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Abstract

We focus on the minimal time control problem for single-ibpantrol-afine systems = X(x) + u;Y1(X) in R™ with
fixed initial and final time conditiong(0) = KXo, X(t;) = X1, and where the scalar contne] satisfies the constraint
lui(-)l < 1. For these systems a concept of conjugate tirhas been defined in e.g. [3, 30, 33] in the bang-bang case.
Besides, theoretical and practical issues for conjugante theory are well known in the smooth case (see e.g. [5, 32)]),
and dficient implementation tools are available (see [11]). Tha fionjugate time along an extremal is the time at
which the extremal loses its local optimality. In this worke use the asymptotic approach developed in [44] and
investigate the convergence properties of conjugate titese precisely, foe > 0 small and arbitrary vector fields
Y1, ..., Ym, we consider the minimal time problem for the control sys€ne X(x°) + U5 Y1(x°) + & 20, UFY;(x°), under

the constrainp", (u)? < 1, with the fixed boundary condition§(0) = %o, X*(t) = %, of the initial problem. Under
appropriate assumptions, the optimal controls of therlaggularized optimal control problem are smooth, and the
computation of associated conjugate tintefalls into the standard theory; our main result asserts tmyergence,
ase tends to 0, otZ towards the conjugate timte of the initial bang-bang optimal control problem, as welitias
convergence of the associated extremals. As a byproduahtaé an icient algorithmic way to compute conjugate
times in the bang-bang case.

Keywords:
optimal control, minimal time problem, bang-bang contoanjugate time

1. Introduction constraint (2), such that the trajectoxf), solution of
(1) with x(0) = Ro, satisfiex(T) = ;.
1.1. The optimal control problem We consider the optimal control problef@CP) of

determining a solutiow(?) associated to a contral(*),
on [0, t¢], satisfying (1)—(2) and steering fo X; in min-
X = X(X) + urY1(X), (1) imal timet;. We assume that such a solutigg) Tor
(OCP) existg.
whereX andY; are smooth vector fields, and the control ~ According to the Pontryagin maximum principle (see
u; is a measurable scalar function satisfying the con- [39]), there exists a non trivial absolutely continuous

Consider the single-input controffme system in R

straint mappingp() : [0,t;] — R", calledadjoint vector and
lus(-)l < 1. 2) a real numbep® < 0, with (p(), p°) # (0, 0), such that
Let X andx; be two points of R. Assume that; p(t) = _ﬁ()ﬁ((t), p(t), p°, 01(t))
is reachable fromxg, that is, there exists a time > 0 ox ox oy 3)
and a control functionu;(-) € L*(0, T) satisfying the - _ <ﬁ(t)’ &()'Z(t))> — (b <ﬁ(t)’ a_xl()'z(t))>

, where the function
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is called theHamiltonian and the maximization condi-
tion

H(K(), B(t), p° Cu(t)) = maxH(X(t). B, W) (4)

holds almost everywhere on ,fQ]. Moreover,
maxw<1 H(X(®), p(t), p°,w) = O for everyt e [0, ts].
The quadruplexX(®), (), p°, 01(-)) is called arextremal
The extremal is saidlormal wheneverp® # 0, and in
that case it is usual to normalize the adjoint vector so
thatp® = —1; otherwise it is saicbnormal It follows
from (4) that

0 () = sign(p(t), Ya(X(D)) (5)

for almost everyt, provided that the (continuous)
switching function

ea(t) = (P(1), Ya(X(V))

does not vanish on any subinterval of {g3. Such an
extremal &), p(-), p°, 01(-)) is then completely deter-
mined by the initial adjoint vectop(0). This extremal
is a priori defined on the time interval,[Q], but since

it is completely determined by the ftBrential system
(1)—(3) and its initial condition, it may be extended for-
ward on a maximal time intervalof [0, +0), contain-
ing [O,t¢]. In this way, we consider the trajectory-)
on this maximal interval.

Note that, since(*) is optimal on [Qt¢], and since the
control system under study is autonomous, it follows
that X(-) is as well optimal for the problem of steering
the system (1) fronx(0) = Xo to X(t), for everyt €
(0, t¢].

We assume that the extremad(-§;p(-), p° 01(-)) is
bang-bangn the interval, that is, the switching func-
tion ¢1 does not vanish on any subinterval lof De-
note byi,...,7s, ... the zeros ofy; on | (possibly
in infinite number), called switching times, such that
0<71<...<75...Asexplained above, there holds

1 if t) > 0,
Oa(t) = . w0 >
-1 if ¢i(t) <O,
for everyt € 1.
We assume moreover that the extremal

(R(), p(-), p° 01()) satisfies the strict bang-bang
Legendre conditiorthat is,

P = PO EON], #0,

3The case where the switching function may vanish on a subinte
val is related to singular trajectories, and is outside efgtope of this
article where we focus on the bang-bang case.

for every switching time. This condition implies that the
switching times are isolated, and moreover are in finite
number on every compact subinterval ofn particular,

we assume that there are exactlgwitching times on
the interval [Qt¢], such that O< 71 < ... < Tg < t;.

Definition 1.1. Let T > 0, T € |I. The trajectoryx()
is said to bdocally minimal time or{0, T] in C° topol-
ogy if there exist a neighborhood/ of the trajectory
%(-) in R" and a real numbey > 0 such that, for ev-
ery trajectoryy(-) that is solution of (1), contained in
W, associated with a contrelon [0, T + 7] satisfying
the constraint (2), satisfying(0) = X, andy(t;) = X(T)
with t; € [0, T + 7], there holdg; > T.

TheCP local optimality is also calledtrong local op-
timality. The notion of global optimality is defined sim-
ilarly, with W = R" andn = +co.

The Pontryagin maximum principle mentioned for-
merly is a necessary first order condition for optimality;
conversely, extremals are not necessarily locally opti-
mal, and there have been many works on high-order
necessary optimality conditions (see e.g. [12]) and on
suficient (first and second order) optimality conditions
detailed in the next section.

1.2. Second order optimality conditions and conjugate
times for bang-bang controls

Consider the extremalx(-), p(-), p° 01(-)) of the
problem(OCP) introduced previously.

Definition 1.2. The cut time t(Xo) is defined as the
first positive time ofl beyond which the trajectony(")
loses its global optimality status for the problem of
steering the system (1)—(2) fromy fo X; in minimal
time, with the agreement thag, (%) = +c0 whenever
X(-) is globally optimal on every interval [0], T > O,

T € |. The pointtcu(Xo)) is called acut point

Whereas such a global optimality status ifidult
to characterize, the local optimality status of a trajec-
tory may be characterized using the concept of conju-
gate time, that is, the time at which the optimal trajec-
tory X(-) loses its local optimality. We next recall well
known facts on first conjugate times of solutiot{g of
the optimal control problerfOCP) associated to bang-
bang controlsi;(-).

The definition and computation of conjugate points
are an important topic in the theory of calculus of vari-
ations (see e.g. [9]). In [42] the investigation of the
definition and computation of conjugate points for min-
imal time control problems is based on the study of sec-
ond order conditions. In fact, second order necessary



andor suficient conditions are crucial for study of the main results in [35] are given in [36]. In [3] a finite-
first conjugate time of the proble(®@CP). In [46], the dimensional subproblem is considered which consists
theory of envelopes and conjugate points is used for thein moving the switching times and a second variation
study of the structure of locally optimal bang-bang tra- is defined as a certain quadratic form associated to this
jectories for the problenOCP) in R and F; these subproblem; then, finding a conjugate time consists in

results were generalized in [19]. testing the positivity of that quadratic form. The authors
prove that this can only happen at a switching time.
Second order optimality conditiondhen the optimal In [38] the minimal time problem for controlfzne

control problem has a nonlinear control system and the systems is studied. An analogous quadratic form to the
extremal controls are continuous, the literature on first one in [3] is defined, but the kind of optimality studied
andor second order gficient conditions is vast, see s a stronger one (state local optimality).
e.g. [10, 16, 21, 24, 26, 28, 31, 32, 49] and references i . .
therein. In this case numerical procedures are avail- Quadratic forms. As mentioned above the quadratic
able to test second orderfigient conditions, see e.g. orms defined in [3, 30] are equivalent (see [35, 36]),
[8, 23, 26]. For second order necessary/anduficient although the way they are defined isferent. We only
conditions of optimal control problems with nonlinear 9ive & brief sketch of a possible procedure to define the
control systems and discontinuous controls see e.g. [37]duadratic form.
and references therein. LetF(t; 11, ..., 7s) = X(t; 71, ..., Ts) be the mapping as-
We will next focus on second order necessary/and  sociated with the finite-dimensional problem associated
suficient optimality conditions for optimal control to (OCP) that consists in moving the switching times
problems with &ine-control systems and bang-bangop- 71,...,7s in a neighborhood of the reference switch-
timal controls. ing times73,...,7s (see [3, 27, 35, 36, 38]), where
In [43] a minimal time control problem forfane- X(t; 71, ..., Ts) is the trajectory solution of (1), on [€],
control systems is considered and first and second orderwith x(0) = X, associated to the bang-bang contrl)
suficient optimality conditions are derived, for bang- with switching timesry, ..., s and such that it coincides
bang Pontryagin extremal controls which afelocally with the reference trajectory(-) wheneverr; = 7; for
optimal. In [30] the same optimal control problem is everyi. Note that the trajectory(:; 7y, ..., 7s) is not the
studied and the authors providetient conditions for projection of an extremal whenever# 7;. The map-
strong local optimality and develop numerical methods ping F is well defined fort in a neighborhood of; and
to test the positive definiteness of a specific quadratic 7; in a neighborhood of; for everyi, and is the compo-
form. In both papers [43] and [30], the fégient op- sition of smooth mappings, therefore igfdrentiable.
timality conditions are expressed in terms of quadratic Denotingr = (74, ..., 7s), One has

forms, however although the same critical subspace is %, %,
used, the quadratic form in [43] is a lower bound for OF 7 () 7m0
the one in [30]. In fact, the second ordefistient opti- E(t; T4,.nTg) =] © 1 ,
mality condition in [30] is always fulfilled whenever the g_:z(,) N ngn(.)

corresponding condition in [43] is.

In[27, 30] optimization methods are given to test sec- and oF
ond order sfficient optimality conditions for optimal E(t; T1, .0, Tg) = X(t; 71, ..., Ts).
control problems with bounded scalar controls [30], and _. . . :

SincexX{") is optimal, it follows that
vector-valued controls [27].

In [3] the authors derive second ordefftient con-
ditions, under the same regularity assumptions as [30],
for an optimal control problem in the Mayer form with ) i Eo ~
fixed final time, with &fine-control systems and bang- 'ndeed, otherwise, if rar(%_(t;”""fs)) = n then
bang optimal controls. In [35] the authors showed that, F Would be a local submersion, which contradicts the
in certain cases, the second ordeffisient conditions optimality of X(-). Therefore, tpere AeX|sts a multiplier
given in [30] are equivalent to the ones in [3]. In the ¥t € R"\{0} such that - %(t;.Tl’;"’Ts) = 0. Denote
cases where the equivalence holds, the results obtained®y Qt the intrinsic second derivative of the mappifg

rank(ﬁ(t; T1, ...,%S)) <n-1
or

in [35] extend those in [3] to the problem of free fi- defined by
nal time, with mixed initial and terminal conditions of PF R
equality and inequality type. The detailed proofs of the Q= - ﬁ(t, T1,..., Ts) or I (G, ) (6)
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Explicit formulas of Q; are given in [3, 4, 30, 38]; in
particular formulas in terms of Lie brackets of the vector
fields can be derived.

The next theorem, combination of several known re-
sults, provides a necessary amdsuficient condition
for strong local optimality.

Theorem 1([3, 4, 30, 33, 38]) Let(X(-), P(-), p°, 0a ("))

be a bang-bang extremal f¢OCP) defined on a maxi-
mal time interval | of[0, +o0) containing[0, t¢]. If this
extremal satisfies the strict bang-bang Legendre condi-
tion on I, then for every & I, the following holds:

¢ Ifthe quadratic form Qis positive definite theR(-)
is a local minimizer in the €topology on0, t].

e Assume moreover thak(-) has a unique ex-
tremal lift (up to a multiplicative scalar)
(RC), P(), p°, 01())), which is moreover nor-
mal (P = —1). If X(-) is locally optimal in the €
topology o0, t] then Q is nonnegative.

Remarkl.l Under the assumptions of the Theorem 1,
the set

{t > 0| Q¢ has a nontrivial kernégl

is discrete and can only consist of some switching times
(see [3]). This remark permits to define the notion of
first conjugate time.

Definition 1.3. Thefirst conjugate timegtof X(-) is de-
fined by

tc = suft| Q¢ is positive definitg = inf{t| Q;is indefinitg .

The pointX{t;) is called thefirst conjugate poinbf the
trajectoryx{:).

Remark1.2 A conjugate time can only occur at a
switching time.

Extremal field approachSuficient optimality condi-
tions for a general optimal control problem are provided
in [33] (see also [3, 38]) with a ffierent point of view
than the one recalled in the previous paragraph. In [33]
the authors study local optimality conditions for both
continuous and piecewise continuous (including bang-
bang) controls. The shicient conditions developed in

that article are based on the method of characteristics

and the theory of extremal fields. &aient optimal-
ity conditions are given for embedding a reference tra-
jectory into a local field of broken extreméls The

4Broken extremals are associated to piecewise continuons co
trols.
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occurrence of a conjugate point is related with a so-
called overlap of the flow near the switching surface.
Second order dficient optimality conditions stated in
[33] have been tested numerically for bang-bang control
problems, see e.g. [20]. See also [47] whergicient
optimality conditions for bang-bang controls based on
the extremal field approach are studied.

In [1, 2, 3], using Hamiltonian methods and the ex-
tremal field theory, the authors construct, under certain
conditions, a non-intersecting field of state extrerhals
that covers a given extremal trajectody).” In [3] the au-
thors associate the occurrence of a conjugate point with
a fold point of the flow of the extremal field. We next
recall the Hamiltonian approach presented in [3, 38].

For everyzy = (Xo,po) € R"x R", let z(-,z) =
(X(-, 20), p(:, 20)) denote the solution of the system of
equations (1) and (3), with the control (5), such that
7(0,z5) = 75. Theexponential mapping then defined
by

expt, z0) = X(t, ).

In (OCP) as in the problems considered in [3] and [38]
the initial point is not free Xy is a fixed point of R).
To apply the Hamiltonian approach presented in [3, 38],
we consider &C? functiona : R" — R such that
@’ (Xo) = Po, wherea' (xg) denote%ﬁ(xo) andpo = p(0).
The functiona represents a penalization on the initial
point X, and a new finite-dimensional subproblem is
considered, with free initial point(Xo), that consists in
moving the switching times and minimizirgXp) + t:.
The existence of a functioa in the previous con-
ditions was proved in [17]. Moreover, in [38] the au-
thors proved that if the quadratic form (6) is positive
definite, then the quadratic form associated to the finite-
dimensional subproblem of moving the switching times
with free initial point is also positive definite.

Let O be a neighborhood of the initial poirg.” Let
Xo € O; define theswitching time functions; : O — R
with

To(X) =0 and 7j(X0) =75, j=1,..,8
suchthat, foj = 1,..., s,

¢1(7j(%0)) =
(p(7j(X0), X0, @’ (X0)), Y1(X(7j(X0), X0, @' (X0)))) = O.

5By non-intersecting extremals we mean that for any fiked
(0, tc) and any extremal trajectorieg-), y(-) with initial points X, Yo,
respectively, withxo, yo close toxg, we havex(t) # y(t).



In other words, 7j(X) is the jM-switching time of
the extremak(-, Xo, @’ (X)), P(:, X0, @’ (Xo)) starting from
(%0, @' (X0)), With Xg close toxj.

Since X{*) is a minimal time trajectory, there holds

Im‘gi(H(ﬁo, Po, p°, w) = 0. Consider the set
Wi

X = {Xo € O| maxH(xo, @ (xo), p°, W) = 0}.
<1

We claim thatX is a (1 — 1)-dimensional manifoli In-
deed, consider the map

G:0-R
Xo > G(Xo) = ImaxH(xO, @' (%), p° w)

wi<1
and the vector fielchi(xg) = X(xo) + u1Y1(Xo) that
defines the extremal trajectory(-) on the interval
[0,71(x0)), associated to the value; that satisfies
the maximization condition (4) on the referred inter-
val. Proving thatX is a (h — 1)-dimensional manifold
amounts to proving that, for every functian € C?
such thata’(xg) = po, there holdsdG(xy) # O be-
fore the first conjugate tim&. The second variation
formula given in [38, p. 275, equation (12)] taken at
(6%, &) = (h1(x0), -1, 0, ..., 0) is equal to, after some sim-
plifications,dG(xo) - h1(Xp). Since the second variation
is positive definite on (@) thendG(xo) - hi(Xg) # O
beforet;. The claim is proved.

Define thej™ switching surfac&;, for j = 1, ..., s, as
the image of the mapping

Xo > €XP(rj(Xo), X0, @’ (X0)) ,

wherexg € X.

Remarkl.3. If the strict bang-bang Legendre condition
holds, then the flow associated to the maximized Hamil-
tonian crosses the switching surfaeat the instant;
transversally, foj = 1, ..., s(see [3]).

Theorem 2([3, 29, 30, 33]) Let(X(-), p(-), p°, 01(")) be
a bang-bang extremal fqOCP) that satisfies the strict
bang-bang Legendre condition ¢, tc), with t; < +oo.
The trajectoryX(-) is strong locally optimal if and only
if there exists a function € C? with o’ (%) = Po such
that:

e the trajectoryX(-) can be embedded into the field
of non-intersecting (broken) extrema( X;) —
exp(. Xo. a’(Xo)) where ¥ € O;

6The argument that follows is due to L. Poggiolini.

o this field of extremals crosses the switching sur-
facesX; transversally, for j= 1,..,s, and for
j=1,...,s+ 1, withts;1(Xo) = t¢, the mapping

(tj-1(x0), Tj(X0)) X X — R"
(t, x0) — expt, %o, @’ (X0))

is of rank n.

Remarkl.4. In the conditions of Theorem 2, at the first
conjugate poink(t.), the flow of the extremal field re-
flects df the switching surface, causing an overlap of
the flow near this surface (see Figure 1 - switching sur-
faceXg,1, and see [20, 33)).

z:s+l

Figure 1: Field of extremals

Remark1.5. Let fj(xo) = X(Xo) + u;Y1(xo), for j =
1,...s+ 2 andxg € O, be the vector fields that define
the extremal trajectory(-) on (rj-1(xo), 7j(Xo0)), with
7s+1(X0) = tc and whereu; is the value (1 or-1) of
the control that satisfies the maximization condition (4)
in each respective interval. If we takge € X and
i=1,..,s+1,thenfor{ Xo) € (tj-1,7j) X X

det(exp(t, X0, @’ (X0)), fj(Xo))

has constant sign (see [38]).
Moreover, the determinants

det{ 3 exPt. 0./ 66)

dXo P fs+l(XO))

(t.X0)€(Ts(X0). Ts41(X0))x X

and

det{ 3 et 0.0/ 0)

» ,mmﬂ

(t.X0)€(Ts11(X0):Tsr2(X0)) XX

have diferent signs (see [38]).

The computation of conjugate times in the bang-bang
case is diicult in practice. In the last years several



methods have been developed for the numerical imple- where He(x, p?, p%, u®) = (p%, X(X°) + u7Y1(x?) +
mentation of second order ffigcient optimality condi- €2, WY (X)) + p% is the Hamiltonian, and

tions (see, e.g., [27, 30] and references cited therein).

These numerical procedures allow the computation of H*(X°(t), p*(t), p%, 08(t) = max HE((1), p°(1), p%, w)
the first conjugate time, for bang-bang optimal control IR wist (10)

roblems with &ine-control systems, whenever it exists N
P y almost everywhere on [€]. Moreover, the maximized

and is attained at #" switching time. Besides, in the A L
) . Hamiltonian is equal to 0 on [@]. The maximization
smooth case,fBcient tools are available, see e.g. [11]. " . f
condition (10) turns into

We next propose a regularization procedure which al-
lows the use of these tools for the computation of the m
first conjugate time for the probleg®CP). However, O7()(P°(M), Yi(Xo (D)) + ez 07 (@R (), Yi(xe (1))

in practice, ifj is too large then the numerical compu- i=2

tation of the first conjugate time may become very dif- R R m R R

ficult either using the methods for bang-bang or smooth = MaX | wa (), Ya(X*(1))) + SZWi(IOE(t), YN |

Is. =1 =2
controls (12)
1.3. The regularization procedure and two cases may occur: either the maximum is at-
N tained in the interior of the domain, or it is attained
Lete be a positive real parameter and ¥t.... Ym  at the boundary. In the first case, there must hold
bem - 1 arlpltrary smooth vector fields on"Rwhere (PE(L), Yi(XE(t))) = O, forevenyi € {1, ..., m}; in particu-
m > 2 is an integer. Consider the contrdliae system lar, if themfunctionst - (p?(t), (¢ (1)), i = 1,...,m,
m do not vanish simultaneously, then the maximum is at-
(1) = X € (1) + W R)Y1 (¢(D) + 82 W)Y (€ (1)). tained on the boundary of the domain.
= We make the following assumption.

(7) , , .
where the contralé(t) = (ui(t),...,uﬁq(t)) satisfies the  Assumption 3. The integerm and the vector fields
constraint Y, ..., Ym are chosen such that

m
2
(@) <1 ®) SparfY; [i=1,...,m} = R".
i=1

Under the Assumption 3, the maximization condition

Consider the optimal control problef®@CP), of deter- (11) yields, fori = 2......m

mining a trajectoryx®(), solution of (7)—(8) on [Ot{],

such that¢(0) = X, and X‘s(t‘?) = X3, and minimizing - (PE(D), Ya(RE (1))
the time of transfet?. The parametes is viewed asa  Uj(t) = = ,
penalization parameter. The existence of at least one so- 85 (1), Ya (RE(H)))2 + £2 8 (1), Y, (5 (D)2
lution for (OCP), is proved in [44], and it is also proved (PO Ya(W)+ e ;@ O YxO)
that any solutions®(-) of (OCP), converges uniformly . (P, Yi(RE (D))
on [0, t;] to a solutionx(-) of (OCP) whene tends to ar(t) = — )
zefo (see Theorem4). - (PO, V(R )2 + 62 Y (B0, Yi(X (V)
According to the Pontryagin maximum principle, any —
optimal solutionx®(-) of (OCP),, associated with con- (12)
trols (U, . . ., g) satisfying the constraint (8), is the pro-
jection of an extremal€{-), p°(-), p%, 0°(-)) such that for almost everyt € [0, t{], and moreover the control
functionsu(-), i = 1,...,mare smooth functions df
Ac OH® ooy aen) 0 o hat th formula hol lly f
pe(t) = - Ix (% (1), (L), p%, CE()) Egotgt])att e above formula holds actually for every
s HflJ
 aepn OX noron | aerm OY1 0 Note that this assumption implies that > n. Ac-
T <p ®. &(Xé(t))> - 0.0 <p ®. W(X‘B(t))> tually, this assumption can be weakened (see [44] for
details).

m 6Y|
—& ) M) (P°(t), —(X(t
8; ,()<p ® 5X( ())> Theorem 4 ([44]). Assume that the proble©OCP)
9) has a unique solutiof(-), defined o0, t;], associated



with a bang-bang contrdl;(-) on [0, t;]. Moreover, as-
sume thatk(-) has a unique extremal lift (up to a mul-
tiplicative scalar), which is moreover normal, denoted
(X(), B(), =1, Ta()).

Then, under the Assumption 3, there exists> 0
such that, for every € (0, &), the problem(OCP),
has at least one solutio®’(-), defined on0, t] with
t7 < tf, associated with a smooth controf(y =
(U7 (), ..., up(+) satisfying the constrain8), every ex-
tremal lift of which is normal. Lef%®(-), p°(:), =1, 0°("))
be such a normal extremal lift. Then, asends ta0,

. t‘? converges togt

e %°(-) converges uniformfyto X(-), and p*(-) con-

verges uniformly t@(-) on[0, t¢];

03 (-) converges tai (-) and(-), i = 2,...,m, con-
verge to0 almost everywhere d@, t;], and thus in
particular for the strong £(0, t;) topology.

Remarkl.6. This result remains true if we extend for-
ward the interval [0t;] on an interval [QT] for T € I,
wherel is a maximal time interval of [O+c0) containing

[0, tf].

Remarkl.7. It is assumed that the problef@CP) has

a unique solutiorx(*), having a unique extremal lift that

is normal. Such an assumption holds true whenever the
minimum time function (the value function of the op-
timal control problem) enjoys tferentiability proper-
ties (see e.g. [7, 15] for a precise relationship, see also
[13, 40, 41, 45] for results on the size of the set where
the value function is dierentiable).

1.4. Conjugate times in the smooth case

We recall how to define the concept of first con-
jugate time for the smooth optimal control problem
(OCP),. A first possible definition of conjugate times
is in terms of a quadratic form, which is the second or-
der intrinsic derivative of thend-point mappindefined
by E(e, t{, %o, U%) = X*(t7) wheret = X°(e, t, Xo, U°) is
the trajectory solution of (7), associated to the control
u?, such that®(e, 0, Xo, U°) = Xo. Testing a conjugate
time amounts to testing the positivity of that quadratic
form. However, this definition requires a corank one as-
sumption, and we will rather use a geometric concept
of conjugate time, defined below. We refer the reader
to [11] for a survey on that theory and to [5] for exten-
sive explanations and for the more general Morse index
theory.

“We consider any continuous extension of the extremal
(%), (), -1, 05(-)) on [0, t].

Geometric conjugate time.

Definition 1.4. Let xo € O. The pointx®(tf) is geo-
metrically conjugateo x?(0) if and only if the mapping
Xo > eXPF(tE, Xo, @’ (Xo)) is not immersive, that is,

det(& exp (t2, Xo, o/(Xo))) =0.

The timet is called ageometric conjugate time

Remarkl.8. Given an extremalxT.), p°(-), p®, u?(-)),
the notion of geometric conjugate time coincides with
the notion of conjugate time defined in terms of
guadratic form, provided the following assumptions
hold:

e the strong Legendre condition holds along the ex-
tremal, that is, there exiss> 0 such that

&H

2 X 0. P70, P, () - (%) < —yIvIP,

for everyv e R™;

o the control¥ is of corank one on every subinterval
(assumption o$trong regularity see [42]).

Moreover, in that case the first conjugate titheharac-
terizes the optimality status of the extremal: the trajec-
tory X¢(-) is strongly locally optimal on [(X], for every

t < t&; fort > tg, the trajectoryx®(:) is not locally opti-
mal on [Qt] (see, e.g., [5, 11, 42]).

Remark 1.9. None of the two assumptions of the
previous remark will be made for the extremal
(2 (), p°(), p%, 0e(-)). In fact, our aim is to prove that
the first geometric conjugate ting converges to the
first conjugate time. of the bang-bang case, when
tends to 0. This result, derived in Theorem 6 (Sec-
tion 1.5), will permit to use as well in the bang-bang
case the availablefiecient implementation procedures
that exist in the smooth case, like for instance the free
packageCOTCOTP (see [11)).

For normal extremalsx((-), p®(-), —1, ué(-)) that sat-
isfy the strong Legendre condition, the absence of con-

jugate points is a gficient condition for local optimality

(see e.g. [B]). This diicient optimality condition will
be expressed using the extremal field approach.

8Conditions  of  Order
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Extremal field approachFrom Theorem 4 every ex-
tremal lift of the problem(OCP), is normal (%
—-1). Analogously to the bang-bang case, the aim is
to construct a family of extremals containing the ref-
erence normal extremakq("), p?(-), -1, 0?(-)), sharing
nice non-intersection properties before the first conju-
gate time.

For everyzy = (Xo,pPo) € R"x R", let Z(-,2) =
(¢(-, 20), P°(» 20)) be the solution of the system of equa-
tions (7) and (9), with the controls (12), such that
Z(0,z5) = zp. The exponential mapping associated to
(OCP), is defined by

exp(t, 20) = X°(t, 20).

Let Xg € O ande® : R" — R be aC? function such
thata®’(xg) = p?(0), and such that the family of func-
tions (@°) converges to the functiom associated with
the problem(OCP) in C? topology, ass tends to 0. As
in the bang-bang case, define

X? ={x € 0| mv?ZX H?(xo, @' (X0), —1, WwF) = 0} .

m 1

=1

For e > 0 small enoughX?® is a (h — 1)-dimensional
manifold. Indeed, leG® be defined o0 by G#(Xy) =
maxgm w2<1 H?(Xo, @’ (X0), —1,w?). It follows from
Theorem 4 thaG® converges tdG (defined in Sec-
tion 1.2) ase goes to 0, and therefore, far € C?
such that’(Xp) = po, there hold=dG*(xp) # 0, since
dG(xo) # O.

Theorem 5 ([5]). If the normal extremal
(), p°(-), -1, 0°(-)) satisfies the strong Legendre
condition and, moreover can be embedded into the
family of extremalsex@(t, Xo, @*’(Xo)) such that the

mapping
O)xX* - R
(t. X)) — exg(t X, e (X))
is of rank n, then(%¢(-), p°(-), —1, U°(-)) is a local mini-
mum in & topology for the probleniOCP),..

Remark1.1Q The typical behavior of the flow of the
extremal field at the first conjugate point is a fold point
(see Figure 2, and see [5, 18]).

Remarkl.11 If one considersg € X?, thenx®(t?) is
geometrically conjugate & (0) if and only if

d , .
de 5 exif (. 0.0 (X (xO>) _0,

where f&(xg) = X(X¥(xo)) + SZ U7 (o, @’ (%0)) and

i=1
u’(xo, @*’(x0)) are smooth functions that satisfy the
maximization condition (11).

Figure 2: Field of extremals in the smooth case

Remarkl.12 Note that, as long as the minimum time
function is diterentiable at the point(t), the optimal
trajectory>®(-) can be embedded into a non-intersecting
extremal field.

Remark1.13 To derive a necessary optimality condi-
tion, a corank one assumption is required for the ex-

tremal ¢ (), P°(), p*, 0 () (see [11]).

1.5. Main result

We first recall the context. Let(-) denote the strong
locally optimal trajectory of QCP), corresponding to
the controluy on [0, t¢]. In particular,t; is the minimal
time so thax(0) = X andX{ts) = %;. We extendk(:) on
a maximal interval c [0, +o0) containing [Qt¢], and
denote byt its first conjugate time. For every> 0, let
*¢(-) denote an optimal trajectory solution ddCP).,
corresponding to a controf = (0f, ..., 0p) on [0, tf].
In particular,t{ is the minimal time so that*(0) = %o
andx®(t) = X;. We extendx®(-) on a maximal interval
of [0, +o0) containing [Qt{], and denote by its first
geometrically conjugate time.

Theorem 6. Assume that the problefOCP) has a
unigque solutiork(-), associated with a bang-bang con-
trol 0;1(-), on a maximal interval I. Moreover, assume
that X(-) has a unique extremal lift (up to a multiplica-
tive scalar), which is moreover normal, and denoted by
(X() P(), =1, Ta()). If the extremalX(), (), -1, Ua())
satisfies, moreover, the strict bang-bang Legendre con-
dition on|0, t;], then the first geometric conjugate time
t¢ converges to the first conjugate timease tends to 0.

Remark1.14 Let ty, denote the cut time along the
extremal &{-), p(-), p° Q(-)). Analogously to the bang-
bang case, we can define that time { of the op-
timal trajectoryx®(:) for the problem QCP). as the
first time at whichx®(-) loses its optimality. We claim



that, under the assumptions of Theorem 4, there holdswherex®(t, xo) is given by (7); from Theorem 4¢(t, Xo)

lim supt?,

-0

cut XX < tCUt

2. Proof of the main result

The next proposition is the key result to derive Theo-
rem 6.

Proposition 7. Let O be a neighborhood
of X and » € O. The exponential map-
ping (t,x) + exp(t, xo,a*’ (X)) converges to
(t,X0) +— expt, xo,a’ (X)) piecewise in & topol-
ogy on Ix O, with 151(X) = t;, ase tends to O.
More precisely, on every compact subinterval of
(71-10%), 71(%0)) X O, With (rj1(%), 7i(%)) < I and

j € N, the mapping(t, o) expi(t, o, @' (Xo))
converges tdt, Xo) — expf, Xo, @’'(Xo)) uniformly in Ct
topology.

Proof. In what follows, when it is convenient, we sim-
plify the notation and write exjy(xo) or X(t, Xo) (respec-
tively, exp(t, Xo) or x°(t, Xo)) for exp(, o, @’(Xo)) (re-
spectively, for exf(t, xo, @*’ (X0))).

Let & > 0 small enough. Fogy € O, consider the
function

¢l(85 t’ XO) = <p(8’ t5 X0)5 Yl(X(S, t5 XO)))

For (e, t, Xo) = (0, 7j, Xo), by definition of the switch-
ing time, one hag1(0,7j,%) = 0, and by the strict
bang-bang Legendre conditio%(O,%j,Xo) # 0. By
the implicit function theorem there exists a neighbor-
hood (&g, g09) of 0 € R, such that fore € (—&o, o),
there exists &' function r%(xg) = rg(s Xp), with j =
1.5 satlsfy|ng¢p1(s,r (%)) =0 and such that, as

tends to Org(xo) converges ta;(xo), and i (xo) con-

verges toﬁ—XO(xo).

Analogously to the definition of switching time func-
tion of an extremal trajectory(-), we have thus defined
some functions‘]?(-) : O — R, that are however not
switching functions.

Lemma 2.1. The mappindt, Xp) — exp(t, Xo, @’ (Xo))
converges tdt, Xo) — expf, Xo, @’ (Xo)) uniformly in Ct
topology on Jx O, where J is any compact subinterval
of [0, T1(Xp)), ase tends to 0.

Proof. Let J be a compact subinterval of ,[B(Xp)).
The uniformC® convergence od x O of the mapping

(t, %0) = exp(t, Xo) to (t, Xo) = exp(. o), ase tends to
0, is a direct consequence of Theorem 4. We have

0 exp9

(t, X0) = X°(t, X0)

converges to(t, xo) = 2(t, xo) ase tend to 0. On the
other hand,

0 exp9

d exp(t, Xo, @ (X)) = (t, X0, @’ (X0))

dx
66G0Xm6%mwf%m)

6exU

where Bex’j (t, X0, @®'(X)) and (t, X0, @®’'(Xo)) are
solut|0ns of the linearized system associated with
the Hamiltonian system (7)-(9), for the problem
(OCP), on [0,t]. From Theorem 4, X(-), p?("))
converges uniformly to the solution of the Hamilto-
nian system associated with the problé@CP) as
¢ tends to 0. This convergence clearly holds as
well for the solutions of the linearized system associ-
ated with the Hamiltonian system f¢©CP),; there-

fore, ase tends to 0,22E (t, xo. (X)) (respectively,
52 (t, X0, @' (%)) converges td2(t, xo, @’ (X)) (re-

aJexp

dpo O

spectively, == (t, Xo, @’ (Xp))) uniformly on [Q t].

In what follows, the notatior’rj*(xo) (resp. r]?(xo))
stands for the right limit (resp. the left limit). Feg € O
andj = 1, ..., s, we call thejump of ‘%‘f’(t, Xo) at7j(Xo)
the difference

6ex N

e CICONOR

which is, accordlng to [33, Equation 3.10, p. 123] given
by

6exp

%0

—( 7(X0), X0) ,

77 (X0), Xo) — —( 7 (X0), Xo)

4“““ﬁm‘mﬁ“®MWMmﬂmmm@%m

@W@W»Smm&mﬂNMWMW—%)
(13)
Due to this jump condition one cannot expect to get a
C! convergence result on the whole interval. We will
next estimate the fference

6ep9

——— (7 (%) + 1, %0) - (TE(XO) 1, X0),

forn > 0 small, and show that it converges to (13),
wheneveg tends to 0, and theptends to 0.

Lemma 2.2. There holds

(71(X0) + 1. %0) =
0 exp

oexp
lim |
im |m( %

n—0e—-0

ﬁ@wrmm)

71(X0), Xo) —

(Tl(xO) Xo).



Proof. One has
9 (9%
ot \ 0xo

(t, xO>) = (5200 x0) + U0 5 (¢ 30)

+sZug(t xo)—(f(t xO»)—(t )

ZZY

It follows that

O (50 + 7 0) -
75 (%0)+1 X
- L(XO) ) (%(Xé(t X0)) + Uy t, Xo) (>é(t X0))
+sz us(t, Xo)—(X"’“(t Xo))) (t Xo)dt

71 (X0)+7
)
71 (X0)-7
(%)t M
+ Yi
Lgn 222

i(Xo)*I] i=2

Itis easy to see that the limit whertends to zero of the
limit when ¢ tends to zero of the first and third term of

the right side of the last equation is equal to zero. Only

the limit term

o 75 (X0)+77
lim lim f
120620 Jri(xg)n

deserves a special attention. Let us denote

@i (t, X0) = (P°(L, Xo), Yi(X*(t, X0))), i = 1,....m
From (12), we compute easily

68

(t Xo) =

& [”“”1 (t. Xo) Z ¢t %0)” - @5, %0) Z ¢t Xo) (t, Xo)]

]3/2

[goi(t, Xo)? + &2 Z ¢t %o0)?

i=2

We will consider asymptotic expansions of these quan-

tities aroundr;(Xo). Sincey;(75(Xo), Xo) = 0 for every
Xo, it follows that

10

In what follows, denote; = (77(Xo), Xo). One has

T+
\%4
T5-n !

1

f‘rj +n
-1

1

(5 + 0t -9) ). (¢ + 0t - 79)
i=2

(Y20 (z5)) + Ot - 75))

] .
&2 (g5(r5) + Ot - 19)) > (¢(e3) + Oft - 75))
i=2
B D
d¢f
( 9L (22) + O(t - Tl))
. 5 ]dt
(14)
where

0
D= (5 ALt -15) + oft - )’

v ) (e + DD +ot-=p) )
i=2

and simplifying the expression (14) (the terms of order

O((t—7%)%) ando((t— 7%)"), withk = 2,3 andl = 1,2, 3,
are omitted) we get

- o
[ ot

1=
Ti+n
=] )
—s2% (25N,
(((6‘;71 (Ta)) + 82N2) (t—75)? + &2N3(t — 75) + £2Ny

£2(M1 — Mp)O(t — 7°) — 2244 (5)Ny 6X; (%)O(t - %)

671
)3/2 9%

32
(((M (T‘B)) +& Nz) (t—75)% + &2N3(t — 75) + sZNl)

= (%0)



where From Remark 1.5, the determinants

m m A 2 d ,
1= ) (#@) s N = Z( m (T‘i)) : dell gy &Pt Y0 S - fs”(x‘)))
i=2 i=2
~ N and
N3 _zz% Pt |
det| — expt, xo, @’  f
(d)(o Pt X0 @ (XO))‘(t,xo)e(‘fsﬂui(xo)ﬁsafz(xo))xx s+2(XO))

My = 2—(rl> Z oh(r) + Z (@)

i=2 have diterent signs, withrs,1(Xo) = tc.
@ By Definition 1.4, the pointx®(7&(Xo)) is geometri-
M; = Zzl (3)(0(71)) : cally conjugate to®(0) = xg, With Xo € X#, if and only
= if

Notice that the denominator never vanishes, since by d
Assumption 3 the functionst,(xo) — ¢i(t,Xo), i = det(& exp(t, Xo, @' (X0)), fg(Xo)leEXe-) =0
1,...,mdo not vanish simultaneously.
The limit whenn tends to zero of the limit when  fort = 75(xo). Let xo € X¢, we have
¢ tends to zero, of the first and second term of the

right side of the last equality are respectively equal Jexp -~ o
to (signier(r]) - signfea(r1))) Ya(X(ra (), %0)) 22 () (000,07 00)
and 0. Since = 22 (10 50.0” (1) 5 (00
67’1 o ’
15009 = 5209, + 22 (), 0 )
it follows that 6 Fy(‘l’ (XO) Xo, @ 6’(X0))(I'5N(Xo).
im i oxe
i)+ - ) Since 2% (+(x). 0.0 (x0)) = 5 () = 1), there
oty holds, clearly,
= (signe1(t7)) — signfe1(t7))) Ya(X(1(%0), XO))_(XO)
oexp , ., o or® _
and the lemma follows. O det( ot (%0, %o, (XO)) (XO) r (XO))_

A similar lemma holds fo£2®. This result permits to and it thus follows that

extend the convergence result beyond the first switching d o y ‘

time; the extension of Lemma 2.1 to every further inter- det(—d exp’(r°(Xo), %o, @' (X0)), fa(Xo))
: . : X0

val (rj-1,7j) is then straightforward. This proves the

proposition. O =de t( (T (X0), X0, @ (X0))
We are now in a position to prove Theorem 6. From " 5 Ff 72(%o0). %o, @ (Xo)) " (%o). (%o
Theorem 2, the trajectory(-) can be embedded into the dpo (7" (x0). %o, " (o)) (x0). 15 ))

field of extremalss — expt, Xo, @’ (Xp)) wWith X9 € O

d s &’ &
and the mapping = det(a exp(t, Xo, @' (X)), f (Xo))

(0,t) x X - R" for t = 7°(Xp). By Proposition 7, on every com-
(t, Xo) — expt, Xo, @’ (X)) pact subinterval of 1j_1(Xo), 7j(X0)), the mapping
(t,x0) — exp(t, xo, @*'(Xo)) converges tot(xg) +—

is of rank n, where X = {Xo € expt, Xo, a’(Xo)) uniformly in C* topology, therefore the
ol maxH(xO o' (%), p°,w) = 0}, O is a neighbor- determinants

hood of X0, and t. is the first conjugate time of d X : 3

o det| — exg(t, %o, @®’ , fe

(). dxo pt xo. 2" (0)) (LX0)E(TE (o). 75, (Xo)) XX (XO))

11



and
dati (o)

&P (€. %0.0°/00)|

(EX0)e(T, 1 (%0). 72, , (K0))xXe”
have diferent signs before and afters ,(xo).
Therefore, by continuity, the functiont
det( 4% exF(t, xo, @' (%)), f°(x)) vanishes for some
time, close torg, ,(Xo). By Definition 1.4, this time
té(Xo) is a geometrically conjugate time, and when
tends to 0f5(Xo) converges to the bang-bang conjugate
timet; = 7s11(X0). This ends the proof of the theorem.

3. Examples

In this section we illustrate Theorem 6 with two ex-
amples of minimal time control problems.

3.1. First example: the Rayleigh problem

In this section we consider the minimal time control
problem for the Rayleigh control system (see e.g. [25,
30D,

() = Xa(t).

%o(t) = —Xa(t) + Xo(t)(1.4 — 0.14%2()?) + uy(t), (19)
with the control constraint
u()l < 4, (16)
and with boundary conditions given by
x1(0) = -4, %2(0) = -3, x(tr) = %(tr) = 0. (17)

According to the Pontryagin maximum principle, any
optimal solutionx() of (15)—(17) is the projection of an
extremal &), P(-), p°, G1(-)) such that

Pu(D) = o)
Pa(t) = ~Pu(t) - Pa(t) (L4~ 0.42%()°)

and the maximization conditionp,(t)0y(t) =
maxuwi<a (P2(t)w) holds almost everywhere on,[3].

It is easy to see thap,(*) cannot vanish on some
subinterval, and it follows that the optimal control
0;(-) is bang-bang, equal toy(t) = 4sign((t)).
Applying a shooting method to problem (15)-(17)
(with p° = —1), we determine the initial adjoint vector
p(0) ~ (0.53095052; B4206485), and observe that the
trajectory has only one switching time = 0.57613128
on [0, t¢], that is,uy(:) is given by

. +4 for 0<t
0a(t) = {

(18)

1

<
<y,

-4 for 74 <t
12

with a final timet; ~ 2.97812917 (see Figures 3-4).
Furthermore x(*) is the unique minimal time solution

and has a unique extremal lift (up to a multiplicative
scalar), which is moreover normal.

Figure 3: Optimal trajectory Figure 4: Optimal control

Prolongating the trajectoryx() to the interval
[0,4], we observe a second switching time at =
3.14750955.

Notice that the second-orderfBaient conditions of
[27, 28, 29, 30] are satisfied beforg, tonfirming the
local optimality status of the trajectory, but are no longer
satisfied beyond this second switching time; we can thus
expect the trajectory not to be locally optimal beyand ™
To investigate this optimality status we use the extremal
field approach.

From Theorem 2 and Remark 1.4, the first conju-
gate pointx{tc) is an overlap point of the extremal field
emanating from the horizontal one-dimensional mani-
fold X = {xg € O] m%H(XO’a,(XO)’_l’W) = 0L In

practice, the functiorr is not known, and we rather
use the field of extremals emanating from the vertical
manifold X, = {po € Opl Irn‘gi(H(io, Po, -1, W) = 0O}

Wi

(see[11, 38]), wher@, is a neighborhood of the initial
value of the adjoint vectgp(0). The characterization in
terms of fold point still holds for this vertical manifold
(see [38]). We observe on Figures 5-6 that this field of
extremals reflectsfbthe switching surface at the sec-
ond switching time; the point(7,) is a fold point and
the first conjugate time is equal to the second switching
time,tc = 7o ~ 3.14750955.

We next propose a regularization procedure, for
which we compute the first geometric conjugate tithe
and check that it indeed converges to the first conjugate
timet. of the bang-bang case asends to 0.

We consider the regularized control system

() = %5(0) + (D).

- ‘ ‘ 2y e (L9)
XE(1) = —XE (1) + X5(1)(1.4 - 0.14x5(1)%) + u5(1),

with the boundary conditions (17), and where the con-
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Figure 6: Overlap of the flow

trol u®(-) = (u3(-), u5(")) satisfies the constraint
(UF())? + (u5()* < 16, (20)

Any optimal solutionx®(-) of (17)—(20) is the projection
of an extremal X°(-), p°(-), p%, 0°(-)) such that

P3O = P5(1)
P5(D) = —P5(t) — P5(t) (1.4 - 0.42%5(1)°) .

The Assumption 3 is verified, and the controls that sat-
isfy the Pontryagin maximization condition (11) are
given by

) - ——2)
JB50)2 + 2B (0)2 "
50 = 20

J07 + 25002

Applying a shooting method to this problem, we de-
termine the optimal trajectory of the regularized prob-

of (X(-), p°(-), -1, &¥) towards &{-), p(:), -1,01), ase
tends to 0, in agreement with Theorem 4 (see Figures 7—
9).

epsilon=0

++o epsilon=0.1
epsilon=0.01 | |

-16

-15
0

3t

” L A " L

Figure 9: Control

The optimal controls (21) are smooth functiong of
therefore the algorithms presented in [11] to compute

lem, and we indeed observe the expected convergencehe first conjugate time along a smooth extremal curve

13



can be applied. Here we will apply the test for conjugate
times explained in [11] when the final time is free and
the extremal is normal. Let us briefly recall this test.
The maximized Hamiltonian writes as

2/\
4e°p]

V(P)? + £2(p))?

+ PSR + R5(L4 - 0.14(%5)%) +

HA (%, p°) = L[ %, +

4p;
V(057 + &2(pD)?

The aim is to compute the solutiorz?(:)
(6x§(-),6x§(-),6p§(-),6p§(-))T of the so-called varia-
tional systemZz?(t) V(t)Z4(t) along the extremal
(%°(), P°(")), where

-1

[ SEEEEO. W) ZEEW. p)
V(t)_ OPHE [ op A 0°H? [ 5e Ac
SZEEWD.P0) -G (RO. )

with initial conditions ¢x](0),6x5(0)) (0,0)
and ¢pj(0),0p5(0)) such that the scalar product
((f7(0), £5(0)). (6p3(0), 6p5(0))) is equal to O, where
(f7, £5) is the dynamics, given by

4p5 (1)

2 = X51) + —m——=.
1) =% VP52 +2(P ()2

£2(1) = —xe(t) + X5(0)(1.4 — 0.14x(1)2) + ——20
5(0) = =50 + X5(0)( %)+ T e
The first geometric conjugate time is then

the first positive zero of the functiont
det(6x:(t) $x5(t). F2(t) f5(t)) (see Figure 10).

—

10

Figure 10: Determinants(= 0.01)

We report on Table 3.1 the values of the first geo-
metric conjugate time of the optimal trajectoty(-), for
different values ok. We observe that, as expectéefl,
converges td, ~ 3.14750955 as tends to 0.

14

& t2

0.1 3.26735859
0.01 3.1559626
0.001 | 3.14844987
0.0001 | 3.14760515

Table 1: Values ofg

Another possible test (see [11]) is to compute numer-
ically solutionsZz;(-) = (6x3;(-), 0%5(-), p5 (), op5(-)),
[ 1,2, of the variational system considered previ-
ously, with initial conditions ¢p{,(0), 6p5,(0)) = (1,0)
and ¢p;,(0),9p5,(0)) = (0, 1), and then to compute the
rank of the matrix

(5%, 6%, ()
o= (6x%i<t) 6x§i<t))'

This rank must be equal to 1 outside a conjugate time,
and 0 at a conjugate time. In order to compute it, we
use a singular value decompositionft); then, a con-
jugate time occurs whenever the first singular value of
Jé(t) vanishes (see Figure 11).

120
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Figure 11: First singular value gf(t) (¢ = 0.01)

In this first example, the first conjugate tintge of
the optimal bang-bang trajectory(-)" coincides with
the second switching time. We next provide an exam-
ple where the first conjugate time is equal to the third
switching time.

3.2. Second example

Consider the minimal time control problem for the
control system

x1(t) = sin(xz(t)),

Xo(t) = —sin(xy(t)) + ua(t), (22)



with the control constraint )

lu ()l < 1, (23)
and with the boundary conditions
x1(0) = %2(0) = 0, xa(tr) = 2.9, Xo(tr) = 0.1 (24) g

From the Pontryagin maximum principle, any optimal
solution X{-) of (22)—(24) is the projection of an ex-
tremal &-), P(-), p°, 01(-)) such that

Pa(t) = Pa(t) cosEa (1)), | .
P(t) = —Pa(t) cosfa(t)), Figure 14: Extremal field, € [0, 11]

and the maximization conditionpy(t)0y(t) =
maxuw<1 (P2(t)w) must hold almost everywhere on
[0,t¢]. It is easy to see thap,(-) cannot vanish on

some subinterval, and it follows that the optimal e
controlUy(-) is bang-bang, equal tm () = sign(pz(t)). '
Applying a shooting method to problem (22)-(24) b
(with p° = —1),we determine the initial adjoint vector =
p(0) = (-0.5,1), and observe that the trajectory has one 2 34
switching timer] ~ 3.26174615 on [(X¢], that is, U1 () 36
is given by -38

() = {+1 for 0<t<t,

_1 for T1 < t < tf, 1.7 18 1.9 )i 21 22 23

with a final timet; ~ 4.07756604 (see Figures 12—13).
Furthermorex() is the unique minimal time solution
and has a unique extremal lift (up to a multiplicative
scalar), which is moreover normal.

Figure 15: Zoom on the overlap of the flow at the third switghime

) We propose the following regularization. Consider
o the control system

- x1(t) = sin(;(1)) + sux(t),

o . . S A (25)
. X5(1) = —sin(x(1)) + ui(t),
| I E— with the control constraint
Figure 12: Optimal trajectory Figure 13: Optimal control (Ui())z + (u;())z <1, (26)
Prolongating the trajectoryx() to the interval  and the initial and final conditions (24). Any optimal so-
[0,11], we observe a second switching timerat = lution %¢(-) of (24)—(26) is the projection of an extremal
6.21787838, and a third oneaf = 10.46930198. Con-  (g¢(.), p*(-), p*, 0¢(-)) such that
sidering as in the previous example the extremal field
emanating from the vertical manifold, we observe on PU 5
Figures 14-15 that the extremal field crosses transver- F_A)i(t) - pZA(:) COS(}G(F))’
sally the second switching surface, but refledtstioe p5(t) = —Pi(t) cos(t)),
third switching surface, and it follows from Theorem 2
that the first conjugate timig is equal tors. and the maximization condition implies that the ex-

15



tremal controls are given by

) - ——20
JB50)2 + 2B (0)2 .
05(0) = il -
JB50)2 + 2B (0)2

Applying a shooting method to this problem, we de-
termine the optimal trajectory of the regularized prob-
lem, and we indeed observe the expected convergence
of (X(-), p°(-), -1, &) towards &-), p(-),-1,01), ase
tends to O, in agreement with Theorem 4 (see Fig-
ures 16-18).

/
Va4
/

eps
e
[

Figure 17: Adjoint vector

As in the previous example, the controls (27) are
smooth functions of, and we apply the algorithm de-
scribed in [11], computing as before the determinant
det(6x5(t) $x5(t). F2(t) f5(t)) (see Figure 19).

We report on Table 3.2 the values of the first geo-
metric conjugate time of the optimal trajectoty(-), for
different values ok. We observe that, as expectéfl,
converges td. ase tends to 0.

16

+++ epsilon=0.1
epsilon=0.01

Figure 18: Control

20
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Figure 19: Determinants(= 0.1)

Remark3.1. We observe on both previous examples
that it is not needed to consider very small values of
¢ to estimate the first conjugate time Indeed, a con-
jugate time of a locally bang-bang trajectory can only
occur at a switching time (see Remark 1.2) and, under
our assumptions, switching times are isolated (see Re-
mark 1.1). From Theorem 6, the first geometric conju-
gate timetg converges td., whene tend to 0. Therefore,

as soon as is small enough so thdf is in a (not nec-
essarily so small) neighborhood of some switching time
74 of the bang-bang trajectory(-}, this means that the
bang-bang conjugate tintg is equal to that switching
time 7s.

3.3. Conclusion

In this article we focused on the problem of determin-
ing an dficient procedure to compute the first conjugate
time t. for the minimal time problem for single-input
control-dfine systems = X(x) +u; Y1(x) in R" with the
control constrainfu;(-)] < 1. We used the asymptotic
approach developed in [44] which consists in adding
new smooth vector field%,, .. ., Y, and a small param-



& t2 3]
0.1 10.01593283
0.01 10.3164905 ]
0.001 10.41858121
0.0001 | 1045291892
0.00001| 1046419119 (5]

Table 2: Values of¢ (6]

(7]
(8]

etere > 0, so as to come up with the minimal time prob-
lem for the systenx = X(x) + U Y1(X) + £ 2, UFYi(X),
under the control constrai®", (u*(-))*> < 1, with the
same boundary conditions as the initial problem. Un- g
der appropriate assumptions, the optimal controls of the
latter problem, depending an are smooth functions of

t, and the theoretical and practical results for the conju-
gate time theory that are well known in the smooth case [17)
can be applied to the regularized problem. We proved
that the first conjugate time of regularized problem con-
verges to the first conjugate time initial problem, when
etends to 0. We thus get as a byproduct fiitcent way

to compute conjugate times in the bang-bang case. We
provided examples to illustrate our result.

Note that our results still hold if the controffae
system is considered on a manifold. In this article we
considered Rfor the sake of simplicity.

An open question is to extend our results to multi-
input control-dfine systemx = X(X) + Zip:1 U Yi(x) in
R", whereu (Ug, ...,up) € L=([0,ts],A) and A is
a polyhedron (see [38]), or a convex polyhedron (see
[30]), or a convex compact polyhedron (see [43]) ¢ R
For p > 1, it would be interesting to consider the case
where multiple switching times may occur, that is, when
at least two control functions switch at the same time. A [18]
more general open question concerns the generalization
to general cost functions, afodt more general dynam-  [19]
ics.

[20]

12]
[13]

[14]

[15]

[16]

17
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