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). The first conjugate time along an extremal is the time at which the extremal loses its local optimality. In this work, we use the asymptotic approach developed in [44] and investigate the convergence properties of conjugate times. More precisely, for ε > 0 small and arbitrary vector fields Y 1 , ..., Y m , we consider the minimal time problem for the control system ẋε = X(

of the initial problem. Under appropriate assumptions, the optimal controls of the latter regularized optimal control problem are smooth, and the computation of associated conjugate times t ε c falls into the standard theory; our main result asserts the convergence, as ε tends to 0, of t ε c towards the conjugate time t c of the initial bang-bang optimal control problem, as well as the convergence of the associated extremals. As a byproduct, we obtain an efficient algorithmic way to compute conjugate times in the bang-bang case.

Introduction

The optimal control problem

Consider the single-input control-affine system in IR n ẋ = X(x) + u 1 Y 1 (x), [START_REF] Agrachev | Symplectic methods for optimization and control[END_REF] where X and Y 1 are smooth vector fields, and the control u 1 is a measurable scalar function satisfying the constraint

|u 1 (•)| 1. (2) 
Let x0 and x1 be two points of IR n . Assume that x1 is reachable from x0 , that is, there exists a time T > 0 and a control function u 1 (•) ∈ L ∞ (0, T ) satisfying the constraint [START_REF] Agrachev | A Hamitonian approach to strong minima in optimal control[END_REF], such that the trajectory x(•), solution of (1) with x(0) = x0 , satisfies x(T ) = x1 .

We consider the optimal control problem (OCP) of determining a solution x(•) associated to a control û1 (•), on [0, t f ], satisfying (1)- [START_REF] Agrachev | A Hamitonian approach to strong minima in optimal control[END_REF] and steering x0 to x1 in minimal time t f . We assume that such a solution x(•) for (OCP) exists 2 .

According to the Pontryagin maximum principle (see [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]), there exists a non trivial absolutely continuous mapping p(•) : [0, t f ] → IR n , called adjoint vector, and a real number p 0 0, with ( p(•), p 0 ) (0, 0), such that ṗ(t) = -∂H ∂x ( x(t), p(t), p 0 , û1 (t))

=p(t), ∂X ∂x ( x(t)) -û1 (t) p(t),

∂Y 1 ∂x ( x(t)) (3) 
where the function H(x, p, p 0 , u 1 ) = p, X(x) + u 1 Y 1 (x) + p 0

2 See e.g. [START_REF] Cesari | Optimization -Theory and Applications[END_REF] for existence results of optimal solutions. is called the Hamiltonian, and the maximization condition H( x(t), p(t), p 0 , û1 (t)) = max |w| 1

H( x(t), p(t), p 0 , w) [START_REF] Agrachev | On the local structure of optimal trajectories in R 3[END_REF] holds almost everywhere on [0, t f ]. Moreover, max |w| 1 H( x(t), p(t), p 0 , w) = 0 for every t ∈ [0, t f ]. The quadruple ( x(•), p(•), p 0 , û1 (•)) is called an extremal. The extremal is said normal whenever p 0 0, and in that case it is usual to normalize the adjoint vector so that p 0 = -1; otherwise it is said abnormal. It follows from (4) that û1 (t) = sign p(t), Y 1 ( x(t)) [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF] for almost every t, provided that the (continuous) switching function

ϕ 1 (t) = p(t), Y 1 ( x(t))
does not vanish on any subinterval of [0, t f ] 3 . Such an extremal ( x(•), p(•), p 0 , û1 (•)) is then completely determined by the initial adjoint vector p(0). This extremal is a priori defined on the time interval [0, t f ], but since it is completely determined by the differential system (1)-( 3) and its initial condition, it may be extended forward on a maximal time interval I of [0, +∞), containing [0, t f ]. In this way, we consider the trajectory x(•) on this maximal interval I. Note that, since x(•) is optimal on [0, t f ], and since the control system under study is autonomous, it follows that x(•) is as well optimal for the problem of steering the system (1) from x(0) = x0 to x(t), for every t ∈ (0, t f ].

We assume that the extremal ( x(•), p(•), p 0 , û1 (•)) is bang-bang on the interval I, that is, the switching function ϕ 1 does not vanish on any subinterval of I. Denote by τ1 , . . . , τs , ... the zeros of ϕ 1 on I (possibly in infinite number), called switching times, such that 0 < τ1 < . . . < τs . . . As explained above, there holds

û1 (t) =        1 if ϕ 1 (t) > 0, -1 if ϕ 1 (t) < 0,
for every t ∈ I.

We assume moreover that the extremal ( x(•), p(•), p 0 , û1 (•)) satisfies the strict bang-bang Legendre condition, that is, φ1 (τ j ) = d dt p(t), Y 1 ( x(t))

t=τ j 0,
for every switching time. This condition implies that the switching times are isolated, and moreover are in finite number on every compact subinterval of I. In particular, we assume that there are exactly s switching times on the interval [0, t f ], such that 0 < τ1 < ... < τs < t f . Definition 1.1. Let T > 0, T ∈ I. The trajectory x(•) is said to be locally minimal time on [0, T ] in C 0 topology if there exist a neighborhood W of the trajectory x(•) in IR n and a real number η > 0 such that, for every trajectory y(•) that is solution of (1), contained in W, associated with a control v on [0, T + η] satisfying the constraint [START_REF] Agrachev | A Hamitonian approach to strong minima in optimal control[END_REF], satisfying y(0) = x0 and y(t 1 ) = x(T ) with t 1 ∈ [0, T + η], there holds t 1 T .

The C 0 local optimality is also called strong local optimality. The notion of global optimality is defined similarly, with W = IR n and η = +∞.

The Pontryagin maximum principle mentioned formerly is a necessary first order condition for optimality; conversely, extremals are not necessarily locally optimal, and there have been many works on high-order necessary optimality conditions (see e.g. [START_REF] Bressan | A high order test for optimality of bang-bang controls[END_REF]) and on sufficient (first and second order) optimality conditions detailed in the next section.

Second order optimality conditions and conjugate times for bang-bang controls

Consider the extremal ( x(•), p(•), p 0 , û1 (•)) of the problem (OCP) introduced previously. Definition 1.2. The cut time t cut ( x0 ) is defined as the first positive time of I beyond which the trajectory x(•) loses its global optimality status for the problem of steering the system (1)-( 2) from x0 to x1 in minimal time, with the agreement that t cut ( x0 ) = +∞ whenever x(•) is globally optimal on every interval [0, T ], T > 0, T ∈ I. The point x(t cut ( x0 )) is called a cut point.

Whereas such a global optimality status is difficult to characterize, the local optimality status of a trajectory may be characterized using the concept of conjugate time, that is, the time at which the optimal trajectory x(•) loses its local optimality. We next recall well known facts on first conjugate times of solutions x(•) of the optimal control problem (OCP) associated to bangbang controls û1 (•).

The definition and computation of conjugate points are an important topic in the theory of calculus of variations (see e.g. [START_REF] Bliss | Lectures on the Calculus of Variations[END_REF]). In [START_REF] Sarychev | The index of second variation of a control system[END_REF] the investigation of the definition and computation of conjugate points for minimal time control problems is based on the study of second order conditions. In fact, second order necessary and/or sufficient conditions are crucial for study of the first conjugate time of the problem (OCP). In [START_REF] Sussmann | Envelopes, conjugate points and optimal bangbang extremals[END_REF], the theory of envelopes and conjugate points is used for the study of the structure of locally optimal bang-bang trajectories for the problem (OCP) in IR 2 and IR 3 ; these results were generalized in [START_REF] Krener | The structure of small-time reachable sets in low dimensions[END_REF].

Second order optimality conditions. When the optimal control problem has a nonlinear control system and the extremal controls are continuous, the literature on first and/or second order sufficient conditions is vast, see e.g. [START_REF] Boltyanskii | Sufficient conditions for optimality and the justification of the dynamic programming method[END_REF][START_REF] Dunn | Second-order optimality conditions in sets of L ∞ functions with range in a polyhedron[END_REF][START_REF] Malanowski | Sensitivity analysis for parametric control problems with control-state constraints[END_REF][START_REF] Maurer | First and second order sufficient optimality conditions in mathematical programming and optimal control[END_REF][START_REF] Maurer | Sensitivity analysis and real-time control of parametric optimal control problems using boundary value methods[END_REF][START_REF] Maurer | Second order sufficient conditions for optimal control problems with free final time: The Riccati approach[END_REF][START_REF] Maurer | Second-order sufficient conditions for optimal control problems with mixed control-state constraints[END_REF][START_REF] Milyutin | Calculus of Variations and Optimal Control[END_REF][START_REF] Zeidan | The Riccati equation for optimal control problems with mixed state-control constraints: Necessity and sufficiency[END_REF] and references therein. In this case numerical procedures are available to test second order sufficient conditions, see e.g. [START_REF] Augustin | Computational sensitivity analysis for state constrained optimal control problems[END_REF][START_REF] Malanowski | Sensitivity analysis for optimal control problems subject to higher order state constraints, Optimization with data perturbations, II[END_REF][START_REF] Maurer | Sensitivity analysis and real-time control of parametric optimal control problems using boundary value methods[END_REF]. For second order necessary and/or sufficient conditions of optimal control problems with nonlinear control systems and discontinuous controls see e.g. [START_REF] Osmolovskii | Transformation of quadratic forms to perfect squares for broken extremal[END_REF] and references therein.

We will next focus on second order necessary and/or sufficient optimality conditions for optimal control problems with affine-control systems and bang-bang optimal controls.

In [START_REF] Sarychev | First-and second-order sufficient optimality conditions for bang-bang controls[END_REF] a minimal time control problem for affinecontrol systems is considered and first and second order sufficient optimality conditions are derived, for bangbang Pontryagin extremal controls which are L 1 -locally optimal. In [START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF] the same optimal control problem is studied and the authors provide sufficient conditions for strong local optimality and develop numerical methods to test the positive definiteness of a specific quadratic form. In both papers [START_REF] Sarychev | First-and second-order sufficient optimality conditions for bang-bang controls[END_REF] and [START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF], the sufficient optimality conditions are expressed in terms of quadratic forms, however although the same critical subspace is used, the quadratic form in [START_REF] Sarychev | First-and second-order sufficient optimality conditions for bang-bang controls[END_REF] is a lower bound for the one in [START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF]. In fact, the second order sufficient optimality condition in [START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF] is always fulfilled whenever the corresponding condition in [START_REF] Sarychev | First-and second-order sufficient optimality conditions for bang-bang controls[END_REF] is.

In [START_REF] Maurer | Optimization methods for the verification of second order sufficient conditions for bang-bang controls[END_REF][START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF] optimization methods are given to test second order sufficient optimality conditions for optimal control problems with bounded scalar controls [START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF], and vector-valued controls [START_REF] Maurer | Optimization methods for the verification of second order sufficient conditions for bang-bang controls[END_REF].

In [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF] the authors derive second order sufficient conditions, under the same regularity assumptions as [START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF], for an optimal control problem in the Mayer form with fixed final time, with affine-control systems and bangbang optimal controls. In [START_REF] Osmolovskii | Equivalence of second order optimality conditions for bang-bang control problems. Part 1: main results[END_REF] the authors showed that, in certain cases, the second order sufficient conditions given in [START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF] are equivalent to the ones in [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF]. In the cases where the equivalence holds, the results obtained in [START_REF] Osmolovskii | Equivalence of second order optimality conditions for bang-bang control problems. Part 1: main results[END_REF] extend those in [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF] to the problem of free final time, with mixed initial and terminal conditions of equality and inequality type. The detailed proofs of the main results in [START_REF] Osmolovskii | Equivalence of second order optimality conditions for bang-bang control problems. Part 1: main results[END_REF] are given in [START_REF] Osmolovskii | Equivalence of second order optimality conditions for bang-bang control problems. Part 2: Proofs, variational derivatives and representations[END_REF]. In [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF] a finitedimensional subproblem is considered which consists in moving the switching times and a second variation is defined as a certain quadratic form associated to this subproblem; then, finding a conjugate time consists in testing the positivity of that quadratic form. The authors prove that this can only happen at a switching time.

In [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF] the minimal time problem for control affine systems is studied. An analogous quadratic form to the one in [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF] is defined, but the kind of optimality studied is a stronger one (state local optimality).

Quadratic forms.

As mentioned above the quadratic forms defined in [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF] are equivalent (see [START_REF] Osmolovskii | Equivalence of second order optimality conditions for bang-bang control problems. Part 1: main results[END_REF][START_REF] Osmolovskii | Equivalence of second order optimality conditions for bang-bang control problems. Part 2: Proofs, variational derivatives and representations[END_REF]), although the way they are defined is different. We only give a brief sketch of a possible procedure to define the quadratic form.

Let F(t; τ 1 , ..., τ s ) = x(t; τ 1 , ..., τ s ) be the mapping associated with the finite-dimensional problem associated to (OCP) that consists in moving the switching times τ 1 , . . . , τ s in a neighborhood of the reference switching times τ1 , . . . , τs (see [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Maurer | Optimization methods for the verification of second order sufficient conditions for bang-bang controls[END_REF][START_REF] Osmolovskii | Equivalence of second order optimality conditions for bang-bang control problems. Part 1: main results[END_REF][START_REF] Osmolovskii | Equivalence of second order optimality conditions for bang-bang control problems. Part 2: Proofs, variational derivatives and representations[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF]), where x(t; τ 1 , ..., τ s ) is the trajectory solution of (1), on [0, t], with x(0) = x0 , associated to the bang-bang control u 1 (•) with switching times τ 1 , ..., τ s and such that it coincides with the reference trajectory x(•) whenever τ i = τi for every i. Note that the trajectory x(•; τ 1 , ..., τ s ) is not the projection of an extremal whenever τ i τi . The mapping F is well defined for t in a neighborhood of t f and τ i in a neighborhood of τi for every i, and is the composition of smooth mappings, therefore is differentiable. Denoting τ = (τ 1 , ..., τ s ), one has .

∂F ∂τ (t; τ 1 , ..., τ s ) =               ∂x 1 ∂τ 1 (•) . . .
Explicit formulas of Q t are given in [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Agrachev | On the local structure of optimal trajectories in R 3[END_REF][START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF]; in particular formulas in terms of Lie brackets of the vector fields can be derived.

The next theorem, combination of several known results, provides a necessary and/or sufficient condition for strong local optimality.

Theorem 1 ([3, 4, 30, 33, 38]). Let ( x(•), p(•), p 0 , û1 (•)) be a bang-bang extremal for (OCP) defined on a maximal time interval I of [0, +∞) containing [0, t f ]. If this extremal satisfies the strict bang-bang Legendre condition on I, then for every t ∈ I, the following holds:

• If the quadratic form Q t is positive definite then x(•)
is a local minimizer in the C 0 topology on [0, t].

• Assume moreover that x(•) has a unique extremal lift (up to a multiplicative scalar) ( x(•), p(•), p 0 , û1 (•)), which is moreover normal (p 0 = -1). If x(•) is locally optimal in the C 0 topology on [0, t] then Q t is nonnegative.

Remark 1.1. Under the assumptions of the Theorem 1, the set

{t > 0 | Q t has a nontrivial kernel}
is discrete and can only consist of some switching times (see [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF]). This remark permits to define the notion of first conjugate time.

Definition 1.3. The first conjugate time t c of x(•) is defined by

t c = sup{t | Q t is positive definite} = inf{t | Q t is indefinite} .
The point x(t c ) is called the first conjugate point of the trajectory x(•).

Remark 1.2. A conjugate time can only occur at a switching time.

Extremal field approach. Sufficient optimality conditions for a general optimal control problem are provided in [START_REF] Noble | Sufficient conditions for relative minima of broken extremals in optimal control theory[END_REF] (see also [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF]) with a different point of view than the one recalled in the previous paragraph. In [START_REF] Noble | Sufficient conditions for relative minima of broken extremals in optimal control theory[END_REF] the authors study local optimality conditions for both continuous and piecewise continuous (including bangbang) controls. The sufficient conditions developed in that article are based on the method of characteristics and the theory of extremal fields. Sufficient optimality conditions are given for embedding a reference trajectory into a local field of broken extremals 4 . The occurrence of a conjugate point is related with a socalled overlap of the flow near the switching surface. Second order sufficient optimality conditions stated in [START_REF] Noble | Sufficient conditions for relative minima of broken extremals in optimal control theory[END_REF] have been tested numerically for bang-bang control problems, see e.g. [START_REF] Ledzewicz | Optimal bang-bang controls for a two-compartment model in cancer chemotherapy[END_REF]. See also [START_REF] Sussmann | Regular synthesis and sufficient conditions for optimality[END_REF] where sufficient optimality conditions for bang-bang controls based on the extremal field approach are studied.

In [START_REF] Agrachev | Symplectic methods for optimization and control[END_REF][START_REF] Agrachev | A Hamitonian approach to strong minima in optimal control[END_REF][START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF], using Hamiltonian methods and the extremal field theory, the authors construct, under certain conditions, a non-intersecting field of state extremals 5that covers a given extremal trajectory x(•). In [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF] the authors associate the occurrence of a conjugate point with a fold point of the flow of the extremal field. We next recall the Hamiltonian approach presented in [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF].

For every z 0 = (x 0 , p 0 ) ∈ IR n × IR n , let z(•, z 0 ) = (x(•, z 0 ), p(•, z 0 )) denote the solution of the system of equations ( 1) and (3), with the control [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF], such that z(0, z 0 ) = z 0 . The exponential mapping is then defined by exp(t, z 0 ) = x(t, z 0 ).

In (OCP) as in the problems considered in [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF] and [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF] the initial point is not free ( x0 is a fixed point of IR n ).

To apply the Hamiltonian approach presented in [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF], we consider a C 2 function α : IR n → IR such that α ′ ( x0 ) = p0 , where α ′ (x 0 ) denotes ∂α ∂x (x 0 ) and p0 = p(0). The function α represents a penalization on the initial point x0 and a new finite-dimensional subproblem is considered, with free initial point α( x0 ), that consists in moving the switching times and minimizing α( x0 ) + t f .

The existence of a function α in the previous conditions was proved in [START_REF] Hestenes | Application of the theory of quadratic forms in Hilbert spaces to the calculus of variations[END_REF]. Moreover, in [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF] the authors proved that if the quadratic form ( 6) is positive definite, then the quadratic form associated to the finitedimensional subproblem of moving the switching times with free initial point is also positive definite.

Let O be a neighborhood of the initial point x0 . Let x 0 ∈ O; define the switching time functions τ j : O → IR with

τ 0 (x 0 ) = 0 and τ j ( x0 ) = τ j , j = 1, ..., s, such that, for j = 1, ..., s, ϕ 1 (τ j (x 0 )) = p(τ j (x 0 ), x 0 , α ′ (x 0 )), Y 1 (x(τ j (x 0 ), x 0 , α ′ (x 0 ))) = 0.
In other words, τ j (x 0 ) is the j th -switching time of the extremal x(•, x 0 , α ′ (x 0 )), p(•, x 0 , α ′ (x 0 )) starting from (x 0 , α ′ (x 0 )), with x 0 close to x0 .

Since x(•) is a minimal time trajectory, there holds max

|w| 1 H( x0 , p0 , p 0 , w) = 0. Consider the set X = {x 0 ∈ O | max |w| 1 H(x 0 , α ′ (x 0 ), p 0 , w) = 0}.
We claim that X is a (n -1)-dimensional manifold 6 . Indeed, consider the map

G : O → IR x 0 → G(x 0 ) = max |w| 1 H(x 0 , α ′ (x 0 ), p 0 , w)
and the vector field h 1 (x 0 ) = X(x 0 ) + u 1 Y 1 (x 0 ) that defines the extremal trajectory x(•) on the interval [0, τ 1 (x 0 )), associated to the value u 1 that satisfies the maximization condition (4) on the referred interval. Proving that X is a (n -1)-dimensional manifold amounts to proving that, for every function α ∈ C 2 such that α ′ (x 0 ) = p 0 , there holds dG(x 0 ) 0 before the first conjugate time t c . The second variation formula given in [38, p. 275, equation ( 12)] taken at (δx, ε) = (h 1 (x 0 ), -1, 0, ..., 0) is equal to, after some simplifications, dG(x 0 ) • h 1 (x 0 ). Since the second variation is positive definite on (0, t c ) then dG(x 0 ) • h 1 (x 0 ) 0 before t c . The claim is proved.

Define the j th switching surface Σ j , for j = 1, ..., s, as the image of the mapping

x 0 → exp(τ j (x 0 ), x 0 , α ′ (x 0 )) ,
where x 0 ∈ X. Remark 1.3. If the strict bang-bang Legendre condition holds, then the flow associated to the maximized Hamiltonian crosses the switching surface Σ j at the instant τ j transversally, for j = 1, ..., s (see [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF]).

Theorem 2 ([3, 29, 30, 33]). Let ( x(•), p(•), p 0 , û1 (•)) be a bang-bang extremal for (OCP) that satisfies the strict bang-bang Legendre condition on [0, t c ), with t c < +∞. The trajectory x(•) is strong locally optimal if and only if there exists a function α ∈ C 2 with α ′ ( x0 ) = p0 such that:

• the trajectory x(•) can be embedded into the field of non-intersecting (broken) extremals (t, x 0 ) → exp(t, x 0 , α ′ (x 0 )) where x 0 ∈ O;

• this field of extremals crosses the switching surfaces Σ j transversally, for j = 1, ..., s, and for j = 1, ..., s + 1, with τ s+1 ( x0 ) = t c , the mapping

(τ j-1 (x 0 ), τ j (x 0 )) × X -→ IR n (t, x 0 ) -→ exp(t, x 0 , α ′ (x 0 ))
is of rank n.

Remark 1.4. In the conditions of Theorem 2, at the first conjugate point x(t c ), the flow of the extremal field reflects off the switching surface, causing an overlap of the flow near this surface (see Figure 1 -switching surface Σ s+1 , and see [START_REF] Ledzewicz | Optimal bang-bang controls for a two-compartment model in cancer chemotherapy[END_REF][START_REF] Noble | Sufficient conditions for relative minima of broken extremals in optimal control theory[END_REF]).

Σ s Σ s+1 Figure 1: Field of extremals Remark 1.5. Let f j (x 0 ) = X(x 0 ) + u j Y 1 (x 0
), for j = 1, ..., s + 2 and x 0 ∈ O, be the vector fields that define the extremal trajectory x(•) on (τ j-1 (x 0 ), τ j (x 0 )), with τ s+1 ( x0 ) = t c and where u j is the value (1 or -1) of the control that satisfies the maximization condition (4) in each respective interval. If we take x 0 ∈ X and j = 1, ..., s + 1, then for (t,

x 0 ) ∈ (τ j-1 , τ j ) × X det exp(t, x 0 , α ′ (x 0 )), f j (x 0 )
has constant sign (see [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF]). Moreover, the determinants

det d dx 0 exp(t, x 0 , α ′ (x 0 )) (t,x 0 )∈(τ s (x 0 ),τ s+1 (x 0 ))×X , f s+1 (x 0 ) and det d dx 0 exp(t, x 0 , α ′ (x 0 )) (t,x 0 )∈(τ s+1 (x 0 ),τ s+2 (x 0 ))×X , f s+2 (x 0 )
have different signs (see [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF]).

The computation of conjugate times in the bang-bang case is difficult in practice. In the last years several methods have been developed for the numerical implementation of second order sufficient optimality conditions (see, e.g., [START_REF] Maurer | Optimization methods for the verification of second order sufficient conditions for bang-bang controls[END_REF][START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF] and references cited therein). These numerical procedures allow the computation of the first conjugate time, for bang-bang optimal control problems with affine-control systems, whenever it exists and is attained at a j th switching time. Besides, in the smooth case, efficient tools are available, see e.g. [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF]. We next propose a regularization procedure which allows the use of these tools for the computation of the first conjugate time for the problem (OCP). However, in practice, if j is too large then the numerical computation of the first conjugate time may become very difficult either using the methods for bang-bang or smooth controls.

The regularization procedure

Let ε be a positive real parameter and let Y 2 , . . . , Y m be m -1 arbitrary smooth vector fields on IR n , where m 2 is an integer. Consider the control-affine system ẋε

(t) = X (x ε (t)) + u ε 1 (t)Y 1 (x ε (t)) + ε m i=2 u ε i (t)Y i (x ε (t)) , (7) where 
the control u ε (t) = u ε 1 (t), . . . , u ε m (t) satisfies the constraint m i=1 u ε i (t) 2 1. ( 8 
)
Consider the optimal control problem (OCP) ε of determining a trajectory x ε (•), solution of ( 7)-( 8) on [0, t ε f ], such that x ε (0) = x0 and x ε (t ε f ) = x1 , and minimizing the time of transfer t ε f . The parameter ε is viewed as a penalization parameter. The existence of at least one solution for (OCP) ε is proved in [START_REF] Silva | Smooth regularization of bang-bang optimal control problems[END_REF], and it is also proved that any solution x ε (•) of (OCP) ε converges uniformly on [0, t f ] to a solution x(•) of (OCP) when ε tends to zero (see Theorem 4).

According to the Pontryagin maximum principle, any optimal solution xε (•) of (OCP) ε , associated with controls ( ûε 1 , . . . , ûε m ) satisfying the constraint (8), is the projection of an extremal ( xε

(•), pε (•), p 0ε , ûε (•)) such that ṗε (t) = - ∂H ε ∂x ( xε (t), pε (t), p 0ε , ûε (t)) = -pε (t), ∂X ∂x ( xε (t)) -ûε 1 (t) pε (t), ∂Y 1 ∂x ( xε (t)) -ε m i=2 ûε i (t) pε (t), ∂Y i ∂x ( xε (t)) (9) 
where 

H ε (x ε , p ε , p 0ε , u ε ) = p ε , X(x ε ) + u ε 1 Y 1 (x ε ) + ε m i=2 u ε i Y i (x ε ) + p 0ε is
ûε i (t) pε (t), Y i ( xε (t)) = max m i=1 w 2 i 1        w 1 pε (t), Y 1 ( xε (t)) + ε m i=2 w i pε (t), Y i ( xε (t))        , (11) 
and two cases may occur: either the maximum is attained in the interior of the domain, or it is attained at the boundary. In the first case, there must hold

p ε (t), Y i (x ε (t)) = 0, for every i ∈ {1, . . . , m}; in particu- lar, if the m functions t → p ε (t), Y i (x ε (t)) , i = 1, . . . , m,
do not vanish simultaneously, then the maximum is attained on the boundary of the domain.

We make the following assumption. Under the Assumption 3, the maximization condition (11) yields, for i = 2, . . . , m,

ûε 1 (t) = pε (t), Y 1 ( xε (t)) pε (t), Y 1 ( xε (t)) 2 + ε 2 m i=2 pε (t), Y i ( xε (t)) 2 , ûε i (t) = ε pε (t), Y i ( xε (t)) pε (t), Y 1 ( xε (t)) 2 + ε 2 m i=2 pε (t), Y i ( xε (t)) 2 , ( 12 
)
for almost every t ∈ [0, t ε f ], and moreover the control functions ûε i (•), i = 1, . . . , m are smooth functions of t (so that the above formula holds actually for every t ∈ [0, t ε f ]). Note that this assumption implies that m n. Actually, this assumption can be weakened (see [START_REF] Silva | Smooth regularization of bang-bang optimal control problems[END_REF] for details).

Theorem 4 ([44]

). Assume that the problem (OCP) has a unique solution x(•), defined on [0, t f ], associated with a bang-bang control û1 (•) on [0, t f ]. Moreover, assume that x(•) has a unique extremal lift (up to a multiplicative scalar), which is moreover normal, denoted

( x(•), p(•), -1, û1 (•)).
Then, under the Assumption 3, there exists ε 0 > 0 such that, for every ε ∈ (0, ε 0 ), the problem (OCP) ε has at least one solution xε (•), defined on [0,

t ε f ] with t ε f t f , associated with a smooth control u ε (•) = (u ε 1 (•), . . . , u ε m (•)) satisfying the constraint (8), every ex- tremal lift of which is normal. Let ( xε (•), pε (•), -1, ûε (•))
be such a normal extremal lift. Then, as ε tends to 0,

• t ε f converges to t f ;
• xε (•) converges uniformly 7 to x(•), and pε (•) converges uniformly to p(•) on [0, t f ];

• ûε 1 (•) converges to û1 (•) and ûε i (•), i = 2, . . . , m, converge to 0 almost everywhere on [0, t f ], and thus in particular for the strong L 1 (0, t f ) topology. Remark 1.6. This result remains true if we extend forward the interval [0, t f ] on an interval [0, T ] for T ∈ I, where I is a maximal time interval of [0, +∞) containing [0, t f ].

Remark 1.7. It is assumed that the problem (OCP) has a unique solution x(•), having a unique extremal lift that is normal. Such an assumption holds true whenever the minimum time function (the value function of the optimal control problem) enjoys differentiability properties (see e.g. [START_REF] Aubin | Set-Valued Analysis[END_REF][START_REF] Clarke | The relationship between the maximum principle and dynamic programming[END_REF] for a precise relationship, see also [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF][START_REF] Rifford | Morse-Sard type results in sub-Riemannian geometry[END_REF][START_REF] Rifford | On the stabilization problem for nonholonomic distributions[END_REF][START_REF] Stefani | Regularity properties of the minimum-time map[END_REF] for results on the size of the set where the value function is differentiable).

Conjugate times in the smooth case

We recall how to define the concept of first conjugate time for the smooth optimal control problem (OCP) ε . A first possible definition of conjugate times is in terms of a quadratic form, which is the second order intrinsic derivative of the end-point mapping defined by

E(ε, t ε f , x0 , u ε ) = x ε (t ε f ) where t → x ε (ε, t, x0 , u ε
) is the trajectory solution of [START_REF] Aubin | Set-Valued Analysis[END_REF], associated to the control u ε , such that x ε (ε, 0, x0 , u ε ) = x0 . Testing a conjugate time amounts to testing the positivity of that quadratic form. However, this definition requires a corank one assumption, and we will rather use a geometric concept of conjugate time, defined below. We refer the reader to [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF] for a survey on that theory and to [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF] for extensive explanations and for the more general Morse index theory. 7 We consider any continuous extension of the extremal

( xε (•), pε (•), -1, ûε 1 (•)) on [0, t f ].
Geometric conjugate time.

Definition 1.4. Let x 0 ∈ O. The point x ε (t ε c ) is geometrically conjugate to x ε (0) if and only if the mapping

x 0 → exp ε (t ε c , x 0 , α ′ (x 0 )) is not immersive, that is, det d dx 0 exp ε (t ε c , x 0 , α ′ (x 0 )) = 0.
The time t ε c is called a geometric conjugate time.

Remark 1.8. Given an extremal ( xε (•), pε (•), p 0ε , u ε (•)), the notion of geometric conjugate time coincides with the notion of conjugate time defined in terms of quadratic form, provided the following assumptions hold:

• the strong Legendre condition holds along the extremal, that is, there exists γ > 0 such that

∂ 2 H ∂u 2 ( xε (•), pε (•), p 0ε , u ε 1 (•)) • (v, v) -γ v 2 ,
for every v ∈ IR m ;

• the control u ε is of corank one on every subinterval (assumption of strong regularity, see [START_REF] Sarychev | The index of second variation of a control system[END_REF]).

Moreover, in that case the first conjugate time t ε c characterizes the optimality status of the extremal: the trajectory xε (•) is strongly locally optimal on [0, t], for every t < t ε c ; for t > t ε c , the trajectory xε (•) is not locally optimal on [0, t] (see, e.g., [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF][START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF][START_REF] Sarychev | The index of second variation of a control system[END_REF]).

Remark 1.9. None of the two assumptions of the previous remark will be made for the extremal ( xε (•), pε (•), p 0ε , ûε (•)). In fact, our aim is to prove that the first geometric conjugate time t ε c converges to the first conjugate time t c of the bang-bang case, when ε tends to 0. This result, derived in Theorem 6 (Section 1.5), will permit to use as well in the bang-bang case the available efficient implementation procedures that exist in the smooth case, like for instance the free package COTCOT8 (see [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF]).

For normal extremals (x ε (•), p ε (•), -1, u ε (•)) that satisfy the strong Legendre condition, the absence of conjugate points is a sufficient condition for local optimality (see e.g. [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]). This sufficient optimality condition will be expressed using the extremal field approach.

Extremal field approach. From Theorem 4 every extremal lift of the problem (OCP) ε is normal (p 0ε = -1). Analogously to the bang-bang case, the aim is to construct a family of extremals containing the reference normal extremal ( xε (•), pε (•), -1, ûε (•)), sharing nice non-intersection properties before the first conjugate time.

For every

z 0 = (x 0 , p 0 ) ∈ IR n × IR n , let z ε (•, z 0 ) = (x ε (•, z 0 ), p ε (•, z 0 )
) be the solution of the system of equations ( 7) and ( 9), with the controls [START_REF] Bressan | A high order test for optimality of bang-bang controls[END_REF], such that z ε (0, z 0 ) = z 0 . The exponential mapping associated to (OCP) ε is defined by

exp ε (t, z 0 ) = x ε (t, z 0 ).
Let x 0 ∈ O and α ε : IR n → IR be a C 2 function such that α ε′ (x 0 ) = p ε (0), and such that the family of functions (α ε ) converges to the function α associated with the problem (OCP) in C 2 topology, as ε tends to 0. As in the bang-bang case, define

X ε = {x 0 ∈ O | max m i=1 w 2 i 1 H ε (x 0 , α ε′ (x 0 ), -1, w ε ) = 0} . For ε > 0 small enough, X ε is a (n -1)-dimensional manifold. Indeed, let G ε be defined on O by G ε (x 0 ) = max m i=1 w 2 i 1 H ε (x 0 , α ′ (x 0 ), -1, w ε ). It follows from Theorem 4 that G ε converges to G (defined in Sec- tion 1.
2) as ε goes to 0, and therefore, for α ∈ C 2 such that α ′ (x 0 ) = p 0 , there holds dG ε (x 0 ) 0, since dG(x 0 ) 0. Theorem 5 ([5]). If the normal extremal ( xε (•), pε (•), -1, ûε (•)) satisfies the strong Legendre condition and, moreover can be embedded into the family of extremals exp ε (t, x 0 , α ε′ (x 0 )) such that the mapping

(0, t ε c ) × X ε → IR n (t, x 0 ) → exp ε (t, x 0 , α ε′ (x 0 )) is of rank n, then ( xε (•), pε (•), -1, ûε (•)) is a local mini- mum in C 0 topology for the problem (OCP) ε .
Remark 1.10. The typical behavior of the flow of the extremal field at the first conjugate point is a fold point (see Figure 2, and see [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF][START_REF] Kiefer | Parametrized families of extremals and singularities in solutions to the Hamilton-Jacobi-Bellman equation[END_REF]).

Remark 1.11. If one considers x 0 ∈ X ε , then x ε (t ε c ) is geometrically conjugate to x ε (0) if and only if det d dx 0 exp ε (t ε c , x 0 , α ε′ (x 0 )) |X ε , f ε (x 0 ) = 0 , where f ε (x 0 ) = X(x ε (x 0 )) + ε m i=1 u ε i (x 0 , α ε′ (x 0 )
) and u ε i (x 0 , α ε′ (x 0 )) are smooth functions that satisfy the maximization condition [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF]. Remark 1.12. Note that, as long as the minimum time function is differentiable at the point xε (t), the optimal trajectory xε (•) can be embedded into a non-intersecting extremal field.

Remark 1.13. To derive a necessary optimality condition, a corank one assumption is required for the extremal ( xε (•), pε (•), p 0ε , ûε (•)) (see [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF]).

Main result

We first recall the context. Let x(•) denote the strong locally optimal trajectory of (OCP), corresponding to the control û1 on [0, t f ]. In particular, t f is the minimal time so that x(0) = x0 and x(t f ) = x1 . We extend x(•) on a maximal interval I ⊂ [0, +∞) containing [0, t f ], and denote by t c its first conjugate time. For every ε > 0, let xε (•) denote an optimal trajectory solution of (OCP) ε , corresponding to a control ûε = ( ûε 1 , . . . , ûε m ) on [0, t ε f ]. In particular, t ε f is the minimal time so that xε (0) = x0 and xε (t ε f ) = x1 . We extend xε (•) on a maximal interval of [0, +∞) containing [0, t ε f ], and denote by t ε c its first geometrically conjugate time.

Theorem 6. Assume that the problem (OCP) has a unique solution x(•), associated with a bang-bang control û1 (•), on a maximal interval I. Moreover, assume that x(•) has a unique extremal lift (up to a multiplicative scalar), which is moreover normal, and denoted by

( x(•), p(•), -1, û1 (•)). If the extremal ( x(•), p(•), -1, û1 (•))
satisfies, moreover, the strict bang-bang Legendre condition on [0, t c ], then the first geometric conjugate time t ε c converges to the first conjugate time t c as ε tends to 0. Remark 1.14. Let t cut denote the cut time along the extremal ( x(•), p(•), p 0 , û(•)). Analogously to the bangbang case, we can define the cut time t ε cut of the optimal trajectory xε (•) for the problem (OCP) ε as the first time at which xε (•) loses its optimality. We claim that, under the assumptions of Theorem 4, there holds lim sup ε→0 t ε cut t cut .

Proof of the main result

The next proposition is the key result to derive Theorem 6.

Proposition 7.

Let O be a neighborhood of x0 and x 0 ∈ O.

The exponential mapping (t, x 0 ) → exp ε (t, x 0 , α ε′ (x 0 )) converges to (t, x 0 ) → exp(t, x 0 , α ′ (x 0 )) piecewise in C 1 topology on I × O, with τ s+1 ( x0 ) = t c , as ε tends to 0. More precisely, on every compact subinterval of (τ j-1 (x 0 ), τ j (x 0 )) × O, with (τ j-1 (x 0 ), τ j (x 0 )) ⊂ I and j ∈ IN, the mapping (t, x 0 ) → exp ε (t, x 0 , α ε′ (x 0 )) converges to (t, x 0 ) → exp(t, x 0 , α ′ (x 0 )) uniformly in C 1 topology.

Proof. In what follows, when it is convenient, we simplify the notation and write exp(t, x 0 ) or x(t, x 0 ) (respectively, exp ε (t, x 0 ) or x ε (t, x 0 )) for exp(t, x 0 , α ′ (x 0 )) (respectively, for exp ε (t, x 0 , α ε′ (x 0 ))).

Let ε > 0 small enough. For x 0 ∈ O, consider the function

ϕ 1 (ε, t, x 0 ) = p(ε, t, x 0 ), Y 1 (x(ε, t, x 0 )) .
For (ε, t, x 0 ) = (0, τ j , x 0 ), by definition of the switching time, one has ϕ 1 (0, τ j , x 0 ) = 0, and by the strict bang-bang Legendre condition, ∂ϕ 1 ∂t (0, τ j , x 0 ) 0. By the implicit function theorem there exists a neighborhood (-ε 0 , ε 0 ) of 0 ∈ IR, such that for ε ∈ (-ε 0 , ε 0 ), there exists a C 1 function τ ε j (x 0 ) = τ ε j (ε, x 0 ), with j = 1, ..., s, satisfying ϕ 1 (ε, τ ε j (x 0 )) = 0 and such that, as ε tends to 0, τ ε j (x 0 ) converges to τ j (x 0 ), and ∂τ ε j ∂x 0 (x 0 ) converges to ∂τ j ∂x 0 (x 0 ). Analogously to the definition of switching time function of an extremal trajectory x(•), we have thus defined some functions τ ε j (•) : O → IR, that are however not switching functions.

Lemma 2.1. The mapping (t, x 0 ) → exp ε (t, x 0 , α ε′ (x 0 )) converges to (t, x 0 ) → exp(t, x 0 , α ′ (x 0 )) uniformly in C 1 topology on J × O, where J is any compact subinterval of [0, τ 1 (x 0 )), as ε tends to 0.

Proof. Let J be a compact subinterval of [0, τ 1 (x 0 )). The uniform C 0 convergence on J × O of the mapping (t, x 0 ) → exp ε (t, x 0 ) to (t, x 0 ) → exp(t, x 0 ), as ε tends to 0, is a direct consequence of Theorem 4. We have

∂ exp ε ∂t (t, x 0 ) = ẋε (t, x 0 )
where ẋε (t, x 0 ) is given by ( 7); from Theorem 4, ẋε (t, x 0 ) converges to ẋ(t, x 0 ) = d exp dt (t, x 0 ) as ε tend to 0. On the other hand,

d dx 0 exp ε (t, x 0 , α ε′ (x 0 )) = ∂ exp ε ∂x 0 (t, x 0 , α ε′ (x 0 )) + ∂ exp ε ∂p 0 (t, x 0 , α ε′ (x 0 ))α ε′′ (x 0 )
where ∂ exp ε ∂x 0 (t, x 0 , α ε′ (x 0 )) and ∂ exp ε ∂p 0 (t, x 0 , α ε′ (x 0 )) are solutions of the linearized system associated with the Hamiltonian system ( 7)-( 9), for the problem (OCP) ε on [0, t]. From Theorem 4, (x ε (•), p ε (•)) converges uniformly to the solution of the Hamiltonian system associated with the problem (OCP) as ε tends to 0. This convergence clearly holds as well for the solutions of the linearized system associated with the Hamiltonian system for (OCP) ε ; therefore, as ε tends to 0, ∂ exp ε ∂x 0 (t, x 0 , α ε′ (x 0 )) (respectively,

∂ exp ε ∂p 0 (t, x 0 , α ε′ (x 0 ))) converges to ∂ exp ∂x 0 (t, x 0 , α ′ (x 0 )) (re- spectively, ∂ exp ∂p 0 (t, x 0 , α ′ (x 0 ))) uniformly on [0, t].
In what follows, the notation τ + j (x 0 ) (resp. τ - j (x 0 )) stands for the right limit (resp. the left limit). For x 0 ∈ O and j = 1, ..., s, we call the jump of ∂ exp ∂x 0 (t, x 0 ) at τ j (x 0 ) the difference ∂ exp ∂x 0 (τ + j (x 0 ), x 0 ) -

∂ exp ∂x 0 (τ - j (x 0 ), x 0 ) ,
which is, according to [START_REF] Noble | Sufficient conditions for relative minima of broken extremals in optimal control theory[END_REF]Equation 3.10,p. 123] given by

∂ exp ∂x 0 (τ + j (x 0 ), x 0 ) - ∂ exp ∂x 0 (τ - j (x 0 ), x 0 ) = u 1 (τ + j (x 0 ), x 0 ) -u 1 (τ - j (x 0 ), x 0 ) Y 1 (x(τ 1 (x 0 ), x 0 )) ∂τ j ∂x 0 (x 0 ) = sign(ϕ 1 (τ + j )) -sign(ϕ 1 (τ - j )) Y 1 (x(τ j (x 0 ), x 0 )) ∂τ j ∂x 0 (x 0 ) . (13) 
Due to this jump condition one cannot expect to get a C 1 convergence result on the whole interval. We will next estimate the difference

∂ exp ε ∂x 0 (τ ε j (x 0 ) + η, x 0 ) - ∂ exp ε ∂x 0 (τ ε j (x 0 ) -η, x 0 ),
for η > 0 small, and show that it converges to [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF], whenever ε tends to 0, and then η tends to 0.

Lemma 2.2. There holds

lim η→0 lim ε→0 ∂ exp ε ∂x 0 (τ ε 1 (x 0 ) + η, x 0 ) - ∂ exp ε ∂x 0 (τ ε 1 (x 0 ) -η, x 0 ) = ∂ exp ∂x 0 (τ + 1 (x 0 ), x 0 ) - ∂ exp ∂x 0 (τ - 1 (x 0 ), x 0 ).
Proof. One has

∂ ∂t ∂x ε ∂x 0 (t, x 0 ) = ∂X ∂x 0 (x ε (t, x 0 )) + u ε 1 (t, x 0 ) ∂Y 1 ∂x 0 (x ε (t, x 0 )) +ε m i=2 u ε i (t, x 0 ) ∂Y i ∂x 0 (x ε (t, x 0 )) ∂x ε ∂x 0 (t, x 0 ) +Y 1 (x ε (t, x 0 )) ∂u ε 1 ∂x 0 (t, x 0 ) + ε m i=2 Y i (x ε (t, x 0 )) ∂u ε i ∂x 0 (t, x 0 ).
It follows that

∂x ε ∂x 0 (τ ε 1 (x 0 ) + η, x 0 ) - ∂x ε ∂x 0 (τ ε 1 (x 0 ) -η, x 0 ) = τ ε 1 (x 0 )+η τ ε 1 (x 0 )-η ∂X ∂x 0 (x ε (t, x 0 )) + u ε 1 (t, x 0 ) ∂Y 1 ∂x 0 (x ε (t, x 0 )) + ε m i=2 u ε i (t, x 0 ) ∂Y i ∂x 0 (x ε (t, x 0 )) ∂x ε ∂x 0 (t, x 0 )dt + τ ε 1 (x 0 )+η τ ε 1 (x 0 )-η Y 1 (x ε (t, x 0 )) ∂u ε 1 ∂x 0 (t, x 0 )dt + τ ε 1 (x 0 )+η τ ε 1 (x 0 )-η ε m i=2 Y i (x ε (t, x 0 )) ∂u ε i ∂x 0 (t, x 0 )dt .
It is easy to see that the limit when η tends to zero of the limit when ε tends to zero of the first and third term of the right side of the last equation is equal to zero. Only the limit term

lim η→0 lim ε→0 τ ε 1 (x 0 )+η τ ε 1 (x 0 )-η Y 1 (x ε (t, x 0 )) ∂u ε 1 ∂x 0 (t, x 0 )dt
deserves a special attention. Let us denote

ϕ ε i (t, x 0 ) = p ε (t, x 0 ), Y i (x ε (t, x 0 )) , i = 1, ..., m.
From ( 12), we compute easily

∂u ε 1 ∂x 0 (t, x 0 ) = ε 2        ∂ϕ ε 1 ∂x 0 (t, x 0 ) m i=2 ϕ ε i (t, x 0 ) 2 -ϕ ε 1 (t, x 0 ) m i=2 ϕ ε i (t, x 0 ) ∂ϕ ε i ∂x 0 (t, x 0 )               ϕ ε 1 (t, x 0 ) 2 + ε 2 m i=2 ϕ ε i (t, x 0 ) 2        3/2 .
We will consider asymptotic expansions of these quantities around τ ε 1 (x 0 ). Since ϕ ε 1 (τ ε 1 (x 0 ), x 0 ) = 0 for every x 0 , it follows that

∂ϕ ε 1 ∂x 0 (τ ε 1 (x 0 ), x 0 ) = - ∂ϕ ε 1 ∂t (τ ε 1 (x 0 ), x 0 ) ∂τ ε 1 ∂x 0 (x 0 ).
In what follows, denote τ ε 1 = (τ ε 1 (x 0 ), x 0 ). One has

τ ε 1 +η τ ε 1 -η Y ε 1 (x ǫ (t, x 0 )) ∂u ε 1 ∂x 0 (t, x 0 )dt = τ ε 1 +η τ ε 1 -η Y 1 (x ε (τ ε 1 )) + O(t -τ ε 1 )
•

ε 2 ∂ϕ ε 1 ∂x 0 (τ ε 1 ) + O(t -τ ε 1 ) m i=2 ϕ ε i (τ ε 1 ) + O(t -τ ε 1 ) 2 D - ε 2 ϕ ε 1 (τ ε 1 ) + O(t -τ ε 1 ) m i=2 ϕ ε i (τ ε 1 ) + O(t -τ ε 1 ) D • ∂ϕ ε i ∂x 0 (τ ε 1 ) + O(t -τ ε 1 ) D dt (14) 
where

D = ∂ϕ ε 1 ∂t (τ ε 1 )(t -τ ε 1 ) + o(t -τ ε 1 ) 2 + ε 2 m i=2 ϕ ε i (τ ε 1 ) + ∂ϕ ε i ∂t (τ ε 1 )(t -τ ε 1 ) + o(t -τ ε 1 ) 2 3/2
and simplifying the expression (14) (the terms of order O((tτ ε 1 ) k ) and o((tτ ε 1 ) l ), with k = 2, 3 and l = 1, 2, 3, are omitted) we get

τ ε 1 +η τ ε 1 -η Y ε 1 (x ǫ (t, x 0 )) ∂u ε 1 ∂x 0 (t, x 0 )dt = τ ε 1 +η τ ε 1 -η Y 1 (x ε (τ ε 1 )) • -ε 2 ∂ϕ ε 1 ∂t (τ ε 1 )N 1 ∂ϕ ε 1 ∂t (τ ε 1 ) 2 + ε 2 N 2 (t -τ ε 1 ) 2 + ε 2 N 3 (t -τ ε 1 ) + ε 2 N 1 3/2 ∂τ ε 1 ∂x 0 (x 0 ) + ε 2 (M 1 -M 2 )O(t -τ ε 1 ) -ε 2 ∂ϕ ε 1 ∂t (τ ε 1 )N 1 ∂τ ε 1 ∂x 0 (x 0 )O(t -τ ε 1 ) ∂ϕ ε 1 ∂t (τ ε 1 ) 2 + ε 2 N 2 (t -τ ε 1 ) 2 + ε 2 N 3 (t -τ ε 1 ) + ε 2 N 1 3/2 dt
where

N 1 = m i=2 ϕ ε i (τ ε 1 ) 2 , N 2 = m i=2 ∂ϕ ε i ∂t (τ ε 1 ) 2 , N 3 = 2 m i=2 ϕ ε i (τ ε 1 )
∂ϕ ε i ∂t (τ ε 1 )
,

M 1 = 2 ∂ϕ ε 1 ∂x 0 (τ ε 1 ) m i=2 ϕ ε i (τ ε 1 ) + m i=2 ϕ ε i (τ ε 1 ) 2 , M 2 = m i=2 ∂ϕ ε i ∂x 0 (τ ε 1 ) 2 .
Notice that the denominator never vanishes, since by Assumption 3 the functions (t, x 0 ) → ϕ i (t, x 0 ), i = 1, . . . , m do not vanish simultaneously.

The limit when η tends to zero of the limit when ε tends to zero, of the first and second term of the right side of the last equality are respectively equal to sign(ϕ 1 (τ + 1 ))sign(ϕ 1 (τ - 1 )) Y 1 (x(τ 1 (x 0 ), x 0 )) ∂τ 1 ∂x 0 (x 0 ) and 0. Since

lim ε→0 ∂τ ε 1 ∂x 0 (x 0 ) = ∂τ 1 ∂x 0 (x 0 ), it follows that lim η→0 lim ε→0 ∂x ε ∂x 0 (τ ε 1 (x 0 ) + η, x 0 ) - ∂x ε ∂x 0 (τ ε 1 (x 0 ) -η, x 0 ) = sign(ϕ 1 (τ + 1 )) -sign(ϕ 1 (τ - 1 )) Y 1 (x(τ 1 (x 0 ), x 0 )) ∂τ 1 ∂x 0 (x 0 ),
and the lemma follows.

A similar lemma holds for ∂ exp ∂p 0 . This result permits to extend the convergence result beyond the first switching time; the extension of Lemma 2.1 to every further interval (τ j-1 , τ j ) is then straightforward. This proves the proposition.

We are now in a position to prove Theorem 6. From Theorem 2, the trajectory x(•) can be embedded into the field of extremals x 0 → exp(t, x 0 , α ′ (x 0 )) with x 0 ∈ O and the mapping

(0, t c ) × X → IR n (t, x 0 ) → exp(t, x 0 , α ′ (x 0 )) is of rank n, where X = {x 0 ∈ O | max |w| 1 H(x 0 , α ′ (x 0 ), p 0 , w) = 0}, O is a neighbor- hood of x0 ,

and t c is the first conjugate time of x(•).

From Remark 1.5, the determinants

det d dx 0 exp(t, x 0 , α ′ (x 0 )) (t,x 0 )∈(τ s (x 0 ),τ s+1 (x 0 ))×X , f s+1 (x 0 )
and

det d dx 0 exp(t, x 0 , α ′ (x 0 )) (t,x 0 )∈(τ s+1 (x 0 ),τ s+2 (x 0 ))×X , f s+2 (x 0 ) have different signs, with τ s+1 ( x0 ) = t c . By Definition 1.4, the point x ε (τ ε c (x 0 )) is geometri- cally conjugate to x ε (0) = x 0 , with x 0 ∈ X ε , if and only if det d dx 0 exp ε (t, x 0 , α ε′ (x 0 )), f ε (x 0 ) |x 0 ∈X ε = 0 for t = τ ε c (x 0 ). Let x 0 ∈ X ε , we have ∂ exp ε ∂x 0 (τ ε (x 0 ), x 0 , α ε′ (x 0 )) = ∂ exp ε ∂t (τ ε (x 0 ), x 0 , α ε′ (x 0 )) ∂τ ε ∂x 0 (x 0 ) + ∂ exp ε ∂x 0 (τ ε (x 0 ), x 0 , α ε′ (x 0 )) + ∂ exp ε ∂p 0 (τ ε (x 0 ), x 0 , α ε′ (x 0 ))α ε′′ (x 0 ). Since ∂ exp ε ∂t (τ ε (x 0 ), x 0 , α ε′ (x 0 )) = ẋε (x 0 ) = f ε (x 0 ), there holds, clearly, det ∂ exp ε ∂t (τ ε (x 0 ), x 0 , α ε′ (x 0 )) ∂τ ε ∂x 0 (x 0 ), f ε (x 0 ) = 0,
and it thus follows that

det d dx 0 exp ε (τ ε (x 0 ), x 0 , α ε′ (x 0 )), f ε (x 0 ) = det ∂ exp ε ∂x 0 (τ ε (x 0 ), x 0 , α ε′ (x 0 )) + ∂ exp ε ∂p 0 (τ ε (x 0 ), x 0 , α ε′ (x 0 ))α ε′′ (x 0 ), f ε (x 0 ) = det d dx 0 exp ε (t, x 0 , α ε′ (x 0 )), f ε (x 0 )
for t = τ ε (x 0 ). By Proposition 7, on every compact subinterval of (τ j-1 (x 0 ), τ j (x 0 )), the mapping (t, x 0 ) → exp ε (t, x 0 , α ε′ (x 0 )) converges to (t, x 0 ) → exp(t, x 0 , α ′ (x 0 )) uniformly in C 1 topology, therefore the determinants

det d dx 0 exp ε (t, x 0 , α ε′ (x 0 )) (t,x 0 )∈(τ ε s (x 0 ),τ ε s+1 (x 0 ))×X ε , f ε (x 0 ) and det d dx 0 exp ε (t, x 0 , α ε′ (x 0 )) (t,x 0 )∈(τ ε s+1 (x 0 ),τ ε s+2 (x 0 ))×X ε , f ε (x 0
) have different signs before and after τ ε s+1 (x 0 ). Therefore, by continuity, the function t → det d dx 0 exp ε (t, x 0 , α ε′ (x 0 )), f ε (x 0 ) vanishes for some time, close to τ ε s+1 (x 0 ). By Definition 1.4, this time t ε c (x 0 ) is a geometrically conjugate time, and when ε tends to 0, t ε c ( x0 ) converges to the bang-bang conjugate time t c = τ s+1 ( x0 ). This ends the proof of the theorem.

Examples

In this section we illustrate Theorem 6 with two examples of minimal time control problems.

First example: the Rayleigh problem

In this section we consider the minimal time control problem for the Rayleigh control system (see e.g. [START_REF] Maurer | Second order sufficient conditions and sensitivity analysis for the controlled Rayleigh problem[END_REF][START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF]),

ẋ1 (t) = x 2 (t), ẋ2 (t) = -x 1 (t) + x 2 (t)(1.4 -0.14x 2 (t) 2 ) + u 1 (t), (15) 
with the control constraint

|u 1 (•)| 4, (16) 
and with boundary conditions given by

x 1 (0) = -4, x 2 (0) = -3, x 1 (t f ) = x 2 (t f ) = 0 . ( 17 
)
According to the Pontryagin maximum principle, any optimal solution x(•) of ( 15)-( 17) is the projection of an extremal ( x(•), p(•), p 0 , û1 (•)) such that

ṗ1 (t) = p2 (t) ṗ2 (t) = -p1 (t) -p2 (t) 1.4 -0.42 x2 (t) 2 (18) 
and the maximization condition p2 (t) û1 (t) = max |w| 4 ( p2 (t)w) holds almost everywhere on [0, t f ]. It is easy to see that p2 (•) cannot vanish on some subinterval, and it follows that the optimal control û1 (•) is bang-bang, equal to û1 (t) = 4 sign( p2 (t)). Applying a shooting method to problem (15)- [START_REF] Hestenes | Application of the theory of quadratic forms in Hilbert spaces to the calculus of variations[END_REF] (with p 0 = -1), we determine the initial adjoint vector p(0) ≃ (0.53095052; 0.34206485), and observe that the trajectory has only one switching time τ1 ≃ 0.57613128 on [0, t f ], that is, û1 (•) is given by

û1 (t) =       
+4 for 0 t τ1 -4 for τ1 t t f , with a final time t f ≃ 2.97812917 (see Figures 34). Furthermore, x(•) is the unique minimal time solution and has a unique extremal lift (up to a multiplicative scalar), which is moreover normal. Notice that the second-order sufficient conditions of [START_REF] Maurer | Optimization methods for the verification of second order sufficient conditions for bang-bang controls[END_REF][START_REF] Maurer | Second order sufficient conditions for optimal control problems with free final time: The Riccati approach[END_REF][START_REF] Maurer | Second order optimality conditions for bang-bang control problems[END_REF][START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF] are satisfied before τ2 , confirming the local optimality status of the trajectory, but are no longer satisfied beyond this second switching time; we can thus expect the trajectory not to be locally optimal beyond τ2 . To investigate this optimality status we use the extremal field approach.

From Theorem 2 and Remark 1.4, the first conjugate point x(t c ) is an overlap point of the extremal field emanating from the horizontal one-dimensional manifold X = {x 0 ∈ O | max |w| 1 H(x 0 , α ′ (x 0 ), -1, w) = 0}. In practice, the function α is not known, and we rather use the field of extremals emanating from the vertical manifold

X p = {p 0 ∈ O p | max |w| 1 H( x0 , p 0 , -1, w) = 0}
(see [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF]), where O p is a neighborhood of the initial value of the adjoint vector p(0). The characterization in terms of fold point still holds for this vertical manifold (see [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF]). We observe on Figures 56that this field of extremals reflects off the switching surface at the second switching time; the point x(τ 2 ) is a fold point and the first conjugate time is equal to the second switching time, t c = τ2 ≃ 3.14750955.

We next propose a regularization procedure, for which we compute the first geometric conjugate time t ε c and check that it indeed converges to the first conjugate time t c of the bang-bang case as ε tends to 0.

We consider the regularized control system

ẋε 1 (t) = x ε 2 (t) + εu ε 2 (t), ẋε 2 (t) = -x ε 1 (t) + x ε 2 (t)(1.4 -0.14x ε 2 (t) 2 ) + u ε 1 (t), (19) 
with the boundary conditions [START_REF] Hestenes | Application of the theory of quadratic forms in Hilbert spaces to the calculus of variations[END_REF], and where the con- 

(•) = (u ε 1 (•), u ε 2 (•)) satisfies the constraint (u ε 1 (•)) 2 + (u ε 2 (•)) 2 16. (20) 
Any optimal solution xε (•) of ( 17)-( 20 .

(

) 21 
Applying a shooting method to this problem, we determine the optimal trajectory of the regularized problem, and we indeed observe the expected convergence of ( xε (•), pε (•), -1, ûε ) towards ( x(•), p(•), -1, û1 ), as ε tends to 0, in agreement with Theorem 4 (see Figures 789). The optimal controls (21) are smooth functions of t, therefore the algorithms presented in [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF] to compute the first conjugate time along a smooth extremal curve can be applied. Here we will apply the test for conjugate times explained in [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF] when the final time is free and the extremal is normal. Let us briefly recall this test. The maximized Hamiltonian writes as Another possible test (see [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF]) is to compute numerically solutions

H ε r ( xε , pε ) = pε 0 0.5 1 1.5 2 
Z i (•) = (δx ε 1i (•), δx ε 2i (•), δp ε 1i (•), δp ε 2i (•)), i = 1, 2,
of the variational system considered previously, with initial conditions (δp ε 11 (0), δp ε 21 (0)) = (1, 0) and (δp ε 12 (0), δp ε 22 (0)) = (0, 1), and then to compute the rank of the matrix

J ε (t) = δx ε 11 (t) δx ε 21 (t) δx ε 12 (t) δx ε 22 (t)
.

This rank must be equal to 1 outside a conjugate time, and 0 at a conjugate time. In order to compute it, we use a singular value decomposition of J ε (t); then, a conjugate time occurs whenever the first singular value of J ε (t) vanishes (see Figure 11). In this first example, the first conjugate time t c of the optimal bang-bang trajectory x(•) coincides with the second switching time. We next provide an example where the first conjugate time is equal to the third switching time.

Second example

Consider the minimal time control problem for the control system ẋ1 (t) = sin(x 2 (t)), ẋ2 (t) =sin(x 1 (t)) + u 1 (t), [START_REF] Malanowski | Sensitivity analysis for state constrained optimal control problems[END_REF] with the control constraint

|u 1 (•)| 1, (23) 
and with the boundary conditions

x 1 (0) = x 2 (0) = 0, x 1 (t f ) = 2.9, x 2 (t f ) = 0.1. ( 24 
)
From the Pontryagin maximum principle, any optimal solution x(•) of ( 22)-( 24) is the projection of an extremal ( x(•), p(•), p 0 , û1 (•)) such that

ṗ1 (t) = p2 (t) cos( x1 (t)), ṗ2 (t) = -p1 (t) cos( x2 (t)),
and the maximization condition p2 (t) û1 (t) = max |w| 1 ( p2 (t)w) must hold almost everywhere on [0, t f ]. It is easy to see that p2 (•) cannot vanish on some subinterval, and it follows that the optimal control û1 (•) is bang-bang, equal to û1 (t) = sign( p2 (t)). Applying a shooting method to problem ( 22)-( 24) (with p 0 = -1),we determine the initial adjoint vector p(0) = (-0.5, 1), and observe that the trajectory has one switching time τ1 ≃ 3.26174615 on [0, t f ], that is, û1 (•) is given by û1

(t) =       
+1 for 0 t τ1 , -1 for τ1 t t f , with a final time t f ≃ 4.07756604 (see Figures 1213). Furthermore, x(•) is the unique minimal time solution and has a unique extremal lift (up to a multiplicative scalar), which is moreover normal. Prolongating the trajectory x(•) to the interval [0, 11], we observe a second switching time at τ2 ≃ 6.21787838, and a third one at τ3 ≃ 10.46930198. Considering as in the previous example the extremal field emanating from the vertical manifold, we observe on Figures 14-15 that the extremal field crosses transversally the second switching surface, but reflects off the third switching surface, and it follows from Theorem 2 that the first conjugate time t c is equal to τ3 . We propose the following regularization. Consider the control system ẋε

1 (t) = sin(x ε 2 (t)) + εu ε 2 (t), ẋε 2 (t) = -sin(x ε 1 (t)) + u ε 1 (t), (25) 
with the control constraint

(u ε 1 (•)) 2 + (u ε 2 (•)) 2 1, (26) 
and the initial and final conditions [START_REF] Maurer | First and second order sufficient optimality conditions in mathematical programming and optimal control[END_REF]. Any optimal solution xε (•) of ( 24)-( 26) is the projection of an extremal ( xε (•), pε (•), p 0 ε , ûε ( .

(

) 27 
Applying a shooting method to this problem, we determine the optimal trajectory of the regularized problem, and we indeed observe the expected convergence of ( xε (•), pε (•), -1, ûε ) towards ( x(•), p(•), -1, û1 ), as ε tends to 0, in agreement with Theorem 4 (see Fig- 27) are smooth functions of t, and we apply the algorithm described in [START_REF] Bonnard | Second order optimality conditions in the smooth case and applications in optimal control[END_REF], computing as before the determinant det δx ε 1 (t) δx ε 2 (t), f ε 1 (t) f ε 2 (t) (see Figure 19). We report on Table 3.2 the values of the first geometric conjugate time of the optimal trajectory xε (•), for different values of ε. We observe that, as expected, t ε c converges to t c as ε tends to 0. Remark 3.1. We observe on both previous examples that it is not needed to consider very small values of ε to estimate the first conjugate time t c . Indeed, a conjugate time of a locally bang-bang trajectory can only occur at a switching time (see Remark 1.2) and, under our assumptions, switching times are isolated (see Remark 1.1). From Theorem 6, the first geometric conjugate time t ε c converges to t c , when ε tend to 0. Therefore, as soon as ε is small enough so that t ε c is in a (not necessarily so small) neighborhood of some switching time τs of the bang-bang trajectory x(•), this means that the bang-bang conjugate time t c is equal to that switching time τs .

Conclusion

In this article we focused on the problem of determining an efficient procedure to compute the first conjugate time t c for the minimal time problem for single-input control-affine systems ẋ = X(x) +u 1 Y 1 (x) in IR n with the control constraint |u 1 (•)| 1. We used the asymptotic approach developed in [START_REF] Silva | Smooth regularization of bang-bang optimal control problems[END_REF] eter ε > 0, so as to come up with the minimal time problem for the system ẋ = X(x) + u ε 1 Y 1 (x) + ε m i=2 u ε i Y i (x), under the control constraint m i=1 (u ε i (•)) 2 1, with the same boundary conditions as the initial problem. Under appropriate assumptions, the optimal controls of the latter problem, depending on ε, are smooth functions of t, and the theoretical and practical results for the conjugate time theory that are well known in the smooth case can be applied to the regularized problem. We proved that the first conjugate time of regularized problem converges to the first conjugate time initial problem, when ε tends to 0. We thus get as a byproduct an efficient way to compute conjugate times in the bang-bang case. We provided examples to illustrate our result.

Note that our results still hold if the control-affine system is considered on a manifold. In this article we considered IR n for the sake of simplicity.

An open question is to extend our results to multiinput control-affine systems ẋ = X(x) + p i=1 u i Y i (x) in IR n , where u = (u 1 , ..., u p ) ∈ L ∞ ([0, t f ], ∆) and ∆ is a polyhedron (see [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian apprach[END_REF]), or a convex polyhedron (see [START_REF] Maurer | Second order sufficient conditions for time-optimal bang-bang control problems[END_REF]), or a convex compact polyhedron (see [START_REF] Sarychev | First-and second-order sufficient optimality conditions for bang-bang controls[END_REF]) of IR p . For p > 1, it would be interesting to consider the case where multiple switching times may occur, that is, when at least two control functions switch at the same time. A more general open question concerns the generalization to general cost functions, and/or more general dynamics.
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 3 The integer m and the vector fields Y 2 , . . . , Y m are chosen such that Span{Y i | i = 1, . . . , m} = IR n .

Figure 2 :

 2 Figure 2: Field of extremals in the smooth case
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Table 3 .

 3 1 the values of the first geometric conjugate time of the optimal trajectory xε (•), for different values of ε. We observe that, as expected, t ε c converges to t c ≃ 3.14750955 as ε tends to 0.

	ε	t ε c
	0.1	3.26735859
	0.01	3.1559626
	0.001	3.14844987
	0.0001 3.14760515

Table 1 :

 1 Values of t ε

	c

Table 2 :

 2 which consists in adding new smooth vector fields Y 2 , . . . , Y m and a small param-Values of t ε

	ε	t ε c
	0.1	10.01593283
	0.01	10.3164905
	0.001	10.41858121
	0.0001	10.45291892
	0.00001 10.46419119
		c

The case where the switching function may vanish on a subinterval is related to singular trajectories, and is outside of the scope of this article where we focus on the bang-bang case.

Broken extremals are associated to piecewise continuous controls.

By non-intersecting extremals we mean that for any fixed t ∈ (0, t c ) and any extremal trajectories x(•), y(•) with initial points x 0 , y 0 , respectively, with x 0 , y 0 close to x0 , we have x(t) y(t).

The argument that follows is due to L. Poggiolini.
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The aim is to compute the solution

, where

is the dynamics, given by

The first geometric conjugate time is then the first positive zero of the function t → det δx ε 1 (t) δx ε 2 (t), f ε 1 (t) f ε 2 (t) (see Figure 10).