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1. Overview and Statement of results

1.1. Introduction. These lectures present a recent approach, mainly developed by
Nalini Anantharaman and the author, aimed at studying the high-frequency eigen-
modes of the Laplace-Beltrami operator ∆ = ∆X on compact riemannian manifolds
(X, g) for which the sectional curvature is everywhere negative. It is well-known that
the geodesic flow on such a manifold (which takes place on the unit cotangent bun-
dle S∗X) is strongly chaotic, in the sense that it is uniformly hyperbolic (Anosov).
This flow leaves invariant the natural smooth measure on S∗X , namely the Liouville
measure µL (which is also the lift of the Lebesgue measure on X). Studying the
eigenstates of ∆ is thus a part of “quantum chaos”. In these notes we extend the
study to more general Schrödinger-like operators in the semiclassical limit, such that
the corresponding Hamitonian flow on some compact energy shell E has the Anosov
property. We also consider the case of quantized Anosov diffeomorphisms on the
torus, which are popular toy models in the quantum chaos literature. To set up the
problem we first stick to the Laplacian.

For a general riemannian manifold (X, g) of dimension d ≥ 2, there exist no explicit,
not even approximate expression for the eigenmodes of the Laplacian. One way to
“describe” these modes consists in comparing them (as “quantum” invariants) with
“classical” invariants, namely probability measures on S∗X , invariant w.r.to the ge-
odesic flow. To this aim, starting from the full sequence of eigenmodes (ψn)n≥0 one
can construct a family of invariant probability measures on S∗X , called semiclassical
measures. Each such measure µsc can be associated with a subsequence of eigen-
modes (ψnj

)j≥1 which share, in the limit j → ∞, the same macroscopic localization
properties, both on the manifold X and in the velocity (or momentum) space: these
macroscopic localization properties are “represented” by µsc. One (far-reaching) aim
would be a complete classification of the semiclassical measures associated with a
given manifold (X, g).

This goal is much too ambitious, starting from the fact that the set of invariant
measures is itself not always well-understood. We will thus restrict ourselves to the
class of manifolds described above, namely manifolds (X, g) of negative sectional
curvature. One advantage is that the classical dynamics is at the same time “irreg-
ular” (in the sense of “chaotic”), and “homogeneous”. The geodesic flow on such a
manifold is (semi)conjugated with a suspended flow over a simple symbolic dynam-
ics (a subshift of finite type over a finite alphabet), which allows one to explicitly
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construct many different invariant measures. For instance, such a flow admits in-
finitely many isolated (unstable) periodic orbits γ, each of which carries a natural
probability invariant measure µγ. The set of periodic orbits is so large that the
measures {µγ} form a dense subset (in the weak-* topology) of the set of invariant
probability measures. Hence, it would be interesting to know whether some high-
frequency eigenmodes can be asymptotically localized near certain periodic orbits,
leading to semiclassical measures of the form

(1.1) µ =
∑

γ

pγµγ, with
∑

γ

pγ = 1, pγ ∈ [0, 1].

This possibility was named “strong scarring” by Rudnick-Sarnak [RS94], in analogy
with a weaker form of “scarring” observed by Heller on some numerically computed
eigenmodes [Hel84], namely a “nonrandom enhancement” of the wavefunction in
the vicinity of a certain periodic orbit. In the same paper, Rudnick and Sarnak
conjectured that such semiclassical measures do not exist for manifolds of nega-
tive curvature. More precisely, they formulated the Quantum Unique Ergodicity
conjecture

Conjecture 1. [Quantum Unique Ergodicity] [RS94]

Let (X, g) be a compact riemannian manifold of negative curvature. Then there exist
only one semiclassical measure, namely the Liouville measure µL.

This conjecture rules out any semiclassical measure of the type 1.1. It also rules out
linear combination of the form

(1.2) µ = αµL + (1− α)
∑

γ

pγµγ, α ∈ [0, 1).

The name “quantum unique ergodicity” reminds of a classical notion: a dynamical
system (map or flow) is uniquely ergodic if and only if it admits a unique invariant
measure. In the present case, the classical system is not uniquely ergodic, but the
conjecture is that its quantum analogue conspires to be so.

This conjecture was formulated several years after the proof of a general result
describing “almost all” the eigenstates (ψn).

Theorem 2. [Quantum Ergodicity] [Schn74, Zel87, CdV85]

Let (X, g) be a compact riemannian manifold such that the geodesic flow is ergodic
w.r.to the Liouville measure µL. Then, there exists a subsequence S ⊂ N of density
1, such that the subsequence (ψn)n∈S is associated with µL.

1

The manifolds encompassed by this theorem include the case of negative curva-
ture, but also more general ones (like manifolds where the curvature is negative
outside a flat cylindrical part ). The proof of this theorem is quite “robust”. It
has been generalized to many different ergodic systems: Hamiltonian flows ergodic
on some compact energy shell [HMR87], broken geodesic flows on some Euclidean
domains [GerLei93, ZelZwo96], symplectic diffeomorphism (possibly with disconti-
nuities) on a compact phase space [BDB96]. This result leaves open the possibility

1A subsequence S ⊂ N is said to be of density 1 iff limN→∞
♯{n∈S, n≤N}

N
= 1.
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of exceptional subsequences (ψnj
)j≥1 (necessarily of density zero) of eigenmodes with

different localization properties.

The QUE conjecture was motivated by partial results concerning a much more re-
stricted class of manifolds, namely compact quotients of the hyperbolic disk Γ\H for
which Γ is an arithmetic subgroup of SL2(R)

2. Such manifolds admit a commutative
algebra of selfadjoint Hecke operators (Tk)k≥2 which all commute with the Lapla-
cian. It thus makes sense to preferably consider an eigenbasis (ψn)n≥0 made of joint
eigenmodes of the Laplacian and the Hecke operators (called Hecke eigenmodes),
and the associated semiclassical measures (called Hecke semiclassical measures)3.
Rudnick-Sarnak proved that the only Hecke semiclassical measure of the form 1.2
is the Liouville measure (α = 1). Finally, Lindenstrauss [Lin06] showed that for
such manifolds, the only Hecke semiclassical measure is the Liouville measure, thus
proving an arithmetic form of QUE. He used as an intermediate step a lower bound
for the Kolmogorov-Sinai (KS) entropy of Hecke semiclassical measures, which he
proved in a joint work with Bourgain.

Proposition 3. [BourLin03] Let X be an arithmetic quotient Γ\H. Consider a
Hecke semiclassical measure µsc. Then for any ρ ∈ S∗X any small τ, ǫ > 0, the
measure of the tube B(ρ, ǫ, τ) of diameter ǫ around the stretch of trajectory [ρ, gτρ]
is bounded by

µsc (B(ρ, ǫ, τ)) ≤ Cτ ǫ
2/9.

As a consequence, for almost any ergodic component µerg of µsc, one has

(1.3) HKS(µerg) ≥ 2/9.

As we will see below, the KS entropy is an affine quantity, therefore HKS(µsc) also
satisfies the same lower bound.

1.2. Entropy as a measure of localization. In the previous section we already
noticed a relationship between phase space localization and entropy: a uniform lower
bound on the measure of thin tubes implies a positive lower bound on the entropy of
the measure. For this reason, it is meaningful to consider the KS entropy of a given
invariant measure as a “quantitative indicator of localization” of that measure. In
section 3.1 we will give a precise definition of the entropy. For now, let us only
provide a few properties valid in the case of Anosov flows [KatHas95, Chap. 4 ].

(1) HKS(•) is a real function defined on the set of invariant probability measures.
It takes values in a finite interval [0, Hmax] and is upper semicontinuous. In
information-theoretic language, it measures the average complexity of the
flow w.r.to that measure. The maximum entropy Hmax = Htop(S

∗X) is also
the topological entropy of the flow on S∗X , which is a standard measure of
the complexity of the flow.

(2) a measure µγ supported on a single periodic orbit has zero entropy.

2More precisely, Γ is derived from an Eichler order in a quaternion algebra.
3It is widely believed that the spectrum of ∆ on such a manifold is simple, in which case the

restriction to Hecke eigenmodes is not necessary.
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(3) Since the flow is Anosov, at each point ρ ∈ S∗X the tangent space splits
into TρS

∗X = Eu
ρ ⊕ Es

ρ ⊕ E0
ρ , respectively the unstable, stable subspaces

and the flow direction. Each of these subspaces is flow-invariant. Let us call

Ju(ρ) = Ju
1 (ρ) =

∣∣∣det g1↾Eu(ρ)

∣∣∣ the unstable Jacobian at the point ρ. Then,

any invariant measure satisfies

(1.4) HKS(µ) ≤
∫

log Ju(ρ) dµ(ρ). (Ruelle inequality)

The equality is reached iff µ = µL. In constant curvature, one hasHKS(µL) =
Hmax.

(4) the entropy is affine: HKS (αµ1 + (1− α)µ2) = αHKS(µ1)+(1−α)HKS(µ2).

Apart from the result of Bourgain-Lindenstrauss (relative to arithmetic surfaces),
the first result on the entropy of semiclassical measures was obtained by Ananthara-
man:

Theorem 4. [Ana08] Let (X, g) be a manifold of negative sectional curvature. Then,
there exists c > 0 such that any semiclassical measure µsc satisfies

HKS(µsc) ≥ c.

Furthermore, the flow restricted to the support of µsc has a nontrivial complexity:
its topological entropy satisfies

Htop(supp µsc) ≥
Λu

min

2
,

where Λu
min = limt→∞ infρ

1
t
log Ju

t (ρ) is the minimal volume expanding rate of the
unstable manifold.

The lower bound c > 0 is not very explicit and is rather “small”. This is to be
opposed to the lower bound controlling the complexity of the flow on suppµsc, given
in terms of the hyperbolicity of the flow. The lower bound on the KS entropy was
improved by Anantharaman, Koch and the author:

Theorem 5. [AnaNo07-2, AnaKoNo06] Let (X, g) be a d-dimensional manifold of
negative sectional curvature. Then, any semiclassical measure µsc satisfies

(1.5) HKS(µsc) ≥
∫

log Ju(ρ) dµsc(ρ)−
(d− 1)λmax

2
,

where λmax = limt→∞ supρ
1
t
log |dgt(ρ)| is the maximal expansion rate of the flow.

In the particular case where X has constant curvature −1, this bound reads

(1.6) HKS(µsc) ≥
d− 1

2
=
Htop(S

∗X)

2
.

In the constant curvature case, the above bound roughly means that high-frequency
eigenmodes of the Laplacian are at least half-delocalized. Still, the bound (1.5) is not
very satisfactory when the curvature varies much across X ; since

∫
log Judµ may be

as small as Λmin, the right hand side in (1.5) can become negative (therefore trivial)

in case Λmin <
(d−1)λmax

2
. The following lower bound seems more natural:
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Conjecture 6. Let (X, g) be a manifold of negative sectional curvature. Then, any
semiclassical measure µsc satisfies

(1.7) HKS(µsc) ≥
1

2

∫
log Ju(ρ) dµsc(ρ).

This bound is identical with (1.6) in the case of curvature −1. Using a nontrivial
extension of the methods developed in [AnaKoNo06], it has been recently proved
by G.Rivière in the case of surfaces (d = 2) of nonpositive curvature [Riv08, Riv09],
and also by B.Gutkin for a certain class of quantized interval maps [Gut08].

1.3. Generalization to Anosov Hamiltonian flows and symplectic maps.

The conjecture 6 is weaker than the QUE conjecture 1. We expect the bound (1.7)
to apply as well to more general classes of quantized chaotic dynamical systems,
like Anosov Hamiltonian flows or symplectic diffeomorphisms on a compact phase
space. In these notes we will extend the bound (1.5) to these more general Anosov
systems (the first instance of this entropic bound actually appeared when studying
the Walsh-quantized baker’s map [AnaNo07-1]). The central result of these notes is
the following theorem.

Theorem 7. i) Let p(x, ξ; ~) be a Hamilton function on some phase space T ∗X
with principal symbol p0, such that the energy shell E = p−1

0 (0) is compact, and the
Hamiltonian flow gt = etHp0 on E is Anosov (see §2.2). Let P (~) = Op~(p) be the
~-quantization of p. Then, any semiclassical measure µsc associated with a sequence
of null eigenmodes (ψ~)~→0 of P (~) satisfies the following entropic bound:

(1.8) HKS(µsc) ≥
∫

E

log Ju(ρ) dµsc(ρ)−
(d− 1)λmax

2
.

ii) Let E = T2d be the 2d-dimensional torus, equipped with its standard symplectic
structure. Let κ : E → E be an Anosov diffeomorphism, which can be quantized into
a family of unitary propagators (U~(κ))~→0 defined on (finite dimensional) quantum
Hilbert spaces (H~). Then, any semiclassical measure µsc associated with a sequence
of eigenmodes (ψ~ ∈ H~)~→0 of U~(κ) satisfies the entropic bound

(1.9) HKS(µsc) ≥
∫

log Ju(ρ) dµsc(ρ)−
dλmax

2
.

In §5 we will state more precisely what we meant by a “quantized torus diffeomor-
phism”. Let us mention that the same proof could apply as well to Anosov symplectic
maps on more general symplectic manifolds admitting some form of quantization.
We restricted the statement to the 2d-torus because simple Anosov diffeomorphisms
on T2d can be constructed, and their quantization is by now rather standard. As
we explain below, their study has revealed interesting features regarding the QUE
conjecture.

1.4. Counterexamples to QUE for Anosov diffeomorphisms. For the sim-
plest Anosov diffeos on T2, namely the hyperbolic symplectomorphisms of the torus
(colloquially known as “quantum Arnold’s cat map”), the QUE conjecture is known
to fail. Indeed, in [FNDB03] counterexamples to QUE for “cat maps” on the 2-
dimensional torus were exhibited, in the form of explicit semiclassical sequences of
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eigenstates of the quantized map, associated with semiclassical measures of type
(1.2) with α = 1/2. In [FNDB04] we also showed that, for this particular map,
semiclassical measures of the form (1.2) necessarily satisfy α ≥ 1/2.

In the case of toral symplectomorphisms on higher dimensional tori T2d, Kelmer
[Kelm07, Kelm10] has exhibited semiclassical measures in the form of the Lebesgue
measure on certain co-isotropic affine subspaces Λ ⊂ T

2d of the torus invariant
through the map:

µsc = µL↾Λ.

For another example of a chaotic map (the baker’s map quantized à la Walsh), we
were able to construct semiclassical measures of purely fractal (self-similar) nature.

Fact 8. The above counterexamples to QUE all satisfy the entropy bound (1.7), and
some of them (like the measure (1.2) with α = 1/2) saturate that bound.

It is worth mentioning an interesting result obtained by S.Brooks [Broo08] in the
case of the “quantum Arnold’s cat map”. Brooks takes into accout the possibility
to split any invariant measure µ into ergodic components:

µ =

∫

T2

µx dµ(x),

where the probability measure µx, defined for µ-almost every point x, is ergodic.
The affineness of the KS entropy ensures that

(1.10) HKS(µ) =

∫

T2

HKS(µx) dµ(x),

so to get a lower bound on HKS(µ) it is sufficient to show that “high-entropy”
components have a positive weight in µ. Brooks’s result reads as follows:

Theorem 9. [Broo08]Let κ : T2 	 be a linear hyperbolic symplectomorphism, with
positive Lyapunov exponent λ (λ is also equal to the topological entropy of κ on T2).
Fix any 0 < H0 <

λ
2
, and consider any associated semiclassical mesure µsc. Then

the following inequality holds:

µsc {x : HKS(µx) < H0} ≤ µsc {x : HKS(µx) > λ−H0} .

This result directly implies (through (1.10)) the bound HKS(µsc) ≥ λ
2
, but it also

implies (by sending H0 → 0) the above-mentioned fact that the weight of atomic
components of µsc is smaller or equal to the weight of its Lebesgue component.

1.5. Plan of the paper. These lectures reproduce most of the proofs of [AnaNo07-2,
AnaKoNo06] dealing with eigenstates of the Laplacian on manifolds of negative cur-
vature. Yet, we extend the proofs in order to deal with more general Hamiltonian
flows of Anosov type (for instance, adding some small potential to the free motion on
X). This can be done at the price of using more general, “microlocal” partitions of
unity, as opposed to the “local” partition of unity used in [AnaNo07-2, AnaKoNo06]
(which was given in terms of functions πk(x) only depending on the position vari-
able). This microlocal setting is somehow more natural, since it does not depend on
the way unstable manifolds project down to the manifold X . It is also more natural
in the case of Anosov maps.
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In §2 we recall the semiclassical tools we will need, starting with the ~-pseudodifferential
calculus on a compact manifold, and including some exotic classes of symbols. We
also define the main object of study, namely the semiclassical measures associated
with sequences of null eigenstates (ψ~)~→0 of a family of Hamiltonians (P (~))~→0.
In the central section §3 we provide the proof of Thm. 7, i), that is in the case of an
Anosov Hamiltonian flow on a compact manifold X . We first recall the definition
of entropies and pressures associated with invariant measures. We then introduce
microlocal quantum partitions in §3.2, and their refinements used to define quantum
entropies and pressures associated with the eigenstates ψ~. We try to provide some
geometric intuition on the operators Πα defining these partitions. We then state
the central hyperbolic dispersive estimate on the norms of these operators, defer-
ring the proof to §4. We then introduce several versions of “entropic uncertainty
principles”, from the simplest to the most complex, microlocal form (Prop. 29) .
We then apply this microlocal EUP in order to bound from below quantum and
classical pressures associated with our eigenmodes. §4 is devoted to the proof of
the hyperbolic dispersive estimate. Here we adapt the proof of [NoZw09], which is
valid in more general situations than the case of geodesic flows. Finally, in §5 we
briefly recall the framework of quantized maps on the torus, and provide the details
necessary to obtain Thm.7, ii).

Acknowledgement. I am grateful to D.Jakobson and I.Polterovich who invited me
to give this minicourse in Montréal and to write these notes. Most of the material
of these notes were obtained through from collaborations with N.Anantharaman,
H.Koch and M.Zworski. I have also been partially supported by the project ANR-
05-JCJC-0107091 of the Agence Nationale de la Recherche.

2. Preliminaries and problematics

2.1. Semiclassical calculus on X. The original application of the methods pre-
sented below concern the Laplace-Beltrami operator on a smooth compact manifold
X of negative sectional curvature. To deal with this problem, one needs to define
a certain number of auxiliary operators on L2(X), which are ~-pseudodifferential
operators on X (ΨDOs), or ~-Fourier integral operators on X . We will only recall
the definition and construction of the former class.

The Hamiltonians mentioned in Theorem 7 also belong to some class of ~-pseudodifferential
operators, but the manifold X on which they are defined is not necessarily compact
any more. In this setting, the smooth manifold X can be taken as the Euclidean
space X = Rd, or be Euclidean near infinity, that is X = X0 ⊔

(
Rd \B(0, R0)

)
,

where B(0, R0) is the ball of radius R0 in Rd, and X0 is a compact manifold, the
boundary of which is smoothly glued to ∂B(R0).

2.1.1. Symbol classes on T ∗X and ~-pseudodifferential calculus. Let us construct
an ~-quantization procedure on a Riemannian manifold X . To a certain class of
well-behaved functions (f(~))

~→0 on T ∗X (the physical observables, referred to as
symbols in mathematics) one can associate, through a well-defined quantization pro-
cedure Op~, a corresponding set of operators Op~(f(~)) acting on C∞

c (X). By “well-
behaved” one generally refers to certain conditions on the regularity and growth of
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the function. There are many different types of classes of “well-behaved symbols”;
we will be using the class

Sm,k(T ∗X) =
{
f(~) ∈ C∞(T ∗X),

∣∣∣∂αx∂
β
ξ f(~)

∣∣∣ ≤ Cα,β~
−k〈ξ〉m−|β|

}
.

Here we use the “japanese brackets” notation 〈ξ〉 def
=
√
1 + |ξ|2. The estimates are

supposed to hold uniformly for ~ ∈ (0, 1] and (x, ξ) ∈ T ∗X . The seminorms can
be defined locally on coordinate charts of X ; due to the factor 〈ξ〉−|β|, this class is
invariant w.r.to changes of coordinate charts onX , and thus makes sense intrinsically
on the manifold T ∗X .

Some (important) symbols in this class are of the form

f(x, ξ; ~) = ~
−kf0(x, ξ) + f1(x, ξ, ~), f1 ∈ Sm,k′, k′ < k.

In that case, ~−kf0(x, ξ) is called the principal symbol of f .

For X = Rd, a symbol f ∈ Sm,k can be quantized using the Weyl quantization: it
acts on ϕ ∈ S(Rd) through as the integral operator

(2.1) OpW
~ (f)ϕ(x) =

∫
f

(
x+ y

2
, ξ

)
ei〈x−y,ξ〉/~ ϕ(y)

dy dξ

(2π~)d
.

If f is a real function, this operator is essentially selfadjoint on L2(Rd).

If X is a more complicated manifold, one can quantize f by first splitting it into
pieces localized on various coordinate charts Vℓ ⊂ X , through a finite partition of
unity 1 =

∑
ℓ φℓ, supp φℓ ⊂ Vℓ:

f =
∑

ℓ

fℓ, fℓ = f × φℓ.

Each component fℓ can be considered as a function on T ∗Rd, and be quantized
through (2.1), producing an operator OpR

~
(fℓ) acting on C∞

c (Rd). A wavefunction

ϕ ∈ C∞(X) will be cut into pieces φ̃ℓ × ϕ, where the cutoffs supp φ̃ℓ ⊂ Vℓ satisfy

φ̃ℓφℓ = φℓ
4. Our final quantization is then defined as:

(2.2) Op~(f)ϕ =
∑

ℓ

φ̃ℓ ×OpR

~ (fℓ)
(
φ̃ℓ × ϕ

)
.

The image of the class Sm,k(T ∗X) through quantization is an operator algebra acting
on C∞

c (X), denoted by Ψm,k(T ∗X). This algebra has “nice” properties in the semi-
classical limit ~ ≪ 1. The product of two such operators behaves as a “decoration”
of the usual multiplication:

(2.3) Op~(f) Op~(g) = Op~(f♯g),

where f♯g ∈ Sm+m′,k+k′ admits an asymptotic expansion of the form

(2.4) f♯g ∼
∑

j≥0

~
j(f♯g)j.

4Throughout the text we will ofen encouter such “embedded cutoffs”. The property φ̃ℓφℓ = φℓ
will be denoted by φ̃ℓ ≻ φℓ.
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Here the first component (f♯g)0 = f × g, while each (f♯g)j ∈ Sm+m′,k+k′ is a linear
combination of derivatives ∂γf∂γ

′

g, with |γ|, |γ′| ≤ j. In the case X = R
d and

Op~ is the Weyl quantization (2.1), ♯ is called the Moyal product. In the case
f ∈ S(T ∗X) = S0,0(T ∗X), Op~(f) can be extended into a continuous operator on
L2(X), and the sharp G̊arding inequality ensures that

‖Op~(f)‖L2 = ‖f‖∞ +Of (~).

The quantization procedure f 7→ Op~(f) is obviously not unique: it depends on
the choice of coordinates on each chart, on the choice of quantization OpR

~
, on the

choice of cutoffs φj, φ̃j . Fortunately, this non-uniqueness becomes irrelevant in the
semiclassical limit.

Proposition 10. In the semiclassical limit ~ → 0, two ~-quantizations differ at
most at subprincipal order:

∀f ∈ Sm,k(T ∗X), Op1
~
(f)−Op2

~
(f) ∈ Ψm,k−1(T ∗X).

2.2. From the Laplacian to more general quantum Hamiltonians.

2.2.1. Rescaling the Laplacian. One of our objectives is to study an eigenbasis
(ψn)n≥0 of the Laplace-Beltrami operator on some compact Riemannian manifold
(X, g). To deal with the high-frequency limit n≫ 1, it turns out convenient to use
a “quantum mechanics” point of view, namely rewrite the eigenmode equation

(∆ + λ2n)ψn = 0, λn > 0

in the form

(2.5)

(
−~2

n∆

2
ψn −

1

2

)
ψn = 0, ~n = λ−1

n .

This way, ~n appears as an effective Planck’s constant (which is of the order of the
wavelength of the state ψn). The rescaled Laplacian operator

−~2∆

2
− 1

2
= P (~)

is the ~-quantization P (~) = Op~(p) of a certain classical Hamiltonian

p(x, ξ; ~) = p0(x, ξ) + ~p1(x, ξ) + . . . . ∈ S2,0(T ∗X).

The principal symbol p0(x, ξ) =
|ξ|2x
2
−1/2 generates (through Hamilton’s equations)

the motion of a free particle on X . In particular, the Hamilton flow gt = exp tXp0

restricted to the energy shell p−1
0 (0) = S∗X is the geodesic flow (in the following,

we will often denote by E this energy shell).

Notation 11. The Laplacian eigenmodes will often be denoted by ψ~ instead of ψn,
with the convention that the state ψ~ satisfies the eigenvalue equation

(2.6) P (~)ψ~ =

(
−~2∆

2
− 1

2

)
ψ~ = 0.

Definition 12. We will call S ⊂ (0, 1] a countable set of scales ~, with only accu-
mulation point at the origin. A sequence of states indexed by ~ ∈ S will be denoted
by (ϕ~)~∈S, or sometimes, omitting the reference to a specific S, by (ϕ~)~→0.
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2.2.2. Anosov Hamiltonian flows. In Theorem 7 we deal with more general Hamil-
tonians p(x, ξ; ~) on T ∗X , where X is compact or could also be the Euclidean space
Rd. The (real) symbol p is assumed to belong to a class Sm,0(T ∗X), and admit the
expansion

p(x, ξ, ~) = p0(x, ξ) + ~
νp1(x, ξ, ~), p0, p1 ∈ Sm,0(T ∗X), ν > 0,

that is p0 is the principal symbol of p. We could as well consider more general
symbol classes, see for instance [EvZw09, Sec. 4.3] in the case X = Rd. We assume
that

(1) the energy shell E = p−1
0 (0) is compact, so that Eǫ def

= p−1
0 ([−ǫ, ǫ]) is compact

as well for ǫ > 0 small enough.
(2) the Hamiltonian flow gt = etHp0 restricted to the energy shell E does not

admit fixed points, and is of Anosov type.

The Hamiltonian p is quantized into an operator P (~) = Op~(p) ∈ Ψm,0. The first
assumption above implies that, for ~ > 0 small enough, the spectrum of P (~) near
zero is purely discrete. We will focus on sequences of normalized null eigenstates
(ψ~)~→0:

(2.7) P (~)ψ~ = 0.

Remark 13. If ψ~ is a “quasi-null” eigenstate of P (~), that is if P (~)ψ~ = E(~)ψ~

with E(~) = O(~ν), then it is a null eigenstate of P̃ (~)
def
= P (~) − E(~), which

admits the same principal symbol p0 as P (~). As a result, Thm. 7 is also valid for
such sequences of states.

2.3. ~-dependent singular’ observables. In the following we will have to use
some classes of “singular” ~-dependent symbols.

2.3.1. “Isotropically singular” observables. For ν ∈ [0, 1/2), we will consider the
class

(2.8) Sm,k
ν (T ∗X) =

{
f(~) ∈ C∞(T ∗X),

∣∣∣∂αx∂
β
ξ f(~)

∣∣∣ ≤ Cα,β~
−k−ν|α+β|〈ξ〉m−|β|

}
.

Such functions can strongly oscillate on scales ≥ ~ν . The corresponding operators
belong to an algebra Ψm,k

ν (T ∗X) which can still be analyzed using an ~-expansion
of the type (2.4). The main difference is that the higher-order terms (f#g)j ∈
Sm+m′,k+k′+2jν
ν . Similarly, the Garding inequality reads, for f ∈ S0,0

ν :

‖Op~(f)‖L2 = ‖f‖∞ +Of (~
1−2ν),

where the implicit constant depends on a certain seminorm of f .

2.3.2. “Anisotropically singular” observables. We will also need to quantize observ-
ables which are “very singular” along certain directions, away from some spe-
cific submanifold (see for instance [SjoZwo99] for a presentation). Consider Σ ⊂
T ∗X a compact co-isotropic manifold of dimension 2d − D (with D ≤ d). Near
each point ρ ∈ Σ, there exist local canonical coordinates (yi, ηi) such that Σ =
{η1 = η2 = · · · = ηD = 0}. For some index ν ∈ [0, 1), we define as follows a class of

smooth symbols f ∈ Sm,k
Σ,ν (T

∗X) ⊂ C∞(T ∗X × (0, 1]):
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• for any family of smooth vector fields V1, . . . , Vl1 tangent to Σ and of smooth
vector fields W1, . . . ,Wl2 , we have in any neighbourhood Σǫ of Σ:

sup
ρ∈Σǫ

|V1 · · ·Vl1W1 · · ·Wl2f(ρ)| ≤ C ~
−k−νl2.

• away from Σ we require |∂αx∂βξ | = O(~−k〈ξ〉m−|β|).

Such a symbol f can be split into components fj localized in neighbourhoods Vj ⊂
Σǫ, plus an “external” piece f∞ ∈ Sm,k(T ∗X) vanishing near Σ. Each piece fj is
Weyl-quantized in local adapted canonical coordinates (y, η) on Vj (as in (2.1)), and
then brought back to the original coordinates (x, ξ) using Fourier integral operators.
On the other hand, f∞ is quantized as in (2.2). Finally, OpΣ,~(f) is obtained by
summing the various contributions. The resulting class of operators is denoted by
Ψm,k

Σ,ν (T
∗X).

2.3.3. Sharp energy cutoffs. We will mostly use this quantization relative to the

energy layer Σ
def
= E = p−1

0 (0), in order to define a family of sharp energy cutoffs.
Namely, for some small δ > 0 we will start from a cutoff χδ ∈ C∞(R) such that
χδ(s) = 1 for |s| ≤ e−δ/2, χδ(s) = 0 for |s| ≥ 1. From there, we define, for each
~ ∈ (0, 1] and each n ≥ 0, the rescaled function χ(n) ∈ C∞

c (R× (0, 1]) by

(2.9) χ(n)(s, ~)
def
= χδ

(
e−nδ

~
−1+δ s

)
.

The functions χ(n) ◦ p0 are “sharp” energy cutoffs, they belong to the class S−∞,0
E,1−δ.

We will always consider n ≤ nmax = Cδ| log ~|, where the constant Cδ < δ−1 − 1,
such that suppχ(n) is microscopic.

These cutoffs can be quantized in two ways:

(1) we may directly quantize the function χ(n)◦p0, into OpE,~(χ
(n)◦p0) ∈ Ψ−∞,0

E,1−δ.

(2) or we can consider, using functional calculus, the operators χ(n)(P (~)). These
operators (which generally differ from the previous ones) also belongs to
Ψ−∞,0

E,1−δ.

The sequence (χ(n))0≤n≤nmax
is an increasing sequence of embedded cutoffs: for each

n, we have χ(n+1)χ(n) = χ(n) (equivalently, χ(n+1) ≻ χ(n)). More precisely, we have
here

(2.10) dist
(
suppχ(n), , supp(1− χ(n+1))

)
≥ ~

1−δeδn(eδ/2 − 1).

This distance between the supports implies the following

Lemma 14. For any symbol f ∈ Sm,0
E,1−δ and any 0 ≤ n ≤ nmax, one has

(2.11)
(
Id−OpE,~(χ

(n+1) ◦ p0)
)
OpE,~(f) OpE,~(χ

(n) ◦ p0) = O(~∞).

The same property holds if we replace OpE,~(χ
(n) ◦ p0) by χ(n)(P (~)).

Using the calculus of the class Sm,0
E,1−δ, one can use the ellipticity of P (~) away from

E to show that, if (ψ~) is a sequence of null eigenstates of P (~), then

(2.12)
(
Id− χ(0)(P (~))

)
ψ~ = O(~∞), ~ → 0.
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That is, in the semiclassical limit the eigenstate ψ~ is microlocalized inside the energy
layer of width ~1−δ around E .

2.4. Semiclassical measures. The ~-semiclassical calculus allows us to define
what we mean by “phase space distribution of the eigenstate ψ~”, through the
notion of semiclassical measure. A Borel measure µ on the phase space T ∗X can be
fully characterized by the set of its values

µ(f) =

∫

T ∗X

f dµ,

over smooth test functions f ∈ Cc(T
∗X). For each semiclassical scale ~, one can

quantize a test function into a test operator Op~(f) (which is, as mentioned above,
a continuous operator on L2(X)). To any normalized state ϕ ∈ L2(X) we can then
associate the linear functional

f ∈ C∞
c (T ∗X) 7→ µ~,ϕ(f)

def
= 〈ϕ,Op~(f)ϕ〉.

µ~,ϕ is a distribution on T ∗X , which encodes the localization properties of the state
ϕ in the phase space, at the scale ~. Let us give an example. Using some local
coordinate chart near x0 ∈ X and a function ~2 ≪ c(~) ≪ 1, we can define a
Gaussian wavepacket by

ϕ~(x)
def
= C~ χ(x) exp

{
−|x− x0|2

c(~)
+ i

x · ξ0
~

}
.

Here χ is a smooth cutoff equal to unity near x0, which vanishes outside the co-
ordinate chart, C~ is a normalization factor. When ~ ≪ 1, the distribution µ~,ϕ~

associated with this wavefunction gets very peaked around the point (x0, ξ0) ∈ T ∗X .
If we had used the quantization at the scale 2~, the measure µ2~,ϕ~

would have been
peaked around (x0, ξ0/2) instead.

Since the distribution µ~,ϕ is defined by duality w.r.to the quantization f 7→ Op~(f),
it depends on the precise quantization scheme Op~. In the case X = Rd and Op~

is the Weyl quantization, the distribution µϕ,~ is called the Wigner distribution
associated with the state ϕ and the scale ~. Fortunately, as shown by proposition
10, this scheme-dependence is irrelevant in the semiclassical limit.

Corollary 15. For any ϕ ∈ L2, consider the distributions µ1
~,ϕ, µ

2
~,ϕ defined by

duality with two ~-quantizations Op1
~
, Op2

~
. Then, the following estimate holds in

the semiclassical limit, uniformly w.r.to ϕ ∈ L2:

∀f ∈ C∞
c (T ∗X), µ1

~,ϕ(f)− µ2
~,ϕ(f) = Of(~ ‖ϕ‖).

Let S ⊂ (0, 1] be a set of scales. For a given family of L2-normalized states (ϕ~)~∈S,
we consider the sequence of distributions (µ~,ϕ~

)~∈S on T ∗X . It is always possible
to extract a subset of scales S ′ ⊂ S, such that

∀f ∈ C∞
c (T ∗X), µ~,ϕ~

(f)
S′∋~→0−→ µsc(f),

with µsc a certain distribution on T ∗X . One can show that µsc is a Radon measure
on T ∗X [EvZw09, Thm 5.2]. From the above remarks, µsc does not depend on the
precise scheme of quantization.
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Definition 16. The measure µsc is called the semiclassical measure associated with
the subsequence (ϕ~)~∈S′. It is also a semiclassical measure associated with the
sequence (ϕ~)~∈S.

From now on, we will assume that ϕ~ = ψ~ is a null eigenstate of the quantum Hamil-
tonian P (~) in §2.2: we will then call µsc a semiclassical measure of the Hamiltonian
P (~).

Proposition 17. Any semiclassical measure associated with a sequence (ψ~)~→0 of
eigenstates of the Hamiltonian P (~) is a probability measure supported on the energy
layer E , which is invariant w.r.to the geodesic flow gt on E .

Proof. Possibly after extracting a subsequence, we assume that µsc is the semiclassi-
cal measure associated with a sequence of eigenstates (ψ~)~∈S. The support property
of µsc comes from the fact that the operator P (~) is elliptic outside E . As a result, for
any f ∈ C∞

c (T ∗X) vanishing near E , one can construct a symbol g ∈ S−∞,0(T ∗X)
such that

Op~(f) = Op~(g)P (~) +OL2→L2(~∞).

Applying this equality to the eigenstates ψ~, we get ‖Op~(f)ψ~‖ = O(~∞), proving
the support property of µsc.

To prove the flow invariance, we need to compare the quantum time evolution with

the classical one. Denote by U t
~
= exp

{
−i t P (~)

~

}
the propagator generated by the

Hamiltonian P (~): it solves the time-dependent Schrödinger equation, and thus pro-
vides the quantum evolution. Let us state Egorov’s theorem, which is a rigorous
form of quantum-classical correspondence in terms of observables:
(2.13)
∀f ∈ C∞

c (T ∗X), ∀t ∈ R, U−t
~

Op~(f)U
t
~ = Op~(f ◦ gt) +Of,t(~), ~ → 0.

Since ψ~ is an eigenstate of U t
~
, we directly get

µ~,ϕ~
(f) = µ~,ϕ~

(f ◦ gt) +Of,t (~) =⇒ µsc(f) = µsc(f ◦ gt).

�

These properties of semiclassical measures naturally lead to the following question:

Among all flow-invariant probability measures supported on E , which
ones appear as semiclassical measures associated with eigenstates of
P (~)?

To start answering this question, we will investigate the Kolmogorov-Sinai entropy
of semiclassical measures. We will show that, in the case of an Anosov flow, the
requirement of being a semiclassical measure implies a nontrivial lower bound on
the entropy.

3. From classical to quantum entropies

3.1. Entropies and pressures [KatHas95].
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3.1.1. Kolmogorov-Sinai entropy of an invariant measure. In this paper we will deal
with several types of entropies. All of them are defined in terms of certain discrete
probability distributions, that is finite sets of real numbers {pi, i ∈ I} satisfying

pi ∈ [0, 1],
∑

i∈I

pi = 1 .

The entropy associated with such a set is the real number

(3.1) H({pi}) =
∑

i∈I

η(pi), where η(s)
def
= −s log s, s ∈ [0, 1].

Our first example is the entropy H(µ,P) associated with a gt-invariant probability
measure µ on the energy shell E and a finite measurable partition P = (E1, . . . , EK)
of E . That entropy is given by

(3.2) H(µ,P) = H({µ(Ek)}) =
K∑

k=1

η(µ(Ek)).

One can then use the flow gt in order to refine the partition P. For each integer
n ≥ 1 we define the n-th refinement P∨n = [P]n−1

0 as the partition composed of the
sets

Eα
def
= g−n+1Eαn−1

∩ · · · ∩ g−1Eα1
∩ Eα0

,

whereα = α0 · · ·αn−1 can be any sequence of length n with symbols αi ∈ {1, . . . , K}.
In general many of the sets Eα may be empty, but we will nonetheless sum over all
sequences of a given length n. More generally, for any m ∈ Z, n ≥ 1, we consider
the partition [P]m+n−1

m made of the sets

g−mEα = g−m−n+1Eαn−1
∩ · · · ∩ g−mEα0

, |α| = n.

From this refined partition we obtain the entropy H(µ, [P]m+n−1
m ) = Hm+n−1

m (µ).

From the concavity of the logarithm, one easily gets

(3.3) ∀m,n ≥ 1, H(µ, [P]n+m−1
0 ) ≤ H(µ, [P]n−1

0 ) +H(µ, [P]n+m−1
n ).

If the measure µ is gt-invariant, this has for consequence the subadditivity property :

(3.4) H(µ,P∨(n+m)) ≤ H(µ,P∨n) +H(µ,P∨m).

It thus makes sense to consider the limit

HKS(µ,P)
def
= lim

n→∞

1

n
H(µ,P∨n) = lim

n→∞

1

2n
H(µ, [P]n−n+1),

the Kolmogorov-Sinai entropy of the invariant measure µ, associated with the par-
tition P. The KS entropy per se is defined by maximizing over the initial (finite)
partition P:

HKS(µ)
def
= sup

P
HKS(µ,P).

For an Anosov flow, this supremum is actually reached as soon as the partition
P has a sufficiently small diameter (that is, its elements Ek have uniformly small
diameters).
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3.1.2. Pressures associated with invariant measures. Let us come back to our prob-
ability distribution {pi, i ∈ I}. We may associate to it a set of weights, that is of
positive real numbers {wi > 0, i ∈ I}, making up a weighted probability distribu-
tion. The pressure p({pi} , {wi}) associated with this weighted distribution is the
real number5

p({pi} , {wi}) def
= −

∑

i

pi log(w
2
i pi) = H({pi})− 2

∑

i∈I

pi logwi.

For instance, in the case of a flow-invariant measure on E and a partition P, we can
select weights wk on each component Ek, and define the pressure

p(µ,P, w) def
= H(µ,P)− 2

∑

k

µ(Ek) logwk.

We want to refine this pressure using the flow. The weights corresponding to the
n-th refinement can be simply defined as

wα =

n−1∏

j=0

wαj
, |α| = n.

The refined pressure is denoted by pn−1
0 (µ,P, w). From the subadditivity of the

entropies (3.5) one easily draws the subadditivity of the pressures:

(3.5) pn+m−1
0 (µ,P, w) ≤ pn−1

0 (µ,P, w) + pm−1
0 (µ,P, w).

3.1.3. Smoothed partitions near E . The definition of H(µ,P) can be expressed in
terms of characteristic functions over the partition P. Indeed, if 1lk is the charac-
teristic function on Ek, then the function

(3.6) 1lα =
(
1lαn−1

◦ gn−1
)
× · · · × (1lα1

◦ g)× 1lα0

is the characteristic function of Eα. In formula (3.2) we can then replace µ(Ek) by

µ(1lk)
def
=

∫

E

1lk dµ.

Let us assume that the invariant measure µ does not charge the boundary of the
Ek (this is always possible by slightly shifting the boundaries of the Ek). Then, for
any ǫ > 0, we can approximate the characteristic function 1lk by a smooth function
πk ∈ C∞

c (Eǫ, [0, 1]) supported in a small neighbourhood Ẽk of Ek, and such that
these K functions form a smooth partition of unity near E :

(3.7)

K∑

k=1

πk(ρ) = χǫ/2(ρ), suppχǫ/2 ⊂ Eǫ, χǫ/2 = 1 near Eǫ/2.

One can extend the definition of the entropy to the smooth partition Psm = {πk}k=1,...,K

and its refinements through the flow. From the assumption µ(∂P) = 0, for any ǫ′ > 0
and any n ≥ 1 we can choose Psm such that

|H(µ,P∨n
sm)−H(µ,P∨n)| ≤ ǫ′.

5The factor −2 appearing in front of the second term is convenient for our future aims.
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To prove a lower bound on the entropy HKS(µ) therefore amounts to proving a
lower bound on 1

n
H(µ,P∨n

sm), uniform w.r.to n ≥ 1 and the smoothing Psm of P.
The advantage of using a smoothed partition Psm is that it is fit for quantization.

3.2. Quantum partitions of unity.

3.2.1. Definition. From the smoothed partition Psm = {πk}k=1,...,K we form a quan-

tum partition of unity Psm,q = {Πk = Op~(π̃k)}k=1,...,K , where Op~ is the ~-quantization

(2.2), and the symbols π̃k ∈ S−∞,0(T ∗X) satisfy the following properties:

(1) for each k, the symbol π̃k is real, supported on Ẽk, and admits
√
πk as

principal symbol. The operator Πk is thus selfadjoint.
(2) the family Psm,q = {Πk}k=1,...,K is a quantum partition of unity microlocally

near E :

(3.8)

K∑

k=1

Π2
k = Op~(χ̃ǫ/2) +O(~∞),

where χ̃ǫ/2 ∈ S−∞,0(T ∗X) satisfies

χ̃ǫ/2(ρ)≡1 near Eǫ/2, supp χ̃ǫ/2⊂Eǫ, ‖Op~(χ̃ǫ/2)‖ = 1 +O(~∞) .

Notice that χ̃ǫ/2 has for principal symbol χǫ/2 of (3.7).

Remark. Had we simply taken Πk = Op~(
√
πk), the above properties would hold

only up to remainders O(~). By iteratively adjusting the higher-order symbols in
π̃k (and χ̃ǫ/2), we can enforce these properties to any order in ~.

3.2.2. Refined quantum partitions. In the classical framework, the n-refinement of
the partition Psm = {πk}k=1,...,K was obtained by considering the products παn−1

◦
gn−1 × · · · × πα0

, for all sequences α of length n. Egorov’s theorem shows that the
quantum observable Op~

(
παj

◦ gj
)
resembles the quantum evolution U−j Op~(παj

)U j ,

where U = U~ = e−iP (~)/~ is the Schrödinger propagator (at time unity). For this
reason, we define as follows the elements of the n-refined quantum projection:

(3.9) Πα
def
= U−n+1Παn−1

U · · ·UΠα2
UΠα1

UΠα0
, α = α0 · · ·αn−1.

We first need to check that these operators still make up a quantum partition of
unity near E .

Proposition 18. Take nmax = [Cδ| log ~|] as in section 2.3.3. Then, for each
1 ≤ n ≤ nmax, the family of operators P∨n

sm,q = {Πα, |α| = n} forms a quan-
tum partition of unity microlocally near E , in the following sense. For any symbol
χ ∈ S−∞,0(T ∗X) supported inside Eǫ/2, we have

(3.10)
∀n ≤ nmax,

∑

α0,...,αn−1

Π∗
αΠα = Sn, ‖Sn‖ = 1 +O(~∞),

(Id− Sn) Op~(χ) = O(~∞).
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Proof. The statement is obvious in the case {Πk}k=1,...,K forms a full resolution of

identity (that is, if the left hand side in (3.8) is equal to the identity modulo O(~∞)),
as was the case in [Ana08, AnaKoNo06, AnaNo07-2] and will be the case in §5. One
can then sum over

∑
αn−1

Π2
αn−1

= Id+O(~∞), then over αn−2, etc, to finally obtain

Sn = Id+O(~∞).

In the case of a microlocal partition near E , the sum over the index αn−1 leads to
a product Παn−2

Op~(χ̃ǫ/2)Παn−2
, where χ̃ǫ/2 is the symbol appearing in (3.8). To

“absorb” the factor Op~(χ̃ǫ/2), we will insert intermediate cutoffs at each time. We
recall that χ ≺ 1lEǫ/2 ≺ χ̃ǫ/2 . We consider a sequence of cutoffs (χj ◦ p0)1≤j≤nmax

such that 1lEǫ/2 ≺ χ1 ◦ p0 ≺ χ2 ◦ p0 · · · ≺ χnmax ◦ p0 ≺ χ̃ǫ/2 . Since nmax ∼ | log ~|, the
χj will necessarily depend on ~, their derivatives growing like ~−ν for some small
ν > 0, so that χj ◦ p0 ∈ S−∞,0

ν . The calculus in S−∞,0
ν and χj ≺ χj+1 show that, for

any 1 ≤ k ≤ K:

(3.11) ∀1 ≤ j ≤ nmax − 1, (Id− χj+1(P (~))) Πk χj(P (~)) = O(~∞).

This implies that we can indeed insert intermediate cutoffs in Πα with no harm:

Πα Op~(χ) == U−n+1Παn−1
UΠαn−2

Uχn−2(P (~)) · · ·Uχ2(P (~))Πα1

× Uχ1(P (~))Πα0
Op~(χ) +O(~∞).

We also have

(3.12) ∀j,
(
Id−Op~(χ̃ǫ/2)

)
Πk χj(P (~)) = O(~∞).

This equation, and the fact that χj(P (~)) commutes with the propagator U , results
in
∑

αn−2

U∗Παn−2
Op~(χ̃ǫ/2)Παn−2

Uχn−2

(
P (~)

)

=
∑

αn−2

U∗Π2
αn−2

χn−2

(
P (~)

)
U +O(~∞)

= U∗ Op~(χ̃ǫ/2)χn−2

(
P (~)

)
U +O(~∞)

= U∗χn−2

(
P (~)

)
U +O(~∞)

= χn−2

(
P (~)

)
+O(~∞).

Using (3.11) at each step, the summation over αn−3, αn−4, . . . finally brings us to
∑

α

Π∗
αΠαOp~(χ) =

∑

α0

Πα0
χ1(P (~))Πα0

Op~(χ) +O(h∞).

The equation (Id− χ1(P (~)))Πα0
Op~(χ) = O(~∞) leads to the proof. �

3.3. From the refined operators Πα to a quantum symbolic measure. Let
us turn back to the sequence of eigenstates (ψ~)~→0 associated with the semiclassical
measure µsc. The proof of Prop. 17 shows that for any cutoff χ ∈ S−∞,0 , χ ≡ 1
near E , we have

Op~(χ)ψ~ = ψ~ +O(~∞).



18 STÉPHANE NONNENMACHER

As a result, for any 1 ≤ n ≤ nmax we have
∑

|α|=n ‖Παψ~‖2 = 1+O(~∞). Therefore,

modulo an O(~∞) error, the set
{
‖Παψ~‖2 , |α| = n

}
forms a discrete probability

distribution. The proof shows that these weights also satisfy a compatibility condi-
tion (up to a negligible error):
(3.13)

∀n ≤ nmax, ∀α = α0 · · ·αn−1,
∥∥Πα0···αn−2

ψ~

∥∥2 =
∑

αn−1

∥∥Πα0···αn−1
ψ~

∥∥2 +O(~∞).

If we forget the errorsO(~∞), we can interpret the weights ‖Παψ~‖2 in terms of a cer-

tain probability measure µ~ on the symbolic space Σ = {1, . . . , K}Z. Namely, each

‖Παψ~‖2 corresponds to the weight of that measure on the cylinder [·α0α1 · · ·αn−1]:

(3.14) µ~([·α])
def
= ‖Παψ~‖2 .

Formally, µ~ can be defined as an equivalence class of ~-dependent probability mea-
sures taking values on cylinders of lengths n ≤ nmax = Cδ| log ~|, the equivalence
relation consisting in equality up to errors O(~∞). We will call such a measure a
symbolic measure.

The defining property Πk = Op~(π̃k) shows that each element µ~([·α0]) = ‖Πα0
ψ~‖2

approximately represents the microlocal weight of the state ψ~ inside the element
Ek of the partition. Further on, for any fixed n ≥ 1, Egorov’s theorem (2.13)
and the composition rule (2.3) show that the refined operators Πα are still “good”
pseudodifferential operators:

Πα = Op~(πα) +On(~),

where P∨n
sm = {πα} is the n-refinement of the smooth partition Psm, as in (3.6).

As a result, µ~([·α]) approximately represents the weight of ψ~ inside the refined
partition element Eα.

From the assumption on the sequence (ψ~), the symbolic measure µ~ is obviously
related with the semiclassical measure µsc: for any fixed n ≥ 1 we have

(3.15) ∀α, |α| = n, µ~([·α])
~→0−−→ µsc(πα).

This limit assumes that the “time” n is fixed when taking ~ → 0. For our purposes,
it will be crucial to extend the analysis to times n of logarithmic order in ~. Before
doing so, let us give a crude description of the sets Eα when n = |α| grows. Let
us assume that the elements Ek are approximately “isotropic” w.r.to the stable
and unstable directions. The inverse flow g−t has the effect to compress along
the unstable directions, and expand along the stable ones. As a result, the set
Eα0α1

= g−1Eα1
∩ Eα0

will be narrower than Eα0
along the unstable direction, but

keep approximately the same size in the stable one. Iterating this procedure, the
set Eα0···αn−1

will become very anisotropic for large n: its size along the stable
directions will remain comparable with that of Eα0

, while its “unstable volume”
will be diminished by a factor Ju

n(α0 · · ·αn−1)
−1, where we use the coarse-grained

unstable Jacobian

(3.16) Ju
n(α0 · · ·αn−1)

def
=

n−1∏

i=0

Ju(αi), Ju(k)
def
= min

ρ∈Ek

Ju(ρ).
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The factor Ju
n (α)−1 decreases exponentially with n according to the minimal (d−1)-

dimensional unstable expansion rate Λu
min:

(3.17) ∀n, ∀α, |α| = n, Ju
n(α)−1 ≤ Ce−n(Λu

min
−ǫ),

so the sets Eα become very thin along the unstable direction. This anisotropy is as
well visible on the refined smooth functions πα or the refined symbols π̃α.

3.4. Egorov theorem up to the Ehrenfest time. The Egorov theorem (2.13)
can be extended up to times t ∼ C| log ~|, provided the constant C is not too large.
The breakdown occurs when the classically evolved function f ◦gt shows fluctuations
of size unity across a distance ∼ h1/2: such a function is no more a “nice quantizable
observable” (see §2.3 ).

Let us start from a symbol f ∈ S−∞,0(T ∗X) supported on the energy layer Eǫ.
We have called λmax the maximal expansion rate of the flow on E . Assume that
λǫ = λmax + O(ǫ) is larger than the maximal expansion rate on Eǫ. It implies that
the derivatives of the flow are controlled as follows:

∀t ∈ R, ∀ρ ∈ Eǫ,
∥∥∂αgt(ρ)

∥∥ ≤ Cα e
λǫ|αt|.

As a result, for any symbol f ∈ S−∞,0 supported inside Eǫ, its classical evolution
ft = f ◦ gt satisfy

∀t ∈ R, ∀ρ ∈ Eǫ, ‖∂αft(ρ)‖ ≤ Cf,α e
λǫ|αt|.

For t ∼ C| log ~| the right hand sides become of order ~−Cλǫ|α|. Therefore, if we
want ft to belong to a reasonable symbol class (see section 2.3), we must restrict
the values of C. Let us define the time

Tǫ,~
def
=

(1− ǫ)| log ~|
2λǫ

,

which is about half of what is generally called the Ehrenfest time TE = | log ~|
λmax

.

Take any ν ∈ [1−ǫ
2
, 1
2
). The above estimates show that for any choice of sequence

(t(~))~→0 satisfying |t(~)| ≤ Tǫ,~, the family of functions
(
ft(~)

)
~→0

belongs to the

class S−∞,0
ν (T ∗X) defined in (2.8). In other words, any seminorm of that class is

uniformly bounded over the set {ft, |t| ≤ Tǫ,~, ~ ∈ (0, 1]}. It is then not surprising
that Egorov’s theorem holds up to the time Tǫ,~.

Proposition 19. [AnaNo07-2, Prop.5.1]Fix ǫ > 0 and ν ∈ (1−ǫ
2
, 1
2
). Take f ∈ S−∞,0

supported inside Eǫ. Then, for any ~ ∈ (0, 1] and any time t = t(~) in the range
|t| ≤ Tǫ,~, we have

(3.18) U−t Op~(f)U
t = Op~(f̃t) +O(h∞),

with f̃t − ft ∈ S−∞,−(1+ǫ)/2
ν , ft = f ◦ gt ∈ S−∞,0

ν .

Proof. This proposition was essentially proved in [BouzRob02] in the case of symbols
on T ∗Rd driven by some (appropriate) Hamiltonian flow. In that paper, the ~-

expansion of the symbol f̃t was explicitly computed up to any fixed order ~L, and
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the L2 norm of the remainder was estimated. In [AnaNo07-2, Sec. 5.2] we used the
fact that

U−t Op~(f)U
t −Op~(ft) =

∫ t

0

dsU−s Diff ft−s U
s,

where

Diff fs =
i

h
[P (~),Op~(fs)]−Op~ ({p, fs}) ∈ Ψ

−∞,− 1+ǫ
2

ν ,

uniformly for |t| ≤ Tǫ,~. The Calderon-Vaillancourt theorem on Ψ
−∞,− 1+ǫ

2
ν then

implies that

(3.19)
∥∥U−tOp~(f)U

t −Op~(ft)
∥∥ ≤ C |t| h 1+ǫ

2 .

In order to prove that f̃t ∈ S−∞,0
ν one can proceed as in [BouzRob02], that is compute

the ~ expansion of f̃t order by order, taking into account that the quantization is
performed on the manifold X , so that higher-order terms also depend on the various
choices of local charts and cutoffs. We will not do so in any detail here, since we
will mostly use the inequality (3.19). �

We will apply this proposition to the operators U−jΠkU
j : in the range |j| ≤ Tǫ,~

they are still pseudodifferential operators in some class S−∞,0
ν . The products of these

operators can also be analyzed:

Proposition 20. Take any 1 > ǫ > 0 and ν ∈ [1−ǫ
2
, 1
2
). Then the family of symbols

{π̃α, |α| ≤ Tǫ,~} belongs to a bounded set in the class S−∞,0
ν . Furthermore, the

product operators Πα satisfy Πα −Op~(π̃α) ∈ Ψ
−∞,− 1+ǫ

2
ν .

Proof. A similar result was proved in [Riv08, Thm 7.1]. We already know that the
symbols π̃αj

◦ gj composing π̃α belong to the class Ψ−∞,0
ν . Any finite product of

those symbols also remains in that class. We need to check that the symbol π̃α0···αj

remains uniformly bounded in the class when increasing j until Tǫ,~.

We start by applying Egorov’s theorem to the operator Παn−1
, then multiply by

Παn−2
:

U−1Παn−1
UΠαn−2

= Op~(π̃αn−1
◦ g × π̃αn−2

) +R2, R2 ∈ Ψ−∞,−1.

The function π̃αn−2αn−1

def
= π̃αn−1

◦g×π̃αn−2
is supported in a “rectangle” and satisfies∥∥∂β π̃αn−2αn−1

∥∥ ≤ Cβ e
λǫ|β|. Applying the same procedure (evolution and multiplica-

tion), we construct a sequence of symbols

π̃αn−j ···αn−1

def
= π̃αn−j+1···αn−1

◦ g × π̃αn−j

and operators

U−jΠαn−1
UΠαn−2

U · · ·Παn−j
.

The symbols are supported in small rectangles, similar with the elements Eα of the
refined partition P∨j . One iteratively shows that

∥∥∂β π̃αn−j ···αn−1

∥∥ ≤ Cβ e
λǫ|β|j,
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with constants Cβ uniform w.r.to j. Therefore, as long as j ≤ Tǫ,~, the symbol

π̃αn−j+1···αn−1
∈ S−∞,0

νj
(with uniform constants), where νj = λǫj

log(1/~)
. At the same

time, π̃αn−j
∈ S−∞,0

0 . As a result,

U−1 Op~(π̃αn−j+1···αn−1
)U Op~(π̃αn−j

) = Op~(π̃αn−j ···αn−1
) +Rj ,

and the remainder Rj ∈ Ψ
−∞,−1+νj
νj satisfies

‖Rj‖L2	
≤ C ~

1−νj , j = 2, . . . , n,

with a uniform constant C. The sum of all remainders thus satisfies
n∑

j=2

Rj ∈ Ψ−∞,−1+νn
νn ,

∥∥∥∥∥

n∑

j=2

Rj

∥∥∥∥∥ ≤
n∑

j=2

C ~
1−νj ≤ C̃ ~

1−νn.

�

Corollary 21. Take any 1 > ǫ > 0 and ν ∈ [1−ǫ
2
, 1
2
). Let α,β be two sequences of

length n ≤ Tǫ,~. Then the symbols π̃α, π̃β ◦ g−n belong to S−∞,0
ν , and so does their

product. The operator

Πβ·α
def
= ΠαU

nΠβU
−n = U−n+1Παn−1

UΠαn−2
U · · ·Πα0

UΠβn−1
U · · ·UΠβ0

U−n

belongs to Ψ−∞,0
ν , and satisfies

Πβ·α = Op~(π̃α × π̃β ◦ g−n) + Ψ−∞,−1+2ν
ν .

These results show that, for times n ≤ Tǫ,~, the operators Πα (resp. Πβ·α) are
“quasiprojectors” on refined rectangles Eα ∈ P∨n (resp. in the rectangles Eα ∩
gn(Eβ) of the “isotropic” refined partition Pn−1

−n ). Using the fact that Πβ·α =
UnΠβαU

−n, we also draw the

Corollary 22. Take ǫ, ν as above. Then, for any sequence α of length |α| ≤ 2Tǫ,~,
the operator norm ‖Πα‖ = ‖π̃α‖∞ +O(~1−2ν), which can be close to unity.

3.5. Hyperbolic dispersive estimates. We will now consider operators Πα for
sequences α longer than 2Tǫ,~. We recall that Ju

n(α) is the coarse-grained unstable
Jacobian along orbits following the path α (see (3.16)). Given some small δ > 0,
we have constructed in section 2.3.3 cutoffs χ(m) supported on intervals of lengths
2emδ

~
1−δ, from which we built up sharp energy cutoffs. Our major dynamical result

is the following dispersive estimate [AnaNo07-2]. We provide its proof in §4.

Proposition 23. Choose δ > 0 small, leading to the constant Cδ of §2.3.3. Then,
there exists ~δ > 0 and C > 0 such that, for any 0 < ~ ≤ hδ, any integers n,m ∈
[0, Cδ log(1/~)] and any sequence α of length n, the following estimate holds:

(3.20)
∥∥Πα χ

(m)(P (~))
∥∥ ≤ C emδ/2

~
− d−1+δ

2 Ju
n(α)−1/2.

From the bound (3.17) on the coarse-grained Jacobians, we see that (3.20) becomes
sharper than the obvious bound ‖Παχ

(n)(P (~))‖ ≤ 1 +O(h∞) for times

(3.21) n ≥ T1
def
=

(d− 1) log(1/h)

Λu
min

> 2Tǫ,~.
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If we specialize Prop. 23 to the case n ≈ 4Tǫ,~ and insert U−n/2 on the right, we
obtain the following

Corollary 24. Take δ > 0 small. For 0 < ~ < hδ, take α, β two arbitrary sequences
of length n = ⌊2Tǫ,~⌋. Then,

(3.22)
∥∥Πβ·α χ

(n)(P (~))
∥∥ ≤ C ~

− d−1+cδ
2 Ju

n(α)−1/2Ju
n (β)

−1/2,

with uniform constants C, c > 0.

It is this estimate which we will use in §3.8.

3.5.1. A remark on the sharpness of (3.22). Let us give a handwaving argument to
show that, in the case of a surface (d = 2) of constant curvature, the upper bound
(3.22) is close to being sharp. This argument was made rigorous in the case of the
toy model studied in [AnaNo07-1]. Since our argument is sketchy, we set all “small
constants” (ǫ, δ) to zero.

The operator Πβ·α is the product of two quasiprojectors, Πα associated with the
“thin stable” rectangle Eα, which has length . ~ along the unstable direction,
and Πβ· associated with the “thin unstable” rectangle Eβ· which has length . ~

along the stable direction. The intersection Eβ·α has length . ~ along the two
directions transverse to the flow, which are symplectically conjugate to each other.
As a result, the refined smoothed characteristic function πβ·α does not belong to
any “nice” symbol class, and the norm of the operator Πβ·α is not connected with
the sup-norm of πβ·α.

Since Eα has symplectic volume . ~, the “essential rank” of Πα is of order O(1): Πα

resembles a projector on a subspace spanned by finitely many normalized “stable
states” siα localized in Eα,

Πα ≈
∑

i

siα ⊗ si∗α .

Similarly, Πβ· effectively projects on O(1) normalized “unstable states” ujβ localized
in Eβ·. The stable and unstable directions are symplectically conjugate to each
other, so that stable and unstable states behave like position vs momentum states
in the phase space R2. The product operator

Πβ·α = ΠαΠβ· ≈
∑

i,j

〈siα, ujβ〉siα ⊗ ujβ

involves the overlaps between the two families of states, which are all of order ~1/2.
It is thus natural to expect ‖Πβ·α‖ ∼ ~

1

2 , which is the order of the estimate (3.22).

3.6. Quantum entropy and pressure.

3.6.1. Back to the symbolic measure µ~. We now turn back to the the symbolic mea-
sure µ~ defined in §3.3. We recall that for a fixed sequence α, µ~([·α]) approximately
measures the weight of the state ψ~ inside the rectangle Eα. This interpretation is
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actually possible as long as Πα can be interpreted as a quasiprojector on this rec-
tangle, that is for n ≤ 2Tǫ,~. Under this condition, we have seen that the only upper
bounds at our disposal are trivial:

µ~([·α]) ≤ 1, n = |α| ≤ 2Tǫ,~.

On the other hand, Proposition 23 implies that the weights of longer cylinders satisfy
nontrivial bounds:

µ~([·α]) ≤ C ~
−(d−1+cδ) Ju

n(α)−1, |α| = n ≤ Cδ log ~
−1.(3.23)

Corollary 25. For times n > T1 (see (3.21)), the measure µ~ is necessarily dis-
tributed over many cylinders of length n. This corresponds to a dispersion phenom-
enon: the state ψ~ cannot be concentrated in O(1) boxes Eα, since each such box
has a volume ≪ ~d−1.

Following §3.1, the distribution of the weights {µ~([·α]), |α| = n} can be character-
ized by an entropy. Since µ~ was built from the quantum state ψ~, it is natural to
call this entropy a quantum entropy:

(3.24) Hn−1
0 (ψ~,Psm,q)

def
= Hn−1

0 (µ~) =
∑

|α|=n

η
(
µ~([·α])

)
.

One can associate a quantum pressure to the state ψ~, the quantum partition
Psm,q and a set of weights {wk, k = 1, . . . , K}. Below we will be dealing with
weights of the form wα = Ju

n(α)1/2. The quantum pressures will also be denoted by
pn−1
0 (ψ~,Psm,q, w) = pn−1

0 (µ~, w).

Upper bounds (3.23) on the weights of “long” cylinders have direct consequences on
the values of the quantum entropies:

Hn−1
0 (ψ~,Psm,q) ≥ nΛu

min − (d− 1 + cδ) log ~−1 − logC, n ≤ Cδ log ~
−1.

The RHS is positive (and thus makes up a nontrivial lower bound) only for n > T1,
that is for “long” times. A similar lower bound on the entropy of “long times” was
used in [Ana08] to deduce nontrivial information on the values of the entropies at
“short” times, and finally a lower bound on the KS entropy.

3.7. Entropic uncertainty principles. In [AnaNo07-2, AnaKoNo06] we used a
different strategy, which we describe below. Instead of using the upper bounds
(3.23) at “long” times Cδ log ~

−1, we rather use the bound (3.22) corresponding to
“moderately long” times 4Tǫ,~. The strategy consists in interpreting the operator
on the LHS as a “block matrix element” associated with two different quantum
partitions. Through a certain Entropic Uncertainty Principle (EUP), the bound
(3.22) then leads to a lower bound on the pressures pn−1

0 (µ~, w) at “moderately long
times” n ≈ 2Tǫ,~ (that is, right below the Ehrenfest time). Using an approximate
subadditivity of those pressures, we then get a lower bound for finite time pressures.

The central piece of this method resides in a certain entropic uncertainty principle.
Before giving the precise version used for our aims, we first give the simplest example
of such a “principle”, first proven by Maassen and Uffink [MaaUff88].
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Proposition 26. [EUP, level 1 (finite-dimensional projectors)]

Consider two orthonormal bases in the Hilbert space CN , e = {ei}i=1,...,N and f =

{fj}j=1,...,N . For any ψ ∈ CN of unit norm, consider the two probability distributions

{|〈ei|ψ〉|2, i = 1, . . . , N}, {|〈fj|ψ〉|2, j = 1, . . . , N}. Then the entropies associated
with these two distributions satisfy the inequality

H(ψ, e) +H(ψ, f) ≥ −2 log

(
max
i,j

|〈ei, fj〉|
)
.

For instance, take e = {ei} the standard basis on CN , and for f = {fj} the “discrete
momentum states”, related with {ei} through the discrete Fourier transform. All
matrix elements satisfy |〈ei, fj〉| = N−1/2, so the inequality reads

H(ψ, e) +H(ψ, f) ≥ logN.

The inequality shows that the distributions of “position amplitudes”〈ei, ψ〉 on the
one hand, of “momentum amplitudes”〈fj , ψ〉, cannot be both arbitrarily localized.
It is hence a form of “uncertainty principle”.

If we call ρi (resp. τj) the orthogonal projector on the state ei (resp. fj), then each
overlap |〈ei, fj〉| can be interpreted as the operator norm |〈ei, fj〉| = ‖τjρ∗i ‖ . This
interpretation allows to generalize this “uncertainty principle” as follows:

Proposition 27. [EUP, level 2 (quantum partition)]

On a Hilbert space H, consider two quantum partitions of unity, that is two finite
sets of bounded operators ρ = {ρi, i ∈ I}, π = {πj, j ∈ J} satisfying the identities

∑

i∈I

ρ∗i ρi = Id,
∑

j∈J

τ ∗j τj = Id .

To any normalized state ψ ∈ H we associate the probability distributions
{
‖ρiψ‖2 , i ∈ I

}
,{

‖τjψ‖2 , j ∈ J
}
. Then, the entropies associated with these two distributions satisfy

H(ψ, ρ) +H(ψ, τ) ≥ −2 log

(
max

i∈I,j∈J
‖τjρ∗i ‖

)
.

Because the instability of the flow may not be uniform, the coarse-grained jacobians
Ju
n(α) may vary a lot among all n-sequences α. For this reason, the estimates

(3.22) may also strongly depend on the sequences α, β. To counterbalance these
variations, it is convenient to use pressures instead of entropies (see §3.1.2).
Proposition 28. [EUP, level 2 (quantum weighted partition)]

On a Hilbert space H, consider two quantum partitions of unity ρ = {ρi, i ∈ I},
τ = {τj, j ∈ J} as in Prop. 27 and two families of weights v = {vi > 0, i ∈ I},
w = {wj > 0, j ∈ J}. To any normalized state ψ ∈ H correspond the probability

distributions
{
‖ρiψ‖2 , i ∈ I

}
,
{
‖τjψ‖2 , j ∈ J

}
.

Then, the pressures associated with these distributions and weights satisfy

p(ψ, ρ, v) + p(ψ, τ, w) ≥ −2 log

(
max

i∈I,j∈J
viwj ‖τjρ∗i ‖

)
.
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This version is almost sufficient for our aims. Yet, the quantum partitions of unity
we are using are localized near the energy shell E (see (3.8,3.10)), and the estimate
(3.20) starts with a sharp energy cutoff. For these reasons, the version we will need
is of the following form.

Proposition 29. [EUP, level 3 (microlocal weighted partition)]

On a Hilbert space H, consider two approximate quantum partitions of unity, that is
two finite sets of bounded operators ρ = {ρi, i ∈ I}, τ = {τj , j ∈ J} satisfying the
identities ∑

i∈I

ρ∗i ρi = Sρ,
∑

j∈J

τ ∗j τj = Sτ ,

and two families of weights v = {vi, i ∈ I}, w = {wj , j ∈ J} satisfying V −1 ≤
vi, wj ≤ V for some V ≥ 1.

We assume that for some 0 < ε ≤ min (|I|−2V −2, |J |−2V −2) the above sum operators
satisfy 0 ≤ Sρ/τ ≤ 1 + ε. Besides, let Sc1 , Sc2 be two hermitian operators on H
satisfying 0 ≤ Sc∗ ≤ 1 + ε, and related with the above partitions as follows:

‖(Sc2 − 1)ρiSc1‖ ≤ ε, ∀i ∈ I,(3.25)
∥∥(Sρ/τ − 1)Sc1

∥∥ ≤ ε.(3.26)

Let us define the “cone norm”

(3.27) ccone
def
= max

i∈I, j∈J
viwj‖τjρ∗iSc2‖.

Then, for any ψ ∈ H satisfying

(3.28) ‖ψ‖ = 1, ‖(Id− Sc1)ψ‖ ≤ ε,

the pressures of ψ w.r.to the weighted partitions (ρ, v) and (τ, w) satisfy the bound

p(ψ, ρ, v) + p(ψ, τ, w) ≥ −2 log
(
ccone + 3|I|V 2ε

)
+O

(
ǫ1/5
)
.

The implied constant is independent of the weighted partitions or the cutoff operators
Sc∗.

Proof. The proof is a slight adaptation of the one given in [AnaNo07-2, Section
6] (in the case U = Id). One considers a bounded operator T : H|I| → H|J | , and

studies the norm of T as an operator l
(v)
p (H|I|) 7→ l

(w)
q (H|J |), with the weighted norms

‖Ψ‖(v)p =
(∑

i v
p−2
i ‖Ψi‖p

)1/p
and similarly for ‖TΨ‖(w)

q . Notice that the weights are
“invisible” when p = q = 2. An auxiliary bounded operator O : H → H is used to
define a cone of states:

C(O, ϑ) =
{
Ψ ∈ H|I|, ‖OΨi −Ψi‖ ≤ ϑ‖Ψ‖2, i ∈ I

}
.

The proof of [AnaNo07-2, Thm. 6.3], which uses a Riesz-Thorin interpolation argu-
ment, shows that for any Ψ in the cone C(O, ϑ), one has:

(3.29) ∀t ∈ [0, 1], ‖TΨ‖(w)
2

1−t

≤
(
cO(T ) + |I|V 2ϑ‖T‖2,2

)t ‖T‖1−t
2,2 ‖Ψ‖(v)2

1+t

,

where cO(T ) = max
i,j

viwj‖TjiO‖.
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We now apply this result to the specific choice

Ψi
def
= ρiψ, Tji

def
= τjρ

∗
i , O

def
= Sc2,

where the state ψ satisfies (3.28), that is, the cone C(Sc1, ε) is not empty (in the
opposite case, the statement of the theorem is empty). The relations (3.26) then
imply that

(3.30)
∥∥(Sρ/τ − 1)ψ

∥∥ ≤ 3ε.

As a consequence, the state components (TΨ)i = τiSρψ = τiψ +O(ε).

The same duality argument as in [AnaNo07-2, Lemma 6.5] shows that the l2 → l2

norm of the operator T takes the value ‖T‖2,2 = ‖
√
Sρ

√
Sτ‖. Using the spectral

theorem, one easily deduces that ‖
√
Sρ/τψ−ψ‖ ≤

√
3ε, so that

∥∥√Sρ

√
Sτψ − ψ

∥∥ ≤
4
√
ε, and hence ‖T‖2,2 ∈ [1− 4

√
ε, 1 + 2ε].

The l2 norm of Ψ is ‖Ψ‖22 = 〈ψ, Sρψ〉 ∈ [1−3ε, 1+ ε]. From (3.25) and the fact that
ψ is in the cone C(Sc1, ǫ), we easily get ‖(O − 1)ρiψ‖ ≤ 2ε, so that Ψ ∈ C(O, ϑ) for
O = Sc2, ϑ = 2ε

1−3ε
. We are now in a position to apply (3.29) to the above data. The

constant cO(T ) is equal to the ccone in the statement of the proposition, so we get

∀t ∈ [0, 1], ‖TΨ‖(w)
2

1−t

≤
(
ccone + 3|I|V 2ε

)t ‖T‖1−t
2,2 ‖Ψ‖(v)2

1+t

.

Let us now expand this expression when t → 0. We first split the sum
∑

i‖Ψi‖
2

1+t

between the terms ‖Ψi‖ ≥ ǫ and the remaining ones:
∑

i

v
−2t
1+t

i ‖Ψi‖
2

1+t =
∑

i,>

‖Ψi‖2 − t
∑

i,>

‖Ψi‖2
(
log v2i ‖Ψi‖2

)
+O

(
(t log ε)2

)
+
∑

i,<

v
−2t
1+t

i ‖Ψi‖
2

1+t

= ‖Ψ‖22 + t p(Ψ, v) +O
(
(t log ε)2

)
+O(|I|ε).

We now take the logarithm of this expression, and use ‖Ψ‖22 = 1 +O(ε) to get

log‖Ψ‖(v)2
1+t

=
t

2
p(Ψ, v) +O

(
(t log ε)2 + |I|ε+ t2p(Ψ, v)2

)
.

We can perform the same manipulations on the LHS of (3.29), noticing that ‖TΨ‖22 =
〈SτSπψ, Sπψ〉 ∈ [1− 10ε, 1 + 10ε]:

log‖TΨ‖(w)
2

1−t

= − t

2
p(TΨ, w) +O

(
(t log ε)2 + |J |ε+ t2p(TΨ, w)2

)
.

We notice that both pressures satisfy simple bound |p(•, •)| ≤ log(V 2|I|) ≤ 3| log ε|,
and (from (3.30)) the estimate (TΨ)i = τiψ~ + O(ε). Inserting these estimates in
the logarithm of (3.29) and using ‖T‖2,2 ∈ [1− 4

√
ε, 1], we get

t p(ψ~, τ, w)+tp(ψ~, ρ, v) ≥ −2t log
(
ccone + 3|I|V 2ε

)
+O

(√
ε+ (t log ε)2 + (|J |+ |I|)ε

)
.

We now need to make some assumptions on the values of t to make the remainder
small. If we take t = ε1/4, a simple power counting shows that

p(ψ~, τ, w) + p(ψ~, ρ, v) ≥ −2 log
(
ccone + 3|I|V 2ε

)
+O

(
ε1/4 (log ε)2

)
.

�



ENTROPY OF CHAOTIC EIGENSTATES 27

3.8. Our application of the entropy uncertainty principle. We now apply the
EUP to our semiclassical framework. Our choice of quantum partitions is determined
by the requirement that the operators τjρ

∗
iSc2 are of the form Πβ·α χ

(n)(P (~)), with
α,β two sequences of length n close to the Ehrenfest time. We will thus take

the time n = ⌊2Tǫ,~⌋ ,
τ =

{
Πα = Παn−1

(n− 1) · · ·Πα0
, |α| = n

}
,(3.31)

ρ =
{
Π∗

β· = Πβ−n(−n) · · ·Πβ−1
(−1), |β| = n

}
,

v = w =
{
Ju
n(β)

1/2, |β| = n
}
,

Sc1 = χ(0)(P (~)), Sc2 = χ(n)(P (~)).

The weights v, w have been selected in order to balance the variations of the upper
bounds in (3.22). Both the cardinals |I| = |J | = Kn and the upper bound vi, wj ≤
enλmax(d−1)/2 are O(~−M) for some M > 0. Hence, we may take the small paremeter
ε = ~

L for some fixed exponent L≫ M .

With this choice, the assumption (3.26) is satisfied for ~ small enough according
to Prop. 18. The assumption (3.25) can be checked by inserting the increasing
sequence of cutoffs

{
χ(j)(P (~)), 1 ≤ j ≤ n− 1

}
along the sequence Π∗

β, similarly as
in the proof of Prop. 18. The assumption (3.28) holds if one takes ψ = ψ~ a null
eigenstate of P (~), see (2.12).

The coefficient ccone is then estimated by the hyperbolic dispersive estimate of Corol-
lary 24:

(3.32) ccone ≤ Ccone(~)
def
= C ~

− d−1+cδ
2 , ~ ≤ ~δ.

The application of Prop. 29 to these data gives the following result.

Proposition 30. [Applied entropic uncertainty principle]

Take the weighted quantum partitions (ρ, v), (τ, w) defined in (3.31), and L a large
positive number. Then, there exists ~L > 0, C > 0 such that the pressures of the
eigenstates (ψ~) associated with these weighted partitions satisfy the inequality:

(3.33) p(ψ~, ρ, v) + p(ψ~, τ, w) ≥ −2 logCcone(~) + C~L/3, ~ < ~L.

Our next task will be to relate the pressures associated to the “long time” partitions
(n = ⌊2Tǫ,~⌋), to pressures associated with “finite time” partitions (n0 independent
of ~).

3.9. Approximate subadditivity of the quantum pressure. In (3.33) appear
two pressures, associated with two types of refined quantum partitions. The parti-
tion τ =

{
Παn−1

(n− 1) · · ·Πα0
, |α| = n

}
corresponds to the definition of the sym-

bolic measure µ~ in (3.14), so that the pressure p(ψ~, τ, w) can be expressed as the
refined pressure pn−1

0 (µ~, w). On the other hand, the probability weights involved
in p(ψ~, ρ, v) can be rewritten (after relabelling the sequences and using the fact
that ψ~ is an eigenmode) ρβ = ‖Πβn−1

(−n) · · ·Πβ0
(−1)ψ~‖2, so they correspond to a
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backwards evolution.6 We express these weights in terms of a “backwards symbolic
measure” µ̃~ similar with µ~:

(3.34) µ̃~([·β0 · · ·βn−1])
def
=
∥∥Πβn−1

(−n) · · ·Πβ0
(−1)ψ~

∥∥2 ,
so that p(ψ~, ρ, v) = pn−1

0 (µ̃~, v). For fixed n > 0, and any |β| = n, we have

µ̃~([·β]) ~→0−−→ µsc(πβn−1···β0
).

The bound (3.33) concerns the quantum pressures of µ~ and µ̃~ at the time n =
⌊2Tǫ,~⌋ close to the Ehrenfest time. These pressures cannot be directly connected
with the pressures of the semiclassical measure µsc. For this aim, we need to de-
duce from (3.33) a lower bound for the pressures of µ~ and µ̃~ at finite times no.
This connection will be done by using an approximate version of the subadditivity
property (3.5). We present the computations in the case of µ~, the case of µ̃~ being
identical up to exchanging forward and backward evolution.

The symbolic measure µ~ was defined on cylinders [·α], up to O(~∞) errors which
are uniformly controlled as long as |α| ≤ C| log ~|. This definition was possible
thanks to the (approximate) compatibility condition (3.13). The property (3.3) can
be extended to the measure µ~:

(3.35) ∀n, n0 ≤ C| log ~|, Hn+n0−1
0 (µ~) ≤ Hn−1

0 (µ~) +Hn+n0−1
n (µ~) +O(~∞).

The second term on the RHS can be written as Hn+n0−1
n (µ~) = Hn0−1

0 (σ−n
∗ µ~), where

σ refers to a shift of indices. Shift-invariance would mean that σ−nµ~ = µ~, which
would allow us to replace this entropy with Hn0−1

0 (µ~). How far are we from this
invariance? To answer this question we need to compare the weights

(3.36) µ~(σ
−n[·β0 · · ·βn0−1])

def
=

∑

α0,...,αn−1

µ~([·α0 · · ·αn−1β0 · · ·βn0−1]),

with the weights µ~([·β0 · · ·βn0−1]). This is achieved in the following

Lemma 31. Let (µ~)~→0, (µ̃~)~→0 be the symbolic measures associated with the
eigenstates (ψ~)~→0. Fix some n0 ≥ 0, and take n in the range [0, 2Tǫ,~ − n0].
Then, for any β of length n0, we have

µ~(σ
−n[·β]) = µ~([·β]) +O(~ǫ/2), µ̃~(σ

−n[·β]) = µ̃~([·β]) +O(~ǫ/2).

This lemma means that the measures µ~, µ̃~ are approximately shift-invariant in the
semiclassical limit.

Proof. We only give the proof for the measure µ~. Each term on the RHS of (3.36)
reads

〈Πβ(n)Παψ~,Πβ(n)Παψ~〉 = 〈Π∗
α |Πβ(n)|2Παψ~, ψ~〉.

We first present a short (but false) proof. In order to use (3.10), we try to bring
together the operator Πα and its hermitian conjugate, such as to let appear the
sum

∑
|α|=nΠ

∗
αΠα. An error appears while commuting Πα with |Πβ(n)|2. Still,

from Proposition 20 we know that for any |α| = n, |β| = n0 with n + n0 ≤ 2Tǫ,~,

6Notice that, using the fact that ψ~ is an eigenmode of U , these weights can also be written as
‖Πβn−1

(0) · · ·Πβ0
(n− 1)ψ~‖2, which is of the same form as ‖τβn−1···β0

ψ~‖2, except for the ordering
of the operators.
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the operators Πα(−n
2
) and

∣∣Πβ(
n
2
)
∣∣2 belong to the class Ψ−∞,0

ν , with ν ∈ [1−ǫ
2
, 1
2
).

As a consequence, their commutator satisfies
[∣∣Πβ(

n
2
)
∣∣2 ,Πα(−n

2
)
]
∈ Ψ−∞,−1+2ν

ν ,

an operator of norm O (~1−2ν). By unitarity of the evolution, the commutator[
|Πβ(n)|2 ,Πα

]
has the same norm. We thus get

∑

α

µ~([·αβ]) = 〈|Πβ(n)|2 Snψ~, ψ~〉+
∑

α

O
(
~
1−2ν

)
= µ~([·β]) +O

(
Kn

~
1−2ν

)
.

The remainder in the RHS is small if n is uniformly bounded, but it becomes very
large if n ≈ 2Tǫ,~!

To remedy this problem one actually needs to successively group together the pairs
of operators Παj

(j) and perform the sum over αj. One starts by grouping together
the Παn−1

:

〈Πβ(n)Παψ~,Πβ(n)Παψ~〉
= 〈Π∗

αn−1
(n− 1)|Πβ(n)|2Παn−1

(n− 1)Πα0···αn−2
ψ~,Πα0···αn−2

ψ~〉
= 〈|Παn−1

(n− 1)|2|Πβ(n)|2Πα0···αn−2
ψ~,Πα0···αn−2

ψ~〉
+ 〈Π∗

αn−1
(n− 1)[|Πβ(n)|2,Παn−1

(n− 1)]Πα0···αn−2
ψ~,Πα0···αn−2

ψ~〉.
The commutator in the RHS is an operator of norm O (~1−2ν) for the reasons indi-

cated above. The second overlap is then bounded from above by
∥∥Πα0···αn−2

ψ~

∥∥2O (~1−2ν),
where the implied constant does not depend on α. Using the quantum partition of
order n− 1, we can sum this second term over α, to obtain an error O (~1−2ν). The
first term on the RHS can be summed over αn−1, to produce

〈Op~(χ̃ǫ/2)(n− 1) |Πβ(n)|2Πα0···αn−2
ψ~,Πα0···αn−2

ψ~〉
= 〈|Πβ(n)|2Πα0···αn−2

ψ~,Πα0···αn−2
ψ~〉+O(~∞),

where we used the fact that χ̃ǫ/2 ≡ 1 on the microsupport of Πα0···αn−2
ψ~ (see the

proof of Lemma 18). Apart from the errors, we are now left with the sum
∑

α0,...,αn−2

〈|Πβ(n)|2Πα0···αn−2
ψ~,Πα0···αn−2

ψ~〉.

This sum can be treated as above, by bringing Παn−2
(n− 2) to the left, commuting

it with |Πβ(n)|2, and summing over αn−2. It produces another error O (~1−2ν).
Iterating this procedure down to α0, we get

∑

α

µ~([·αβ]) = µ~([·β]) +O
(
n~1−2ν

)
.

By selecting ν appropriately, we get the statement of the lemma. �

Coming back to the subadditivity equation (3.35) in the case no fixed, n = ⌊2Tǫ,~⌋−
n0, we get

Hn−1
0 (µ~) ≤ Hn−no−1

0 (µ~) +Hno−1
0 (σ−n

∗ µ~) +O(~∞)

≤ Hn−no−1
0 (µ~) +Hno−1

0 (µ~) +Ono(~
ǫ/3).
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Here we used the fact that the function η(s) satisfies |η(s+ s′)− η(s)| ≤ η(|s′|). It
is also easy to check that the “potential part” of the pressure p(µ~, w) satisfies this
inequality:
∑

|α|=n

∑

|β|=n0

µ~([·αβ]) logwαβ

=
∑

|α|=n

µ~([·α]) logwα +
∑

|β|=n0

σ−nµ~([·β]) logwβ +O(~∞)

=
∑

|α|=n

µ~([·α]) logwα +
∑

|β|=n0

µ~([·β]) logwβ +O(~ǫ/2),

so we finally get the approximate pressure subadditivity

(3.37) pn−1
0 (µ~, w) ≤ pn−no−1

0 (µ~, w) + pno−1
0 (µ~, w) +Ono(~

ǫ/3).

Taking the Euclidian quotient n = qno + r, r < no, we can iterate this process q
times and obtain:

pn+n0−1
0 (µ~, w) ≤ pr−1

0 (µ~, w) + q pno−1
0 (µ~, w) +Ono(q~

ǫ/3).

A similar approximate subadditivity holds for the pressures p(µ̃~, v) associated with
the “backwards” symbolic measure µ̃~. We have thus obtained the following

Proposition 32. Let µ~, µ̃~ be the associated forward and backwards symbolic mea-
sures associated with (ψ~). Fix some no > 0, and for ~ < ~0 split the Ehrenfest time
n = ⌊2Tǫ,~⌋ into n = qno + r, r ∈ [0, no). Then, the pressures associated with these
measures and the weights wk = vk = Ju(k)1/2 satisfy the following lower bound:

(3.38) q
(
pn0−1
0 (µ~, w) + pn0−1

0 (µ̃~, v)
)
+ pr−1

0 (µ~, w) + pr−1
0 (µ̃~, v)

≥ −(d − 1 + cδ)|log ~|+On0
(~ǫ/4).

Hence, approximate subadditivity has enabled us to transfer the bound on pressures
for n = ⌊2Tǫ,~⌋ into a bound on pressures at finite times n0, r.

3.10. Back to the classical pressure. Using the fact that the pressures pr−1
0 (•)

are uniformly bounded, we divide (3.38) by qn0 = 2Tǫ,~−O(1) = |log ~|
(
1 +O(ǫ)

)
/λmax.

For ~ < ~ǫ, we get

pn0−1
0 (µ~, w)

n0
+
pn0−1
0 (µ̃~, v)

n0
≥ −(d − 1 + cδ)| log ~|

qn0
+Ono(| log ~|−1)

≥ −(d − 1 + cδ)λmax(1 +O(ǫ)).

The RHS does not depend on ~, so it is still valid once we take the semiclassical
limit of the LHS. From the properties of µ~ and µ̃~, the latter is equal to the ratio

2
pno−1

0
(µsc,v,Psm)

n0
, where we recall that µsc is the semiclassical measure associated with

(ψ~), while Psm is the smoothed partition (3.7). We thus obtained the following lower
bound on the classical pressure:

pn0−1
0 (µsc, v,Psm)

no
≥ −(d− 1)λmax

2
+O(δ, ǫ).
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Importantly, the implied constants do not depend on the degree of smoothness of
the partition (that is, on the derivatives of the functions πk), so we may send δ → 0
and get rid of the smoothing. We thus obtain the following lower bound on the
pressure associated with the sharp partition P:

pn0−1
0 (µsc, v,P)

no

≥ −(d− 1)λmax

2
+O(ǫ).

We recall that ǫ majorizes the diameter of P. The first part of the pressure is the
entropy H(µsc,P∨n0), while the second part is given by the sum

−
∑

|α|=n0

µsc(Eα) log J
u
n0
(α) = −n0

K∑

k=1

µsc(Ek) log J
u(k),

where we remind that Ju(k) = minρ∈Ek
Ju(ρ). We can now let no → ∞, and get

HKS(µsc,P) ≥ −(d− 1)λmax

2
+

K∑

k=1

µsc(Ek) log J
u(k) +O(ǫ).

By taking finer and finer partitions (that is, ǫ → 0), we finally get the bound (1.8)
for the semiclassical measure µsc. �

4. Proof of the hyperbolic dispersive estimate

4.1. Decomposition into adapted Lagrangian states. The proof of Proposi-
tion 23 starts from an arbitrary Ψ ∈ L2 with ‖Ψ‖L2 = 1. The localized state

ψα0

def
= Πα0

χ(n)(P (~))Ψ will then be decomposed into a linear combination of “nice”
Lagrangian states. To construct these “nice states”, we need to consider, on each
neighbourhood Ẽk ⊃ Ek, a coordinate chart {(yi, ηi), i = 0, . . . , d− 1} adapted to
the dynamics of the geodesic flow. These coordinates are required to satisfy the
following properties:

(1) Ẽk is contained in the polydisk D(ǫ, ǫ) = {(y, η), |y| ≤ ǫ, |η| ≤ ǫ}.
(2) the coordinate η0 = p0(x, ξ), so that the energy shells are given by {η0 = const},

and the conjugate variable y0 represents the time along the trajectory.
(3) the planes {η = const} are close to the local weak unstable manifoldsW u0

ǫ in

Ẽk. For this aim, we let the plane {η = 0} coincide with the local unstable
manifold W u0

ǫ (ρk) for some arbitrary point ρk ∈ Ek ∩ E .

Definition 33. We say that a Lagrangian leaf Λ ⊂ Ẽk belongs to the γ1-cone if it
is represented, in the chart {(y, η)}, as
(4.1) Λ = {(y, dS(y)), |y| ≤ ǫ} , with sup

|y|≤ǫ

∥∥d2S(y)
∥∥ ≤ γ1.

Fixing some γ1 > 0, there exists ǫγ1 > 0 such that, provided the diameters of the Ẽk

are all smaller than ǫγ1 , then the γ1-cone contains all the local unstable manifolds

W u0
ǫ (ρ), ρ ∈ Ẽk, while all local stable manifolds W s

ǫ (ρ) are uniformly transverse to
this cone. We call such a cone an unstable γ1-cone.
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Let Uk be a semiclassical Fourier Integral Operator (FIO) associated with the change
of coordinates

(4.2) (x, ξ) ∈ T ∗X → (y, η) ∈ R
2d,

unitary microlocally near Ẽk × D(ǫ, ǫ). This means that for any ψk ∈ L2(X),

‖ψk‖ = O(1), microlocalized inside Ẽk, we have

‖ψk‖L2(X) = ‖Ukψk‖L2(Rd) +O(~∞),

and the function Ukψk(y) is then microlocalized inside D(ǫ, ǫ). Hence, using the
cutoff

χ ∈ C∞
0 ({|y| ≤ 2ǫ}), χ = 1 for |y| ≤ ǫ,

we may construct a family of “localized plane waves”

eη(y) = χ(y) exp(i〈η, y〉/~), (y, η) ∈ D(2ǫ, 2ǫ),

such that the function Ukψk(y) can be Fourier expanded into

Ukψk = (2π~)−d/2

∫

|η|≤2ǫ

eη ψ̂k(η) dη +OL2(~∞),

where ψ̂k = F~ψk is the ~-Fourier transform of Ukψk(y). Each state eη, |η| ≤
2ǫ, is a Lagrangian state associated with the “horizontal” Lagrangian leave Λη =
{(y, η), |y| ≤ 2ǫ}.
The change of coordinates (4.2) brings the energy layer

{
|p− 1/2| ≤ ~1−δ

}
into the

slice
{
|η0| ≤ ~1−δ

}
. As a result, the states ψk which are sharply localized in energy

are easy to characterize.

Lemma 34. Assume that for some integer m ≤ Cδ| log ~| the state ψk satisfies

(4.3) χ(m)(P (~))ψk = ψk +OL2(~∞).

In that case, the state ψk can be decomposed into

(4.4) ψk = (2π~)−d/2

∫

|η0|≤emδ~1−δ,|η′|≤2ǫ

U∗
keη ψ̂k(η) dη +OL2(~∞).

Proof. The assumption (4.3) and the microlocalization of Ukψk insideD(2ǫ, 2ǫ) imply

that its Fourier transform ψ̂k satisfies ψ̂k(η) = O
((

~

〈η〉

)∞)
for η outside the strip

{
|η0| ≤ emδ~1−δ, |η′| ≤ 2ǫ

}
. �

Our aim is to prove (3.20). We consider a sequence α of length n, and an arbitrary
Ψ ∈ L2(X). We then apply the above decomposition to the case k = α0 and the state
ψα0

= Πα0
χ(n)(P (~)) Ψ. By construction, this state satisfies the energy localization

(4.3) if we take m ≥ n + 1.
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4.2. Evolution of individual Lagrangian states. Our strategy will consist in
controlling the states ΠαU∗

α0
eη individually. For each |η| ≤ 2ǫ, the state

(4.5) ψ0 def
= U∗

α0
eη ∈ L2(X)

is a Lagrangian state associated with a certain Lagrangian leaf Λ0 which belongs to
some unstable γ1-cone in Ẽα0

. The operator Πα is a succession of evolutions along the
Schrödinger flow (U) and truncations by quasiprojectors Παi

. Each quasiprojector
Πk = Op~(π̃k) is a pseudodifferential operator, which transforms a Lagrangian state
associated with some Lagrangian leaf Λ, into another Lagrangian state on the same
Λ, by modifying its symbol. This modification will generally reduce the L2 norm of
the state. In turn, the propagator U is a unitary Fourier Integral Operator associated
with the map g1, which transforms a Lagrangian state on Λ into a Lagrangian state
on g(Λ), keeping the L2-norm unchanged.

More precisely, the operator Παi
U acts as follows on Lagrangian states.

Proposition 35. Consider a Lagrangian leaf Λ0 ⊂ Ẽα0
in some unstable γ1-cone,

and a Lagrangian state ψ0 ∈ L2(X) localized on this leaf, of the form

Uα0
ψ0(y) = a0(y) eiS

0(y)/~, a0 ∈ C∞
c (D(ǫ)).

Then, the state ψ1 = Πα1
Uψ0 is a Lagrangian state associated with the leaf Λ1 =

g(Λ0). It can be expressed (in the coordinates attached to Ẽα1
) as

Uα1
ψ1(y) = a1(y, ~)eiS

1(y)/~,

where S1 is a generating function for Λ1. The symbol a1(y, ~) admits an expansion

(4.6) a1(y, ~) =
L−1∑

j=0

~
ja1j (y) + ~

LrL(y, ~).

The inverse flow g−1
↾Λ1 : Λ1 → Λ0 can be expressed in the coordinates y attached

respectively to Ẽα1
and Ẽα0

, through a map

(4.7) y1 ∈ πΛ1 ⊂ D(2ǫ) 7→ y0 = πg−1(y1, dS1(y1)) ∈ D(2ǫ).

Then, the principal symbol a10(x) in (4.6) reads

(4.8) a10(y
1) = eiβ

1

a0(y0)

∣∣∣∣det
∂y0

∂y1

∣∣∣∣
1/2

π̃α1
(y1, dS1(y1)),

with β1 a constant phase. The higher-order symbols a1j and the remainder rL satisfy
the following bounds, for any ℓ ∈ N:

‖a1j‖Cl ≤ Cl,j‖a0‖Cl+2j , 0 ≤ j ≤ L− 1,(4.9)

‖rl(·, ~)‖Cl ≤ Cl,L‖a0‖Cl+2L+d,

rl = O
((

~

~+ dist(•, πẼα1

)∞
)

outside πẼα1
.

(4.10)

The constants Cℓ,j depend on the Lagrangian Λ0.
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The proximity of Λ0 from the unstable manifold Λα0

def
= W u0(ρα0

) has another con-
sequence. The map y1 7→ y0 in (4.7) , projection of g−1

↾Λ1 to the coordinates y, is

close to the projection of g−1
↾g(Λα0

). For this reason, the Jacobian det ∂y0

∂y1
appearing in

(4.13) is close to the Jacobian of g−1
↾g(Λα0

). Using our coarse-grained Jacobians (3.16),

we find

(4.11)

∣∣∣∣det
∂y0

∂y1

∣∣∣∣ = Ju(α0)
−1(1 +O(γ1, ǫ

γ)),

where γ ∈ (0, 1] depends on the Hölder regularity of the unstable foliation.

4.3. n-steps evolution. The above proposition describes the 1-step evolution Παi
U .

We need to apply many (n ∼ log(1/~)) similar steps. To control these many steps
uniformly w.r.to n, we first need to analyze the evolution of the Lagrangian leaf Λ0

through the classical evolution corresponding to the operator Πα: for i = 0, . . . , n−1,
the leaf Λi+1 is obtained by truncating Λi on supp π̃αi

⊂ Ẽαi
, and then evolving this

truncated leaf through g1. We will assume that the sequence α is admissible, in the
sense that Λi is nonempty for all i = 1, . . . , n. Then, the Anosov structure of the
geodesic flow induces the following inclination lemma [KatHas95], which describes

the leaves Λi in the adapted coordinates (y, η) on Ẽαi
:

Lemma 36. Assume the Lagrangian leave Λ0 ⊂ Ẽα0
belongs to a certain unstable

γ1-cone, as defined in Def. 33. Then, the Lagrangians Λi ⊂ Ẽαi
, i = 1, . . . , n, also

belong to the corresponding unstable γ1-cones:

Λi ⊂
{
(y, dSi(y)), |y| ≤ ǫ

}
, sup

|y|≤ǫ

∥∥d2Si(y)
∥∥ ≤ γ1.

We also have a uniform control on the higher derivatives of the generating functions
Si. For any ℓ > 1, there exists γℓ > 0 such that, assuming dS0 is in the γ1-cone and
satisfies ‖dS0‖Cℓ ≤ γℓ, then the evolved Lagrangians also satisfy

∥∥dSi
∥∥
Cℓ ≤ γℓ, i = 1, . . . , n.

The above Lemma shows that the evolution Λi 7→ Λi+1 remains uniformly under
control at long times. Putting together the Lemma with Prop. 35, we get the
following

Proposition 37. For ~ < ~0 and n ≤ C log ~−1, take any sequence α = α0 · · ·αn of
length n+ 1. Consider a Lagrangian leaf Λ0 ⊂ Ẽα0

∩ Eη0 in some unstable γ1-cone,
and an associated Lagrangian state ψ0 ∈ L2(X) localized on this leaf, of the form

Uα0
ψ0(y) = a0(y) eiS

0(y)/~, a0 ∈ C∞
c (D(ǫ)).

We are interested in the evolved state

ψn def
= ΠαnUΠαn−1

U · · ·Πα1
Uψ0.

Then,

i) If the manifold Λn (obtained from Λ0 from the classical evolution) is empty, then
‖ψn‖L2 = O(~∞).
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ii) Otherwise, ψn is a Lagrangian state associated with Λn. It reads

Uαnψ
n(y) = an(y, ~) eiS

n(y)/~ +OS(~
∞),

where the symbol an(•, ~) is supported in D(ǫ) and satisfies the bound

‖an(•, ~)‖C0(D(ǫ)) ≤ C J(α0 · · ·αn−1)
−1/2

∥∥a0
∥∥
C0 .

As a consequence, we obtain the L2 estimate

(4.12) ‖ψn‖L2(X) ≤ C J(α0 · · ·αn−1)
−1/2

∥∥a0
∥∥
C0 .

The constant C is uniform when the function S0 generating Λ0 remains in a bounded
set in the C∞ topology.

Proof. This proposition is proved in [AnaNo07-2, Lemma 3.5], but we will rather use
the notations of a similar result valid in a more general setup in [NoZw09, Prop.4.1].
The strategy consists in a tedious but straightforward bookkeeping of the properties
of the symbols

ai(y, ~) =

L−1∑

j=0

~
jaij(y) + riL(y, ~)

associated with the intermediate states Uαi
ψi(y). Namely, one manages to control

the Cℓ norms of the symbols and of the remainder, using the equations (4.13,4.9,4.10).

The principal symbol an0 is given by the explicit formula

(4.13) an0 (y
n) = ei

∑n
i=1

βn

a0(y0)

n∏

i=1

∣∣∣∣det
∂yi−1

∂yi

∣∣∣∣
1/2

π̃αi
(yi, dSi(yi)),

where each yi−1 = πg−1
Si (y

i, dSi(yi)) is the coordinate of the (i− 1)-th iterate of the
point (y0, dS0(y0)) ∈ Λ0. This formula shows that an0 results from a transport of the
amplitude (or half-density) a0 through the flow, and a multiplication by successive
factors |π̃αi

| ≤ 1 + O(~). From this expression and (4.11) we directly get the C0

bound

(4.14) ‖an0‖C0(D(ǫ)) ≤ C J(α0 · · ·αn−1)
−1/2

∥∥a0
∥∥
C0 .

The derivatives
∂ℓan

0

∂(yn)ℓ
are computed by applying the Leibnitz rule to the product

(4.13) (which leads to O(nℓ) terms), and then the chain rule ∂f(yi)
∂yn

= ∂f(yi)
∂yi

∂yi

∂yn
.

Using the fact that the Jacobian matrices ∂yi

∂yn
are uniformly bounded, one obtains

the bounds

‖an0‖Cℓ ≤ Cℓ n
ℓ J(α0 · · ·αn−1)

−1/2
∥∥a0
∥∥
Cℓ , ℓ ≥ 0.

The higher-order symbol aij, 1 ≤ j ≤ L − 1, is obtained by the same transport-

and-multiplication of the symbol ai−1
j , but also by transporting and differentiating

2(j − j′) times the symbols ai−1
j′ , j′ ≤ j. This procedure is sketched in Fig.4.1. On

this figure, each symbol anj results from the sum of O(nj) paths starting from a0,
each path consisting in a succession of “long” vertical evolutions, and j “oblique”
evolutions, involving altogether 2j differentiations performed at various stages. We
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Figure 4.1. Each symbol aij is linked to its direct “descendents”.
Vertical arrows represent operators of transport+multiplication, while
oblique arrows include a certain number of differentiations, as given
in (4.9,4.10).
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have seen above that each differentiation leads, through Leibnitz’s rule, to a factor
O(n). Taking into account the number of paths, we obtain the bounds

∥∥anj
∥∥
C0

≤ Cj n
3j J(α0 · · ·αn−1)

−1/2
∥∥a0
∥∥
C2j , 1 ≤ j ≤ L− 1,

and ℓ differentiations of the symbol anj provide, for the same reasons as above, an

additional factor nℓ:
∥∥anj
∥∥
Cℓ ≤ Cj,ℓ n

ℓ+3j J(α0 · · ·αn−1)
−1/2

∥∥a0
∥∥
Cℓ+2j , 1 ≤ j ≤ L− 1.

At each stage, one also gets a remainder riL, which results from the symbols ai−1
j

through transport, multiplication and differentiation, as well as from the unitary
evolution of the previous remainder ri−1

L (dashed vertical arrow). Taking the above
bounds into account, one easily obtains the L2 bound

‖rnL‖L2 ≤ CL

∥∥a0
∥∥
C2L+d .

This last estimate shows that the full symbol an(•, ~) is dominated by the principal
symbol an0 , so that the estimate (4.14) also applies to ‖an(•, ~)‖C0 , and hence to
‖an(•, ~)‖L2 = ‖ψn‖L2 +O(~∞). �

We now conclude the proof of Prop. 23. We use the decomposition (4.4) of the
state ψα0

, and apply Prop. 37 to each state ψ0 = U∗
α0
eη, |η| ≤ 2ǫ. Notice that

the manifolds Λη remain in a bounded cone in C∞: a generating function for Λη is
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simply Sη(y) = 〈η, y〉. Therefore, the constant C in the estimate (4.12) is uniform
w.r.to η. The triangle inequality then implies the bound

∥∥ΠαnUΠαn−1
· · ·Πα1

Uψα0

∥∥ ≤ C ~
−d/2J(α0 · · ·αn−1)

−1/2

∫ ∣∣∣ψ̂α0
(η)
∣∣∣ dη +OL2(~∞).

The RHS contains the L1 bound for the Fourier transform ψ̂α0
(η). Since this function

is O(~∞) outside the set
{
|η0| ≤ emδ~1−δ, |η′| ≤ 2ǫ

}
, the Cauchy-Schwarz inequality

leads to ∥∥∥ψ̂α0

∥∥∥
L1

≤
(
C ǫ emδ

~
1−δ
)1/2 ∥∥∥ψ̂α0

∥∥∥
L2

+OL2(~∞).

Since
∥∥∥ψ̂α0

∥∥∥
L2

= ‖ψα0
‖L2 ≤ 1 +O(~∞), we obtain (3.20). �

5. Extension to Anosov toral diffeomorphisms

In this section we will give the few modifications necessary to prove Thm.7, ii)
dealing with Anosov toral diffeomorphisms. Although the strategy of proof is exactly
the same as for the Laplacian eigenstates, the quantum setting is slightly different,
and not so well-known as the one used above. One advantage of dealing with maps
instead of flows is that we will not need any sharp energy cutoff: the torus will take
the place of the energy shell E , so there won’t be any need to localize ourselves on
a submanifold.

Let us mention that the bound 1.9 is not a new result in the case of linear hyper-
bolic symplectomorphisms on the 2-dimensional torus: as explained in §1.4, it is
a consequence of Brooks’s more precise result (Theorem 9). For linear symplecto-
morphisms in higher dimension, an improvement of the lower bound (1.9) has been
recently obtained by G. Rivière [Riv10].

5.1. Quantum mechanics on a torus phase space. We briefly recall the prop-
erties of quantum mechanics associated with the torus phase space. T2d = R2d/Z2d

is equipped with the symplectic form ω =
∑d

i=1 dξi ∧ dxi. Quantum states are de-
fined as the distributions ψ ∈ S ′(Rd) which are Zd-periodic, and the ~-transforms
of which are also Zd-periodic:
(5.1)
∀n ∈ Z

d, ∀x ∈ R
d, ψ(x+ n) = ψ(x), ∀ξ ∈ R

d, (F~ψ) (ξ + n) = (F~ψ) (ξ).

A simple calculation shows that such distributions can be nontrivial iff

~ = ~N
def
= (2πN)−1 for some integer N > 0.

Such values of ~ are called admissible. From now on we will only consider admissible
values of ~. The distributions (5.1) then form a Nd-dimensional subspace of S ′(Rd),
(denoted by HN), which is spanned by the following basis of “Dirac combs”:

(5.2) ej(x) = N−d/2
∑

ν∈Zd

δ(x− j

N
− ν), j ∈ (Z/NZ)d ≃ {0, . . . , N − 1}d .
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It is natural to equip HN with the hermitian norm ‖•‖HN
for which the basis{

ej , j ∈ (Z/NZ)d
}
is orthonormal. One can construct the spaceHN by “projecting”

states ψ ∈ S(Rd):

∀ψ ∈ S(Rd), ΠNψ(x)
def
=
∑

µ,ν∈Zd

ψ(x− ν) e2iπ〈µ,x〉

belongs to HN , and the map ΠN is surjective. In general, there is no obvious link
between the norms ‖ψ‖L2 and ‖ΠNψ‖HN

. Yet, imposing some localization for ψ, we
get the following relation:

Lemma 38. Assume that ψ ∈ S(Rd) is microlocalized inside a set E ⊂ R
2d of

diameter < 1/2. Then, its projection ΠNψ ∈ HN satisfies

‖ΠNψ‖HN
= ‖ψ‖L2 +O(~∞).

Let us now describe observables on T2d. Any smooth functon on T2d is also a Z2d-
periodic function on R2d. It is natural to introduce symbol classes

Sk
ν (T

2d) =
{
f(~) ∈ C∞(T2d),

∣∣∣∂αx∂
β
ξ f(~)

∣∣∣ ≤ Cα,β~
−k−ν|α+β|

}
, ν ∈ [0, 1/2), k ∈ R

(due to periodicity, we cannot have growth or decay in the variable ξ as in the classes
(2.8)).

Observables f = (f~) ∈ Sk
ν (T

2d) can be Weyl-quantized as operators Op~(f) acting
on S(Rd), but also on S ′(Rd) by duality. We already know that any observable
f ∈ S0

ν(T
2d) satisfies

‖Op~(f)‖L2→L2 ≤ ‖f‖∞ +O(~1−2ν).

Proposition 39. [BDB96]Take f ∈ C∞(T2d). For any admissible ~ = ~N , the
operator Op~(f) leaves invariant the subspace HN ⊂ S ′(Rd). Let us call OpN(f) its
restriction on HN . These two operators satisfy

(5.3) ‖OpN (f)‖HN	 ≤ ‖Op~(f)‖L2	.

This property allows to carry the pseudodifferential calculus on R2d down to the
torus. For instance, for any two observables f, g ∈ S0

0(T
2d), the product OpN(f) OpN (g)

is the restriction of Op~(f) Op~(g) = Op~(f♯g). One can check that f♯g is a periodic

function, and that each term in the expansion f♯g =
∑L−1

j=0 ~j(f♯g)j + ~LRL(f, g, ~)

(including the remainder) is also periodic. Hence, the estimates on ‖Op~((f♯g)j)‖L2

and ‖Op~(RL(f, g, ~))‖L2 can be directly translated to estimates of their restrictions
on HN .

5.2. Quantum maps on the torus. We now give a brief overview of what we
mean by a quantum propagator associated with a smooth symplectic diffeomorphism
κ : T2d 	. We will not try to provide a general recipe to “quantize” all possible κ,
but only give some relevant examples.
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(1) consider the flow gt generated by some Hamilton function p ∈ C∞(T2d). If
we quantize p into P (~) = Op~(p), then the quantum propagator quantizing
gt is naturally U t = e−itP (~)/~. Since P (~) leaves HN invariant, so does the

propagator. Hence, the map κ
def
= g1 is quantized by

UN (κ) = e−iP (~)/~ ↾ HN = exp (−i2πN OpN(p)) ,

which is unitary on HN . The Egorov property (2.13) can be directly trans-
lated to the torus setting:

(5.4) UN (κ)
−1OpN(f)UN(κ) = OpN(f ◦ κ) +OHN→HN

(~).

(2) If κ is a linear symplectomorphism of T2d associated with the symplectic

matrix Sκ =

(
A B
C D

)
∈ Sp(2d,Z), then it can be quantized as a meta-

plectic transformation U~(κ), which acts unitarily over L2(Rd). Provided Sκ

satisfies some “checkerboard conditions”[BDB96], the extension of U~(κ) to
S ′(Rd) leaves HN invariant; its restriction UN (κ) = U~(κ) ↾ HN is unitary on
HN . If Sκ has no eigenvalues on the unit circle (meaning that the matrix is
hyperbolic), the map κ is Anosov. Such a map is often called a “generalized
quantum cat map”, by reference to “Arnold’s cat map”. It satisfies an exact
Egorov property: UN (κ)

−1OpN(f)UN(κ) = OpN(f ◦ κ).
(3) Let us combine these two types of maps, namely a linear symplectomorphism

κ0 (satisfying the checkerboard condition), and the flow gt generated by some
p ∈ C∞(T2d), to get

(5.5) κ = g1 ◦ κ0.
If Sκ0

is hyperbolic and p is small enough in the C2 topology, then it is known
that κ still has the Anosov property (and it is topologically conjugate with
κ0). The quantum propagator can be defined as

UN(κ)
def
= exp (−i2πN OpN(p)) ◦ UN (κ0).

It obviously satisfies the Egorov property (5.4).

The long-time Egorov theorem (Prop. 3.4) can also be brought to the torus frame-
work:

Proposition 40. Choose ǫ > 0 small and ν ∈ (1−ǫ
2
, 1
2
). Take f ∈ S0

0(T
2d). Then,

for any admissible ~ = ~N and any time n = n(~) in the range |n| ≤ Tǫ,~, we have

(5.6) U−n
N OpN (f)U

n
N = OpN(f̃n) +O(~∞),

with f̃n ∈ S0
ν(T

2d), f̃n − f ◦ κn ∈ S−(1+ǫ)/2
ν (T2d).

5.3. Quantum partitions on the torus. Through the quantization f 7→ OpN(f),
we can associate to any semiclassical sequence of normalized states (uN ∈ HN )N→∞

one or several semiclassical measures, as in §2.4. Starting from an Anosov map
κ of the form (5.5), we consider sequences (ψN ∈ HN )N→∞ where each ψN is an
eigenstate of UN (κ). After possibly extracting a subsequence, this sequence admits
a single semiclassical measure µsc, which is a probability κ-invariant measure on T2d.
To analyze the KS entropy of this measure (defined as in §3.1 after replacing g1 by
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κ), we set up a partition P =
⊔K

k=1Ek of T2d of diameter ǫ, such that µsc(∂P) = 0.
The partition P is smoothed into Psm = {πk}, where πk ∈ C∞(T2d, [0, 1]), each πk
is supported near Ek, and

∑
k πk = 1. The quantum partition is defined similarly

as in §3.2, except that Πk = OpN (π̃k), π̃k ∈ S(T2d) satisfy

(5.7)

K∑

k=1

Π2
k = IdHN

+O(~∞).

The refined quasiprojectors Πα are defined similarly as in (3.9), after setting U =
UN(κ). The symbolic measures µN , µ̃N associated with ψN are defined as in (3.14,3.34).

5.4. Hyperbolic dispersive estimate. One needs to adapt the proof of the hy-
perbolic dispersion estimate (5.8) to the torus setting. We can prove the following

Proposition 41. Fix a constant C1 ≫ 1. Then there exists C > 0 such that for
any N ≥ 1, any 0 ≤ n ≤ C1 logN and any sequence α of length n, the following
estimate holds:

(5.8) ‖Πα‖ ≤ C N
d
2 Ju

n(α)−1/2.

Here Ju
n(α) =

∏n−1
j=0 J

u(αj) is the coarse-grained unstable Jacobian of the map κ.

Notice that the power of N ∼ ~−1 is d/2 instead of (d− 1 + δ) in (3.20).

Proof of the proposition. The proof of this estimates proceeds along the same lines
as in §4, that is by explicitly computing the action of the operator Πα on an arbi-
trary normalized state Ψ ∈ HN . To do this, we first expand each localized piece
ψ = ΠkΨ, k = 1, . . . , K, into an well-chosen orthonormal basis

{
fj, j ∈ (Z/NZ)d

}

obtained from the original basis (5.2) through a well-chosen quantized linear sym-
plectomorphism U(κ̃k). Let us recall a few facts about linear symplectomorphisms
of the torus. Any κ̃ ∈ Sp(2d,R) acting on R2d maps a “position Lagrangian”
ΛR

x0
= {x = x0, ξ ∈ R} , x0 ∈ R

d into another “linear” Lagrangian7

(5.9) Λ̃R

x0
= κ̃(ΛR

x0
) =

{
ξ = DB−1x+ (C −DB−1A)x0, x ∈ R

d
}
.

Each position Lagrangian ΛR

x0
is associated with a “position eigenstate” eRx0

(x) =

(2π~)d/2 δ(x−x0). The metaplectic operator U~(κ̃) maps this position state into the
Lagrangian state
(5.10)

fR

x0

def
= U~(κ̃)e

R

x0
, fR

x0
(x) =

1√
det(B)

e(i/2~)(〈DB−1x,x〉−2〈x,B−1x0〉+〈B−1Ax0,x0〉),

which is associated with the Lagrangian Λ̃R

x0
. If κ̃ has integer coefficients and satisfies

the “checkerboard condition”, then this construction can be brought down to the
torus. Each basis state ej in (5.2) is associated with the Lagrangian ΛT

j/N , projection

on T2d of ΛR

j/N . The state fj
def
= UN (κ̃)ej ∈ HN is a “Lagrangian state on the torus”

associated with the projected Lagrangian Λ̃T

j/N = κ̃(ΛT

j/N).

7We use the representation Sκ̃ =

(
A B

C D

)
and assume for simplicity that B is nonsingular.



ENTROPY OF CHAOTIC EIGENSTATES 41

For each partiton component Ek, we select an appropriate linear transformation κ̃k.
In each neighbourhood Ẽk of supp πk (assumed to have diameter ≤ ǫ), we use an
adapted coordinate chart {(y, η)} as in §4.1. Using these coordinates, we consider
the family of γ1-cones defined in Def. 33.

Lemma 42. Provided the diameter of Ẽk is small enough, we can choose the auto-
morphism κ̃k such that each connected component of Λ̃T

x0
∩Ẽk belongs to the unstable

γ1-cone.

Proof. Indeed, the pieces of unstable manifolds inside Ẽk are then “almost flat”
and “almost parallel”, so they can be approached by a family of (local) linear La-
grangians. Besides, any linear Lagrangian Λ̃T

0 can be approached by a “rational”
Lagrangian κ̃(ΛR

0 ), κ̃ ∈ Sp(2d,Z). �

For each k = 1, . . . , K we expand ψ = ΠkΨ in the o.n. basis
{
fj = UN(κ̃k)ej, j ∈ (Z/NZ)d

}
.

Using cutoffs 1lẼk
≻ π♯

k ≻ πk we can localize the Lagrangian states fj inside Ẽk:

ψ =
∑

j∈(Z/NZ)d

ψj fj =
∑

j∈(Z/NZ)d

ψj f̃j +O(~∞), f̃j
def
= OpN(π

♯
k)fj .

We can thus proceed as in §4, namely compute separately each Παf̃j. To be able to
use §4, we will switch back from states in HN to states in S(Rd).

Lemma 43. Each localized Lagrangian state f̃j = OpN(π
♯
k)fj ∈ HN is equal (up to

OHN
(~∞)) to the projection on HN of finitely many Lagrangian states f̃R

j,n ∈ S(Rd)

microlocalized inside a single representative ẼR

k of Ẽk in R2d.

Proof. The localized Lagrangian state f̃j = OpN(π
♯
k)fj is microlocalized on Λ̃T

j/N∩Ẽk,
which is a finite collection of Lagrangian leaves. Each of these leaves is the projec-
tion on the torus of a leaf of the form Λ̃R

j/N+n∩ẼR

k , where Λ̃
R

• is given in (5.9), n ∈ Z
d

and ẼR

k is a certain (arbitrary) representative of Ẽk in R2d. Accordingly, each f̃j can

be split into a finite linear combination of Lagrangian states f̃j,n ∈ HN supported

on these individual leaves. If we call π♯R
k ∈ C∞

c (R2d) the component of π♯
k sup-

ported on the representative ẼR

k , then the Lagrangian state f̃R

j,n = Op~(π
♯R
k )fR

j/N+n

is microlocalized inside ẼR

k . We claim that

f̃j,n = ΠN f̃
R

j,n +OHN
(~∞).

We will only give the proof in the case where fj is a momentum state 〈el, fj〉 =
N−d/2 e2iπ〈l,j〉/N associated with the momentum Lagrangian

{
ξ = ξj =

j
N

}
, and the

cutoff is the operator OpN(χ1) OpN (χ2), where χ1(x) (resp. χ2(ξ)) is obtained by
periodizing χR

1 ∈ C∞
c ((0, 1)) (resp. χR

2 ∈ C∞
c ((0, 1))). In that case, the Lagrangian

state f̃j = OpN(χ1) OpN(χ2)fj admits the components

〈el, f̃j〉 = N−d/2 χ1(
l

N
)χ2(

j

N
) e2iπ〈l,j〉/N .
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On the other hand, the state f̃R

j = Op~(χ
R

1 ) Op~(χ
R

2 )f
R

j can be expressed as f̃R

j (x) =

χR

1 (x)χ
R

2 (ξj) e
i〈ξj ,x〉/~. The projection on HN of that state gives

ΠN f̃
R

j (x) = χR

2 (ξj)
∑

ν,µ

χR

1 (x− ν) e2iπN〈ξj+µ,x〉

= χR

2 (ξj)χ
R

1 ([x]) e
2iπN〈ξj ,x〉 δZd(Nx)

= N−d/2χR

2 (
j

N
)
∑

l∈(Z/NZ)d

el(x)χ1(
l

N
) e2iπ〈j,l〉 = f̃j(x).

�

This Lemma allows us to use our control of the evolution of the Lagrangian states

f̃R def
= f̃R

j,n through the sequence of operators U~(κ) and Πk = Op~(π̃k). We have to
be a little careful when applying Props. 35 and 37, because π̃αj

are now periodic

symbols. Still, the Lagrangian state f̃R is localized inside a single copy ẼR

α0
(of

diameter ≤ ǫ), so its image U~(κ)f̃
R is a Lagrangian state microlocalized in a set

of diameter O(ǫ), which can intersect at most one copy ẼR

α1
+ n1. As a result, the

state Πα1
U~(κ)f̃

R is also localized in this single copy, and is of the form of the state
ψ1 in Prop. 35. Importantly, the estimates we have on the remainder rL(•, ~) in the
expansion (4.6) show that eiS1/~rL is microlocalized in the single copy Ẽα1

+n1, and
decays fast away from it. As a result, Lemma 38 implies that the projection on HN

of that remainder has a norm comparable with ‖rL‖L2(Rd).

Since the initial Lagrangian piece Λ̃ lies in some γ1-unstable cone, we can iterate the
evolution as in Prop. 37. At each step we get a Lagrangian state and some remainder
eiSt(y)/~rtL(y, ~), which can be projected to HN with a control on its norm. When we
act on this remainder through operators Παj

UN (κ), its norm can increase at most by
a factor (1 +O(~∞)). Finally, we obtain a Lagrangian state microlocalized in some

ẼR

αn
+ nn (and a sum of remainders). The projection in HN of that state satisfies

the same bound as 4.12: ∥∥∥Παf̃j

∥∥∥
L2(X)

≤ C Ju(α)−1/2.

Summing over all the states f̃j and taking into account ‖ψ‖HN
=
√∑

i∈(Z/NZ)d |ψi|2 ≤
1, we obtain (invoking Cauchy-Schwarz)

‖ΠαΨ‖ ≤
∑

j∈(Z/NZ)d

|ψj|C Ju(α)−1/2 ≤ C N
d
2 Ju(α)−1/2.

�

5.5. EUP and subadditivity. The Hyperbolic dispersive estimate can now be
injected in some form of Entropic Uncertainty Principle as in §3.8. Since we don’t
need any energy cutoff, the setting we need is actually simpler than Prop. 29: we
can take Sc1 = Sc2 = IdHN

. In the application, we also take ε = ~
L for any large

L > 0. We obtain a lower bound of the form (3.33) on the pressures associated
with the symbolic measures µ~, µ̃~ and the Ehrenfest time n = ⌊2Tǫ,~⌋, with a
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constant Ccone(~) = C~−d/2. Using the Egorov theorem up to Tǫ,~, one shows that
the quantum pressures satisfy an approximate subadditivity property similar with
(3.37), which allows to prove

pn0−1
0 (µsc, v,P)

no
≥ −dλmax

2
+O(ǫ).

The rest of the proof is unchanged.
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[CdV85] Y.Colin de Verdière, Ergodicité et fonctions propres du laplacien, Commun. Math.

Phys. 102, 597-502 (1985)
[Donn03] H. Donnelly, Quantum unique ergodicity, Proc. Amer. Math. Soc. 131, 2945-51 (2002)
[EvZw09] L.C.Evans and M.Zworski, Lectures on Semiclassical analysis, version 0.3,

http://math.berkeley.edu/~zworski/

[FNDB03] F.Faure, S.Nonnenmacher and S.De Bièvre, Scarred eigenstates for quantum cat maps
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