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Abstract

We focus on the minimal time control problem for single-input control-affine systems ˙x = X(x) + u1Y1(x) in IRn with
fixed initial and final time conditionsx(0) = x̂0, x(t f ) = x̂1, and where the scalar controlu1 satisfies the constraint
|u1(·)| 6 1. For these systems a concept of conjugate timetc has been defined in e.g. [3, 30, 33] in the bang-bang case.
Besides, theoretical and practical issues for conjugate time theory are well known in the smooth case (see e.g. [5, 32]),
and efficient implementation tools are available (see [11]). The first conjugate time along an extremal is the time at
which the extremal loses its local optimality. In this work,we use the asymptotic approach developed in [44] and
investigate the convergence properties of conjugate times. More precisely, forε > 0 small and arbitrary vector fields
Y1, ...,Ym, we consider the minimal time problem for the control systemẋε = X(xε)+uε1Y1(xε)+ε

∑m
i=2 uεi Yi(xε), under

the constraint
∑m

i=1(uεi )
2 6 1, with the fixed boundary conditionsxε(0) = x̂0, xε(t f ) = x̂1 of the initial problem. Under

appropriate assumptions, the optimal controls of the latter regularized optimal control problem are smooth, and the
computation of associated conjugate timestεc falls into the standard theory; our main result asserts the convergence,
asε tends to 0, oftεc towards the conjugate timetc of the initial bang-bang optimal control problem, as well asthe
convergence of the associated extremals. As a byproduct, weobtain an efficient algorithmic way to compute conjugate
times in the bang-bang case.

Keywords:
optimal control, minimal time problem, bang-bang control,conjugate time

1. Introduction

1.1. The optimal control problem

Consider the single-input control-affine system in IRn

ẋ = X(x) + u1Y1(x), (1)

whereX andY1 are smooth vector fields, and the control
u1 is a measurable scalar function satisfying the con-
straint

|u1(·)| 6 1. (2)

Let x̂0 and x̂1 be two points of IRn. Assume that ˆx1

is reachable from ˆx0, that is, there exists a timeT > 0
and a control functionu1(·) ∈ L∞(0,T) satisfying the
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constraint (2), such that the trajectoryx(·), solution of
(1) with x(0) = x̂0, satisfiesx(T) = x̂1.

We consider the optimal control problem(OCP) of
determining a solution ˆx(·) associated to a control ˆu1(·),
on [0, t f ], satisfying (1)–(2) and steering ˆx0 to x̂1 in min-
imal time t f . We assume that such a solution ˆx(·) for
(OCP) exists2.

According to the Pontryagin maximum principle (see
[39]), there exists a non trivial absolutely continuous
mappingp̂(·) : [0, t f ] → IRn, calledadjoint vector, and
a real numberp0 6 0, with (p̂(·), p0) , (0, 0), such that

˙̂p(t) = −∂H
∂x

(x̂(t), p̂(t), p0, û1(t))

= −
〈

p̂(t),
∂X
∂x

(x̂(t))

〉

− û1(t)

〈

p̂(t),
∂Y1

∂x
(x̂(t))

〉 (3)

where the function

H(x, p, p0, u1) = 〈p,X(x) + u1Y1(x)〉 + p0

2See e.g. [14] for existence results of optimal solutions.
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is called theHamiltonian, and the maximization condi-
tion

H(x̂(t), p̂(t), p0, û1(t)) = max
|w|61

H(x̂(t), p̂(t), p0,w) (4)

holds almost everywhere on [0, t f ]. Moreover,
max|w|61 H(x̂(t), p̂(t), p0,w) = 0 for every t ∈ [0, t f ].
The quadruple ( ˆx(·), p̂(·), p0, û1(·)) is called anextremal.
The extremal is saidnormal wheneverp0

, 0, and in
that case it is usual to normalize the adjoint vector so
that p0 = −1; otherwise it is saidabnormal. It follows
from (4) that

û1(t) = sign〈p̂(t),Y1(x̂(t))〉 (5)

for almost every t, provided that the (continuous)
switching function

ϕ1(t) = 〈p̂(t),Y1(x̂(t))〉

does not vanish on any subinterval of [0, t f ]3. Such an
extremal ( ˆx(·), p̂(·), p0, û1(·)) is then completely deter-
mined by the initial adjoint vector ˆp(0). This extremal
is a priori defined on the time interval [0, t f ], but since
it is completely determined by the differential system
(1)–(3) and its initial condition, it may be extended for-
ward on a maximal time intervalI of [0,+∞), contain-
ing [0, t f ]. In this way, we consider the trajectory ˆx(·)
on this maximal intervalI .

Note that, since ˆx(·) is optimal on [0, t f ], and since the
control system under study is autonomous, it follows
that x̂(·) is as well optimal for the problem of steering
the system (1) from ˆx(0) = x̂0 to x̂(t), for every t ∈
(0, t f ].

We assume that the extremal ( ˆx(·), p̂(·), p0, û1(·)) is
bang-bangon the intervalI , that is, the switching func-
tion ϕ1 does not vanish on any subinterval ofI . De-
note by τ̂1, . . . , τ̂s, ... the zeros ofϕ1 on I (possibly
in infinite number), called switching times, such that
0 < τ̂1 < . . . < τ̂s . . . As explained above, there holds

û1(t) =















1 if ϕ1(t) > 0,

−1 if ϕ1(t) < 0,

for everyt ∈ I .
We assume moreover that the extremal

(x̂(·), p̂(·), p0, û1(·)) satisfies the strict bang-bang
Legendre condition, that is,

ϕ̇1(τ̂ j) =
d
dt
〈p̂(t),Y1(x̂(t))〉

∣

∣

∣

∣

t=τ̂ j

, 0,

3The case where the switching function may vanish on a subinter-
val is related to singular trajectories, and is outside of the scope of this
article where we focus on the bang-bang case.

for every switching time. This condition implies that the
switching times are isolated, and moreover are in finite
number on every compact subinterval ofI . In particular,
we assume that there are exactlys switching times on
the interval [0, t f ], such that 0< τ̂1 < ... < τ̂s < t f .

Definition 1.1. Let T > 0, T ∈ I . The trajectory ˆx(·)
is said to belocally minimal time on[0,T] in C0 topol-
ogy if there exist a neighborhoodW of the trajectory
x̂(·) in IRn and a real numberη > 0 such that, for ev-
ery trajectoryy(·) that is solution of (1), contained in
W, associated with a controlv on [0,T + η] satisfying
the constraint (2), satisfyingy(0) = x̂0 andy(t1) = x̂(T)
with t1 ∈ [0,T + η], there holdst1 > T.

TheC0 local optimality is also calledstrong local op-
timality. The notion of global optimality is defined sim-
ilarly, with W = IRn andη = +∞.

The Pontryagin maximum principle mentioned for-
merly is a necessary first order condition for optimality;
conversely, extremals are not necessarily locally opti-
mal, and there have been many works on high-order
necessary optimality conditions (see e.g. [12]) and on
sufficient (first and second order) optimality conditions
detailed in the next section.

1.2. Second order optimality conditions and conjugate
times for bang-bang controls

Consider the extremal ( ˆx(·), p̂(·), p0, û1(·)) of the
problem(OCP) introduced previously.

Definition 1.2. The cut time tcut(x̂0) is defined as the
first positive time ofI beyond which the trajectory ˆx(·)
loses its global optimality status for the problem of
steering the system (1)–(2) from ˆx0 to x̂1 in minimal
time, with the agreement thattcut(x̂0) = +∞ whenever
x̂(·) is globally optimal on every interval [0,T], T > 0,
T ∈ I . The pointx̂(tcut(x̂0)) is called acut point.

Whereas such a global optimality status is difficult
to characterize, the local optimality status of a trajec-
tory may be characterized using the concept of conju-
gate time, that is, the time at which the optimal trajec-
tory x̂(·) loses its local optimality. We next recall well
known facts on first conjugate times of solutions ˆx(·) of
the optimal control problem(OCP) associated to bang-
bang controls ˆu1(·).

The definition and computation of conjugate points
are an important topic in the theory of calculus of vari-
ations (see e.g. [9]). In [42] the investigation of the
definition and computation of conjugate points for min-
imal time control problems is based on the study of sec-
ond order conditions. In fact, second order necessary
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and/or sufficient conditions are crucial for study of the
first conjugate time of the problem(OCP). In [46], the
theory of envelopes and conjugate points is used for the
study of the structure of locally optimal bang-bang tra-
jectories for the problem(OCP) in IR2 and IR3; these
results were generalized in [19].

Second order optimality conditions.When the optimal
control problem has a nonlinear control system and the
extremal controls are continuous, the literature on first
and/or second order sufficient conditions is vast, see
e.g. [10, 16, 21, 24, 26, 28, 31, 32, 49] and references
therein. In this case numerical procedures are avail-
able to test second order sufficient conditions, see e.g.
[8, 23, 26]. For second order necessary and/or sufficient
conditions of optimal control problems with nonlinear
control systems and discontinuous controls see e.g. [37]
and references therein.

We will next focus on second order necessary and/or
sufficient optimality conditions for optimal control
problems with affine-control systems and bang-bang op-
timal controls.

In [43] a minimal time control problem for affine-
control systems is considered and first and second order
sufficient optimality conditions are derived, for bang-
bang Pontryagin extremal controls which areL1-locally
optimal. In [30] the same optimal control problem is
studied and the authors provide sufficient conditions for
strong local optimality and develop numerical methods
to test the positive definiteness of a specific quadratic
form. In both papers [43] and [30], the sufficient op-
timality conditions are expressed in terms of quadratic
forms, however although the same critical subspace is
used, the quadratic form in [43] is a lower bound for
the one in [30]. In fact, the second order sufficient opti-
mality condition in [30] is always fulfilled whenever the
corresponding condition in [43] is.

In [27, 30] optimization methods are given to test sec-
ond order sufficient optimality conditions for optimal
control problems with bounded scalar controls [30], and
vector-valued controls [27].

In [3] the authors derive second order sufficient con-
ditions, under the same regularity assumptions as [30],
for an optimal control problem in the Mayer form with
fixed final time, with affine-control systems and bang-
bang optimal controls. In [35] the authors showed that,
in certain cases, the second order sufficient conditions
given in [30] are equivalent to the ones in [3]. In the
cases where the equivalence holds, the results obtained
in [35] extend those in [3] to the problem of free fi-
nal time, with mixed initial and terminal conditions of
equality and inequality type. The detailed proofs of the

main results in [35] are given in [36]. In [3] a finite-
dimensional subproblem is considered which consists
in moving the switching times and a second variation
is defined as a certain quadratic form associated to this
subproblem; then, finding a conjugate time consists in
testing the positivity of that quadratic form. The authors
prove that this can only happen at a switching time.

In [38] the minimal time problem for control affine
systems is studied. An analogous quadratic form to the
one in [3] is defined, but the kind of optimality studied
is a stronger one (state local optimality).

Quadratic forms.As mentioned above the quadratic
forms defined in [3, 30] are equivalent (see [35, 36]),
although the way they are defined is different. We only
give a brief sketch of a possible procedure to define the
quadratic form.

Let F(t; τ1, ..., τs) = x(t; τ1, ..., τs) be the mapping as-
sociated with the finite-dimensional problem associated
to (OCP) that consists in moving the switching times
τ1, . . . , τs in a neighborhood of the reference switch-
ing times τ̂1, . . . , τ̂s (see [3, 27, 35, 36, 38]), where
x(t; τ1, ..., τs) is the trajectory solution of (1), on [0, t],
with x(0) = x̂0, associated to the bang-bang controlu1(·)
with switching timesτ1, ..., τs and such that it coincides
with the reference trajectory ˆx(·) wheneverτi = τ̂i for
everyi. Note that the trajectoryx(·; τ1, ..., τs) is not the
projection of an extremal wheneverτi , τ̂i . The map-
ping F is well defined fort in a neighborhood oft f and
τi in a neighborhood of ˆτi for everyi, and is the compo-
sition of smooth mappings, therefore is differentiable.
Denotingτ = (τ1, ..., τs), one has

∂F
∂τ

(t; τ1, ..., τs) =





























∂x1
∂τ1

(·) . . . ∂x1
∂τs

(·)
...

...
...

∂xn
∂τ1

(·) . . . ∂xn
∂τs

(·)





























,

and
∂F
∂t

(t; τ1, ..., τs) = ẋ(t; τ1, ..., τs).

Sincex̂(·) is optimal, it follows that

rank

(

∂F
∂τ

(t; τ̂1, ..., τ̂s)

)

6 n− 1.

Indeed, otherwise, if rank
(

∂F
∂τ

(t; τ̂1, ..., τ̂s)
)

= n then
F would be a local submersion, which contradicts the
optimality of x̂(·). Therefore, there exists a multiplier
ψt ∈ IRn\{0} such thatψt · ∂F

∂τ
(t; τ̂1, ..., τ̂s) = 0. Denote

by Qt the intrinsic second derivative of the mappingF,
defined by

Qt = ψt ·
∂2F
∂τ2

(t; τ̂1, ..., τ̂s)
∣

∣

∣

∣

ker ∂F
∂τ

(t;τ̂1,...,τ̂s)
. (6)
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Explicit formulas ofQt are given in [3, 4, 30, 38]; in
particular formulas in terms of Lie brackets of the vector
fields can be derived.

The next theorem, combination of several known re-
sults, provides a necessary and/or sufficient condition
for strong local optimality.

Theorem 1([3, 4, 30, 33, 38]). Let (x̂(·), p̂(·), p0, û1(·))
be a bang-bang extremal for(OCP) defined on a maxi-
mal time interval I of[0,+∞) containing[0, t f ]. If this
extremal satisfies the strict bang-bang Legendre condi-
tion on I, then for every t∈ I, the following holds:

• If the quadratic form Qt is positive definite then̂x(·)
is a local minimizer in the C0 topology on[0, t].

• Assume moreover that̂x(·) has a unique ex-
tremal lift (up to a multiplicative scalar)
(x̂(·), p̂(·), p0, û1(·)), which is moreover nor-
mal (p0 = −1). If x̂(·) is locally optimal in the C0

topology on[0, t] then Qt is nonnegative.

Remark1.1. Under the assumptions of the Theorem 1,
the set

{t > 0 | Qt has a nontrivial kernel}

is discrete and can only consist of some switching times
(see [3]). This remark permits to define the notion of
first conjugate time.

Definition 1.3. Thefirst conjugate time tc of x̂(·) is de-
fined by

tc = sup{t |Qt is positive definite} = inf{t |Qt is indefinite} .

The pointx̂(tc) is called thefirst conjugate pointof the
trajectoryx̂(·).

Remark1.2. A conjugate time can only occur at a
switching time.

Extremal field approach.Sufficient optimality condi-
tions for a general optimal control problem are provided
in [33] (see also [3, 38]) with a different point of view
than the one recalled in the previous paragraph. In [33]
the authors study local optimality conditions for both
continuous and piecewise continuous (including bang-
bang) controls. The sufficient conditions developed in
that article are based on the method of characteristics
and the theory of extremal fields. Sufficient optimal-
ity conditions are given for embedding a reference tra-
jectory into a local field of broken extremals4. The

4Broken extremals are associated to piecewise continuous con-
trols.

occurrence of a conjugate point is related with a so-
called overlap of the flow near the switching surface.
Second order sufficient optimality conditions stated in
[33] have been tested numerically for bang-bang control
problems, see e.g. [20]. See also [47] where sufficient
optimality conditions for bang-bang controls based on
the extremal field approach are studied.

In [1, 2, 3], using Hamiltonian methods and the ex-
tremal field theory, the authors construct, under certain
conditions, a non-intersecting field of state extremals5

that covers a given extremal trajectory ˆx(·). In [3] the au-
thors associate the occurrence of a conjugate point with
a fold point of the flow of the extremal field. We next
recall the Hamiltonian approach presented in [3, 38].

For everyz0 = (x0, p0) ∈ IRn × IRn, let z(·, z0) =
(x(·, z0), p(·, z0)) denote the solution of the system of
equations (1) and (3), with the control (5), such that
z(0, z0) = z0. Theexponential mappingis then defined
by

exp(t, z0) = x(t, z0).

In (OCP) as in the problems considered in [3] and [38]
the initial point is not free ( ˆx0 is a fixed point of IRn).
To apply the Hamiltonian approach presented in [3, 38],
we consider aC2 function α : IRn → IR such that
α′(x̂0) = p̂0, whereα′(x0) denotes∂α

∂x (x0) andp̂0 = p̂(0).
The functionα represents a penalization on the initial
point x̂0 and a new finite-dimensional subproblem is
considered, with free initial pointα(x̂0), that consists in
moving the switching times and minimizingα(x̂0) + t f .

The existence of a functionα in the previous con-
ditions was proved in [17]. Moreover, in [38] the au-
thors proved that if the quadratic form (6) is positive
definite, then the quadratic form associated to the finite-
dimensional subproblem of moving the switching times
with free initial point is also positive definite.

Let O be a neighborhood of the initial point ˆx0. Let
x0 ∈ O; define theswitching time functionsτ j : O → IR
with

τ0(x0) = 0 and τ j(x̂0) = τ̂ j , j = 1, ..., s,

such that, forj = 1, ..., s,

ϕ1(τ j(x0)) =

〈p(τ j(x0), x0, α
′(x0)),Y1(x(τ j(x0), x0, α

′(x0)))〉 = 0.

5By non-intersecting extremals we mean that for any fixedt ∈
(0, tc) and any extremal trajectoriesx(·), y(·) with initial points x0, y0,
respectively, withx0, y0 close to ˆx0, we havex(t) , y(t).
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In other words,τ j(x0) is the jth-switching time of
the extremalx(·, x0, α

′(x0)), p(·, x0, α
′(x0)) starting from

(x0, α
′(x0)), with x0 close to ˆx0.

Since x̂(·) is a minimal time trajectory, there holds
max
|w|61

H(x̂0, p̂0, p
0,w) = 0. Consider the set

X = {x0 ∈ O | max
|w|61

H(x0, α
′(x0), p0,w) = 0}.

We claim thatX is a (n− 1)-dimensional manifold6. In-
deed, consider the map

G : O → IR

x0 7→ G(x0) = max
|w|61

H(x0, α
′(x0), p0,w)

and the vector fieldh1(x0) = X(x0) + u1Y1(x0) that
defines the extremal trajectoryx(·) on the interval
[0, τ1(x0)), associated to the valueu1 that satisfies
the maximization condition (4) on the referred inter-
val. Proving thatX is a (n − 1)-dimensional manifold
amounts to proving that, for every functionα ∈ C2

such thatα′(x0) = p0, there holdsdG(x0) , 0 be-
fore the first conjugate timetc. The second variation
formula given in [38, p. 275, equation (12)] taken at
(δx, ε) = (h1(x0),−1, 0, ..., 0) is equal to, after some sim-
plifications,dG(x0) · h1(x0). Since the second variation
is positive definite on (0, tc) then dG(x0) · h1(x0) , 0
beforetc. The claim is proved.

Define thejth switching surfaceΣ j , for j = 1, ..., s, as
the image of the mapping

x0 7→ exp(τ j(x0), x0, α
′(x0)) ,

wherex0 ∈ X.

Remark1.3. If the strict bang-bang Legendre condition
holds, then the flow associated to the maximized Hamil-
tonian crosses the switching surfaceΣ j at the instant ˆτ j

transversally, forj = 1, ..., s (see [3]).

Theorem 2([3, 29, 30, 33]). Let (x̂(·), p̂(·), p0, û1(·)) be
a bang-bang extremal for(OCP) that satisfies the strict
bang-bang Legendre condition on[0, tc), with tc < +∞.
The trajectoryx̂(·) is strong locally optimal if and only
if there exists a functionα ∈ C2 with α′(x̂0) = p̂0 such
that:

• the trajectoryx̂(·) can be embedded into the field
of non-intersecting (broken) extremals(t, x0) 7→
exp(t, x0, α

′(x0)) where x0 ∈ O;

6The argument that follows is due to L. Poggiolini.

• this field of extremals crosses the switching sur-
facesΣ j transversally, for j = 1, ..., s, and for
j = 1, ..., s+ 1, with τs+1(x̂0) = tc, the mapping

(τ j−1(x0), τ j(x0)) × X −→ IRn

(t, x0) 7−→ exp(t, x0, α
′(x0))

is of rank n.

Remark1.4. In the conditions of Theorem 2, at the first
conjugate point ˆx(tc), the flow of the extremal field re-
flects off the switching surface, causing an overlap of
the flow near this surface (see Figure 1 - switching sur-
faceΣs+1, and see [20, 33]).

Σs
Σs+1

Figure 1: Field of extremals

Remark1.5. Let f j(x0) = X(x0) + u jY1(x0), for j =
1, ..., s+ 2 andx0 ∈ O, be the vector fields that define
the extremal trajectoryx(·) on (τ j−1(x0), τ j(x0)), with
τs+1(x̂0) = tc and whereu j is the value (1 or−1) of
the control that satisfies the maximization condition (4)
in each respective interval. If we takex0 ∈ X and
j = 1, ..., s+ 1, then for (t, x0) ∈ (τ j−1, τ j) × X

det
(

exp(t, x0, α
′(x0)), f j(x0)

)

has constant sign (see [38]).
Moreover, the determinants

det

(

d
dx0

exp(t, x0, α
′(x0))

∣

∣

∣

∣

(t,x0)∈(τs(x0),τs+1(x0))×X
, fs+1(x0)

)

and

det

(

d
dx0

exp(t, x0, α
′(x0))

∣

∣

∣

∣

(t,x0)∈(τs+1(x0),τs+2(x0))×X
, fs+2(x0)

)

have different signs (see [38]).

The computation of conjugate times in the bang-bang
case is difficult in practice. In the last years several
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methods have been developed for the numerical imple-
mentation of second order sufficient optimality condi-
tions (see, e.g., [27, 30] and references cited therein).
These numerical procedures allow the computation of
the first conjugate time, for bang-bang optimal control
problems with affine-control systems, whenever it exists
and is attained at ajth switching time. Besides, in the
smooth case, efficient tools are available, see e.g. [11].
We next propose a regularization procedure which al-
lows the use of these tools for the computation of the
first conjugate time for the problem(OCP). However,
in practice, if j is too large then the numerical compu-
tation of the first conjugate time may become very dif-
ficult either using the methods for bang-bang or smooth
controls.

1.3. The regularization procedure

Let ε be a positive real parameter and letY2, . . . ,Ym

be m− 1 arbitrary smooth vector fields on IRn, where
m > 2 is an integer. Consider the control-affine system

ẋε(t) = X (xε(t)) + uε1(t)Y1 (xε(t)) + ε
m

∑

i=2

uεi (t)Yi (xε(t)) ,

(7)
where the controluε(t) =

(

uε1(t), . . . , u
ε
m(t)

)

satisfies the
constraint

m
∑

i=1

(

uεi (t)
)2

6 1. (8)

Consider the optimal control problem(OCP)ε of deter-
mining a trajectoryxε(·), solution of (7)–(8) on [0, tεf ],
such thatxε(0) = x̂0 and xε(tεf ) = x̂1, and minimizing
the time of transfertεf . The parameterε is viewed as a
penalization parameter. The existence of at least one so-
lution for (OCP)ε is proved in [44], and it is also proved
that any solutionxε(·) of (OCP)ε converges uniformly
on [0, t f ] to a solutionx(·) of (OCP) whenε tends to
zero (see Theorem 4).

According to the Pontryagin maximum principle, any
optimal solution ˆxε(·) of (OCP)ε, associated with con-
trols (ûε1, . . . , û

ε
m) satisfying the constraint (8), is the pro-

jection of an extremal ( ˆxε(·), p̂ε(·), p0ε, ûε(·)) such that

˙̂pε(t) = −∂Hε

∂x
(x̂ε(t), p̂ε(t), p0ε, ûε(t))

= −
〈

p̂ε(t),
∂X
∂x

(x̂ε(t))

〉

− ûε1(t)

〈

p̂ε(t),
∂Y1

∂x
(x̂ε(t))

〉

− ε
m

∑

i=2

ûεi (t)

〈

p̂ε(t),
∂Yi

∂x
(x̂ε(t))

〉

(9)

where Hε(xε, pε, p0ε, uε) = 〈pε,X(xε) + uε1Y1(xε) +
ε
∑m

i=2 uεi Yi(xε)〉 + p0ε is the Hamiltonian, and

Hε(x̂ε(t), p̂ε(t), p0ε, ûε(t)) = max
∑m

i=1 w2
i 61

Hε(x̂ε(t), p̂ε(t), p0ε,w)

(10)
almost everywhere on [0, tεf ]. Moreover, the maximized
Hamiltonian is equal to 0 on [0, tεf ]. The maximization
condition (10) turns into

ûε1(t)〈p̂ε(t),Y1(x̂ε(t))〉 + ε
m

∑

i=2

ûεi (t)〈p̂ε(t),Yi(x̂ε(t))〉

= max
∑m

i=1 w2
i 61















w1〈p̂ε(t),Y1(x̂ε(t))〉 + ε
m

∑

i=2

wi〈p̂ε(t),Yi(x̂ε(t))〉














,

(11)

and two cases may occur: either the maximum is at-
tained in the interior of the domain, or it is attained
at the boundary. In the first case, there must hold
〈pε(t),Yi(xε(t))〉 = 0, for everyi ∈ {1, . . . ,m}; in particu-
lar, if them functionst 7→ 〈pε(t),Yi(xε(t))〉, i = 1, . . . ,m,
do not vanish simultaneously, then the maximum is at-
tained on the boundary of the domain.

We make the following assumption.

Assumption 3. The integerm and the vector fields
Y2, . . . ,Ym are chosen such that

Span{Yi | i = 1, . . . ,m} = IRn.

Under the Assumption 3, the maximization condition
(11) yields, fori = 2, . . . ,m,

ûε1(t) =
〈p̂ε(t),Y1(x̂ε(t))〉

√

〈p̂ε(t),Y1(x̂ε(t))〉2 + ε2
m

∑

i=2

〈p̂ε(t),Yi(x̂ε(t))〉2
,

ûεi (t) =
ε〈p̂ε(t),Yi(x̂ε(t))〉

√

〈p̂ε(t),Y1(x̂ε(t))〉2 + ε2
m

∑

i=2

〈p̂ε(t),Yi(x̂
ε(t))〉2

,

(12)

for almost everyt ∈ [0, tεf ], and moreover the control
functionsûεi (·), i = 1, . . . ,m are smooth functions oft
(so that the above formula holds actually for everyt ∈
[0, tεf ]).

Note that this assumption implies thatm > n. Ac-
tually, this assumption can be weakened (see [44] for
details).

Theorem 4 ([44]). Assume that the problem(OCP)
has a unique solution̂x(·), defined on[0, t f ], associated
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with a bang-bang control̂u1(·) on [0, t f ]. Moreover, as-
sume that̂x(·) has a unique extremal lift (up to a mul-
tiplicative scalar), which is moreover normal, denoted
(x̂(·), p̂(·),−1, û1(·)).

Then, under the Assumption 3, there existsε0 > 0
such that, for everyε ∈ (0, ε0), the problem(OCP)ε
has at least one solution̂xε(·), defined on[0, tεf ] with
tεf 6 t f , associated with a smooth control uε(·) =
(uε1(·), . . . , uεm(·)) satisfying the constraint(8), every ex-
tremal lift of which is normal. Let(x̂ε(·), p̂ε(·),−1, ûε(·))
be such a normal extremal lift. Then, asε tends to0,

• tεf converges to tf ;

• x̂ε(·) converges uniformly7 to x̂(·), and p̂ε(·) con-
verges uniformly tôp(·) on [0, t f ];

• ûε1(·) converges tôu1(·) andûεi (·), i = 2, . . . ,m, con-
verge to0 almost everywhere on[0, t f ], and thus in
particular for the strong L1(0, t f ) topology.

Remark1.6. This result remains true if we extend for-
ward the interval [0, t f ] on an interval [0,T] for T ∈ I ,
whereI is a maximal time interval of [0,+∞) containing
[0, t f ].

Remark1.7. It is assumed that the problem(OCP) has
a unique solution ˆx(·), having a unique extremal lift that
is normal. Such an assumption holds true whenever the
minimum time function (the value function of the op-
timal control problem) enjoys differentiability proper-
ties (see e.g. [7, 15] for a precise relationship, see also
[13, 40, 41, 45] for results on the size of the set where
the value function is differentiable).

1.4. Conjugate times in the smooth case

We recall how to define the concept of first con-
jugate time for the smooth optimal control problem
(OCP)ε. A first possible definition of conjugate times
is in terms of a quadratic form, which is the second or-
der intrinsic derivative of theend-point mappingdefined
by E(ε, tεf , x̂0, uε) = xε(tεf ) wheret 7→ xε(ε, t, x̂0, uε) is
the trajectory solution of (7), associated to the control
uε, such thatxε(ε, 0, x̂0, uε) = x̂0. Testing a conjugate
time amounts to testing the positivity of that quadratic
form. However, this definition requires a corank one as-
sumption, and we will rather use a geometric concept
of conjugate time, defined below. We refer the reader
to [11] for a survey on that theory and to [5] for exten-
sive explanations and for the more general Morse index
theory.

7We consider any continuous extension of the extremal
(x̂ε(·), p̂ε(·),−1, ûε1(·)) on [0, t f ].

Geometric conjugate time.

Definition 1.4. Let x0 ∈ O. The pointxε(tεc) is geo-
metrically conjugateto xε(0) if and only if the mapping
x0 7→ expε(tεc, x0, α

′(x0)) is not immersive, that is,

det

(

d
dx0

expε(tεc, x0, α
′(x0))

)

= 0.

The timetεc is called ageometric conjugate time.

Remark1.8. Given an extremal ( ˆxε(·), p̂ε(·), p0ε, uε(·)),
the notion of geometric conjugate time coincides with
the notion of conjugate time defined in terms of
quadratic form, provided the following assumptions
hold:

• the strong Legendre condition holds along the ex-
tremal, that is, there existsγ > 0 such that

∂2H
∂u2

(x̂ε(·), p̂ε(·), p0ε, uε1(·)) · (v, v) 6 −γ‖v‖2,

for everyv ∈ IRm;

• the controluε is of corank one on every subinterval
(assumption ofstrong regularity, see [42]).

Moreover, in that case the first conjugate timetεc charac-
terizes the optimality status of the extremal: the trajec-
tory x̂ε(·) is strongly locally optimal on [0, t], for every
t < tεc; for t > tεc, the trajectory ˆxε(·) is not locally opti-
mal on [0, t] (see, e.g., [5, 11, 42]).

Remark 1.9. None of the two assumptions of the
previous remark will be made for the extremal
(x̂ε(·), p̂ε(·), p0ε, ûε(·)). In fact, our aim is to prove that
the first geometric conjugate timetεc converges to the
first conjugate timetc of the bang-bang case, whenε
tends to 0. This result, derived in Theorem 6 (Sec-
tion 1.5), will permit to use as well in the bang-bang
case the available efficient implementation procedures
that exist in the smooth case, like for instance the free
packageCOTCOT8 (see [11]).

For normal extremals (xε(·), pε(·),−1, uε(·)) that sat-
isfy the strong Legendre condition, the absence of con-
jugate points is a sufficient condition for local optimality
(see e.g. [5]). This sufficient optimality condition will
be expressed using the extremal field approach.

8Conditions of Order Two, COnjugate Times,
http://apo.enseeiht.fr/cotcot/
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Extremal field approach.From Theorem 4 every ex-
tremal lift of the problem(OCP)ε is normal (p0ε =

−1). Analogously to the bang-bang case, the aim is
to construct a family of extremals containing the ref-
erence normal extremal ( ˆxε(·), p̂ε(·),−1, ûε(·)), sharing
nice non-intersection properties before the first conju-
gate time.

For everyz0 = (x0, p0) ∈ IRn × IRn, let zε(·, z0) =
(xε(·, z0), pε(·, z0)) be the solution of the system of equa-
tions (7) and (9), with the controls (12), such that
zε(0, z0) = z0. The exponential mapping associated to
(OCP)ε is defined by

expε(t, z0) = xε(t, z0).

Let x0 ∈ O andαε : IRn → IR be aC2 function such
thatαε′(x0) = pε(0), and such that the family of func-
tions (αε) converges to the functionα associated with
the problem(OCP) in C2 topology, asε tends to 0. As
in the bang-bang case, define

Xε = {x0 ∈ O | max
∑m

i=1 w2
i 61

Hε(x0, α
ε′(x0),−1,wε) = 0} .

For ε > 0 small enough,Xε is a (n − 1)-dimensional
manifold. Indeed, letGε be defined onO by Gε(x0) =
max∑m

i=1 w2
i 61 Hε(x0, α

′(x0),−1,wε). It follows from
Theorem 4 thatGε converges toG (defined in Sec-
tion 1.2) asε goes to 0, and therefore, forα ∈ C2

such thatα′(x0) = p0, there holdsdGε(x0) , 0, since
dG(x0) , 0.

Theorem 5 ([5]). If the normal extremal
(x̂ε(·), p̂ε(·),−1, ûε(·)) satisfies the strong Legendre
condition and, moreover can be embedded into the
family of extremalsexpε(t, x0, α

ε′(x0)) such that the
mapping

(0, tεc) × Xε → IRn

(t, x0) 7→ expε(t, x0, α
ε′(x0))

is of rank n, then(x̂ε(·), p̂ε(·),−1, ûε(·)) is a local mini-
mum in C0 topology for the problem(OCP)ε.

Remark1.10. The typical behavior of the flow of the
extremal field at the first conjugate point is a fold point
(see Figure 2, and see [5, 18]).

Remark1.11. If one considersx0 ∈ Xε, thenxε(tεc) is
geometrically conjugate toxε(0) if and only if

det

(

d
dx0

expε(tεc, x0, α
ε′(x0))|Xε , f ε(x0)

)

= 0 ,

where f ε(x0) = X(xε(x0)) + ε
m

∑

i=1

uεi (x0, α
ε′(x0)) and

uεi (x0, α
ε′(x0)) are smooth functions that satisfy the

maximization condition (11).

Figure 2: Field of extremals in the smooth case

Remark1.12. Note that, as long as the minimum time
function is differentiable at the point ˆxε(t), the optimal
trajectoryx̂ε(·) can be embedded into a non-intersecting
extremal field.

Remark1.13. To derive a necessary optimality condi-
tion, a corank one assumption is required for the ex-
tremal (x̂ε(·), p̂ε(·), p0ε, ûε(·)) (see [11]).

1.5. Main result

We first recall the context. Let ˆx(·) denote the strong
locally optimal trajectory of (OCP), corresponding to
the controlû1 on [0, t f ]. In particular,t f is the minimal
time so that ˆx(0) = x̂0 andx̂(t f ) = x̂1. We extend ˆx(·) on
a maximal intervalI ⊂ [0,+∞) containing [0, t f ], and
denote bytc its first conjugate time. For everyε > 0, let
x̂ε(·) denote an optimal trajectory solution of (OCP)ε,
corresponding to a control ˆuε = (ûε1, . . . , û

ε
m) on [0, tεf ].

In particular,tεf is the minimal time so that ˆxε(0) = x̂0

and x̂ε(tεf ) = x̂1. We extend ˆxε(·) on a maximal interval
of [0,+∞) containing [0, tεf ], and denote bytεc its first
geometrically conjugate time.

Theorem 6. Assume that the problem(OCP) has a
unique solution̂x(·), associated with a bang-bang con-
trol û1(·), on a maximal interval I. Moreover, assume
that x̂(·) has a unique extremal lift (up to a multiplica-
tive scalar), which is moreover normal, and denoted by
(x̂(·), p̂(·),−1, û1(·)). If the extremal(x̂(·), p̂(·),−1, û1(·))
satisfies, moreover, the strict bang-bang Legendre con-
dition on [0, tc], then the first geometric conjugate time
tεc converges to the first conjugate time tc asε tends to 0.

Remark1.14. Let tcut denote the cut time along the
extremal ( ˆx(·), p̂(·), p0, û(·)). Analogously to the bang-
bang case, we can define thecut time tεcut of the op-
timal trajectory ˆxε(·) for the problem (OCP)ε as the
first time at which ˆxε(·) loses its optimality. We claim
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that, under the assumptions of Theorem 4, there holds
lim sup
ε→0

tεcut 6 tcut.

2. Proof of the main result

The next proposition is the key result to derive Theo-
rem 6.

Proposition 7. Let O be a neighborhood
of x̂0 and x0 ∈ O. The exponential map-
ping (t, x0) 7→ expε(t, x0, α

ε′(x0)) converges to
(t, x0) 7→ exp(t, x0, α

′(x0)) piecewise in C1 topol-
ogy on I × O, with τs+1(x̂0) = tc, as ε tends to 0.
More precisely, on every compact subinterval of
(τ j−1(x0), τ j(x0)) × O, with (τ j−1(x0), τ j(x0)) ⊂ I and
j ∈ IN, the mapping(t, x0) 7→ expε(t, x0, α

ε′(x0))
converges to(t, x0) 7→ exp(t, x0, α

′(x0)) uniformly in C1

topology.

Proof. In what follows, when it is convenient, we sim-
plify the notation and write exp(t, x0) or x(t, x0) (respec-
tively, expε(t, x0) or xε(t, x0)) for exp(t, x0, α

′(x0)) (re-
spectively, for expε(t, x0, α

ε′(x0))).
Let ε > 0 small enough. Forx0 ∈ O, consider the

function

ϕ1(ε, t, x0) = 〈p(ε, t, x0),Y1(x(ε, t, x0))〉.

For (ε, t, x0) = (0, τ̂ j, x0), by definition of the switch-
ing time, one hasϕ1(0, τ̂ j, x0) = 0, and by the strict
bang-bang Legendre condition,∂ϕ1

∂t (0, τ̂ j, x0) , 0. By
the implicit function theorem there exists a neighbor-
hood (−ε0, ε0) of 0 ∈ IR, such that forε ∈ (−ε0, ε0),
there exists aC1 functionτεj (x0) = τεj (ε, x0), with j =
1, ..., s, satisfyingϕ1(ε, τεj (x0)) = 0 and such that, asε

tends to 0,τεj (x0) converges toτ j(x0), and
∂τεj

∂x0
(x0) con-

verges to∂τ j

∂x0
(x0).

Analogously to the definition of switching time func-
tion of an extremal trajectoryx(·), we have thus defined
some functionsτεj (·) : O → IR, that are however not
switching functions.

Lemma 2.1. The mapping(t, x0) 7→ expε(t, x0, α
ε′(x0))

converges to(t, x0) 7→ exp(t, x0, α
′(x0)) uniformly in C1

topology on J× O, where J is any compact subinterval
of [0, τ1(x0)), asε tends to 0.

Proof. Let J be a compact subinterval of [0, τ1(x0)).
The uniformC0 convergence onJ × O of the mapping
(t, x0) 7→ expε(t, x0) to (t, x0) 7→ exp(t, x0), asε tends to
0, is a direct consequence of Theorem 4. We have

∂ expε

∂t
(t, x0) = ẋε(t, x0)

whereẋε(t, x0) is given by (7); from Theorem 4, ˙xε(t, x0)
converges to ˙x(t, x0) = dexp

dt (t, x0) asε tend to 0. On the
other hand,

d
dx0

expε(t, x0, α
ε′(x0)) =

∂ expε

∂x0
(t, x0, α

ε′(x0))

+
∂ expε

∂p0
(t, x0, α

ε′(x0))αε′′(x0)

where ∂expε

∂x0
(t, x0, α

ε′(x0)) and ∂ expε

∂p0
(t, x0, α

ε′(x0)) are
solutions of the linearized system associated with
the Hamiltonian system (7)-(9), for the problem
(OCP)ε on [0, t]. From Theorem 4, (xε(·), pε(·))
converges uniformly to the solution of the Hamilto-
nian system associated with the problem(OCP) as
ε tends to 0. This convergence clearly holds as
well for the solutions of the linearized system associ-
ated with the Hamiltonian system for(OCP)ε; there-
fore, asε tends to 0,∂expε

∂x0
(t, x0, α

ε′(x0)) (respectively,
∂expε

∂p0
(t, x0, α

ε′(x0))) converges to∂exp
∂x0

(t, x0, α
′(x0)) (re-

spectively,∂ exp
∂p0

(t, x0, α
′(x0))) uniformly on [0, t].

In what follows, the notationτ+j (x0) (resp. τ−j (x0))
stands for the right limit (resp. the left limit). Forx0 ∈ O
and j = 1, ..., s, we call thejumpof ∂exp

∂x0
(t, x0) at τ j(x0)

the difference
∂ exp
∂x0

(τ+j (x0), x0) − ∂ exp
∂x0

(τ−j (x0), x0) ,

which is, according to [33, Equation 3.10, p. 123] given
by

∂ exp
∂x0

(τ+j (x0), x0) −
∂ exp
∂x0

(τ−j (x0), x0)

=
(

u1(τ+j (x0), x0) − u1(τ−j (x0), x0)
)

Y1(x(τ1(x0), x0))
∂τ j

∂x0
(x0)

=
(

sign(ϕ1(τ+j )) − sign(ϕ1(τ−j ))
)

Y1(x(τ j(x0), x0))
∂τ j

∂x0
(x0) .

(13)

Due to this jump condition one cannot expect to get a
C1 convergence result on the whole interval. We will
next estimate the difference

∂ expε

∂x0
(τεj (x0) + η, x0) − ∂ expε

∂x0
(τεj (x0) − η, x0),

for η > 0 small, and show that it converges to (13),
wheneverε tends to 0, and thenη tends to 0.

Lemma 2.2. There holds

lim
η→0

lim
ε→0

(

∂ expε

∂x0
(τε1(x0) + η, x0) − ∂ expε

∂x0
(τε1(x0) − η, x0)

)

=
∂ exp
∂x0

(τ+1 (x0), x0) − ∂ exp
∂x0

(τ−1 (x0), x0).
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Proof. One has

∂

∂t

(

∂xε

∂x0
(t, x0)

)

=
( ∂X
∂x0

(xε(t, x0)) + uε1(t, x0)
∂Y1

∂x0
(xε(t, x0))

+ε

m
∑

i=2

uεi (t, x0)
∂Yi

∂x0
(xε(t, x0))

)∂xε

∂x0
(t, x0)

+Y1(xε(t, x0))
∂uε1
∂x0

(t, x0) + ε
m

∑

i=2

Yi(x
ε(t, x0))

∂uεi
∂x0

(t, x0).

It follows that

∂xε

∂x0
(τε1(x0) + η, x0) − ∂xε

∂x0
(τε1(x0) − η, x0)

=

∫ τε1(x0)+η

τε1(x0)−η

( ∂X
∂x0

(xε(t, x0)) + uε1(t, x0)
∂Y1

∂x0
(xε(t, x0))

+ ε

m
∑

i=2

uεi (t, x0)
∂Yi

∂x0
(xε(t, x0))

)∂xε

∂x0
(t, x0)dt

+

∫ τε1(x0)+η

τε1(x0)−η
Y1(xε(t, x0))

∂uε1
∂x0

(t, x0)dt

+

∫ τε1(x0)+η

τε1(x0)−η
ε

m
∑

i=2

Yi(xε(t, x0))
∂uεi
∂x0

(t, x0)dt .

It is easy to see that the limit whenη tends to zero of the
limit when ε tends to zero of the first and third term of
the right side of the last equation is equal to zero. Only
the limit term

lim
η→0

lim
ε→0

∫ τε1(x0)+η

τε1(x0)−η
Y1(xε(t, x0))

∂uε1
∂x0

(t, x0)dt

deserves a special attention. Let us denote

ϕεi (t, x0) = 〈pε(t, x0),Yi(xε(t, x0))〉, i = 1, ...,m.

From (12), we compute easily

∂uε1
∂x0

(t, x0) =

ε2















∂ϕε1
∂x0

(t, x0)
m

∑

i=2

ϕεi (t, x0)2 − ϕε1(t, x0)
m

∑

i=2

ϕεi (t, x0)
∂ϕεi

∂x0
(t, x0)





























ϕε1(t, x0)2 + ε2
m

∑

i=2

ϕεi (t, x0)2















3/2
.

We will consider asymptotic expansions of these quan-
tities aroundτε1(x0). Sinceϕε1(τε1(x0), x0) = 0 for every
x0, it follows that

∂ϕε1

∂x0
(τε1(x0), x0) = −

∂ϕε1

∂t
(τε1(x0), x0)

∂τε1

∂x0
(x0).

In what follows, denoteτε1 = (τε1(x0), x0). One has

∫ τε1+η

τε1−η
Yε

1(xǫ(t, x0))
∂uε1
∂x0

(t, x0)dt

=

∫ τε1+η

τε1−η

(

Y1(xε(τε1)) +O(t − τε1)
)

·
[

ε2
(

∂ϕε1
∂x0

(τε1) +O(t − τε1)
)

m
∑

i=2

(

ϕεi (τ
ε
1) +O(t − τε1)

)2

D

−
ε2

(

ϕε1(τε1) +O(t − τε1)
)

m
∑

i=2

(

ϕεi (τ
ε
1) +O(t − τε1)

)

D

·

(

∂ϕεi
∂x0

(τε1) +O(t − τε1)
)

D

]

dt

(14)

where

D =
((∂ϕε1

∂t
(τε1)(t − τε1) + o(t − τε1)

)2

+ ε2
m

∑

i=2

(

ϕεi (τε1) +
∂ϕεi

∂t
(τε1)(t − τε1) + o(t − τε1)

)2)3/2

and simplifying the expression (14) (the terms of order
O((t− τε1)k) ando((t− τε1)l), with k = 2, 3 andl = 1, 2, 3,
are omitted) we get

∫ τε1+η

τε1−η
Yε

1(xǫ(t, x0))
∂uε1
∂x0

(t, x0)dt

=

∫ τε1+η

τε1−η

(

Y1(xε(τε1))
)

·
−ε2 ∂ϕ

ε
1

∂t (τε1)N1
((

(

∂ϕε1
∂t (τε1)

)2
+ ε2N2

)

(t − τε1)2 + ε2N3(t − τε1) + ε2N1

)3/2

∂τε1

∂x0
(x0)

+
ε2(M1 − M2)O(t − τε1) − ε2 ∂ϕ

ε
1

∂t (τε1)N1
∂τε1
∂x0

(x0)O(t − τε1)
((

(

∂ϕε1
∂t (τε1)

)2
+ ε2N2

)

(t − τε1)2 + ε2N3(t − τε1) + ε2N1

)3/2
dt

10



where

N1 =

m
∑

i=2

(

ϕεi (τ
ε
1)
)2
, N2 =

m
∑

i=2

(

∂ϕεi

∂t
(τε1)

)2

,

N3 = 2
m

∑

i=2

ϕεi (τ
ε
1)
∂ϕεi

∂t
(τε1),

M1 = 2
∂ϕε1

∂x0
(τε1)

m
∑

i=2

ϕεi (τε1) +
m

∑

i=2

(

ϕεi (τε1)
)2
,

M2 =

m
∑

i=2

(

∂ϕεi

∂x0
(τε1)

)2

.

Notice that the denominator never vanishes, since by
Assumption 3 the functions (t, x0) 7→ ϕi(t, x0), i =
1, . . . ,m do not vanish simultaneously.

The limit whenη tends to zero of the limit when
ε tends to zero, of the first and second term of the
right side of the last equality are respectively equal
to

(

sign(ϕ1(τ+1 )) − sign(ϕ1(τ−1 ))
)

Y1(x(τ1(x0), x0)) ∂τ1
∂x0

(x0)
and 0. Since

lim
ε→0

∂τε1

∂x0
(x0) =

∂τ1

∂x0
(x0),

it follows that

lim
η→0

lim
ε→0

(

∂xε

∂x0
(τε1(x0) + η, x0) − ∂xε

∂x0
(τε1(x0) − η, x0)

)

=
(

sign(ϕ1(τ+1 )) − sign(ϕ1(τ−1 ))
)

Y1(x(τ1(x0), x0))
∂τ1

∂x0
(x0),

and the lemma follows.

A similar lemma holds for∂ exp
∂p0

. This result permits to
extend the convergence result beyond the first switching
time; the extension of Lemma 2.1 to every further inter-
val (τ j−1, τ j) is then straightforward. This proves the
proposition.

We are now in a position to prove Theorem 6. From
Theorem 2, the trajectory ˆx(·) can be embedded into the
field of extremalsx0 7→ exp(t, x0, α

′(x0)) with x0 ∈ O
and the mapping

(0, tc) × X→ IRn

(t, x0) 7→ exp(t, x0, α
′(x0))

is of rank n, where X = {x0 ∈
O | max
|w|61

H(x0, α
′(x0), p0,w) = 0}, O is a neighbor-

hood of x̂0, and tc is the first conjugate time of
x̂(·).

From Remark 1.5, the determinants

det

(

d
dx0

exp(t, x0, α
′(x0))

∣

∣

∣

∣

(t,x0)∈(τs(x0),τs+1(x0))×X
, fs+1(x0)

)

and

det

(

d
dx0

exp(t, x0, α
′(x0))

∣

∣

∣

∣

(t,x0)∈(τs+1(x0),τs+2(x0))×X
, fs+2(x0)

)

have different signs, withτs+1(x̂0) = tc.
By Definition 1.4, the pointxε(τεc(x0)) is geometri-

cally conjugate toxε(0) = x0, with x0 ∈ Xε, if and only
if

det

(

d
dx0

expε(t, x0, α
ε′(x0)), f ε(x0)|x0∈Xε

)

= 0

for t = τεc(x0). Let x0 ∈ Xε, we have

∂ expε

∂x0
(τε(x0), x0, α

ε′(x0))

=
∂ expε

∂t
(τε(x0), x0, α

ε′(x0))
∂τε

∂x0
(x0)

+
∂ expε

∂x0
(τε(x0), x0, α

ε′(x0))

+
∂ expε

∂p0
(τε(x0), x0, α

ε′(x0))αε′′(x0).

Since ∂ expε

∂t (τε(x0), x0, α
ε′(x0)) = ẋε(x0) = f ε(x0), there

holds, clearly,

det

(

∂ expε

∂t
(τε(x0), x0, α

ε′(x0))
∂τε

∂x0
(x0), f ε(x0)

)

= 0,

and it thus follows that

det

(

d
dx0

expε(τε(x0), x0, α
ε′(x0)), f ε(x0)

)

= det
(∂ expε

∂x0
(τε(x0), x0, α

ε′(x0))

+
∂ expε

∂p0
(τε(x0), x0, α

ε′(x0))αε′′(x0), f ε(x0)
)

= det

(

d
dx0

expε(t, x0, α
ε′(x0)), f ε(x0)

)

for t = τε(x0). By Proposition 7, on every com-
pact subinterval of (τ j−1(x0), τ j(x0)), the mapping
(t, x0) 7→ expε(t, x0, α

ε′(x0)) converges to (t, x0) 7→
exp(t, x0, α

′(x0)) uniformly inC1 topology, therefore the
determinants

det

(

d
dx0

expε(t, x0, α
ε′(x0))

∣

∣

∣

∣

(t,x0)∈(τεs(x0),τεs+1(x0))×Xε
, f ε(x0)

)

11



and

det

(

d
dx0

expε(t, x0, α
ε′(x0))

∣

∣

∣

∣

(t,x0)∈(τεs+1(x0),τεs+2(x0))×Xε
, f ε(x0)

)

have different signs before and afterτεs+1(x0).
Therefore, by continuity, the functiont 7→
det

(

d
dx0

expε(t, x0, α
ε′(x0)), f ε(x0)

)

vanishes for some
time, close toτεs+1(x0). By Definition 1.4, this time
tεc(x0) is a geometrically conjugate time, and whenε
tends to 0,tεc(x̂0) converges to the bang-bang conjugate
time tc = τs+1(x̂0). This ends the proof of the theorem.

3. Examples

In this section we illustrate Theorem 6 with two ex-
amples of minimal time control problems.

3.1. First example: the Rayleigh problem

In this section we consider the minimal time control
problem for the Rayleigh control system (see e.g. [25,
30]),

ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)(1.4− 0.14x2(t)
2) + u1(t),

(15)

with the control constraint

|u1(·)| 6 4, (16)

and with boundary conditions given by

x1(0) = −4, x2(0) = −3, x1(t f ) = x2(t f ) = 0 . (17)

According to the Pontryagin maximum principle, any
optimal solution ˆx(·) of (15)–(17) is the projection of an
extremal ( ˆx(·), p̂(·), p0, û1(·)) such that

˙̂p1(t) = p̂2(t)

˙̂p2(t) = −p̂1(t) − p̂2(t)
(

1.4− 0.42x̂2(t)2
) (18)

and the maximization condition ˆp2(t)û1(t) =

max|w|64 (p̂2(t)w) holds almost everywhere on [0, t f ].
It is easy to see that ˆp2(·) cannot vanish on some
subinterval, and it follows that the optimal control
û1(·) is bang-bang, equal to ˆu1(t) = 4 sign(p̂2(t)).
Applying a shooting method to problem (15)–(17)
(with p0 = −1), we determine the initial adjoint vector
p̂(0) ≃ (0.53095052; 0.34206485), and observe that the
trajectory has only one switching time ˆτ1 ≃ 0.57613128
on [0, t f ], that is,û1(·) is given by

û1(t) =















+4 for 0 6 t 6 τ̂1

−4 for τ̂1 6 t 6 t f ,

with a final timet f ≃ 2.97812917 (see Figures 3–4).
Furthermore, ˆx(·) is the unique minimal time solution
and has a unique extremal lift (up to a multiplicative
scalar), which is moreover normal.
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Figure 3: Optimal trajectory
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Figure 4: Optimal control

Prolongating the trajectory ˆx(·) to the interval
[0, 4], we observe a second switching time at ˆτ2 ≃
3.14750955.

Notice that the second-order sufficient conditions of
[27, 28, 29, 30] are satisfied before ˆτ2, confirming the
local optimality status of the trajectory, but are no longer
satisfied beyond this second switching time; we can thus
expect the trajectory not to be locally optimal beyond ˆτ2.
To investigate this optimality status we use the extremal
field approach.

From Theorem 2 and Remark 1.4, the first conju-
gate point ˆx(tc) is an overlap point of the extremal field
emanating from the horizontal one-dimensional mani-
fold X = {x0 ∈ O | max

|w|61
H(x0, α

′(x0),−1,w) = 0}. In

practice, the functionα is not known, and we rather
use the field of extremals emanating from the vertical
manifold Xp = {p0 ∈ Op | max

|w|61
H(x̂0, p0,−1,w) = 0}

(see [11, 38]), whereOp is a neighborhood of the initial
value of the adjoint vector ˆp(0). The characterization in
terms of fold point still holds for this vertical manifold
(see [38]). We observe on Figures 5–6 that this field of
extremals reflects off the switching surface at the sec-
ond switching time; the point ˆx(τ̂2) is a fold point and
the first conjugate time is equal to the second switching
time, tc = τ̂2 ≃ 3.14750955.

We next propose a regularization procedure, for
which we compute the first geometric conjugate timetεc
and check that it indeed converges to the first conjugate
time tc of the bang-bang case asε tends to 0.

We consider the regularized control system

ẋε1(t) = xε2(t) + εuε2(t),

ẋε2(t) = −xε1(t) + xε2(t)(1.4− 0.14xε2(t)
2) + uε1(t),

(19)

with the boundary conditions (17), and where the con-

12
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Figure 5: Extremal fieldt ∈ [0, 4]
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Figure 6: Overlap of the flow

trol uε(·) = (uε1(·), uε2(·)) satisfies the constraint

(uε1(·))2 + (uε2(·))2
6 16. (20)

Any optimal solution ˆxε(·) of (17)–(20) is the projection
of an extremal ( ˆxε(·), p̂ε(·), p0ε, ûε(·)) such that

˙̂pε1(t) = p̂ε2(t)

˙̂pε2(t) = −p̂ε1(t) − p̂ε2(t)
(

1.4− 0.42x̂ε2(t)
2
)

.

The Assumption 3 is verified, and the controls that sat-
isfy the Pontryagin maximization condition (11) are
given by

ûε1(t) =
4p̂ε2(t)

√

(p̂ε2(t))2 + ε2(p̂ε1(t))2
,

ûε2(t) =
4εp̂ε1(t)

√

(p̂ε2(t))2 + ε2(p̂ε1(t))2
.

(21)

Applying a shooting method to this problem, we de-
termine the optimal trajectory of the regularized prob-
lem, and we indeed observe the expected convergence

of (x̂ε(·), p̂ε(·),−1, ûε) towards ( ˆx(·), p̂(·),−1, û1), as ε
tends to 0, in agreement with Theorem 4 (see Figures 7–
9).
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Figure 7: Trajectory
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Figure 8: Adjoint vector
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Figure 9: Control

The optimal controls (21) are smooth functions oft,
therefore the algorithms presented in [11] to compute
the first conjugate time along a smooth extremal curve
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can be applied. Here we will apply the test for conjugate
times explained in [11] when the final time is free and
the extremal is normal. Let us briefly recall this test.
The maximized Hamiltonian writes as

Hε
r (x̂ε, p̂ε) = p̂ε1

























x̂ε2 +
4ε2p̂ε1

√

(p̂ε2)
2 + ε2(p̂ε1)

2

























+ p̂ε2

























−x̂ε1 + x̂ε2(1.4− 0.14(x̂ε2)
2) +

4p̂ε2
√

(p̂ε2)2 + ε2(p̂ε1)2

























− 1.

The aim is to compute the solutionZε(·) =

(δxε1(·), δxε2(·), δpε1(·), δpε2(·))T of the so-called varia-
tional systemŻε(t) = V(t)Zε(t) along the extremal
(x̂ε(·), p̂ε(·)), where

V(t) =

















∂2Hε
r

∂x∂p(x̂ε(t), p̂ε(t)) ∂2Hε
r

∂p2 (x̂ε(t), p̂ε(t))

− ∂
2Hε

r

∂x2 (x̂ε(t), p̂ε(t)) − ∂
2Hε

r
∂x∂p (x̂ε(t), p̂ε(t))

















with initial conditions (δxε1(0), δxε2(0)) = (0, 0)
and (δpε1(0), δpε2(0)) such that the scalar product
〈( f ε1 (0), f ε2 (0)), (δpε1(0), δpε2(0))〉 is equal to 0, where
( f ε1 , f ε2 ) is the dynamics, given by























f ε1 (t) = xε2(t) +
4ε2pε1(t)√

(pε2(t))2+ε2(pε1(t))2
,

f ε2 (t) = −xε1(t) + xε2(t)(1.4− 0.14xε2(t)
2) +

4pε2(t)√
(pε2(t))2+ε2(pε1(t))2

.

The first geometric conjugate time is then
the first positive zero of the functiont 7→
det

(

δxε1(t) δxε2(t), f ε1 (t) f ε2 (t)
)

(see Figure 10).
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Figure 10: Determinant (ε = 0.01)

We report on Table 3.1 the values of the first geo-
metric conjugate time of the optimal trajectory ˆxε(·), for
different values ofε. We observe that, as expected,tεc
converges totc ≃ 3.14750955 asε tends to 0.

ε tεc
0.1 3.26735859
0.01 3.1559626
0.001 3.14844987
0.0001 3.14760515

Table 1: Values oftεc

Another possible test (see [11]) is to compute numer-
ically solutionsZi(·) = (δxε1i(·), δxε2i(·), δpε1i(·), δpε2i(·)),
i = 1, 2, of the variational system considered previ-
ously, with initial conditions (δpε11(0), δpε21(0)) = (1, 0)
and (δpε12(0), δpε22(0)) = (0, 1), and then to compute the
rank of the matrix

Jε(t) =

(

δxε11(t) δxε21(t)
δxε12(t) δxε22(t)

)

.

This rank must be equal to 1 outside a conjugate time,
and 0 at a conjugate time. In order to compute it, we
use a singular value decomposition ofJε(t); then, a con-
jugate time occurs whenever the first singular value of
Jε(t) vanishes (see Figure 11).
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Figure 11: First singular value ofJε(t) (ε = 0.01)

In this first example, the first conjugate timetc of
the optimal bang-bang trajectory ˆx(·) coincides with
the second switching time. We next provide an exam-
ple where the first conjugate time is equal to the third
switching time.

3.2. Second example

Consider the minimal time control problem for the
control system

ẋ1(t) = sin(x2(t)),

ẋ2(t) = − sin(x1(t)) + u1(t),
(22)
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with the control constraint

|u1(·)| 6 1, (23)

and with the boundary conditions

x1(0) = x2(0) = 0, x1(t f ) = 2.9, x2(t f ) = 0.1. (24)

From the Pontryagin maximum principle, any optimal
solution x̂(·) of (22)–(24) is the projection of an ex-
tremal (x̂(·), p̂(·), p0, û1(·)) such that

˙̂p1(t) = p̂2(t) cos(x̂1(t)),
˙̂p2(t) = −p̂1(t) cos(x̂2(t)),

and the maximization condition ˆp2(t)û1(t) =

max|w|61 (p̂2(t)w) must hold almost everywhere on
[0, t f ]. It is easy to see that ˆp2(·) cannot vanish on
some subinterval, and it follows that the optimal
control û1(·) is bang-bang, equal to ˆu1(t) = sign(p̂2(t)).
Applying a shooting method to problem (22)–(24)
(with p0 = −1),we determine the initial adjoint vector
p̂(0) = (−0.5, 1), and observe that the trajectory has one
switching time ˆτ1 ≃ 3.26174615 on [0, t f ], that is,û1(·)
is given by

û1(t) =















+1 for 0 6 t 6 τ̂1,

−1 for τ̂1 6 t 6 t f ,

with a final timet f ≃ 4.07756604 (see Figures 12–13).
Furthermore, ˆx(·) is the unique minimal time solution
and has a unique extremal lift (up to a multiplicative
scalar), which is moreover normal.
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Figure 12: Optimal trajectory
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Figure 13: Optimal control

Prolongating the trajectory ˆx(·) to the interval
[0, 11], we observe a second switching time at ˆτ2 ≃
6.21787838, and a third one at ˆτ3 ≃ 10.46930198. Con-
sidering as in the previous example the extremal field
emanating from the vertical manifold, we observe on
Figures 14–15 that the extremal field crosses transver-
sally the second switching surface, but reflects off the
third switching surface, and it follows from Theorem 2
that the first conjugate timetc is equal to ˆτ3.
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Figure 14: Extremal field,t ∈ [0, 11]
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Figure 15: Zoom on the overlap of the flow at the third switching time

We propose the following regularization. Consider
the control system

ẋε1(t) = sin(xε2(t)) + εuε2(t),

ẋε2(t) = − sin(xε1(t)) + uε1(t),
(25)

with the control constraint

(uε1(·))2 + (uε2(·))2
6 1, (26)

and the initial and final conditions (24). Any optimal so-
lution x̂ε(·) of (24)–(26) is the projection of an extremal
(x̂ε(·), p̂ε(·), p0ε , ûε(·)) such that

˙̂pε1(t) = p̂ε2(t) cos(x̂ε1(t)),
˙̂pε2(t) = −p̂ε1(t) cos(x̂ε2(t)),

and the maximization condition implies that the ex-
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tremal controls are given by

ûε1(t) =
p̂ε2(t)

√

(p̂ε2(t))2 + ε2(p̂ε1(t))2
,

ûε2(t) =
εp̂ε1(t)

√

(p̂ε2(t))2 + ε2(p̂ε1(t))2
.

(27)

Applying a shooting method to this problem, we de-
termine the optimal trajectory of the regularized prob-
lem, and we indeed observe the expected convergence
of (x̂ε(·), p̂ε(·),−1, ûε) towards ( ˆx(·), p̂(·),−1, û1), as ε
tends to 0, in agreement with Theorem 4 (see Fig-
ures 16–18).
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Figure 16: Trajectory
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Figure 17: Adjoint vector

As in the previous example, the controls (27) are
smooth functions oft, and we apply the algorithm de-
scribed in [11], computing as before the determinant
det

(

δxε1(t) δxε2(t), f ε1 (t) f ε2 (t)
)

(see Figure 19).
We report on Table 3.2 the values of the first geo-

metric conjugate time of the optimal trajectory ˆxε(·), for
different values ofε. We observe that, as expected,tεc
converges totc asε tends to 0.
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Figure 18: Control
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Figure 19: Determinant (ε = 0.1)

Remark3.1. We observe on both previous examples
that it is not needed to consider very small values of
ε to estimate the first conjugate timetc. Indeed, a con-
jugate time of a locally bang-bang trajectory can only
occur at a switching time (see Remark 1.2) and, under
our assumptions, switching times are isolated (see Re-
mark 1.1). From Theorem 6, the first geometric conju-
gate timetεc converges totc, whenε tend to 0. Therefore,
as soon asε is small enough so thattεc is in a (not nec-
essarily so small) neighborhood of some switching time
τ̂s of the bang-bang trajectory ˆx(·), this means that the
bang-bang conjugate timetc is equal to that switching
time τ̂s.

3.3. Conclusion

In this article we focused on the problem of determin-
ing an efficient procedure to compute the first conjugate
time tc for the minimal time problem for single-input
control-affine systems ˙x = X(x)+u1Y1(x) in IRn with the
control constraint|u1(·)| 6 1. We used the asymptotic
approach developed in [44] which consists in adding
new smooth vector fieldsY2, . . . ,Ym and a small param-

16



ε tεc
0.1 10.01593283
0.01 10.3164905
0.001 10.41858121
0.0001 10.45291892
0.00001 10.46419119

Table 2: Values oftεc

eterε > 0, so as to come up with the minimal time prob-
lem for the system ˙x = X(x) + uε1Y1(x) + ε

∑m
i=2 uεi Yi(x),

under the control constraint
∑m

i=1(uεi (·))2 6 1, with the
same boundary conditions as the initial problem. Un-
der appropriate assumptions, the optimal controls of the
latter problem, depending onε, are smooth functions of
t, and the theoretical and practical results for the conju-
gate time theory that are well known in the smooth case
can be applied to the regularized problem. We proved
that the first conjugate time of regularized problem con-
verges to the first conjugate time initial problem, when
ε tends to 0. We thus get as a byproduct an efficient way
to compute conjugate times in the bang-bang case. We
provided examples to illustrate our result.

Note that our results still hold if the control-affine
system is considered on a manifold. In this article we
considered IRn for the sake of simplicity.

An open question is to extend our results to multi-
input control-affine systems ˙x = X(x) +

∑p
i=1 uiYi(x) in

IRn, whereu = (u1, ..., up) ∈ L∞([0, t f ],∆) and∆ is
a polyhedron (see [38]), or a convex polyhedron (see
[30]), or a convex compact polyhedron (see [43]) of IRp.
For p > 1, it would be interesting to consider the case
where multiple switching times may occur, that is, when
at least two control functions switch at the same time. A
more general open question concerns the generalization
to general cost functions, and/or more general dynam-
ics.
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[44] C. J. Silva, E. Trélat,Smooth regularization of bang-bang opti-
mal control problems, accepted for publication in IEEE - Trans-
actions on Automatic Control (2009).

[45] G. Stefani, Regularity properties of the minimum-time map,
Nonlinear synthesis (Sopron, 1989), 270–282, Progr. Systems
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