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This purpose of this paper is to address new tracks for the future generation of 
computational applications in mechanics and related branches. We advocate that 
modern computational tools will have to deal with complex strongly coupled multi-
physics multi-scale problems. Moreover, heterogeneous distributed multi-processors 
systems are used today for the numerical simulations. We pose here some basic 
ideas for the design of modern computational applications. All the illustrations are 
based on finite elements strategies implemented in a pure Java paradigm. 

1 Introduction 
Nowadays, the engineers and the researchers have to take into account a large 

amount of parameters in the design process of computational applications: 
efficiency, need of high level concepts for fast prototyping, scale of computations, 
need of multi-processing computation, networking, need of high level GUI (graphic 
user interface),… In this context, the strong interest for object-oriented technologies 
in computational mechanics lies in the increasing size and complexity of the 
problems currently solved (see Noor [1] for example in computational structures 
mechanics). This approach has been investigated in many computational fields in 
mechanics: constitutive law modelling, in finite deformation plasticity, in parallel 
finite element applications, in rapid explicit dynamics, in fracture mechanics (see 
Eyheramendy [3] and [4] and references therein). The broad range of applications 
solved within the object-oriented paradigm shows that every researcher or engineer 
can easily build a personal framework adapted to his domain of interest: physical 
problem, numerical treatment, computational environment... The challenging 
problems for the years to come will certainly concern coupled multi-scale multi-
physics. Moreover, the increasing size of the problems will lead to the development 
of efficient parallel strategies. From a technical point of view, the developers need to 
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mix multiple software technologies (graphical libraries -e.g. OpenGL-, 
communications libraries -e.g. MPI-...) in order to integrate the numerical 
algorithms into computer tools. Considering the inherent complexity of the 
traditional languages such as C++, the development of global frameworks for finite 
elements computations can rapidly become cumbersome. The software strategy we 
proposed is based on a pure Java object-oriented paradigm. This platform has the 
major advantage to offer both a comfortable environment for object-oriented 
programming and a suitable numerical efficiency. Moreover, from an industrial 
point of view, it is worth to notice that the code naturally becomes platform 
independent. We advocate that the C++ language could merely be replaced by a Java 
type approach. This has already be advocated by many authors: e.g. Ginsberg & al. 
[5], Padial-Coolins & al. [6], Baudel & al. [7], Eyheramendy [8], Bull & al. [9], 
Nikishkov & al. [10], Häuser & al. [11], Riley & al.[12]. 

In section 2, two advanced object-oriented concepts are briefly presented. The 
objective of this work is to closely relate the developments to the physical and 
mathematical modeling. This is illustrated, first in section 3, on the enforcement of 
global model consistency on the example of Darcy’s flow formulations, and second 
in section 4, on a numerical model for the mathematical consistency enforcement 
applied to the elastoplasticity. At last, networking strategies and an Internet 
integration are briefly discussed in section 5. An example of web portability is 
presented.  

2 Advanced O.O concepts in Java 
Basic object-oriented concepts and applications to finite elements has been 

widely discussed in Zimmerman & al. [1] and Dubois-Pèlerin & al. [13] and [14] 
and related pioneering works. The first concept introduced in the present work is the 
concept of inner class. The definition of a class is allowed within another one. Both 
classes partially share some data. We used this scheme to define at the same local 
level, first, data defining the fields and the finite elements formulations overall the 
computational domain, and second, data defining the fields and the formulations at 
the elemental level. The second concept is the concept of interface. An interface is a 
reference type that is closely related to a class. It can be seen as a pure abstract class 
(a class that cannot be instanced). This class does not define any implementation but 
only specifications, i.e. only methods that are defined to be mandatory in a given 
class. A class is said to implement an interface, if and only if, the class exhibits an 
implementation of the methods specified at the level of the interface. The complete 
description of these concepts goes beyond the scope of this paper and can be found 
in Eyheramendy [15] or Flanagan [16]. 

3 Local and global data code consistency: Application to Darcy’s flow 
We give an example for which special Java syntaxes may be helpful to better 

handle complexity of a F.E code. Inner classes allow the programmer to partially 
hide information to the whole of the code. It can be interesting to partially share 
global and local aspects of a numerical scheme. The approach is illustrated on a 
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simple interface tracking scheme for underground water flow and a mixed 
formulation of the Darcy’s flow equations. The management of the finite element 
formulation is described on this example. 

3.1 A free surface seepage problem  

3.1.1 Seepage problem formulation: strong and weak forms 
A procedure to locate the free surface of an unconfined seepage flow through 

porous media is completely described in Lacy [17]. Let us briefly recall the problem. 
We consider the flow of an incompressible and homogeneous fluid into a porous 
medium. The medium is assumed to be either wet (saturated) or dry. Capillarity, 
partial saturation and evaporation are neglected. The free surface is defined as the 
boundary line between the dry and wet soils as shown in figure 1 (free surface 
CDE). No flux gets through the free surface and the pressure is zero on the free 
surface. The domain wΩ  represents the flow region (the saturated part of the 
geometric Ω  domain occupied by the earth structure) and dΩ  the dry part. 

Figure 1 - Definition of the free seepage problem. 

The piezometric head Φ  is defined with respect to the pressure p such as: 
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The fundamental difficulty is that the location of the free surface is unknown a 
priori and the enforcement of the boundary conditions on the free surface may be 
tremendous. The formulation is extended to the entire domain dw Ω∪Ω=Ω  by 
using an extended pressure field p(x) for which the 0)( =xp  in dΩ  -the dry soil 
domain-. Existence and uniqueness of the solution for the extended problem is 
showed by introducing the following penalized problem:  

⎪
⎩

⎪
⎨

⎧

Ω∇∇−=Ω∇∇

Ω∈∀Ω=∈

∫ ∫ ΩΩ qdypHkqdpk

HqHPp ww

)(1

)(such that  )( Find 1
0

1

εε

ε

γ
)( pHε  is an extension of the Heaviside function that includes a penalty 

parameter. Since the location of the free surface is unknown a priori, a Newton 
iterative scheme is required to solve the problem. A local computation (at the 
elemental level) is done to determine of the penalty parameterε  and a cut-off 
pressure op  which enforce the pressure to a “small” negative value in the dry soil. A 
detailed description of it can be found in Lacy [17]. 

3.1.2 Implementation in the Java code 
The main object in the application is the field. It supports all the nodes and the 

values of degrees of freedom. The formulation initializes the fields. The formulation 
for the seepage problem is based on the definition of a single scalar field, the 
pressure.  

The implementation of the formulation is made through a class called: 
PressureDarcyPenalizedProblem. The class is posted in Figure 2. The class 
subclasses Formulation in which all the basic behavior of the finite elements 
formulation is taken into account, e.g. the global way of building fields overall the 
computational domain. The class embeds an inner class called PressureDarcy. The 
two important methods in the class are: 

o initialize() which permits us to describe the unknown field, here a scalar
field, the pressure, for the problem; this a global method (see figure 3),

o getElement() which permits us to instantiate at the local level the finite
element called PressureDarcy with local elemental fields, numerical
quadrature (which may play a crucial role for constitutive law modeling)
and material definition.

The finite element PressureDarcy exhibits as local behavior all the computation 
of the finite element matrices defined Figure 2 in italic and Figure 3. The definition 
of both classes, i.e. the inner and outer classes, permits us to completely define a 
new finite element formulation. This special feature of the Java programming 
language can be seen as a generalization of the object-oriented concept at the level 
of a class. This leads to an enhanced organization of code. 
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public class PressureDarcyPenalizedFormulation extends Formulation 
{ 
    public static double Tolerance = 1e-3 ; 
    public static double LargeParameter = 1e10 ; 
 
    public String toString()  { // … } 
    public Material defaultMaterial()  { return new PorousMedia () ; } 
    public void initialize( Domain domain ) { // … } 
     
    public Element getElement( ElementalGeometry aGeom , Quadrature aQuadrature ,  
                                                      ElementalField[] flds, int nb , Material m ) 
    { 
        return new PressureDarcy ( aGeom , aQuadrature , flds , nb , m ) ; 
    } 
 
    public static class PressureDarcy extends Element 
    { 
        public PressureDarcy( ElementalGeometry aGeom , Quadrature aQuadrature ,  
                                                         ElementalField[] flds , int n , Material m ) {  // … } 
        public FullMatrix computeConstitutiveMatrix() {  // … } 
        public Hashtable computeElementalMatrices( TimeStep ts ) { // …} 
        protected double computeCutOffPressure( ElementalGeometry aGeometry ,  
                                                         double gamma ) { // …} 
        protected double computeEpsilon( ElementalGeometry aGeometry , double gamma ) { // …} 
        // … additional non-implemented abstract methods … 
    } 
} 
Figure 2 - Implementation of an inner class in Java for defining a formulation 
 
 

 
Figure 3 - Definition of the fields the Darcy’s flow formulation 

 
 

public void initialize( Domain domain ) 
{ 
        Field[] fields = new Field[1] ; 
        fields[0] = domain.createAScalarField ( 0 ) ;  // PRESSURE  
        domain.setFields ( fields ) ; 
 
        domain.setNumberOfUnknownFields ( 1 ) ; 
 
        Subdomain[] subdomains = domain.getSubdomains () ; 
        for( int i = 0 ; i < subdomains.length ; i++ ) 
            this.initialize ( subdomains[i] ) ; 
} 
 
public Element getElement( ElementalGeometry aGeom , Quadrature  
                    aQuadrature , ElementalField[] flds , int nb , Material m ) 
{ 
        return new PressureDarcy ( geom , gaussPoints , fields , nb , m ) ; 
} 
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3.1.3 Numerical examples 
For all the test cases, the permeability k is set to identity tensor and the specific 

weight of water γ is set to 1.0. Bilinear quadrilateral elements have been used. We 
obtain similar results to the one obtained in Lacy [17]. The first example in figure 4 
shows a dam with a toe drain, and the second one, a dam with an impermeable sheet 
on the upper part of the right face. We tested on these cases various strategies for the 
choice of the penalty parameter ε  and cut-off pressure definition. The accuracy of 
the solution drastically depends on the choice of various parameters involved in the 
formulation (penalty parameter, cutoff pressure…). The way to impose the boundary 
conditions for the pressure especially on the free surface seepage zone may lead to 
instable results. These experiments lead us to adopt an alternative strategy for the 
solution or free surface seepage problem by introducing a free surface equation and 
solving the flow using a velocity-pressure formulation. In the following section a 
mixed velocity-pressure is studied. 

Figure 4: Dams: toe drain and impermeable sheet on the downstream face. 

3.2  A mixed stabilized formulation for Darcy’s flow 

3.2.1 Mixed stabilized formulation 
We consider a pressure-velocity formulation for a Darcy’ flow problem. The free 

surface tracking is not considered here; we aim to get a stable and accurate 
formulation for a simple Darcy’s flow. A mixed formulation is adopted. The 
problem can be summarized as follows: 

Find u velocity and p pressure with appropriate regularity conditions such that 
(domain described Figure 5): 
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The variational formulation is stated as follows (with the definition of 
appropriate regular spaces):  
Find PVpu ×∈),(  such that PVqv ×∈∀ ),( :
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A more detailed description of the formulation proposed by Masud & al. [19] can 
be found in Eyheramendy & al. [18].  

Figure 5 – Description of the domain 

3.2.2 Implementation 
The implementation is similar to the one presented in the previous example. The 

new formulation is introduced through a new set of classes. This is done in the same 
way as in the previous example. This formulation has two unknowns: the pressure 
field and the velocity field. Their natural definition of the fields at the global and 
local levels is exhibited in the figure 6. It can be compared to the one of figure 3. We 
show on this example the full potential of the inner class concept to achieve a natural 
definition of the unknowns of the physical model and to enforce the consistency of 
the finite element model at the elemental level within the application.  

Figure 6 – Definition of the velocity and pressure fields 

Ω∂ Ω

nr

public void initialize( Domain domain ) 
{ 
        Field[] fields = new Field[2] ; 

        fields[0] = domain.createAVectorField ( 0 ) ;  // VELOCITY  
        fields[1] = domain.createAScalarField ( 1 ) ;  // PRESSURE  
        domain.setFields ( fields ) ; 

        domain.setNumberOfUnknownFields ( 2 ) ; 

        Subdomain[] subdomains = domain.getSubdomains () ; 
        for( int i = 0 ; i < subdomains.length ; i++ ) 
            this.initialize ( subdomains[i] ) ; 
} 

7



 

3.2.3 Numerical results 
We study in this example the injection of a fluid at the corner of a square domain. 

Similar physical parameters as in the previous formulation are used in this 
simulation. The results are in good agreement with the ones of Masud & al. [19]. 

 
 

 
Figure 7 – Injection at a corner for a Darcy’s flow 

 
 

4 Nonlinear material modeling: enhanced data organization to enforce 
numerical consistency 

4.1 Elastoplasticity – Radial return algorithm  
We recall here the basic equations of the elastoplasticity in the case of perfect J2 

plasticity. Classical notation are adopted. The problem consists in finding the 
displacement field u  and the stress field σ  with appropriate regularity conditions 
such as defined in figure 8. Perfect plasticity with an associated flow rule is 
considered. The yield condition is based on the second invariant of the deviatoric 
part of the stress field. The solution of the global problem is obtained through an 
operator split technique (see figure 9): a trial solution of the linear elasticity is 
solved with the initial conditions from the second problem at the previous time step. 
More details about the problem definition and the solution scheme can be found in 
Commend & al. [22], Simo & al. [20] or Lemaître & al. [21].  

 

4.2 An advanced object implementation: Algorithmic consistency enforcement 
in finite elements: Application to elastoplasticity 

We apply the mechanism of interface to the implementation of the plastic 
corrector phase, for the numerical integration of the constitutive law. A classical 
return algorithm is used. The global framework will be detailed in a forthcoming 
paper Eyheramendy [23]. From a practical point of view, in the context of finite 
elements applications, the correction step is classically performed at the level of 
gauss points (numerical integration points). This algorithm cannot be applied to any 
constitutive model. It is a restriction of a general return-mapping algorithm for the J2 
plasticity. The algorithm is given figure 10. 
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Figure 10 - Radial return algorithm 

Without entering the details of the class hierarchy, a partial view of the object 
model is given in figure 11. The constitutive equations are represented by a generic 
class called Behavior. This class is the abstract class representing all the different 
types of constitutive laws. In this example, the subclass 
LinearElasticPerfectlyPlastic represents the typical constitutive model studied 
here: linear elasticity – perfect J2 plasticity. The abstract class Integrator represents 

Ω∂2

Ω∂ 1

f

F

Ω

uu =

9



all the generic behavior of the different types of integrators, i.e. roughly speaking a 
single generic method called integrate. This method initiates the correction phase. 
The subclass RadialReturnAlgorithm strictly implements the algorithm posted 
figure 10. The interface Integrable specifies the methods needed by all the models 
of integrators: the computation of the constitutive matrix and the determination of 
the plastic condition (checking of the yield condition). The subinterface 
RadialReturnAlgorithm specifies the methods needed in the algorithm figure 10, 
i.e. the computation of the plastic correction. The last step is to define the class 
LinearElasticPerfectlyPlastic, subclass of class Behavior, to implement the 
interface RadialReturnIntegrable. The class LinearElasticPerfectlyPlastic 
implements the methods specified in both, the interface Integrable and the interface 
RadialReturnIntegrable. The programmer is in charge of the correct use of the 
numerical algorithm in the context of the model of equation. The class 
LinearElasticPerfectlyPlastic is given figure 12. The methods implementing the 
interface are: isPlastic (checking of the yield condition), computePlasticCorrection 
(computation of the plastic correction) and computeConstitutiveMatrix 
(computation of the constitutive matrix). The consistency of the code is then 
guaranteed. The programmer is responsible for maintaining this consistency between 
the physical model, the numerical model and the implementation. The interface 
mechanism permits the programmer to enforce this global consistency at the level of 
the code. Thus, mathematical properties are implemented in a natural way, providing 
robustness through mathematical foundations. 

Figure 11 - Partial view of the class hierarchy for the constitutive law integration 

Figure 12 - Detail of the class for J2 plasticity equations 
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4.3 Numerical example: a strip footing problem 
We briefly present here a problem of the bearing capacity of a surface footing. 

The data describing the problem (domain and physical data) is given in figure 13. 
The failure load obtained in this example is mkNq f /2.5=  (see figure 14). This 
value is in good agreement to the approximated theoretical value mkNq /5=  (see 
Commend & al. [22]). A detail description of the problem and the typical numerical 
ingredients used in this simulation will be discussed in the forthcoming paper 
Eyheramendy [23].  

Figure 13 – Definition of the strip footing problem 

Vertical displacement y of the strip footing 

-8,00E-03

-7,00E-03

-6,00E-03

-5,00E-03

-4,00E-03

-3,00E-03

-2,00E-03

-1,00E-03

0,00E+00
0 2 4 6 8

q

y

     Deformation of the domain 
Figure 14 - Numerical results for the strip footing problem 

3.0
kN/m e7 0.2 2

=
=

ν
Eq

3

2

2

/0.0

kN/m 1.73 
4.0

kN/m 3000
:(Mises)plasticPerfectly

mkg

E

y

=

=

=
=

γ

σ

ν

Point A

11



 

5 High level portable libraries and integration of F.E over the Internet 
One problem today requiring attention for engineering computational 
applications is the use of the cyber infrastructure. In modern computational 
mechanics, a pure computer science approach cannot be able to carry out new 
designs in finite elements codes. Knowledge and expertise from the mechanical 
and mathematical modeling has to be integrated into complex applications to be 
run on a complex system of computers. We describe here a simple example of 
distribution of a finite elements application in mechanics over the Internet. It 
will probably be for the near future a hot topic for the distribution of commercial 
applications. A new way to use computational tools is to be invented. The major 
point of the following lies in the portability of the code. This is a typical feature 
of an application developed using a pure Java paradigm. In figure 15, an 
example of WWW integration of computational application is presented. The 
principle lies in the fact that every Internet browser in the world embeds a Java 
Virtual Machine which allows the execution of Java code on the local computer. 
The computational mechanics application is made accessible through a simple 
HTML page by the way of a typical Java framework called Applet (see Flanagan 
[16]). A completely portable GUI (Graphical User Interface) is offered to the 
Web user. A convenient user interface gives access to the specific application. In 
the example shown here, typical problems of computational mechanics are 
available: strip footing (J2 plasticity), various cavity flows (Stokes, Navier-
Stokes), flow around a cylinder for an incompressible Navier-Stokes flow… 
This development is an example of distribution of an application over various 
computer systems.  
 
 
 

 
Figure 15 – An example of integration of a F.E code over the Internet 
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6 Conclusion 
In this paper, we have presented basic principles to enhance the consistency of 

finite elements code for engineering applications. First, an example of local and 
global consistency enforcement for a finite element model has been described and 
illustrated on different Darcy’s flow finite elements formulations. Then, the typical 
interface mechanism applied to the numerical consistency enforcement has been 
described. Both mechanisms help the programmer to produce safer and better code 
based on some mathematical properties. At last, general ideas about the integration 
of computational application over the Internet have been discussed and a basic 
application briefly described. 

We advocate that computational frameworks will naturally bend on high 
abstraction mathematical concepts. This opens new tracks in the crucial domain of 
verification and validation of code by naturally embedding mathematical aspects 
into the computational codes. The second aspect of the paper is the need of high 
level integration of computational applications including the use of the cyber 
infrastructure.  

The portability of computational codes based on high level complex libraries is 
an important feature to maintain the homogeneity of the code. This has of course 
consequences from an industrial point of view: the maintenance of code becomes 
easier (single code for all platforms). Beyond the use of the Java language adopted 
in this work, we think that this kind of highly structured portable environment is 
very promising to develop high level portable computational applications including 
networking capabilities. The integration of a computational application through the 
Internet offers new perspectives in the distribution codes not only for educational 
purposes.  

At this stage, we have developed different formulations covering the main 
domains of computational mechanics: heat conduction, linear elasticity (statics and 
dynamics), nonlinear elasticity, perfect elasto-plasticity, Stokes flow, Navier-Stokes 
flow, Darcy flow with free surface tracking. Different kinds of numerical algorithms 
have been developed: direct and iterative linear system solvers, linear and nonlinear 
time integrations schemes, Newton-Krylov solvers… Various finite element 
schemes have been used, including parallel schemes based on the Schwarz domain 
decomposition method and low order stabilized finite elements. The wide range of 
applications treated within the proposed approach shows its flexibility. The next 
challenging step of the developments consists in first treating coupled multi-physics 
problems and second extending the approach to parallel distributed computing.  
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