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Abstract.

The nonlinear dynamics of a two-dimensional model for collisionless magnetic

reconnection is investigated both numerically and analytically. For very low values of

the plasma β, parallel magnetic perturbations tend to be proportional to the vorticity

perturbations, but as β increases detachment of these quantities takes place. The

subsequent difference between the structure of the vorticity and the parallel magnetic

perturbations can be explained naturally in terms of the “normal” field variables that

emerge from the noncanonical Hamiltonian theory of the model. A three-dimensional

extension of the reconnection model is also presented, its Hamiltonian structure is

derived, and the corresponding conservation properties are compared with those of

the two-dimensional model. A general method for extending a large class of two-

dimensional fluid plasma models to three dimensions, while preserving the Hamiltonian

structure, is then presented. Finally, it is shown how such models can also be extended,

while preserving the Hamiltonian structure, to include externally applied fields, that

can be used, for instance, for modelling resonant magnetic perturbations.
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1. Introduction

Magnetic reconnection is believed to play a key role for many phenomena occurring in

fusion plasmas, such as sawtooth oscillations in tokamaks and relaxation in reversed

field pinches (see, e.g. [1, 2]). In high temperature tokamak plasmas with low collision

frequencies, electron inertia can provide an effective mechanism for breaking the frozen-

in condition of magnetohydrodynamics and thereby allow magnetic reconnection to

take place. In order to understand the nonlinear dynamics of this kind of magnetic

reconnection driven by electron inertia, a three-field fluid model for collisionless plasmas

was obtained by Schep, Pegoraro and Kuvshinov (SPK) [3]. A two-dimensional (2D),

two-field version of this model has been intensively investigated in Refs. [4, 5, 6] and a

3D extension has been analyzed in Ref. [7]. Many of the obtained results have relied

on knowledge of the noncanonical Hamiltonian structure (see, e.g. [8]) of the model

equations [3, 9]. Indeed, the Hamiltonian formulation led to the discovery of infinite

families of Casimir invariants, associated with Lagrangian invariants. These invariants

have made it possible to interpret and explain the formation of small scale structures in

the plasma vorticity and current density [5].

A 2D, four-field model extension of the SPK model was obtained by Fitzpatrick

and Porcelli (FP) in Ref. [10]. Unlike the SPK model, this model allows for magnetic

and velocity perturbations in the direction of a guide field and also allows for finite

β regimes, where as usual β is the ratio of the plasma and magnetic pressures. The

Hamiltonian formulation of this model, derived in [11], proved to be useful for obtaining

stability criteria [12], providing an unambiguous definition of negative energy modes

[11], and interpreting numerical simulations [13, 14].

The present paper is a continuation of this line of research, it being devoted to the

investigation of magnetic reconnection in collisionless plasmas, while taking advantage

of the Hamiltonian formalism. The purpose of the paper is twofold: first, results from a

numerical investigation of the nonlinear dynamics of the parallel magnetic perturbations,

perturbations that are not taken into account in the SPK model but are present in the

FP model, is described. Second, it is shown how to extend a large class of 2D fluid models

(which includes the FP model) to 3D Hamiltonian models with the inclusion of externally

applied fields. The motivation for the latter is to include, within the fluid Hamiltonian

framework, for instance, the effect of resonant magnetic perturbations that can have an

important impact on turbulent fluctuations and transport (see, e.g. [15, 16, 17]).

The paper is structured as follows. In Sec. 2 the FP model and its Hamiltonian

structure are briefly recalled. Results of the numerical simulations are then presented

and their interpretation in terms of Hamiltonian “normal fields” is given. In Sec. 3, the

3D extension of the FP model is presented and its Hamiltonian structure is discussed.

Next, the conditions for extensions of 2D models to 3D, with externally applied fields,

are presented and a specific example is given. Finally, we conclude in Sec. 4.



Hamiltonian four-field model for magnetic reconnection: nonlinear dynamics and extension to three dimensions

2. 2D four-field model

2.1. Four-field review

In this section we first consider the cold-ion four-field model for magnetic reconnection in

collisionless plasmas presented in [10]. This model is formulated in Cartesian coordinates

(x, y, z), it assumes the presence of a strong guide field of amplitude B(0) directed along

the ignorable coordinate z, and a constant background electron pressure P0. The model

equations, in a dimensionless form, are

∂(ψ − d2
e∇

2ψ)

∂t
+ [ϕ, ψ − d2

e∇
2ψ] − dβ[ψ,Z] = 0, (1)

∂Z

∂t
+ [ϕ,Z] − cβ[v, ψ] − dβ[∇2ψ, ψ] = 0, (2)

∂∇2ϕ

∂t
+ [ϕ,∇2ϕ] + [∇2ψ, ψ] = 0, (3)

∂v

∂t
+ [ϕ, v] − cβ[Z,ψ] = 0, (4)

where the bracket [, ] is defined by [f, g] = ẑ · (∇f × ∇g). Equations (1)-(2) describe

the evolution of the fields ψ and Z, which determine the magnetic field through

the expression B(x, y, t) = ∇ψ × ẑ + (B(0) + cβZ)ẑ, where cβ =
√

β/(1 + β), with

β = (5/3)P0/B
(0)2. The plasma velocity field v is determined by a stream function ϕ

and a parallel component v by the expression v(x, y, t) = −∇ϕ × ẑ + vẑ. The time

evolution of the velocity follows from Eqs. (3)-(4). The parameter de, appearing in (1),

is the electron skin depth and is associated with the term responsible for breaking the

frozen-in condition. The parameter dβ is defined as dβ = dicβ, with di corresponding to

the ion skin depth.

Equations (1)-(4) can be derived starting from a two-fluid description of a plasma.

More precisely, Eq. (1) originates from the electron momentum equation, Eq. (2) from

the electron vorticity equation, whereas Eqs. (3) and (4) can be obtained from the

plasma vorticity and parallel momentum equations, respectively.

The system (1)-(4) has a noncanonical Hamiltonian formulation [18, 11], the

Hamiltonian functional being given by

H =
1

2

∫

D

d2x (d2
eJ

2 + |∇ϕ|2 + v2 + |∇ψ|2 + Z2), (5)

with J = −∇2ψ, corresponding to the parallel current density, and D indicating the

spatial domain of interest. The quantity (5) corresponds to the total energy of the system

and it naturally possesses a kinetic energy part, corresponding to the first three terms in

(5), and a magnetic energy part, given by the remaining two terms. The noncanonical

Hamiltonian formulation of the FP model is completed by a Poisson bracket, whose

rather lengthy expression, in terms of the variables ψ − d2
e∇

2ψ, ∇2ϕ, Z and v, can be

found in [11]. We recall that this bracket has four infinite families of so-called Casimir

invariants, which are defined as functionals C of the field variables, that satisfy the
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relation {F,C} = 0, where {, } is the Poisson bracket and F is any functional of the

field variables. Because they commute with any the Hamiltonian functional, Casimir

invariants are constants of motion for the system. The families of Casimirs for the FP

model are

C1 =

∫

d2xH(D). (6)

C2 =

∫

d2xζF(D), (7)

C3 =

∫

d2xg̃+ (T+) , (8)

C4 =

∫

d2xg̃− (T−) , (9)

where H, F , g̃+ and g̃− are arbitrary functions, and

D = ψe + div, (10)

ζ = ∇2ϕ+
di

cβd2
Z, (11)

T+ =
d2

i

2cβd3de

ψe −
dide

2cβd3
v −

di

2cβd2
Z, (12)

T− = −
d2

i

2cβd3de

ψe +
dide

2cβd3
v −

di

2cβd2
Z, (13)

where ψe = ψ − d2
e∇

2ψ and d =
√

d2
i + d2

e.

The form of the Casimirs (6)-(9) leads to an alternative set of field variables, that

we call “normal” fields, according to the terminology introduced in [19], consisting of

the variables D, ζ, T+, T−, which are linear combinations of the original variables ψe,

∇2ϕ, Z, v. In terms of the normal fields, the Poisson bracket of the FP model takes the

simple form

{F,G} =

∫

d2x (ζ[Fζ , Gζ ] +D([FD, Gζ ] + [Fζ , GD])

+ T−[FT
−

, GT
−

] + T+[FT+
, GT+

]) , (14)

where subscripts indicate functional derivatives. The Hamiltonian (5) in terms of the

normal fields becomes

H =

∫

D

d2x

[

c2βd
4

d2
i

(T 2
+ + T 2

−) +
D2

2d2
−

1

2
(ζ + T+ + T−)∇−2 (ζ + T+ + T−)

−
1

2

(

de

d2
D + cβd(T+ − T−)

)

L

(

de

d2
D + cβd(T+ − T−)

)]

, (15)

where L is an operator defined by the relation Lψe = ψ. The normal fields are convenient

variables that make the conservation laws of the system more evident. Indeed, by making

use of the normal fields, the FP model can be written as

∂D

∂t
= − [ϕ,D], (16)
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∂ζ

∂t
= − [ϕ, ζ] + d−2[D,ψ], (17)

∂T±
∂t

= − [ϕ±, T±] , (18)

where we have defined

ϕ± := ϕ±
cβd

de

ψ. (19)

From the compact form of Eqs. (16)-(18), it possible to see thatD and T± are Lagrangian

invariants advected by velocity fields determined by the stream functions ϕ and ϕ±,

respectively. The evolution equation for ζ, on the other hand, possesses a source term

that vanishes when D is a flux function or when d→ ∞.

2.2. Simulation results and interpretation

The noncanonical Hamiltonian formulation and the knowledge of the Casimir invariants

proved to be useful for investigating the nonlinear dynamics of the SPK reconnection

model. From the knowledge of the Casimirs it was possible to deduce the conservation

of the topology of field lines of the two Lagrangian invariants G± [4] and to explain the

formation of small scale structures in the plasma vorticity [5]. The two-field version of

the SPK model investigated in [4, 5], can be obtained from the FP model by taking

the limit cβ → 0 and dβ → ρs, where ρs is the Larmor radius of ions with electron

temperature. In this limit, Eq. (4) decouples from the system, whereas Z = −ρs∇
2ϕ

can be taken as the solution for Z, provided its compatibility with the initial conditions.

From the expression Bz = (B(0) + cβZ), one sees that the limit cβ → 0, corresponds

to suppressing parallel magnetic perturbations. The evolution of such perturbations

for the FP model has not yet been investigated, in particular, with regard to its

interpretation in terms of normal fields. In the following, we investigate the field Z

and its dependence on the value of cβ, in order to see how the nonlinear evolution of Z

develops in regimes with non-negligible values of cβ. Such a regime is not accessible in

the SPK two-field model. Given that the FP model assumes p = −cβZ, where p is an

electron pressure perturbation, the evolution of Z can also provide information about

the pressure evolution.

Equations (1)-(4) were solved numerically using a code based on a finite volume

scheme. The equations are solved on a rectangular domain {(x, y):−2π ≤ x ≤ 2π,−π ≤

y ≤ π}, subdivided into 1024 × 1024 grid points, with periodic boundary conditions

imposed for both the x and y directions. We chose an initial equilibrium of the form

ψ0(x) = 1/ cosh2(x), ϕ0 = 0, Z0 = 0, v0 = 0, which is unstable to reconnecting

perturbations. We are mainly interested in seeing how the evolution is modified, in

comparison to the SPK model, when one increases cβ to non-negligible values. Two

cases are considered: the first case has a very low value of β, with the parameter dβ

playing essentially the role of ρs of the SPK model, while the second case has higher β.

In both cases the value of the normalized electron skin depth is set equal to 0.24. Note
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Figure 1. Contour plots of ∇2ϕ (left column) and Z (right column). The top row

refers to t = 50 Alfvèn times and the bottom row to t = 70 Alfvèn times. Values of the

parameters are cβ = 0.01, dβ = 0.24, and de = 0.24. From the plots one can see that,

because Z0 = ∇2ϕ0 = 0, in this very low β regime, parallel magnetic perturbations

closely track the vorticity perturbations.

that, due to limitations in the numerical resolution, the electron/ion mass ratios for the

two cases are slightly different.

In Fig. 1 contour plots of ∇2ϕ and Z, for cβ = 0.01, are compared. From the plots,

it is evident that for these values the two fields are nearly identical. This is a direct

consequence of considering a very low β with finite dβ ≈ ρs. As anticipated above,

this suppresses the term cβ[v, ψ] in Eq. (2), which couples to the parallel dynamics, and

allows for the solution Z = −dβ∇
2ϕ. This requires the initial conditions for Z and ∇2ϕ

to be identical, which is the case for the simulations under consideration. It is interesting

to notice that the detachment of Z from −dβ∇
2ϕ is measured by the amplitude of the

normal field ζ. Indeed, for practical purposes, d ≈ di, and therefore ζ ≈ ∇2ϕ + Z/dβ.

In this regime, in which di is large, the source term in Eq. (17) becomes negligible and

consequently, because ζ(x, y, 0) = 0, the value of ζ remains equal to zero at all times.

In other words, the difference between Z and −dβ∇
2ϕ cannot grow. Notice also that,

if ζ = 0, then

Z = −
cβd

2

di

(T+ + T−), ∇2ϕ = T+ + T− . (20)
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Figure 2. Contour plots of ∇2ϕ (left column) and Z (right column). The top row

refers to t = 40 Alfvèn times and the bottom row to t = 55 Alfvèn times. Values of the

parameters are cβ = 0.3, dβ = 0.72, and de = 0.24. In this higher β regime, the effect

of the terms proportional to cβ is no longer negligible and Z detaches from −dβ∇
2ϕ.

Such a representation in terms of the Lagrangian invariants T± makes it possible to

explain the formation of small scales in the vorticity and parallel magnetic field. As

already explained in [12, 14] (and earlier in [5] for the two-field model) small scales are

formed because of the stretching and filamentation of T+ and T−, advected by velocity

fields that rotate in opposite directions.

Figure 2, on the other hand, shows contour plots of ∇2ϕ and Z for a higher value

of β. In this case it is possible to see that the parallel magnetic field (or, equivalently,

the pressure) and the vorticity follow distinct evolutions. Indeed, Z still undergoes a

filamentation process, again corresponding to the stretching of the normal fields T+ and

T−, whose structures are now even less regular than in the very low β regime. The

vorticity, on the other hand, on top of the filamented structures, forms two vertical

vortex sheets that collide and create vortices propagating in opposite directions along

the y = 0 line. The superposition of these two types of dynamics is naturally explained

in terms of the normal fields. Indeed, the relations

Z = −
cβd

2

di

(T+ + T−), ∇2ϕ = ζ + T+ + T−, (21)
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make it possible to see that it is the growth of the field ζ, that prevents Z from being

proportional to the vorticity, in this β regime. The field ζ, in particular, is the one

responsible for the formation of vortex sheets, that can eventually become unstable

[20, 12, 14]. The pressure and the parallel magnetic field, on the other hand, do not

receive contributions from ζ and therefore they do not form such localized structures.

Instead, they continue to transferring energy to smaller and smaller scales, in a manner

similar to what happens in a phase mixing process.

3. 3D four-field model

3.1. Extension of the four-field model

We assume now that the field variables ψ, ϕ, Z and v also depend on the spatial

coordinate z. We introduce a smallness parameter ǫ defined as the ratio between the

amplitudes of the poloidal magnetic field and of the strong guide magnetic field. We

assume then the ordering

B(0) = O

(

1

ǫ

)

≫ 1,

ψ ∼ ϕ ∼ Z ∼ v ∼
∂

∂x
∼

∂

∂y
= O(1),

∂

∂z
= O(ǫ) ≪ 1,

which is consistent with the ordering of the FP model. If one then carries out, with these

assumptions, the derivation of the FP model as described in Ref. [10], the resulting 3D

model equations are:

∂(ψ − d2
e∇

2
⊥ψ)

∂t
+ [ϕ, ψ − d2

e∇
2
⊥ψ] − dβ[ψ,Z] +

∂ϕ

∂z
+ dβ

∂Z

∂z
= 0, (22)

∂Z

∂t
+ [ϕ,Z] − cβ[v, ψ] − dβ[∇2

⊥ψ, ψ] − cβ
∂v

∂z
− dβ

∂∇2
⊥ψ

∂z
= 0, (23)

∂∇2
⊥ϕ

∂t
+ [ϕ,∇2

⊥ϕ] + [∇2
⊥ψ, ψ] +

∂∇2
⊥ψ

∂z
= 0, (24)

∂v

∂t
+ [ϕ, v] − cβ[Z,ψ] − cβ

∂Z

∂z
= 0, (25)

where the perpendicular gradient operator is defined by ∇⊥f = (∂f/∂x)x̂+ (∂f/∂y)ŷ.

Note that, with the above assumptions, the 3D extension of the model is obtained

from the 2D version, by mapping the expressions [f, ψ], for a generic field f , into

[f, ψ] + ∂f/∂z. The model (22)-(25) can describe magnetic reconnection in three

dimensions, in which case the Hamiltonian that describes the finite-dimensional system

for magnetic field lines, ψ(x, y, z, t), is in general non-integrable and can therefore lead

to chaotic magnetic field lines (see, e.g. [21]). The cβ → 0, dβ → ρs limit of (22)-(25) is

also consistent with the 3D version of the two-field SPK model, which was investigated

numerically in Refs. [7, 22, 14].
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Analogously to the 2D version, this 3D model also admits a noncanonical

Hamiltonian formulation. The latter can be conveniently expressed by making use of

the normal fields of Eqs. (10)-(13) after replacing ∇ with ∇⊥. Indeed, in these variables,

the bracket for the 3D model has the relatively compact form

{F,G} =

∫

d3x
(

ζ[Fζ , Gζ ] +D([FD, Gζ ] + [Fζ , GD]) + T−[FT
−

, GT
−

]

+ T+[FT+
, GT+

] + Fζ

∂

∂z
GD + FD

∂

∂z
Gζ

+
d2

i

2cβd3de

FT+

∂

∂z
GT+

−
d2

i

2cβd3de

FT
−

∂

∂z
GT

−

)

. (26)

The Hamiltonian, on the other hand, still is given by the expression of Eq. (15), with

the obvious extension of the integral and the fields to three dimensions, but ∇ replaced

by ∇⊥.

In terms of the normal field variables the model equations become

∂D

∂t
= − [ϕ,D] −

∂ϕ

∂z
,

∂ζ

∂t
= − [ϕ, ζ] + d−2[D,ψ] +

1

d

∂

∂z

(

D − deL
(de

d2
D + cβd(T+ − T−)

)

)

,

∂T±
∂t

= − [ϕ±, T±] ±
d2

i

2cβd3de

∂

∂z

(

2c2βd
4

d2
i

T± − ϕ∓ cβdL
(de

d2
D + cβd(T+ − T−)

)

)

,

from which it transpires that, in 3D, the variables D, ζ, T+ and T− are no longer

Lagrangian invariants.

Casimirs for the 3D bracket (26) are functionals C such that

{F,C} =
∫

d3x

[

Fζ

(

[Cζ , ζ] + [CD, D] +
∂CD

∂z

)

+ FD

(

[Cζ , D] +
∂Cζ

∂z

)

+

FT+

(

[CT+
, T+] +

d2
i

2cβd3de

∂CT+

∂z

)

+ FT
−

(

[CT
−

, T−] −
d2

i

2cβd3de

∂CT
−

∂z

)]

= 0

for all functionals F . This implies Casimirs are solutions of the following system:

[Cζ , ζ] + [CD, D] +
∂CD

∂z
= 0 (27)

[Cζ , D] +
∂Cζ

∂z
= 0, (28)

[CT+
, T+] +

d2
i

2cβd3de

∂CT+

∂z
= 0, (29)

[CT
−

, T−] −
d2

i

2cβd3de

∂CT
−

∂z
= 0. (30)

Equation (28), for instance, is of finite-dimensional Hamiltonian form, with D playing

the role of the Hamiltonian, z playing the role of time, and the unknown Cζ playing the
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role of the dynamical variable. Because we seek a solution for the case where D depends

on z, this is a ‘time-dependent’ Hamiltonian system. For general D there is no solution

of this equation besides the initial conditions, and these are not useful because they

are not isolating, i.e. they do not define surfaces. The extension to three dimensions,

therefore, eliminates the infinite families of Casimirs that were present in the 2D version.

Casimir solutions can, however, still be found and are given by

C1 =

∫

d3xD, C2 =

∫

d3x ζ, C3 =

∫

d3xT+, C4 =

∫

d3xT− . (31)

The 3D model admits an additional constant of motion that is not a Casimir given by

the functional

h =

∫

d3x

(

ζD + cβde

d3

d2
i

(T 2
+ − T 2

−)

)

, (32)

which, in terms of the original fields, takes the form

h =

∫

d3x

(

∇2
⊥ϕψe +

(

di∇
2
⊥ϕ+

Z

cβ

)

v

)

. (33)

Note, if Z = −dβ∇
2
⊥ϕ, this quantity reduces to the generalized cross-helicity which is

conserved in the 3D two-field SPK model [9].

3.2. General extensions

The 3D extension carried out for the FP model in Sec. 3.1 follows a path first

travelled in Ref. [23], where an analogous extension was carried out for reduced

magnetohydrodynamics (RMHD) [24]. The procedure for going from 2D to 3D can

be formalized and applied to a large class of 2D models. Of particular interest for

plasma physics is a class of 2D magnetofluid models, where the presence of a strong

guide field is assumed. This class of models includes, besides the SPK, FP, and RMHD,

the four-field model for tokamak dynamics of Hazeltine et al. [25], the model for ion-

temperature-gradient driven and drift Kelvin-Helmholtz modes of Waelbroeck et al. [26]

or the more recent electromagnetic gyrofluid model of Waelbroeck et al. [19]. Indeed,

for all such models, the extension to 3D amounts to extending a 2D Lie-Poisson bracket

by including the dependence of the fields on the coordinate that was ignorable in the

original 2D version. The general form of the extended Poisson bracket, for the class of

models that includes all these models, has the form

{F,G} = {F,G}|| + {F,G}⊥

=

∫

d3xAijFi∂Gj +

∫

d3xW ij
k χ

k[Fi, Gj] , (34)

where ∂ := ∂/∂z, assuming that z was the ignorable coordinate, and where χ1, · · ·χn

indicate the field variables for an n-field model. Note Aij = Aji and W ij
k = W ji

k ,

which are required for the bracket to be antisymmetric. The bracket is thus the sum

of the bracket of the original 2D model, {F,G}⊥, with a bracket that accounts for the

3D extension, {F,G}||. Not all antisymmetric bilinear operators of the form (34) are
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Poisson brackets, even if {F,G}⊥ is a Poisson bracket. In fact, a Poisson bracket must

also satisfy the Jacobi identity (see, e.g. [27, 8])

{{F,G}, H} + {{H,F}, G} + {{G,H}, F} = 0, (35)

and this imposes restrictions on the elements of the matrix Aij. In the following we

derive these restrictions.

First, we obviously assume that the W ij
k have the commutation properties (see

Ref. [28]) necessary for the Jacobi identity of {F,G}⊥, i.e., we assume

{{F,G}⊥, H}⊥ + cyc ≡ 0 , (36)

where cyc indicates the addition of the two terms obtained by cyclic permutation of F ,

G, and H. By a theorem in Ref. [27], it follows for the form of {F,G}|| given by (34)

that

{{F,G}||, H}|| + cyc ≡ 0 . (37)

Therefore

{{F,G}, H} + cyc = {{F,G}⊥, H}⊥ + {{F,G}⊥, H}||

+ {{F,G}||, H}⊥ + {{F,G}||, H}|| + cyc . (38)

The first and last terms of (38) vanish by virtue of (36) and (37). The third term

vanishes because

δ{F,G}||
δχi

=̇ 0 (39)

where =̇ means modulo second variation terms. Thus, it remains to show what the

condition

{{F,G}, H} + cyc = {{F,G}⊥, H}|| + cyc ≡ 0 (40)

implies. Using

δ{F,G}⊥
δχk

=̇ W ij
k [Fi, Gj] , (41)

we obtain

{{F,G}⊥, H}|| + cyc (42)

=̇

∫

d3xArsW ij
r

(

[Fi, Gj]∂Hs + [Gi, Hj]∂Fs + [Hi, Fj]∂Gs

)

.

Integrating the first term of (42) by parts gives

{{F,G}⊥, H}|| + cyc =̇

∫

d3xArsW ij
r ( − [∂Fi, Gj]Hs − [Fi, ∂Gj]Hs

+ [Gi, Hj]∂Fs + [Hi, Fj]∂Gs) . (43)

The first and third terms of (43) give
∫

d3xArsW ij
r

(

− [∂Fi, Gj]Hs + [Gi, Hj]∂Fs

)

=

∫

d3x [Gi, Hj]∂Fs(A
rsW ij

r − ArjW si
r ) , (44)
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where the ‘fgh-identity’,
∫

f [g, h] = −
∫

g[f, h], has been used and indices have been

shifted. Similarly, the remaining two terms of (43) give
∫

d3xArsW ij
r ( − [Fi, ∂Gj]Hs + [Hi, Fj]∂Gs)

=

∫

d3x [Hi, Fj]∂Gs(A
rsW ij

r − AriW js
r ) . (45)

Because {{F,G}, H}+ cyc ≡ 0 for all functionals F,G,H, we obtain from (44) and (45)

the following compatibility conditions on Aij, needed for the Jacobi identity:

ArsW ij
r = ArjW si

r = AriW js
r . (46)

In the specific case of the FP model, if we choose

χ1 = D, χ2 = ζ, χ3 = T+, χ4 = T−, (47)

and then obtain

A =











0 1 0 0

1 0 0 0

0 0 a 0

0 0 0 −a











(48)

with a = d2
i /(2cβd

3de) and the only non-vanishing elements of W ij
k are

W 22
2 = W 12

1 = W 21
1 = W 33

3 = W 44
4 = 1 (49)

Therefore, the condition (46) is satisfied and (26) is indeed a Poisson bracket.

3.3. Addition of external field perturbations

The 3D four-field model (22)-(25) can be extended to include the presence of external

perturbations in such a way that the resulting extended model can be shown to still

admit a Hamiltonian formulation. Indeed, we can obtain a system driven by an external

perturbation by adding to the Hamiltonian a term of the form

Hext =

∫

d3xχiDijχ
j
ext(x, y, z, t) , (50)

where χj
ext indicates the external fields and (Dij) is a constant matrix. Keeping the

same Poisson bracket, the model equations for the externally perturbed system are then

given by

∂χi

∂t
= {χi, H +Hext} (51)

It is important to note that with this form for the drive, the Casimir invariants remain

constants of motion, because it still follows that

{C,H +Hext} = 0 , (52)

i.e. the drive allows one to reach only dynamically accessible states. Energy is added to

(or subtracted from) the system according to the following:

dH

dt
= {H,Hext} , (53)
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and

∆Hext =

∫

dt
dHext

dt
=

∫

dt

(

∂Hext

∂t
+ {Hext, H}

)

. (54)

As an example, we present an extended version of the 3D four-field model that

takes into account the effect of external magnetic poloidal perturbations and that

still possesses the Hamiltonian structure. This can be obtained by considering the

Hamiltonian

H̄ = H +Hext

=
1

2

∫

D

d3x (d2
eJ

2 + |∇ϕ|2 + v2 + |∇ψ|2 + Z2 + ψextψe), (55)

where ψext is the external magnetic perturbation. This leads to the following model:

∂(ψ − d2
e∇

2
⊥ψ)

∂t
+ [ϕ, ψ − d2

e∇
2
⊥ψ] − dβ[ψ,Z] +

∂ϕ

∂z
+ dβ

∂Z

∂z
=

− dβd
2
e[ψext, Z],

∂Z

∂t
+ [ϕ,Z] − cβ[v, ψ] − dβ[∇2

⊥ψ, ψ] − cβ
∂v

∂z
− dβ

∂∇2
⊥ψ

∂z
=

− dβ[ψext, ψ] + dβd
2
e[ψext,∇

2
⊥ψ] + cβd

2
e[ψext, v] − dβ

∂ψext

∂z
,

∂∇2
⊥ϕ

∂t
+ [ϕ,∇2

⊥ϕ] + [∇2
⊥ψ, ψ] +

∂∇2
⊥ψ

∂z
=

[ψext, ψ] − d2
e[ψext,∇

2
⊥ψ] +

∂ψext

∂z
,

∂v

∂t
+ [ϕ, v] − cβ[Z,ψ] − cβ

∂Z

∂z
=

cβd
2
e[ψext, Z].

Evidently, there are two kinds of drive here, additive and multiplicative, and so there

are various possibilities. For example, one can temporally drive a 2D theory additively

by supposing

ψext = zΨ(x, y, t), (56)

with Ψ some prescribed 2D perturbing magnetic flux.

We point out that such extension to externally driven Hamiltonian models, obtained

by using (50), can be applied to all Hamiltonian plasma models Poisson brackets, and

in particular those of the form of (34).

4. Conclusions

In this paper, different aspects of the nonlinear dynamics and modelling of magnetic

reconnection in collisionless plasmas have been considered. In Sec. 2 we addressed the

question of seeing whether the vorticity phase mixing process and the layer formations,

that were observed in a simpler model valid at very low β, persist at higher β values,

which can be accessed by the FP model. Numerical simulations of the FP model showed
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that at very low values of β, and when dβ ≈ ρs, also parallel magnetic perturbations

undergo a phase-mixing process in which energy is transferred to small scales. On

the other hand, we also showed that this process tends to disappear when higher β

regimes are entered. This behavior was naturally explained in terms of the growth of

the normal field ζ, which also measures the deviation from proportionality between the

parallel magnetic perturbation and the vorticity.

In Sec. 3, we presented an extension of the FP model to three-dimensions. We

proved that the 3D extension still possesses a Hamiltonian structure, but that the

number of Casimir invariants was dramatically reduced. Next, a condition was derived

for determining 3D extensions for a large class of 2D plasma models, which preserve the

Hamiltonian structure. Finally, we showed how such 3D Hamiltonian models can also

account for externally applied fields.

Numerical simulations of such extended models in the presence of external fields,

and the investigation of the resulting nonlinear dynamics, will be a subject of future

work.
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