is in Σ+

even. Thus xn must lie in the hole.
Let yn = 012n0∞. Clearly yn ∈ Σ+

even and xn−1 < yn < xn. Thus the
hole must consist of an infinite number of intervals, i.e., Σ+

even can not
be an IES. �

Let Σeven be the two sided even shift, that is the set of all 0-1 bi-
infinite sequences with the constraint that the number of consecutive
ones which occur in between two zeros is always an even number.

Proposition 3.4. The even shift Σeven is not a RES.

Proof. By Theorem 3.2 it is enough to consider the two fold Bakers map
B. Let xn = 0∞.12n+10∞ (here the decimal point marks the position
between the −1st and 0th elements of the sequence). The point xn is
not in the even shift, it must fall into the hole under some iteration of
B.

We treat several cases, first of all suppose that xn falls into the hole
at the boundary of M . Then at the instant that xn falls into the hole
all the 1’s are to the right (or all are to the left) of the decimal point
(i.e., Bjxn ∈ ∂M with j ≤ 0 or j ≥ 2n+1). Note that the intersection
of the rectangular holes with the boundary consists of a finite union
of intervals. Thus we can apply the argumentation of the previous
example to conclude that it is impossible to have an infinite number of
the xn fall into the hole when they are on the boundary of M .

In other words, all but finitely many xn fall into the hole away from
the boundary of M . For such an xn consider the code a at the instance
of falling into the hole. It has the form 0∞1p.1q+10∞ where p + q = 2n.

Consider the sequence (ui)i∈Z with ui = 0∞12i01p−1.1q+10∞ and the
sequence (vi)i∈Z with vi = 0∞1p.1q012i0∞. These two sequences get
arbitrary near from the left and the bottom to a and all their elements
are in the even shift. Thus a must be a corner of the hole. This
contradicts the assumption that the number of corners of the hole is
finite. �

A closed shift invariant subset of {1, 2, . . . , n}Z (resp. {1, 2, . . . , n}N)
is called sofic if it a factor of a SFT. The even shift is an example of a
sofic system. A subshift Σ is called a coded system if it can be repre-
sented by an irreducible countable labeled graph [3]. We do not know
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if every sofic system, or even if every coded system is an exclusion sub-
shift. However, if we drop the requirement that the boundary consists
of co-dimension 1 manifolds then we get that all subshifts are exclusion
subshifts in a weaker sense than considered in this article: they are the
complement of an open hole without any further assumptions on the
boundary. To see this simply define the hole to be the complement of
the invariant set which gives rise to the subshift.

Consider the dynamical system hβ : [0, 1) → [0, 1) given by hβx =
βx mod 1. Suppose β ∈ (1, 2] and consider the “partition” I0 := [0, β−1]
and I1 := [β−1, 1]. Given ω, α ∈ {0, 1}N we say ω < α if there exists
a positive integer N such that ωi = αi for i = 0, 1, . . . , N − 1 and
ωN = 0 < αN = 1. It is well known that the code β̂ of the orbit of β
satisfies σnβ̂ < β̂ for all n > 0. The set of all sequences which are the
code of some orbit is called the one sided β-shift, it is characterized by
[2]

{x ∈ {0, 1}N : σnx < β̂ for all n > 0}.

The natural extension of the one sided β-shift is called the two sided
β-shift.

Theorem 3.5. Every one sided β-shift is a IES and every two sided
β-shift is a RES.

Proof. Let g : [0, 1) → [0, 1) be defined by g(x) = 2x mod 1. Inspired
by the above a number β is called a β-number if gnβ < β for all n > 0.
If β is a β-number then the set Xβ := {x ∈ [0, 1) : gnx < β ∀n > 0} is
conjugate (up to a countable number of points) to the one sided β-shift.
If H ⊂ [0, 1) is the interval (β, 1) then the set of points whose forward
g orbit never falls in H is exactly Xβ.

Now let f be the Bakers map. Fix a β-number β and let H ⊂ M
be the rectangular hole {(x, y) : x > β, 0 ≤ y ≤ 1}. Let (x−i, y−i) =
f−i(x, y). Since the hole stretches from the bottom to the top of M it
is easy to see that (x, y) ∈ Ω∗ if and only if gn(x−i) < β for all n ≥ 0
and all i ≥ 0. Thus the exclusion shift in this example is exactly the
two sided β-shift. We remark that the two sided β-shift is of finite
type, sofic, or not sofic if and only if the one sided one has the same
property. It is well known that the β-shift is of finite type if the binary
expansion of β is finite, it is sofic if it eventually periodic and otherwise
it is not sofic [2]. �

Remark: The notion of β-shifts can be extended to β > 2. The
theorem extends easily to this case, for β ∈ (n− 1, n] we must use the
map g = nx mod 1 and the n-fold Baker’s map.



8 STEFAN BUNDFUSS, TYLL KRÜGER, AND SERGE TROUBETZKOY

4. Genericity results

4.1. A criterion for SFTs. In this subsection we give the criterion
which will be applied throughout the rest of the section to prove gener-
icity of SFTs in various settings.

Proposition 4.1. If for each x ∈ ∂H there is an i such that f ix ∈ H
then Σ∗ is a SFT.

Proof. Fix a generating Markov partition P and let P(n) := ∨n
i=−nf

iP .

Let P
(n)
x :=

⋃

{P∈P(n):x∈P} P . If x ∈ ∂H and f ix ∈ H then since P is

generating by continuity there is a n(x) such that f iP
(n(x))
x ⊂ H. Since

∂H is compact we can cover ∂H by a finite collection of the sets P
(n(x))
x

to obtain a neighborhood N of ∂H such that N ∩Ω = ∅. Since we used
a finite collection of Px, the hole H ′ := N ∪H consists of a finite union
of element of P(N) for some sufficiently large integer N and thus Σ∗ is
a SFT. �

4.2. Results in the Hausdorff metric. Let s denote the Hausdorff
dimension of M . Consider the set C of all holes such that ∂H is a
continuous, i.e., there is a continuous map h : Ss−1 →M whose image
is ∂H. For H ∈ C let Hǫ := ∪x∈∂HB(x, ǫ). For H1, H2 ∈ C we define

d(H1, H2) := inf
{

ǫ > 0 : H1 ⊂ Hǫ
2, H2 ⊂ Hǫ

1

}

.

A set is called totally disconnected if no two points are in the same
connected component.

Lemma 4.2. If the set ΩH is totally disconnected then for every ε > 0
there is a hole H ′ ∈ C with d(H ′, H) < ε and an open neighborhood
U ⊂ C of H ′ such that for all holes H ′′ ∈ U the subshift Σ∗ is a SFT.

Proof. Consider the set V := {H ′ ∈ C : H ⊂ H ′, d(H,H ′) < ǫ}.
Since ΩH is totally disconnected there are holes H ′ ∈ V such that
∂H ′ ∩ ΩH = ∅. Since ΩH ⊂ ΩH′ such an H ′ satisfies the requirements
of Proposition 4.1 and so defines a SFT.

Next we will show that an open set U of holes satisfy the requirements
of Proposition 4.1. We claim that we can find an open set O ⊂ H ′ with
d(O, H ′) > 0 and a positive integer N such that for all x ∈ ∂H there
exists an integer i, satisfying |i| ≤ N such that f ix ∈ O. To see this
note that for each x ∈ ∂H ′ there is an n(x) > 0 such that fn(x) ∈ H ′.
By continuity of f we can choose ε(x) > 0 so small that for all y ∈
B(x, ε(x)) we have fn(x)y ∈ H ′ and d(fn(x)y, ∂H ′)d(fn(x)x, ∂H ′)/2. By
compactness of ∂H ′ we can cover it by a finite number of such balls
{B(xi, ε(xi)}. Then O is ∪fn(xi)B(xi, ε(xi)).
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Then, just as in the proof of Proposition 4.1 there is a neighborhood
U of ∂H ′ such that for each x ∈ U for some i satisfying |i| ≤ N
we have f ix ∈ O. This immediately implies that we can choose a
small neighborhood U ⊂ O of H ′ such that for any hole H ′′ ∈ U the
boundary of H ′′ satisfies the requirements of Proposition 4.1 and thus
the corresponding shift Σ′′ is a SFT. �

Theorem 4.3. In the two dimensional case the set of H ∈ C for which
Σ∗ is a SFT is open and dense.

Proof. Consider an arbitrary hole H ∈ C and the associated invariant
set ΩH . If x is a generic point in the sense that it visits (in both forward
and backwards time) any cylinder set (defined by the Markov partition)
with the correct frequency, then W s(x) and W u(x) completely fall into
H and thus are both disjoint from ΩH . Both W s(x) and W u(x) are
curves which are dense in M , thus since M is two dimensional the
complement of their union is totally disconnected. Since ΩH is a subset
of this set it is also totally disconnect. Applying Lemma 4.2 finishes
the proof. �

4.3. Rectangle like holes. In this section we assume that M is two
dimensional and that f is a C2 Axiom A attractor and µ is its SBR-
measure, i.e. µ has absolutely continuous conditional measures on un-
stable manifolds. Recall that a hole is a rectangle like hole if ∂H
consists of a finite number of curves, each of which is a piece of a stable
or unstable manifold of f . We assume that at each point where two
curves meet, that one is stable, the other is unstable. Thus the number
of corners is always even, and if we fix an orientation of the boundary
we only need to give the coordinates of every other corner point to
describe a rectangle like hole. If we fix the number 2n of corners of
a rectangle like hole (n ≥ 2) then we can parametrize the set of all
such rectangles by an open subset R(n) of M2n. We will consider the
Lebesgue measure on R(n).

Theorem 4.4. For every n ≥ 2, the set of rectangle like holes with 2n
corners for which Σ∗ is a SFT is of full Lebesgue measure and contains
an open dense subset of R(n).

Similarly for the one dimensional case one can show that for any k
the set of holes which are a union of k-intervals for which Σ+ is a SFT
is of full Lebesgue measure and contains an open dense subset of the
set of all such holes.

Proof. Consider the set G of generic points in the same sense as in the
proof of Theorem 4.3. The set G is of full Lebesgue measure. Suppose
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H is a rectangle like hole with the property that every other corner
point (those which are noted in the description of H ∈ R(n)) is in G.
Such a hole satisfies the requirements of Proposition 4.1 and thus Ω
is a SFT. Clearly the set of such holes is dense and of full measure.
The proof of openness is the same as in the proof of the previous
theorem. �

4.4. Polyhedral holes. In this section we suppose that M is s-dimen-
sional and has a flat structure (i.e., M ⊂ Rs or M ⊂ Ts). We consider
holes which are the interior of arbitrary polyhedron, i.e. a hole whose
boundary consists of straight line segments. Fix the number of corners
n. The set of n-gons is an open subset of Mn which we denote by P (n).
We consider the Lebesgue measure on Mn. We call a polyhedral hole
H ∈ P (n) large if the Hausdorff dimension of the associated invariant
set Ω is strictly less than one. Let P̂ (n) ⊂ P (n) be the set of all large
polyhedral holes.

Theorem 4.5. For every n the set of large polyhedral holes for which
Σ∗ is a SFT is of full Lebesgue measure in P̂ (n) and contains an open
dense subset of P̂ (n).

For natural families of maps (hyperbolic toral automorphisms, bakers
map, horseshoes) it is not hard to see that the set of large polygonal
holes for which Ω is uncountable has positive measure for all even n.
For horseshoes we can show this for all n.

Proof. We note that if H ⊂ H ′ then Σ∗
H′ ⊂ Σ∗

H . Thus if H is a large
hole then so is H ′. Our proof is local. Fix an open set B. Consider the
set Σ∗

B of points which never fall into B. Suppose B is large enough
that a := dim(ΩB) < 1. This implies that dim(projθ(ΩB)) = a < 1 for
Lebesgue almost every θ ∈ Ss−1 ([18], Theorem 6.9). We will call such
θ generic. Here projθ denotes the orthogonal projection from M onto
Lθ, the line through the origin in the direction θ ∈ Ss−1.

Consider the set of co-dimension one hyperplanes with normal direc-
tion θ and parametrize these hyperplanes by a parameter t ∈ R ≡ lθ.
For any generic θ, since a < 1 the set projθ(ΩB) is totally disconnected
and thus for a.e. t, the hyperplane with parameter t will be disjoint
from ΩB. We will also refer to this hyperplane as generic.

Now consider any polyhedron H which contains B in it’s interior
and for which all the faces are contained in generic hyperplanes. The
faces of this polyhedron do not intersect the set ΩB. thus we can apply
Proposition 4.1 to conclude that Σ∗ is a SFT. The set of such polyhedra
is locally of full dθ × dt measure. It is easy to conclude that it is also



DIFFEOMORPHISMS WITH HOLES 11

locally of full Lebesgue measure. Sets of full measure are also locally
dense. Lemma 4.2 implies that it is also open. �

Remark: We believe that the set of polyhedral holes defining a SFT is
of full measure and contains an open and dense set. Our strategy of
proof can not be used since the projection onto a line Lθ of a set of
dimension greater than one has positive one dimensional measure for
a.e. θ.

5. Transitive components of Σnw

A homeomorphism f of a compact metric space M is called topo-
logically transitive if there exists a dense orbit, or equivalently if every
proper closed f -invariant subset is nowhere dense. A closed invariant
set X (i.e., f−1X = fX = X) is called a topological transitive com-
ponent if X contains a dense orbit and there is no closed invariant set
X ′ % X containing a dense orbit. Note that for noninvertible maps
studied in the last section we will modify this definition.

In [22] a different definition of topologically transitive is used, they
call f topologically transitive if there exists a point whose forward and
backward orbits are both dense. We call this notion strong topological
transitivity. In particular, they prove that a subshift is strongly topo-
logically transitive if and only if it is irreducible, (i.e., for any pair of
cylinders U, V there exists n0 such that σnU ∩ V 6= ∅).

We call a subshift a nonwandering subshift of finite type if it is the
nonwandering set of a subshift of finite type. In this section we are
interested in the nonwandering set Σnw of Σ∗ and will be considering
the approximation of Σnw by nonwandering subshifts of finite type.
The nonwandering set of a subshift of finite type is the (finite) disjoint
union of irreducible subshifts of finite type. Each of these components
is strongly topologically transitive, and thus topologically transitive.
Thus the decomposition into topologically transitive components for a
nonwandering subshift of finite type is equivalent to the usual decom-
position into irreducible components. In particular, in this case, strong
and normal topological transitivity are equivalent. We illustrate this
with an example. Consider the SFT Σ∗ defined in Figure 1a. The SFT
Σ∗ has infinitely many topologically transitive components: for each
j ≥ 1 the orbit of the point xj := 1∞2j.3∞ is dense orbit in the transi-
tive component O(xj) ∪ {1

∞} ∪ {3∞}. There are two other transitive
components, O(1∞.2∞) ∪ {1∞} ∪ {2∞} and O(2∞.3∞) ∪ {2∞} ∪ {3∞}.
There are only three strong topological transitive components of Σ∗,
they are the three fixed points which form the nonwandering set Σnw
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1 2 3

1a) A SFT

21 3

1b) It’s nonwan-
dering set

shown in Figure 1b. These 3 fixed points are the usual topologically
transitive components of Σnw, they are disjoint.

Furthermore periodic points are dense in a topologically transitive
component of a nonwandering SFT or in a topologically transitive com-
ponent of an Axiom A diffeomorphism.

Turning back to the general case, let F+ be the set of points whose
forward images do not fall into a hole and similarly F− is defined with
backward images. Remember that Ω∗ = F+ ∩ F−.

Proposition 5.1. NW (f |F+) ⊂ Ω∗ and NW (f−1|F−) ⊂ Ω∗.

Proof. Fix x ∈ NW (f |F+). Suppose that x 6∈ F−, thus we can choose
i > 0 to be the first time such that f−ix is in the hole. Choose U a
neighborhood of x so small that f−iU is contained in the hole. Choose
n = n(U) > 0 such that fn(U ∩F+)∩ (U ∩F+) 6= ∅. Choose a point y
in this intersection, i.e. y and f−ny are in U∩F+. Let z = f−ny, then z
and fnz are in U∩F+. By choosing U even smaller we may assume that
n > i. Since fnz ∈ U and f−iU ⊂ H we get f−i(fnz) = fn−iz ∈ H.
This is a contradcition since z ∈ F+ and n− i > 0. Thus x ∈ F+. The
other containment is proven similarly. �

Throughout the rest of the article the projection of a symbolic point
will be denoted by the same letter without a hat, for example x = π(x̂).

Proposition 5.2. Σnw = π−1(Ωnw).

Proof. Consider x̂ ∈ Σnw. Since x̂ is nonwandering for any n < 0 < m
there exists j > 0 such that the cylinder U := [x̂]mn satisfies σjU ∩ U 6=
∅. Let ŷ be a point of this intersection. For any neighborhood V of
x := π(x̂) we can find n < 0 < m such that the cylinder π(U) ⊂ V .
Thus y := π(ŷ) ∈ f jV ∩ V. It follows that π(Σnw) ⊂ Ωnw.

To finish we need to show that π is onto. Choose any x ∈ Ωnw.
First suppose there is a unique x̂ ∈ Σ∗ such that π(x̂) = x. By the
nonwandering of (Ωnw, f) for any neighborhood V of x there exists
j > 0 such that f jV ∩ V 6= ∅. Given a cylinder U := [x̂]mn we can
choose a neighborhood V of x such that π−1(V) ⊂ U . Thus σjU ∩U ⊃
π−1(f jV∩V) 6= ∅ and therefore x̂ is nonwandering and the claim follows.
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Note that for any neighborhood V of x there are times 0 < j1 < j2 <
· · · such that f jiV ∩ V 6= ∅. Now suppose that the coding of x is not
unique, i.e., there are several points x̂i ∈ Σ∗ such that π(x̂i) = x. It is
well known that the number of such points is uniformly bounded by a
constant L, which depends only on the dimension of M . In this case, if
we try to argue as in the previous paragraph, we can not choose V such
that π−1(V) ⊂ U . For i ∈ {1, . . . , L} let Ui, be a cylinder set containing
x̂i such that π−1V ⊂ U := ∪L

i=1Ui. Thus σjiU ∩U ⊃ π−1(f jiV ∩V) 6= ∅.
Note that the point x is on the boundary of the sets π(Ui) for all i. We
can assume all the Ui are cylinders of the same length, thus we can refine
our original Markov partition P by intersecting with a finite number
of Markov partitions f iP yielding a new Markov partition (which we
will call P) such that each of the sets Vi := π(Ui) is an element of the
P . Suppose that x is in the stable boundary of the Vi’s. Then by the
Markov property for each ji and each l we have f jiVl has a Markov
intersection with some Vk and for fixed ji the map l → k is invertible.
Fixing Vk we iterate and produce a sequence of Markov intersections
f jiVli with Vk. By the pigeonhole principle some l must appear as an
li twice. This implies f ji1Vl has a Markov intersection with f ji2Vl, but
since both of these sets have a Markov intersection with Vk we can
conclude that σji1

−ji2Vk has a Markov intersection with Vk. Since this
is true for any Vk we conclude in this case that each of the points x̂i is
nonwandering.

If x is in the unstable bound of the Vi’s then since σ is invertible and
σjiU ∩ U 6= ∅ we have σ−jiU ∩ U 6= ∅. Now we can repeat the above
argument. �

6. Finiteness of topological transitive components in

dimension 1

Suppose that M is one dimensional, i.e., an interval or circle, (f,P)
is as described in section 2 and H = ∪p

i=1Hi where the Hi are disjoint
open intervals. By the continuity assumption on f we can always think
of M as the circle. The definitions of Ω∗, Ωnw, Σ∗ and Σnw are similar to
the corresponding definitions in the invertible case with the difference
that since f is not invertible, we only require that the forward orbit
does not fall into H. The set (Ωnw)c := I\Ωnw is open. Let Hext

i be
the maximal interval containing Hi which is a subset of (Ωnw)c and
Hext = ∪r

i=1H
ext
i . It is possible that several Hi amalgamate into one

Hext
j , thus r ≤ p. Call Hext the extended hole. We also assume that our

Markov partition is fine enough such that the left and right end points
of each of the Hext

i are in different elements of the Markov partition.
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This assumption can be made without loss of generality by replacing
P by P ∨ fP ∨ · · · ∨ fnP for a large enough n.

Since our maps are not invertible, we must modify the definition of
topologically transitive component: a closed forward invariant (i.e.,
f(X) = X) set is called topologically transitive if it has a forward

orbit which is dense and there is no closed forward invariant set
X ′ ) X containing a dense orbit. We gather here some simple facts
about topologically transitive components of continuous maps which
we will use.

Proposition 6.1. Suppose f is a continuous map of the interval or
circle.

1) If a topologically transitive component contains an isolated point,
then this point is periodic and the component coincides with this peri-
odic orbit.

2) Each topologically transitive component is finite or uncountable.
3) Any dense orbit in a forward invariant set is recurrent.
4) Topologically transitive components are nonwandering.

Proof. 1) Let X denote the topologically transitive component. If z is
isolated and the orbit of x is dense then f ix = z for some i ≥ 0. The
point x is also isolated, if not then by continuity z is not isolated. If the
orbit of x is not periodic then since x is isolated we have fX = X \{x}
and X is not forward invariant. This contradiction implies that x is
periodic. Since x’s orbit is dense, it must coincide with the topologically
transitive component.

2) We claim that if the set of nonwandering points of a topologically
transitive component is not a finite set, then it must be a perfect set
(i.e., it equals the set of its limit points). It is well known that the
nonwandering set is closed. Since there is a dense forward orbit {f ix :
i ≥ 0}, any nonwandering point is a limit point of this orbit. It is well
known that perfect sets are uncountable.

3) If X is finite then this is clear. Suppose X is uncountable and
the forward orbit of x is dense in X. By part (1) the point x can not
be isolated. Since x is not isolated and the forward orbit of x is dense
this orbit must come arbitrarily close to x to be dense, i.e., the orbit is
recurrent.

4) By definition every topologically transitive component X is for-
ward invariant and has a forward dense orbit {f ix : i ≥ 0}. For any
y ∈ X and any neighborhood U of y there is a positive i such that
f ix ∈ U . Since x is recurrent, there is a n such that f i+nx ∈ U as well,
which shows that fnU ∩ U 6= ∅. �
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Lemma 6.2. The set of points whose forward orbit never hits the ex-
tended hole Hext is exactly the nonwandering set of the set of points
whose forward orbit never hits H, i.e., Ω∗

Hext = Ωnw
H .

Proof. Consider G := ∪n≥0f
−nHext. The set G consists of a countable

union of intervals and is dense in M . The complement of G is a Cantor
set. Clearly Ωnw

H ⊂ Gc ⊂ Ω∗
Hext . For each x ∈ G let n(x) ≥ 0 be the

first time fnx ∈ H and let k(x) be the corresponding component Hext
k(x).

By continuity n and k are locally constant. Consider a point x ∈ G
and let G(x) be the maximal interval containing x for which n and k
are constant. We call G(x) the gap of x. The image fn(x)G(x) ⊂ Hext

k(x)

and by maximality it is onto. Thus the boundary points of G(x) get
mapped onto the boundary points of Hext

k . In particular they are in
the set Ωnw

H by definition of the set Hext
k .

We have shown that Gc is a Cantor set and all of its boundary points
are in Ωnw

H , i.e., nonwandering. Since the boundary points of a Cantor
set are dense in itself, every point in Gc is nonwandering, i.e., Gc ⊂ Ωnw

H .
Thus the claim follows. �

The main theorem of this section is:

Theorem 6.3. Every interval exclusion system has at most 4r topo-
logically transitive components.

To prove this theorem we will first prove that the number of topo-
logically transitive components is at most 2r in the case of a SFT
(Theorem 6.4). In the general case we will deduce that the number
of topologically transitive components which stay a bounded distance
away from the boundary of the extended hole is also bounded by 2r.
In Proposition 6.5 we develop a local concatenation technique (simi-
lar to bracketing for hyperbolic maps) for orbits which accumulate at
a boundary point of the extended hole. This yields a correspondence
between topologically transitive components which accumulate on the
boundary of the extended hole and the boundary points of the ex-
tended hole (Proposition 6.7) and gives the upper bound of 2r on such
components.

Let {Xi : Xi ⊂ M} be the topologically transitive components of
f |Ωnw and {Yi : Yi ⊂ Σ} the topologically transitive components of
σ|Σnw . Let I be the index set of the topologically transitive components
of f |Ωnw .

Theorem 6.4. Suppose that the interval exclusion system is a SFT.
Then the number of topologically transitive components of Ωnw is at
most 2r.
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Proof. If M is the circle we puncture it at a point of ∂P to view it as
an interval. This allows us to define an order of M . Each topologically
transitive component Xi is closed, thus we can define ai := min(Xi)
and bi := max(Xi). Since Σnw is a nonwandering SFT, it has only
a finite number of topologically transitive components Yi and these
components are disjoint. For the moment, we suppose that all the
points ai and bi have unique coding (i.e. the orbits of ai and bi do not
intersect ∂P). With this additional assumption the disjointness of the
Yi implies that ai and bi do not belong to any transitive component
other than Xi. This implies that there are gaps Gai

(Gbi
) on the left

(right) side of ai (bi). Fix x ∈ Gai
. As we saw above all z between x

and ai fall into the same hole at the same time n(z). By the continuity
of f this implies that fn(z)ai ∈ ∂Hext. A similar statement holds for
Gbi

.
Consider the order on Σnw which is compatible with the order on Ωnw.

This order can always be defined in an inductive manner by simply
considering the relative order of the elements of P(n) := ∨n

i=0f
iP . If f

is locally order preserving then this is simply the lexicographical order
on Σnw. Fix an i ∈ I. Consider the symbolic coding of ai and bi. Call
these codings s = (sj)j∈N and t = (tj)j∈N (here the dependence on i is
suppressed since i is fixed). We claim that if Xi is uncountable then s
is not a preimage of t and vice versa t is not a preimage of s. To see
this fix a higher block coding which defines Markov transition graph of
Σnw. The fact that ai is defined via a minimum implies that if there
are several followers of the symbol sj in the Markov graph, then sj+1

is minimal follower in the sense that in the order it is smaller than all
other followers. In a similar fashion the sequence t is maximal.

If s is a preimage of t or vice versa, then s and t are eventually
maximal and minimal at the same time. This means that starting
from the point that they agree the maximal follower of sj is also the
minimal follower of sj, so there is only one follower of sj. Thus s and
t are eventually periodic and the Yi is simply this periodic orbit. In
particular Yi is finite, finishing the proof of the claim.

If Xi is uncountable, then we have just shown the disjointness of the
codes of ai and bi. Since we are still assuming that the points ai and bi

have unique coding this implies the disjointness of their f -orbits. Thus
at least two points of Xi lie on ∂Hext.

On the other hand if Xi is at most countable, then by Proposition
6.1 it is finite and consists of a single periodic orbit. The points ai and
bi lie on this orbit.
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Under the above assumptions we have shown that for every uncount-
able Xi there are at least two points of Xi on ∂Hext and for every at
most countable Xi there is at least one such point. Thus, since the
endpoints can only belong to a single Xi we have shown

♯{i ∈ I : Xi at most countable}+ 2♯{i ∈ I : Xi uncountable} ≤ 2r.

Finally we turn to the case when some of the ai and bi have nonunique
coding. Note that each point can have at most 2 codes. Repeat the
above proof with (at most) 4r codes corresponding the these points.
This proof shows that if two topologically transitive components inter-
sect at an ai or bi then the coding of this intersection point is different
in each of the components.

Now suppose that the coding of ai is not unique and that two
topologically transitive components intersect at ai. Remember that
fn(z)ai ∈ ∂Hext. Consider the two Markov partition elements P1, P2

which share the point ai. One of these elements, say P1 satisfies
fn(z)P1 ⊂ Hext. This implies that the point ai is isolated in the corre-
sponding topologically transitive component. By Proposition 6.1 this
topologically transitive component consists of the orbit of ai and this
orbit is periodic. Thus it is part of the other topologically transitive
component. �

Suppose that X is a topologically transitive component of Ωnw. Fix
x ∈ X such that the orbit of x is dense in X. Consider any x̂ =
x̂1x̂2 · · · ∈ Σnw such that π(x̂) = x. Let {c(j)} be the boundary points
of the extended hole Hext. If the point c(j) is not on the boundary
of a Markov partition element then let ĉ(j) = π−1c(j) ∈ Σnw, in the
case when c(j) is on the boundary we define ĉ(j) to be the preimage of
c(j) which is the coding of the orbit defined from the exterior of the
extended hole. For each k ≥ 0 we define nk(x̂) in the following way:
nk(x̂) is the length of the longest initial block of one of the ĉ(j) which

agrees with the initial block of the same length of σkx̂, i.e., x̂i+k = ĉ
(j)
i

for i = 0, 1, . . . , nk(x̂) − 1. We call nk(x̂) the flag of x at time k (see
figure 2). We remark that nk(x̂) <∞ if fkx 6∈ ∂H.

By Proposition 6.1 either x is an isolated periodic point which hits
∂H or it visits ∂H only a finite number of times. In the second case
since by Proposition 6.1 x is recurrent, we can assume by replacing x
by f ix for sufficiently large i that the orbit of x does not visit ∂H at
all.

Since x is fixed we will drop the x dependence of the notations. We
define a partial order on flags nk ≺ nk′ if k′ < k and nk′ + k′ ≥ nk + k
and in this case we say that the flag nk is covered by the flag nk′ . If
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x̂i x̂j x̂k

2) The flag at x̂j is covered by the flag at x̂i, the flag at
x̂k is uncovered by the flags at x̂i or at x̂j.

a flag is not covered by any other flag we say it is uncovered. The
motivation for this terminology is the following lemma:

Proposition 6.5. If the flag of x̂ is uncovered at time k then we can
concatenate x̂’s initial segment of length k with any orbit in Σnw whose
initial segment agrees with the next nk entries of x̂ and the concatenated
orbit belongs to Σ∗ (it may be wandering and thus not belong to Σnw).

To prove this fact we need the following lemma.

Lemma 6.6. Let c ∈ ∂Hext and ĉ0ĉ1 . . . be the code of c. Suppose
a 6∈ Hext has coding â = ĉ0ĉ1 . . . ĉl−1âlâl+1 . . . with âl 6= ĉl. Any point b

with coding b̂ = ĉ0ĉ1 . . . ĉl−1âlb̂l+1b̂l+2 . . . satisfies b 6∈ Hext.

Proof. The hole Hext consists of a finite union of intervals. We have
assumed that the Markov partition P is fine enough that the left and
right end points of each of these intervals is in a different partition
element. The point c is in the Markov partition element [ĉ0ĉ1 . . . ĉl−1].
Since a 6∈ Hext and âl 6= ĉl the point ĉ is not in the Markov partition
element [ĉ0ĉ1 . . . ĉl−1âl]. Thus b 6∈ Hext. �

Proof of Proposition 6.5. For concreteness suppose we concatenate
x̂ with ŷ to produce a point ẑ. First of all, if j ≥ k then f jz = f jy,
thus since y never falls in a hole, z can not fall in a hole after time k.

Suppose f jz ∈ H for some j < k. Since the nk(x̂) flag of x is uncov-
ered, we have ẑj . . . ẑj+nj(x̂) = x̂j . . . x̂j+nj(x̂) and j + nj(x̂) < k + nk(x̂).
Thus applying the previous lemma to a = f jy and b = f jz yields a
contradiction and finishes the proof. �

Assume that we start with a fine enough Markov partition that each
c(j) belongs to a different element of the time zero partition. We define
the color of the uncovered flag of x at time k to be the unique c(j) such
that the initial blocks of length nk(x̂) of ĉ(j) and σkx̂ coincide.
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Let X be a (nonwandering) topologically transitive component and
x ∈ X a dense orbit. Define

I(X) = I(X, x) := {c(j) : the uncovered flags of x of color j

are of unbounded length}.

Proposition 6.7. 1) If X ∩ ∂Hext 6= ∅ then I(X) is nonempty.
2) If I(X) ∩ I(Y ) 6= ∅ then X = Y .

Proof of Proposition 6.7. 1) First note that lim sup{nk(x̂) : the color
of the flag at time k is j} = ∞ for any c(j) ∈ X ∩ ∂Hext. Any chain
of covered flags nk1 ≺ nk2 ≺ nk3 ≺ · · · contains a maximal element
since the ki’s are decreasing and bounded from below (positive). The
maximal element is an uncovered flag, and it is longer than any of the
flags it covers. Thus if the covered flags have unbounded length, then
the uncovered flags also have unbounded length. Thus I(X) 6= ∅.

2) Fix two topologically transitive components, X and Y with dense
orbits x and y. Consider c := c(j) ∈ I(X, x) ∩ I(Y, y).

First consider the case when the forward orbit of x contains c. Propo-
sition 6.1 (3) implies that the forward orbit of c is dense, so we may
assume x = c. Let ω(y) denote the forward limit set of the orbit of y.
Since c ∈ ω(y) then by continuity w(c) ⊂ ω(y), thus X ⊂ Y . Since
topologically transitive components must be maximal it follows that
X = Y . Similarly we can conclude that X = Y if the forward orbit of
y contains c.

Now suppose that the forward orbits of x and y do not hit the point
c. We will recursively construct a point ẑ ∈ Σnw such that the orbit
of z = π(ẑ) is dense in X ∪ Y . The idea of the construction is the
following. Take longer and longer segments of x̂ and ŷ’s orbit, so that
the union of these segments is dense in X and Y . Proposition 6.5 gives
a condition when one can concatenate segments of the orbit of x̂ and
ŷ together. Since I(X) ∩ I(Y ) 6= ∅ we can apply Proposition 6.5 to
arbitrarily long (i.e., arbitrarily dense) orbit segments.

More formally fix a positive sequence εm → 0. Let x̂(m, n) be
the finite sequence x̂m, x̂m+1, . . . , x̂n. Define x(m, n) similarly to be
xm, xm+1, . . . , xn. Let nk := nk(x̂) and ml := nl(ŷ) be a sequence
of the uncovered flags of color j with unbounded length and with
c(j) ∈ I(X) ∩ I(Y ). Consider the first time t1 such that the orbit
segment x(0, t1) is ǫ1 dense in X. Consider the smallest integer k1 such
that k1 ≥ t1 such that the x-flag nk1 is uncovered and of color j. Con-
sider now the first time l1 such that the y-flag ml1 satisfies ml1 ≥ nk1 .
Let s1 be the smallest integer such the orbit segment y(ml1 , s1) is at
least ǫ1 dense in Y . Next fix i1 ≥ s1 so that the y-flag mi1 is uncovered
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and of color j. Finally consider the first time p1 such that the x-flag
np1 satisfies np1 ≥ mi1 . For two finite strings a, b we denote a ⋆ b the
string a concatenated with b. Thus Proposition 6.5 guarantees that

ẑ1 := x̂(0, k1) ⋆ ŷ(l1, i1) ⋆ x̂(p1,∞) ∈ Σ∗.

Let z1 = π(ẑ1). For i ∈ {0, 1, . . . , k1} the symbolic codes of f ix and
f iz1 agree for at least nk1 symbols and for i ∈ {l1, . . . , i1} the symbolic
codes of f iy and f iz1 agree for at least ni1 symbols. Thus, since f
is uniformly hyperbolic, we can find constants C > 0 and λ ∈ (0, 1)
which depend only on f and P , such that |f ix − f iz1| < Cλk1 for
i ∈ {0, 1, . . . , k1} and |f iy − f iz1| < Cλi1 for i ∈ {l1, l1 + 1, . . . , i1}.
Thus the orbit segment z1(0, i1) is at least ǫ1 + Cλmin (k1,i1) dense in
X ∪ Y .

Now we repeat this procedure. Consider the first time t2 such that
the orbit segment x(p1, t2) is ǫ2 dense in X. Consider the smallest
integer k2 such that k2 ≥ t2 such that the x-flag nk2 is uncovered and
of color j. Consider now the first time l2 such that the y-flag ml2

satisfies ml2 ≥ nk2 . Let s2 the smallest integer such the orbit segment
y(ml2 , s2) is at least ǫ2 dense in Y . Next fix i2 ≥ s2 so that the y-flag
mi2 is uncovered of color j. Finally consider the first time p2 such that
the x-flag np2 satisfies np2 ≥ mi2 . Thus Proposition 6.5 guarantees that
the orbit

ẑ2 := x̂(0, k1) ⋆ ŷ(l1, i1) ⋆ x̂(p1, k2) ⋆ ŷ(l2, i2) ⋆ x̂(p2,∞) ∈ Σ∗.

As above the orbit segment z2(p1, i2) is at least ǫ2 + Cλmin (k2,i2) dense
in X ∪ Y .

Define ẑn ∈ Σ∗ similarly. Clearly the limit ẑ := limn→∞ ẑn exists.
Since Σ∗ is closed, we have ẑ ∈ Σ∗. We have kn → ∞ since ǫn → 0.
Thus orbit of z = π(ẑ) is dense in X ∪ Y . In particular, z is nonwan-
dering and thus z ∈ Σnw. �

Proof of Theorem 6.3. If Σnw is not a SFT we approximate Hext from
the outside by Markov holes H(n) as follows. Let P be the generating
Markov partition, then P(n) := ∨n

i=−nf
iP is also a generating Markov

partition. Let H(n) := int(∪{P∈P(n): P∩H6=∅}P). Clearly H(1) ⊃ H(2) ⊃

· · · and H ⊂ ∩nH
(n). Furthermore, we have diam(P(n))→ 0 as n→∞

and thus ∩nH
(n) = H. The exclusion system Σnw(n) := Σnw

H(n) is a SFT.

Clearly Σnw(1) ⊂ Σnw(2) ⊂ · · · . Let

Σ̃nw :=
⋃

n

Σnw(n).
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Clearly Σ̃nw ⊂ Σnw.

The number of transitive component of ∪nΣnw(n) is less than or equal
to the limsup of the number of components of the approximating se-
quence. Applying Theorem 6.4 this limsup is at most 2r.

The orbit of any point in Σnw \∪nΣnw(n) accumulates on ∂Hext. Ap-
plying Theorem 6.7 we see that there is at most one such topologically
transitive component for each color c(j), i.e. 2r. �

7. Coded systems

A subshift Σ is called a coded system if it is topologically conjugate
to the shift on an irreducible countable labeled graph [3]. Equivalently,
Σ is called coded if Σ contains an increasing sequence of irreducible
subshifts of finite type (SFTs) whose union is dense in Σ [4]. This
alternative definition indicates that topologically transitive components
of hole systems should be coded since we can approximate holes from
the outside by Markov holes. It turns out that this is true under
mild assumptions. We begin by a preparatory proposition. Remember
that a nonwandering subshift of finite type consists of a finite union of
irreducible shifts of finite type.

Proposition 7.1. A subshift Σ which contains an increasing sequence
of nonwandering subshifts of finite type whose union is dense in Σ has
at most countably many topologically transitive components and each
topologically transitive component is coded.

Proof. Suppose Σ = ∪nΣ(n) where Σ(n) is a nonwandering subshift of
finite type. If each Σ(n) was topologically transitive then Σ would be

coded. Let A
(n)
i be the topologically transitive components of Σ(n). The

A
(n)
i form a filtration in the sense that for each A

(n)
i there exists A

(n+1)
j

such that A
(n)
i ⊂ A

(n+1)
j . In other words the transitive components A

(n)
i

form an at most countable union of directed trees with each nodes out
degree is exactly one. Each topologically transitive component of σ|Σ
contains a set ∪A

(n)
i where the union is taken over a directed path in

one of the trees (we call this a path limit). Noticing that such a path is
uniquely defined by the root of the tree since the out degree is always
one, implies that there are at most countably many such paths and thus
σ|Σ has at most countably many topologically transitive components.
This finishes the proof of the countability of the claim of the theorem.

Suppose C ⊂ Σ is a topologically transitive component of σ|Σ. To
see that C is coded we will define a new filtration. Since Σ(n) is a
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nonwandering subshift of finite type, it has finitely many topologically

transitive components A
(n)
i which are pairwise disjoint. Consider those

components A
(n)
i : i = 1, . . . , kn which are strictly contained in C. We

can assume that the A
(n)
i are so ordered that A

(n)
1 ⊂ A

(n+1)
1 for all n.

We only need to show that
⋃

n

A
(n)
1 = C. (7.2)

The rest of the proof is devoted to establishing this equality.
If equation (7.2) is not true, there is a n0 such that for all n ≥ n0 we

can find another A
(n)
i ⊂ C, which we denote without loss of generality

A
(n)
2 , such that A

(n)
2 ⊂ A

(n+1)
2 for all n ≥ n0 but ∪nA

(n)
2 ∩∪nA

(n)
1 = ∅. In

the terminology introduced above this means we can find two disjoint
paths in the trees whose path limits are both contained in C.

Fix n ≥ n0. For i = 1, 2 consider a finite word wi ∈ A
(n)
i where each

symbol and each transition which characterize A
(n)
i appear in wi. Since

C is topologically transitive, there is a point x ∈ C where the words
w1 and w2 both appear in x. Thus, we can find l (which we assume
positive without loss of generality) so that x ∈ σlw1 ∩ w2.

We form a new SFT Σ̂ as follows. We start by defining a SFT
with the allowed transitions being exactly the transitions xixi+1 for

i = 0, . . . , N for sufficiently large N . This defines a SFT Σ̂, but it
may be reducible. If N is sufficiently large, then all the transitions of

A
(n)
1 and of A

(n)
2 are allowed in Σ̂. Furthermore transitions from each of

these set to the other are allowed in Σ̂. Take the irreducible component

of Σ̂ which includes A
(n)
1 ∪A

(n)
2 and call it Σ′. But, by the construction

of Σ(m) we have Σ′ ⊂ Σ(m) for sufficiently large m and thus Σ′ ⊂ A
(m)
1

and Σ′ ⊂ A
(m)
2 a contradiction. �

We call a topologically transitive component A approximable (aTTC)
if periodic points whose orbit avoids H are dense in A otherwise we
call A non approximable (nTTC).

Theorem 7.2. Every aTTC is coded. There are at most countably
many such topologically transitive components.

Proof. Let Σnw be an exclusion subshift, i.e., f is an Axiom A map, P
a fixed proper, generating Markov partition, and H an open hole with
boundary consisting of a finite union of compact co-dimension 1 mani-
folds. We approximate by Markov holes as in the proof of Theorem 6.3,
the only difference is that for the “exclusion” system Σnw(n) := Σnw

H(n)

the boundary of H(n) may not be the union of compact co-dimension 1
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manifolds, thus the quotes on the work exclusion. By Proposition 7.1
Σ̃nw has at most countably many topologically transitive components
and each component is coded.

Since Σnw(n) is an nonwandering SFT disjoint from H, periodic points
disjoint from H are dense in Σnw(n), and thus they are also dense in
Σ̃nw. Thus by definition any topologically transitive component which
is a subset of Σ̃nw is an aTTC. On the other hand if x ∈ Σnw \ Σ̃ then x
is not an accumulation point of periodic points xn which avoid H since
any such periodic point necessarily belongs to Σnw(n) for some n. Thus
we have shown that every aTTC is contained in Σ̃nw. �

We can construct a hole such that any periodic orbit is an nTTC.
However we do not know if less trivial nTTCs can exist, and in par-
ticular if non coded nTTCs can exist and if uncountably many nTTCs
can exist.

We actually have a stronger property than coded since our subshifts
are well approximable from outside as well as inside.

8. Open problems.

Many interesting open problems remain. The results on the charac-
terization of topologically transitive components in multi-dimensional
case are much less satisfactory than in the one dimensional case. It
is hard to see how to obtain more precise results without stronger as-
sumptions.

In the one dimensional case, is it possible to classify those interval
exclusion subshifts which are SFTs via the arithmetical properties of
the boundary points of the intervals.

One would like to develop a relationship between the escape rate
properties and topological and/or metric invariants of the invariant
set.
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