
HAL Id: hal-00476909
https://hal.science/hal-00476909

Submitted on 27 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

New tracks for future computational platforms for
engineering applications

Dominique Eyheramendy

To cite this version:
Dominique Eyheramendy. New tracks for future computational platforms for engineering applica-
tions. Thomas Zimmermann ; Andrzej Truty. Numerics in Geotechnics and Structures, Elmepress
International, pp.1-15, 2006. �hal-00476909�

https://hal.science/hal-00476909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Keywords: Object-oriented programming, Finite Elements, Web applications, Java,
Darcy’s flow, J2 plasticity.

This purpose of this paper is to address new tracks for the future generation of
computational applications in mechanics and related branches. We advocate that
modern computational tools will have to deal with complex strongly coupled multi-
physics multi-scale problems. Moreover, heterogeneous distributed multi-processors
systems are used today for the numerical simulations. We pose here some basic
ideas for the design of modern computational applications. All the illustrations are
based on finite elements strategies implemented in a pure Java paradigm.

1 Introduction
Nowadays, the engineers and the researchers have to take into account a large

amount of parameters in the design process of computational applications:
efficiency, need of high level concepts for fast prototyping, scale of computations,
need of multi-processing computation, networking, need of high level GUI (graphic
user interface),… In this context, the strong interest for object-oriented technologies
in computational mechanics lies in the increasing size and complexity of the
problems currently solved (see Noor [1] for example in computational structures
mechanics). This approach has been investigated in many computational fields in
mechanics: constitutive law modelling, in finite deformation plasticity, in parallel
finite element applications, in rapid explicit dynamics, in fracture mechanics (see
Eyheramendy [3] and [4] and references therein). The broad range of applications
solved within the object-oriented paradigm shows that every researcher or engineer
can easily build a personal framework adapted to his domain of interest: physical
problem, numerical treatment, computational environment... The challenging
problems for the years to come will certainly concern coupled multi-scale multi-
physics. Moreover, the increasing size of the problems will lead to the development
of efficient parallel strategies. From a technical point of view, the developers need to

New tracks for future computational platforms
for engineering applications

D. Eyheramendy
CDCSP/ICJ UMR 5208, Institut des Sciences et Techniques de l’Ingénieur de Lyon,

Université Claude Bernard Lyon 1
15, Blvd Lartarjet , FR-69622 Villeurbanne Cedex

1

mix multiple software technologies (graphical libraries -e.g. OpenGL-,
communications libraries -e.g. MPI-...) in order to integrate the numerical
algorithms into computer tools. Considering the inherent complexity of the
traditional languages such as C++, the development of global frameworks for finite
elements computations can rapidly become cumbersome. The software strategy we
proposed is based on a pure Java object-oriented paradigm. This platform has the
major advantage to offer both a comfortable environment for object-oriented
programming and a suitable numerical efficiency. Moreover, from an industrial
point of view, it is worth to notice that the code naturally becomes platform
independent. We advocate that the C++ language could merely be replaced by a Java
type approach. This has already be advocated by many authors: e.g. Ginsberg & al.
[5], Padial-Coolins & al. [6], Baudel & al. [7], Eyheramendy [8], Bull & al. [9],
Nikishkov & al. [10], Häuser & al. [11], Riley & al.[12].

In section 2, two advanced object-oriented concepts are briefly presented. The
objective of this work is to closely relate the developments to the physical and
mathematical modeling. This is illustrated, first in section 3, on the enforcement of
global model consistency on the example of Darcy’s flow formulations, and second
in section 4, on a numerical model for the mathematical consistency enforcement
applied to the elastoplasticity. At last, networking strategies and an Internet
integration are briefly discussed in section 5. An example of web portability is
presented.

2 Advanced O.O concepts in Java
Basic object-oriented concepts and applications to finite elements has been

widely discussed in Zimmerman & al. [1] and Dubois-Pèlerin & al. [13] and [14]
and related pioneering works. The first concept introduced in the present work is the
concept of inner class. The definition of a class is allowed within another one. Both
classes partially share some data. We used this scheme to define at the same local
level, first, data defining the fields and the finite elements formulations overall the
computational domain, and second, data defining the fields and the formulations at
the elemental level. The second concept is the concept of interface. An interface is a
reference type that is closely related to a class. It can be seen as a pure abstract class
(a class that cannot be instanced). This class does not define any implementation but
only specifications, i.e. only methods that are defined to be mandatory in a given
class. A class is said to implement an interface, if and only if, the class exhibits an
implementation of the methods specified at the level of the interface. The complete
description of these concepts goes beyond the scope of this paper and can be found
in Eyheramendy [15] or Flanagan [16].

3 Local and global data code consistency: Application to Darcy’s flow
We give an example for which special Java syntaxes may be helpful to better

handle complexity of a F.E code. Inner classes allow the programmer to partially
hide information to the whole of the code. It can be interesting to partially share
global and local aspects of a numerical scheme. The approach is illustrated on a

2

simple interface tracking scheme for underground water flow and a mixed
formulation of the Darcy’s flow equations. The management of the finite element
formulation is described on this example.

3.1 A free surface seepage problem

3.1.1 Seepage problem formulation: strong and weak forms
A procedure to locate the free surface of an unconfined seepage flow through

porous media is completely described in Lacy [17]. Let us briefly recall the problem.
We consider the flow of an incompressible and homogeneous fluid into a porous
medium. The medium is assumed to be either wet (saturated) or dry. Capillarity,
partial saturation and evaporation are neglected. The free surface is defined as the
boundary line between the dry and wet soils as shown in figure 1 (free surface
CDE). No flux gets through the free surface and the pressure is zero on the free
surface. The domain wΩ represents the flow region (the saturated part of the
geometric Ω domain occupied by the earth structure) and dΩ the dry part.

Figure 1 - Definition of the free seepage problem.

The piezometric head Φ is defined with respect to the pressure p such as:

ypy
g
p

+=+=
γρ

φ

where ρ is the density of the fluid and γ the specific weight of the fluid.
The steady state problem may be modeled as follows:

wp Ω≥ in 0

din 0 Ω=p
0.. =∇∇ φk in Ω

k: Darcy permeability tensor.

With boundary conditions:
)(1 yHp −= γ on AF

)(2 yHp −= γ on BC
0=p and 0.. =∇φkn on ED
0=p and 0.. =∇φkn on CD

0.. =Φ∇kn on AB

wΩ

dw Ω+Ω=Ω

dΩ

H1

H2

A B

C

D

E

3

The fundamental difficulty is that the location of the free surface is unknown a
priori and the enforcement of the boundary conditions on the free surface may be
tremendous. The formulation is extended to the entire domain dw Ω∪Ω=Ω by
using an extended pressure field p(x) for which the 0)(=xp in dΩ -the dry soil
domain-. Existence and uniqueness of the solution for the extended problem is
showed by introducing the following penalized problem:

⎪
⎩

⎪
⎨

⎧

Ω∇∇−=Ω∇∇

Ω∈∀Ω=∈

∫ ∫ ΩΩ qdypHkqdpk

HqHPp ww

)(1

)(such that)(Find 1
0

1

εε

ε

γ
)(pHε is an extension of the Heaviside function that includes a penalty

parameter. Since the location of the free surface is unknown a priori, a Newton
iterative scheme is required to solve the problem. A local computation (at the
elemental level) is done to determine of the penalty parameterε and a cut-off
pressure op which enforce the pressure to a “small” negative value in the dry soil. A
detailed description of it can be found in Lacy [17].

3.1.2 Implementation in the Java code
The main object in the application is the field. It supports all the nodes and the

values of degrees of freedom. The formulation initializes the fields. The formulation
for the seepage problem is based on the definition of a single scalar field, the
pressure.

The implementation of the formulation is made through a class called:
PressureDarcyPenalizedProblem. The class is posted in Figure 2. The class
subclasses Formulation in which all the basic behavior of the finite elements
formulation is taken into account, e.g. the global way of building fields overall the
computational domain. The class embeds an inner class called PressureDarcy. The
two important methods in the class are:

o initialize() which permits us to describe the unknown field, here a scalar
field, the pressure, for the problem; this a global method (see figure 3),

o getElement() which permits us to instantiate at the local level the finite
element called PressureDarcy with local elemental fields, numerical
quadrature (which may play a crucial role for constitutive law modeling)
and material definition.

The finite element PressureDarcy exhibits as local behavior all the computation
of the finite element matrices defined Figure 2 in italic and Figure 3. The definition
of both classes, i.e. the inner and outer classes, permits us to completely define a
new finite element formulation. This special feature of the Java programming
language can be seen as a generalization of the object-oriented concept at the level
of a class. This leads to an enhanced organization of code.

4

public class PressureDarcyPenalizedFormulation extends Formulation
{
 public static double Tolerance = 1e-3 ;
 public static double LargeParameter = 1e10 ;

 public String toString() { // … }
 public Material defaultMaterial() { return new PorousMedia () ; }
 public void initialize(Domain domain) { // … }

 public Element getElement(ElementalGeometry aGeom , Quadrature aQuadrature ,
 ElementalField[] flds, int nb , Material m)
 {
 return new PressureDarcy (aGeom , aQuadrature , flds , nb , m) ;
 }

 public static class PressureDarcy extends Element
 {
 public PressureDarcy(ElementalGeometry aGeom , Quadrature aQuadrature ,
 ElementalField[] flds , int n , Material m) { // … }
 public FullMatrix computeConstitutiveMatrix() { // … }
 public Hashtable computeElementalMatrices(TimeStep ts) { // …}
 protected double computeCutOffPressure(ElementalGeometry aGeometry ,
 double gamma) { // …}
 protected double computeEpsilon(ElementalGeometry aGeometry , double gamma) { // …}
 // … additional non-implemented abstract methods …
 }
}
Figure 2 - Implementation of an inner class in Java for defining a formulation

Figure 3 - Definition of the fields the Darcy’s flow formulation

public void initialize(Domain domain)
{
 Field[] fields = new Field[1] ;
 fields[0] = domain.createAScalarField (0) ; // PRESSURE
 domain.setFields (fields) ;

 domain.setNumberOfUnknownFields (1) ;

 Subdomain[] subdomains = domain.getSubdomains () ;
 for(int i = 0 ; i < subdomains.length ; i++)
 this.initialize (subdomains[i]) ;
}

public Element getElement(ElementalGeometry aGeom , Quadrature
 aQuadrature , ElementalField[] flds , int nb , Material m)
{
 return new PressureDarcy (geom , gaussPoints , fields , nb , m) ;
}

5

3.1.3 Numerical examples
For all the test cases, the permeability k is set to identity tensor and the specific

weight of water γ is set to 1.0. Bilinear quadrilateral elements have been used. We
obtain similar results to the one obtained in Lacy [17]. The first example in figure 4
shows a dam with a toe drain, and the second one, a dam with an impermeable sheet
on the upper part of the right face. We tested on these cases various strategies for the
choice of the penalty parameter ε and cut-off pressure definition. The accuracy of
the solution drastically depends on the choice of various parameters involved in the
formulation (penalty parameter, cutoff pressure…). The way to impose the boundary
conditions for the pressure especially on the free surface seepage zone may lead to
instable results. These experiments lead us to adopt an alternative strategy for the
solution or free surface seepage problem by introducing a free surface equation and
solving the flow using a velocity-pressure formulation. In the following section a
mixed velocity-pressure is studied.

Figure 4: Dams: toe drain and impermeable sheet on the downstream face.

3.2 A mixed stabilized formulation for Darcy’s flow

3.2.1 Mixed stabilized formulation
We consider a pressure-velocity formulation for a Darcy’ flow problem. The free

surface tracking is not considered here; we aim to get a stable and accurate
formulation for a simple Darcy’s flow. A mixed formulation is adopted. The
problem can be summarized as follows:

Find u velocity and p pressure with appropriate regularity conditions such that
(domain described Figure 5):

Ω∂=⋅
Ω=

Ω+∇−=

on 0
on 0)(

on)(

nu
udiv

ypku
γ

 where:
heigth fluid charact.g

gravity
density luid

ργ

ρ

=
g

f

H1=7

H2=1

h = 3

5

H1=5

3 3

Drain

6

The variational formulation is stated as follows (with the definition of
appropriate regular spaces):
Find PVpu ×∈),(such that PVqv ×∈∀),(:

∫∑ ∫

∫∫∫

ΩΩ Ω

−−

ΩΩΩ

−

Ω=Ω∇−∇+∇++

Ω+Ω−Ω

dyvdivdqvkkypuk

dudivqdpvdivdukv

e e

γγ
γ

γγ)()()(
2
1

)()(

11

1

A more detailed description of the formulation proposed by Masud & al. [19] can
be found in Eyheramendy & al. [18].

Figure 5 – Description of the domain

3.2.2 Implementation
The implementation is similar to the one presented in the previous example. The

new formulation is introduced through a new set of classes. This is done in the same
way as in the previous example. This formulation has two unknowns: the pressure
field and the velocity field. Their natural definition of the fields at the global and
local levels is exhibited in the figure 6. It can be compared to the one of figure 3. We
show on this example the full potential of the inner class concept to achieve a natural
definition of the unknowns of the physical model and to enforce the consistency of
the finite element model at the elemental level within the application.

Figure 6 – Definition of the velocity and pressure fields

Ω∂ Ω

nr

public void initialize(Domain domain)
{
 Field[] fields = new Field[2] ;

 fields[0] = domain.createAVectorField (0) ; // VELOCITY
 fields[1] = domain.createAScalarField (1) ; // PRESSURE
 domain.setFields (fields) ;

 domain.setNumberOfUnknownFields (2) ;

 Subdomain[] subdomains = domain.getSubdomains () ;
 for(int i = 0 ; i < subdomains.length ; i++)
 this.initialize (subdomains[i]) ;
}

7

3.2.3 Numerical results
We study in this example the injection of a fluid at the corner of a square domain.

Similar physical parameters as in the previous formulation are used in this
simulation. The results are in good agreement with the ones of Masud & al. [19].

Figure 7 – Injection at a corner for a Darcy’s flow

4 Nonlinear material modeling: enhanced data organization to enforce
numerical consistency

4.1 Elastoplasticity – Radial return algorithm
We recall here the basic equations of the elastoplasticity in the case of perfect J2

plasticity. Classical notation are adopted. The problem consists in finding the
displacement field u and the stress field σ with appropriate regularity conditions
such as defined in figure 8. Perfect plasticity with an associated flow rule is
considered. The yield condition is based on the second invariant of the deviatoric
part of the stress field. The solution of the global problem is obtained through an
operator split technique (see figure 9): a trial solution of the linear elasticity is
solved with the initial conditions from the second problem at the previous time step.
More details about the problem definition and the solution scheme can be found in
Commend & al. [22], Simo & al. [20] or Lemaître & al. [21].

4.2 An advanced object implementation: Algorithmic consistency enforcement
in finite elements: Application to elastoplasticity

We apply the mechanism of interface to the implementation of the plastic
corrector phase, for the numerical integration of the constitutive law. A classical
return algorithm is used. The global framework will be detailed in a forthcoming
paper Eyheramendy [23]. From a practical point of view, in the context of finite
elements applications, the correction step is classically performed at the level of
gauss points (numerical integration points). This algorithm cannot be applied to any
constitutive model. It is a restriction of a general return-mapping algorithm for the J2
plasticity. The algorithm is given figure 10.

8

Tuuuu

xuxu
Tuu

TFn

T
t
uf

xtxtu

kllk
S

ii

ijij

ijij

×Ω+=∇=

Ω=
×Ω=

×Ω=

×Ω
∂
∂

=+

on)(
2
1)()(

on)(),0(
on

on

on

:such that conditions
 regularity eappropriat with),(and),(Find

,,kl

0

1

2

2

,

ε

∂

∂σ

ρσ

σ

Constitutive Law:
Yield condition : RJf −=)()(2 σσ

Flow rule
σ

γε
∂
∂

=
fp& with conditions

0)(
0)(

0

=
≤

≥

σγ
σ

γ

f
f

Figure 8 - Elastoplasticity constitutive model

Elastoplastic Elastic predictor Plastic corrector
()

σ
γε

ε

∂
∂

=

Δ∇=
f
u

p

S

&

&&

= ()
0=

Δ∇=
p

S u
ε

ε
&

&&
 +

σ
γε

ε

∂
∂

=

=
fp&

& 0

Figure 9 - Global solution scheme for elastoplasticity

Problem at iteration i and step n+1 :

•Given nσ and i
n dBd Δ=+ 1ε , find 1+nσ

–Compute trial stress (from elastic predictor problem)

11 ++ +=+= n
el

n
tr

n
tr
n dDd εσσσσ

–If 0)(1 ≤+
tr
nf σ then tr

nn 11 ++ = σσ and stop

–Else compute plastic correction

σ
γσ

d
dqdDd elp −=

Figure 10 - Radial return algorithm

Without entering the details of the class hierarchy, a partial view of the object
model is given in figure 11. The constitutive equations are represented by a generic
class called Behavior. This class is the abstract class representing all the different
types of constitutive laws. In this example, the subclass
LinearElasticPerfectlyPlastic represents the typical constitutive model studied
here: linear elasticity – perfect J2 plasticity. The abstract class Integrator represents

Ω∂2

Ω∂ 1

f

F

Ω

uu =

9

all the generic behavior of the different types of integrators, i.e. roughly speaking a
single generic method called integrate. This method initiates the correction phase.
The subclass RadialReturnAlgorithm strictly implements the algorithm posted
figure 10. The interface Integrable specifies the methods needed by all the models
of integrators: the computation of the constitutive matrix and the determination of
the plastic condition (checking of the yield condition). The subinterface
RadialReturnAlgorithm specifies the methods needed in the algorithm figure 10,
i.e. the computation of the plastic correction. The last step is to define the class
LinearElasticPerfectlyPlastic, subclass of class Behavior, to implement the
interface RadialReturnIntegrable. The class LinearElasticPerfectlyPlastic
implements the methods specified in both, the interface Integrable and the interface
RadialReturnIntegrable. The programmer is in charge of the correct use of the
numerical algorithm in the context of the model of equation. The class
LinearElasticPerfectlyPlastic is given figure 12. The methods implementing the
interface are: isPlastic (checking of the yield condition), computePlasticCorrection
(computation of the plastic correction) and computeConstitutiveMatrix
(computation of the constitutive matrix). The consistency of the code is then
guaranteed. The programmer is responsible for maintaining this consistency between
the physical model, the numerical model and the implementation. The interface
mechanism permits the programmer to enforce this global consistency at the level of
the code. Thus, mathematical properties are implemented in a natural way, providing
robustness through mathematical foundations.

Figure 11 - Partial view of the class hierarchy for the constitutive law integration

Figure 12 - Detail of the class for J2 plasticity equations

Object
 Behavior
 LinearElasticPerfectlyPlastic
 Integrator
 RadialReturnAlgorithm

Class hierarchy

Integrable
 RadialReturnIntegrable

Interface hierarchy

10

4.3 Numerical example: a strip footing problem
We briefly present here a problem of the bearing capacity of a surface footing.

The data describing the problem (domain and physical data) is given in figure 13.
The failure load obtained in this example is mkNq f /2.5= (see figure 14). This
value is in good agreement to the approximated theoretical value mkNq /5= (see
Commend & al. [22]). A detail description of the problem and the typical numerical
ingredients used in this simulation will be discussed in the forthcoming paper
Eyheramendy [23].

Figure 13 – Definition of the strip footing problem

Vertical displacement y of the strip footing

-8,00E-03

-7,00E-03

-6,00E-03

-5,00E-03

-4,00E-03

-3,00E-03

-2,00E-03

-1,00E-03

0,00E+00
0 2 4 6 8

q

y

 Deformation of the domain
Figure 14 - Numerical results for the strip footing problem

3.0
kN/m e7 0.2 2

=
=

ν
Eq

3

2

2

/0.0

kN/m 1.73
4.0

kN/m 3000
:(Mises)plasticPerfectly

mkg

E

y

=

=

=
=

γ

σ

ν

Point A

11

5 High level portable libraries and integration of F.E over the Internet
One problem today requiring attention for engineering computational
applications is the use of the cyber infrastructure. In modern computational
mechanics, a pure computer science approach cannot be able to carry out new
designs in finite elements codes. Knowledge and expertise from the mechanical
and mathematical modeling has to be integrated into complex applications to be
run on a complex system of computers. We describe here a simple example of
distribution of a finite elements application in mechanics over the Internet. It
will probably be for the near future a hot topic for the distribution of commercial
applications. A new way to use computational tools is to be invented. The major
point of the following lies in the portability of the code. This is a typical feature
of an application developed using a pure Java paradigm. In figure 15, an
example of WWW integration of computational application is presented. The
principle lies in the fact that every Internet browser in the world embeds a Java
Virtual Machine which allows the execution of Java code on the local computer.
The computational mechanics application is made accessible through a simple
HTML page by the way of a typical Java framework called Applet (see Flanagan
[16]). A completely portable GUI (Graphical User Interface) is offered to the
Web user. A convenient user interface gives access to the specific application. In
the example shown here, typical problems of computational mechanics are
available: strip footing (J2 plasticity), various cavity flows (Stokes, Navier-
Stokes), flow around a cylinder for an incompressible Navier-Stokes flow…
This development is an example of distribution of an application over various
computer systems.

Figure 15 – An example of integration of a F.E code over the Internet

JAVA
Virtual

 Machine

 Java FEM
 byte code

 HTML pages

@
WEB

SERVER

12

6 Conclusion
In this paper, we have presented basic principles to enhance the consistency of

finite elements code for engineering applications. First, an example of local and
global consistency enforcement for a finite element model has been described and
illustrated on different Darcy’s flow finite elements formulations. Then, the typical
interface mechanism applied to the numerical consistency enforcement has been
described. Both mechanisms help the programmer to produce safer and better code
based on some mathematical properties. At last, general ideas about the integration
of computational application over the Internet have been discussed and a basic
application briefly described.

We advocate that computational frameworks will naturally bend on high
abstraction mathematical concepts. This opens new tracks in the crucial domain of
verification and validation of code by naturally embedding mathematical aspects
into the computational codes. The second aspect of the paper is the need of high
level integration of computational applications including the use of the cyber
infrastructure.

The portability of computational codes based on high level complex libraries is
an important feature to maintain the homogeneity of the code. This has of course
consequences from an industrial point of view: the maintenance of code becomes
easier (single code for all platforms). Beyond the use of the Java language adopted
in this work, we think that this kind of highly structured portable environment is
very promising to develop high level portable computational applications including
networking capabilities. The integration of a computational application through the
Internet offers new perspectives in the distribution codes not only for educational
purposes.

At this stage, we have developed different formulations covering the main
domains of computational mechanics: heat conduction, linear elasticity (statics and
dynamics), nonlinear elasticity, perfect elasto-plasticity, Stokes flow, Navier-Stokes
flow, Darcy flow with free surface tracking. Different kinds of numerical algorithms
have been developed: direct and iterative linear system solvers, linear and nonlinear
time integrations schemes, Newton-Krylov solvers… Various finite element
schemes have been used, including parallel schemes based on the Schwarz domain
decomposition method and low order stabilized finite elements. The wide range of
applications treated within the proposed approach shows its flexibility. The next
challenging step of the developments consists in first treating coupled multi-physics
problems and second extending the approach to parallel distributed computing.

References

[1] A. K. Noor, Computational structures technology: leap frogging into the
twenty-first century, Computers & Structures, 73, 1-31, 1999

13

[2] Th. Zimmermann, Y. Dubois-Pèlerin and P. Bomme, Object-oriented finite
element programming : I. Governing principles, Comput. Methods Appl.
Mech. Engrg., 98, 291-303, 1992.

[3] D. Eyheramendy, An object-oriented hybrid Symbolic/Numerical Approach
for the Development of Finite Element Codes, Finite Element Analysis and
Design, Vol. 36, 315-334,2000.

[4] D. Eyheramendy and Th. Zimmermann, Object-oriented finite elements : IV.
Application of symbolic derivations and automatic programming to nonlinear
formulations, Computer Methods in Applied Mechanics and Engineering,
vol. 190 n° 22-23, 2729-2751, 2001.

[5] M. Ginsberg, J. Hauser, J. E. Moreira, R. Morgan, J. C. Parsons and T. J.
Wielenga. Panel session: future directions and challenges for Java
implementations of numeric-intensive industrial applications. Advances in
Engineering Software, 31 (2000) 743-751.

[6] N.T. Padial-Collins, W.B. VanderHeyden, D.Z. Zhang, E.D. Dendy and D.
Livescu, Parallel operation of CartaBlanca on shared and distributed memory
computers, Concurency and Computation: Practice and Experience, Vol. 16,
61-77 (2004).

[7] L. Baduel, F. Baude, D. Caromel, C. Delbé, N. Gama, S. El Kasmi and S.
Lanteri, A parallel object-oriented application for 3-D electromagnetism,
ECCOMAS 2004, Jyväskylä, Finland (2004).

[8] D. Eyheramendy, Object-oriented parallel CFD with JAVA, 15th
International Conference on Parallel Computational Fluid Dynamics, Eds.
Chetverushkin, Ecer, Satofuka, Périaux, Fox, Ed. Elsevier, 409-416, 2003.

[9] J.M. Bull, L. A. Schmith, L. Pottage and R. Freeman, Benchmarking Java
against C and Fortran for Scientific Applications, Joint ACM JavaGrande –
ISCOPE 2001 Conference, Stanford Universtity, June 2-4, 2001.

[10] G.P. Nikishkov, Y.G Nikishkov and V.V Savchenko, Comparison of C and
Java performance in finite element computations, Computer & Structures, 81,
2401-2408, 2003.

[11] J. Häuser, T. Ludewig, R.D. Williams, R. Winkelmann, T. Gollnick, S.
Brunett and J. Muylaert, A test suite for high-performance parallel Java,
Advances in Engineering Software, 31, 687-696, 2000.

[12] C.J. Riley, S. Chatterjee and R. Biswas, High-performance Java codes for
computational fluid dynamics, Concurrency and Computation: Practice and
Experience 15, 395-415, 2003.

[13] Y. Dubois-Pèlerin, Th. Zimmermann and P. Bomme, Object-oriented finite
element programming : II. A prototype program in Smalltalk, Comput.
Methods Appl. Mech. Engrg., 98, 361-397, 1992.

[14] Y. Dubois-Pelerin and Th. Zimmermann, Object-oriented finite element
programming: III – An efficient implementation in C++, Computer Methods
Appl. Mech. Eng., 108(2), 165-183, 1993.

[15] D. Eyheramendy, Object-Oriented Finite Elements programming in JAVA: I
- Basic Principles, Preprint CDCSP 04-01 In preparation, CDCSP Lyon 1
University (2005).

[16] Flanagan, Java in a Nutshell, Fourth edition, Ed. O’reilly, 2002.

14

[17] S.J. Lacy and J.H. Prevost, Flow through porous media: A procedure for
locating the free surface, Int. J. Num. An. Meth. Geom. 11, 585-601, 1987.

[18] D. Eyheramendy and D. Guibert, A Java Approach for Finite Elements
Computational Mechanics, ECCOMAS 2004, Jyvaskyla, Finland (2004).

[19] A. Masud and T.J.R. Hughes, A stabilized mixed finite element method for
Darcy flow, Computer Methods in Applied Mechanics and Engineering, 191,
4341-4370, 2002

[20] J.C. Simo and T.J.R. Hughes, Computational Inelasticity, Springer, 2000.
[21] Lemaitre and J.L. Chaboche, Mécanique des matériaux solides, Dunod, 1996.
[22] S. Commend and Th. Zimmerman, Object-Oriented Nonlinear Finite Element

Programming : a Primer, Adv. In Soft. Engnrg, 32 (8), 611-628, 2001.
[23] D. Eyheramendy, Object-Oriented Finite Elements programming in JAVA:

III - Applications, Preprint CDCSP 05-03 In preparation, CDCSP Lyon 1
University (2005).

15

