
HAL Id: hal-00476882
https://hal.science/hal-00476882v1

Submitted on 27 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Context-sensitive authorization for asynchronous
communications

Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Michel
Riveill

To cite this version:
Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Michel Riveill. Context-sensitive
authorization for asynchronous communications. 4th International Conference for Internet Technology
and Secured Transactions, Nov 2009, Londres, United Kingdom. �hal-00476882�

https://hal.science/hal-00476882v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Context-sensitive Authorization for Asynchronous Communications

Vincent Hourdin1, Jean-Yves Tigli2, Stéphane Lavirotte2, Gaëtan Rey2, Michel Riveill2

Mobilegov - I3S1, I3S (UNS – CNRS)2, France

{hourdin,tigli,lavirott,rey,riveill}@unice.fr

Abstract

Main requirement of recent computing environments,

like mobile and then ubiquitous computing, is to adapt ap-

plications to context. On the other hand, access control gen-

erally trust users once they have authenticated, despite the

fact that they may reach unauthorized situations. We anal-

yse how dynamic information can be used to improve secu-

rity in the authorization process, especially in the case of

asynchronous communications, like messaging or eventing.

We experiment and validate our approach using context as

an authorization factor for eventing in Web service for de-

vice (like UPnP or DPWS) 1.

1. Introduction

Ubiquitous computing, under the leadership of Mark

Weiser’s vision [14], has made computing evolve toward

multi-device, multi-user, and highly dynamic environments.

Miniaturization of hardware and new wireless communica-

tion networks have created new devices, worn by users or

surrounding them. Due to mobility, devices appear and dis-

appear frequently in such environments.

The major concern in ubiquitous or pervasive comput-

ing is adapting applications to users surroundings, and more

generally, to their context. In this paper, we focus on lim-

iting communications between entities that are in the same

context, for security purposes. Indeed, information involved

in ubiquitous computing communications is often privacy-

sensitive, and we want to make sure it cannot be received or

intercepted by non-authorized entities.

Access control [12] relies on and coexists with authenti-

cation, authorization and audit. Authentication can be made

on information or persons: it establishes who issued a piece

of information, or confirms the identity of a person. How-

ever, to ensure that the identity is correct, different authen-

tication factors may be used. If the person possesses the

1This work is part of the Continuum Project (French Research Agency)

ANR-08-VERS-005

information related to each factor, it is assumed that this is

the pretended person.

Authorization takes places after the authentication phase,

to grant a principal access to the controlled system. We will

study in the following section that authorization is most of-

ten static and made one time, leading the users to be consid-

ered authorized for a long time. With context changes we

cannot assume that a user is authorized throughout the dura-

tion of the use of an application, even if he is still identified.

We will then explore works on dynamic authorization.

2. Authorization

To extend authorization in order to use dynamic informa-

tion, we study how it has been handled in different systems.

It appears that there are three types of authorization: static,

quasi-static, and dynamic.

2.1. Static authorization

Historically, access control used static credentials to con-

firm user identity and was made only when entering the sys-

tem. For example, the login phase of an operating system

needs a login and a password to authenticate a user, and is

made only when he logs in. It can also be an ID card, a

fingerprint pattern, or an identification token. Infrastructure

information is sometimes used to authenticate users. For ex-

ample, the Network File System (NFS) access control uses,

in its default configuration, the IP address of a client to grant

him access, as long as he still uses the file system.

We model the access control process with state diagrams.

In Figure 1, a user wants to use a system, and he has to au-

thenticate himself in the first place. Since this is static au-

thorization, if authentication is correct and matches an au-

thorization rule, he stays authorized and considered trusted

until he logs off.

2.2. Quasistatic authorization

Almost ten years ago, static information for authenti-

cation and authorization began to be seen as a limitation



Figure 1. Static authorization

in several domains. In distributed computing for example,

with Cholewka et al. [3], the task being done could affect

access control on some objects. The task was extracted from

the workflow of the application, and this dynamic informa-

tion was considered to be the context of the application.

Later popularized by Web applications, session manage-

ment has emphasized what we call quasi-static authoriza-

tion. In these systems, credentials are rarely changed com-

pared to the lifespan of an application. Authorization is

made at first access of the system, and periodically renewed

to keep users authorized in case of information change in

authentication or authorization information. This mecha-

nism is called leasing, and often used in publish/subscribe

systems. We modelled it in Figure 2.

Figure 2. Quasistatic authorization

It is quite similar to the static authorization diagram,

except that a loop appears between authorized and not-

authorized states. Whenever the lease expires, the user has

to be authorized again to return in trusted state.

Quasi-static authorization prevents users from being

connected to a system forever. A password change, or the

introduction of a new authentication factor in the access

control system would finally lead to the reevaluation of the

authorization when the application decides it. As an ex-

ample of such system in industry, we can cite Mobilegov

Access Control [11] that uses infrastructure-based authenti-

cation in addition to password based authentication for dif-

ferent kind of systems.

2.3. Dynamic authorization

Static authorization is also inadequate for ubiquitous

computing in which user’s context is an important concern,

and is already a part of applications. Not using contextual

information in security concerns could lead to granting a

user access without considering his condition [9]. Con-

textual information is highly dynamic, because the user is

likely to be moving, as much as other users in the same am-

bient space, with their attached devices. Sensors can also

be fixed in the physical infrastructure, like temperature or

light sensors. This dynamic information is used to inval-

idate user’s authorization, even if he is still identified by

standard authentication factors.

Thus, we introduce the dynamic authorization model for

environments in which it is needed to frequently check if

users are authorized due to changes in dynamic informa-

tion used for authorization. This open gates to consider-

ing highly dynamic contextual information to be used in the

access control process. As opposition to static and quasi-

static authorizations, dynamic authorization requires to be

rechecked according to changes in dynamic information.

It is necessary to dynamically modify access permissions

granted to users when context information changes. This

is twofold: users access privileges must change, as well as

resources must adjust their access permissions [9].

While in static and quasi-static authorization systems

users were trusted as long as they were logged in the system,

or after a timeout or lease time, with dynamic authorization,

it must be checked at each operation in the system. This can

be done in two ways:

• The first would be to reduce the lease time near zero,

and thus needing principals to authenticate and sub-

scribe all the time. Lease time has to be adapted to

system’s reactivity, which is around one second for

ubiquitous computing applications for example. This

is very inefficient and consequently a bad solution for

embedded devices populating ubiquitous computing

environments,

• The second, to be more efficient, would need the sys-

tem to know user’s context all along his use of the sys-

tem. In that case, the system could react on user’s con-

text changes by enforcing authorization policies to de-

termine if the user is still authorized and can be kept

or not the trusted area. We modelled this system in

Figure 3.

Figure 3. Eventdriven dynamic authorization

With this second solution, trusted zone exit and re-entry

are context-driven. Since the dynamics of the context and

of the application are different, the access control process



is highly reactive. Quasi-static and static authorization pro-

cess, in contrast, were driven by the application. However,

new issues appear with dynamic authorization:

• How can contextual information be collected by the

security system? As a context-aware system, regular

contextual information collection can be done, using

context observers [4].

• How can it ensure that the information is authentic?

As stated Kindberg and Zhang, in their experience

in the location-aware mobile computing CoolTown

project [10]: when using contextual information for

access control, the authentication of the data itself

must be done. Indeed, dynamic data provided by sen-

sors can be simulated of falsified. If sensors are not

able to sign information, it has to be authenticated

when users collect it. A trusted observer has to col-

lect the same information than users in order to au-

thenticate it, and verify that it is this information that

is used by users to access the system. We will study

more deeply this question in section 4.

• What about privacy? Of course, placing a trusted en-

tity in users computing environment can be recusant.

Westin [15] defined privacy as “the ability to deter-

mine for ourselves when, how, and to what extent in-

formation about us is communicated to others”. If the

trusted entity describes precisely how contextual infor-

mation is used, it should be accepted by users.

A good example of such system are works of Bacon et

al., who introduce in [2] the OASIS (Open Architecture for

Securely Interworking Services) Role-Based Access Con-

trol. It uses credentials that a user possesses, along with side

conditions that depend on the state of the environment, to

authorize him to activate a number of roles. In their model,

they define that environmental predicates can be used for

environmental constraints or context-sensitive information.

Environmental constraints can be checked by any entity in

the same environment than the application, thus dynamic

information used for authorization can be authenticated.

2.4. Synthesis

The Table 1 summarizes the types of authorization and

information used for authentication.

Identity and infrastructure represent principals informa-

tion commonly used. Infrastructure and environment repre-

sent contextual information that can be used. User infras-

tructure is populated by all computing equipments that are

in the context of the user, like local and remote devices. En-

vironment and system infrastructure gather all information

that can be get by anyone or do not depend on the infras-

tructure of the user which has to be authenticated. Date and

time are obviously considered as a part of the environment.

In some cases [7, 10], location and speed can be considered

as a part of the system infrastructure because sensors are

part of the security system’s domain, and thus can be easily

verified.

Table 1. Classification of authorization factors

dynamicity

Static or Dynamic

quasi-static

Identity Operating

Systems login

?

User infras-

tructure

Mobilegov

AC R©
?

System infras-

tructure and

environment

NFS OASIS[2],

CSAC [7]

Our research has proved that there is no project that uses

dynamic information for authorization which is not cap-

tured inside the domain of the security system, like infor-

mation from users devices or sensors available inside the

context of the user.

3. Access control in communications

paradigms

In this section, we focus on how access control is ap-

plied to synchronous and asynchronous communications.

We consider two entities, A and B, A being granted by B.

3.1. Synchronous communications

Synchronous communications represent a class of com-

munication paradigms that need communicating parties to

be present at the same time, and thus be aware of the pres-

ence of each other. The most representative example is re-

quest/response mode, which can be used locally in function

call, or remotely with RPC (Remote Procedure Call).

When A invokes some method of B, we need to check

if A is authorized to access this service and thus the infor-

mation returned by B. A has to authenticate itself to B if it

wants the request to be processed and response returned. If

authentication fails, the request can be dropped or rejected.

We model these different states in Figure 4.

Enabling dynamic authorization in synchronous commu-

nications can easily be done at request time, since A has in

any case to send a message to B to receive the response

message.



Figure 4. Synchronous communication ac

cess control

3.2. Asynchronous communications

Asynchronous communications can take many forms.

They decouple in synchronization, and sometimes in space

and time the communication between two entities [5]. They

are fundamentally based on messages, like JMS (Java Mes-

saging System), an example message-oriented middleware.

Communication scheme that use such asynchronous com-

munications are asynchronous procedure call and eventing,

with for example publish/subscribe patterns.

Asynchronous method invocation from A to B delays re-

sponse with a callback to A so that it does not have to wait

for the response. We decompose this protocol as two mes-

sage sending: the first from A to request method execution,

and the second from B to give a result when the execution

has completed. Reactivity is added to the system, since A is

not actively waiting, but notified.

Asynchronous communications can also be pure event-

ing systems, that send messages only in one way, and gener-

ally to many recipients. Publish/subscribe systems [5] use

event notifications to send information to subscribed enti-

ties. They are fully decoupled: data providers publish topics

or content types, to which consumers subscribe. Providers

produce events regardless if there are some subscriptions,

they are generally not in charge of the delivering process.

The subscription is a synchronous process, like a

request-response pattern. It is used by consumers to reg-

ister their interest to a specific event channel and to give

information about the connection that will be used to send

events.

Figure 5. Asynchronous communication ac

cess control

However, since following interactions are only one way

messages, like events notifications, authorization of the re-

cipient cannot be verified. For static authorization, as we

have seen, this is not a problem because after subscription,

his credentials are not supposed to change or it is not im-

portant for system security. With quasi-static authorization,

the subscription is accepted only for a defined validity time:

the lease. Subscriber is trusted only for this time, and has to

renew his subscription and authorization, before the end of

the lease, to avoid a service interruption. This is modelled

in Figure 5: A subscribes and authenticates to B, which will

allow A to receive notifications from B.

What can be done for dynamic authorization of the re-

cipient in asynchronous communications? Bacon et al. [1]

already explored access control in publish/subscribe sys-

tems, for large scale architectures with multiple administra-

tion domains. They use a dedicated security infrastructure

for credential management (OASIS RBAC [2]), and access

control applies only to event brokers. Their solution is thus

based on managing security through a layer lower than the

application layer, which is the transport layer.

In the next section, we describe our contribution, how

we handle dynamic access control for asynchronous com-

munications recipients, in the application layer, and without

needing a specific infrastructure for security purposes.

4. Context-based dynamic authorization

We have seen that in context-sensitive computing, static

or quasi-static authorization cannot be used alone because

some contexts are not compatible with the authorization

granted in first place. We also have seen that an efficient

solution would require a trusted entity from the security sys-

tem to be placed in users’ context to ensure the authentica-

tion of dynamic information used for access control. We

present our solution, first as a model (4.1), then as an im-

plementation (4.2).

4.1. Model

As depicted in Figure 6, the publisher B sends A mes-

sages. Rounds tagged with Obi represent context observers

in A’s context. To keep things as simple as possible, we

consider that they both act as sensor information observer

for A and B, and that they are trusted entities to B. The

problem is described as follows: when B sends a one-way

message to A, how can it ensure that A is in a context in

agreement with B’s policy for recipients?

Our contribution is to dynamically add trusted context

observers in the context of the subscriber, that notify the

publisher from changes in contextual information that are

used for end-to-end access control.

Moreover, since most observers Obi provide contextual

information related to a specific information on the near en-

vironment of A, they may vary along with user moves and

changes in the infrastructure. Access control rules can thus

be adapted to users’ context, based on which observers are



Figure 6. Asynchronous communication and

contexts

currently part of users’ infrastructure. Figure 7 models the

authorization process based on observer information. Once

principal is authenticated, its authorization status is bound

to the status of validity of observer information.

Figure 7. Authorization based on dynamic in
formation with observers

When observers are present, authenticated, and that the

value of the contextual information they provide corre-

sponds to an authorized value, the access is granted. As ex-

ample, the authorization computation is kept simple, based

only on equalities between collected information of three

observers and information known as valid by the access

control system. We can express the authorization process

with a logic rule: grant ≡ Ob1∧Ob2∧Ob3∧valid(Ob1)∧
valid(Ob2) ∧ valid(Ob3). If all observers are present, and

that the information they provide is valid, access is granted.

As opposite, as soon as an observer information becomes

unmet, a granted access is revoked: denial ≡ ¬Ob1 ∨
¬Ob2∨¬Ob3∨¬valid(Ob1)∨¬valid(Ob2)∨¬valid(Ob3).

These rules are written as part of the authorization pro-

cess to grant access to users. Several rules should exist

for one user, each using different observers. This allows

to grant users access based on contextual information while

they evolve in not already known environments. Rules are

evaluated depending on which observers are available.

4.2. Application for eventing in Service for Device

We chose to implement this solution with two specific

architectures and paradigms: Web service for device for the

software infrastructure, and publish/subscribe systems for

asynchronous communication. Reasons of these choices re-

volve around one concept: ubiquitous computing.

For many years, service oriented architectures (SOA)

have been used in home automation, mobile, pervasive and

ubiquitous computing to represent as services the sets of

functionalities offered by devices. They offer lots of fea-

tures discussed in [13] such as encapsulation, dynamic-

ity, discoverability and interoperability. They evolved from

standard SOA to SOA for device (SOAD) by adding two

main features: decentralized reactive discovery and asyn-

chronous communications.

Decentralized reactive discovery has been popularized

by projects such as SLP 2 or Jini. They suppress the need of

a service registry tracking all services active in a network

domain. They use multicasted or broadcasted messages

to notify that services appear or disappear. Asynchronous

communications used by SOAD like Jini are events in a

publish/subscribe scheme.

These evolutions allow to create reactive dynamic dis-

tributed applications, suitable for ubiquitous computing en-

vironments. In addition, when Web technologies are used

to implement SOAD, interoperability between all entities

is enabled, whether they are heterogeneous devices or sim-

ple software services. Only two implementations of Web

services for devices currently exist: UPnP 3 and DPWS 4.

UPnP has been created by the UPnP Forum, under the lead-

ership of Microsoft in 1999. It has never be standardized,

but is used in many objects of everyday life, like home gate-

ways, or media centers. DPWS appeared in 2004, as a re-

placement for UPnP, and as a technology based on Web ser-

vices standards, like WS-Discovery or WS-Eventing.

Publish/subscribe systems use 1 → N communication

scheme: a publisher is able to accept several subscriptions

from different clients. Thus, all consumers are notified

when issuing an event. This feature will require that ob-

servers are managed for each subscriber to the eventing

channel, and not simply for each eventing channel.

Service for device composition. To create applications

from this infrastructure of services for devices, we use the

Service Lightweight Component Architecture (SLCA) [6].

It dynamically orchestrates and composes services for de-

vices using lightweight components. Components are

called lightweight because they execute in the same mem-

ory addressing space, the same process, and the same com-

ponent container. The container provides the least possible

technical services, also known as non-functional concerns

helpers. Distribution has to be explicit.

Containers manage assemblies of components fully dy-

namically. Component types can be loaded and unloaded,

component instances and bindings between them can be

added or removed at run-time. Proxy components of Web

2The Service Location Protocol.
3Universal Plug and Play Forum: http://www.upnp.org/, June 2009
4Device Profile for Web Services. http://www.ws4d.org/, June 2009



services for devices are generated, loaded and instantiated

dynamically. Thus, we can follow the presence of such ser-

vice in a container, by adding or removing a proxy compo-

nent when the service appears or disappears.

Finally, containers can export functionalities created by

component assemblies as a new Web service for device us-

ing probe components. The hierarchy in the model thus uses

the service layer, allowing it to be distributed.

Composite service for device adaptation. Since compo-

sitions are based on lightweight components, service com-

positions are fully dynamic. A paradigm called Aspect

of Assembly [13] allows to adapt composite services ac-

cording to specified rules. Aspects of assembly are pieces

of information describing how an assembly of components

will be structurally modified. They consist of two parts,

like regular aspects found in Aspect-Oriented Programming

(AOP) [8]: pointcut and advice. Pointcuts describe to which

components the modification described by advices have to

be weaved (applied).

Moreover, aspects of assembly provide associativity,

commutativity and idempotence properties when several as-

pects are enabled to be weaved at the same time [13].

Implementation. The service for device infrastructure

and SLCA are used for all parts of the application: pub-

lisher, subscriber and observers. Observers can be trusted

entities from the publisher point of view thanks to dynamic

insertion of authentication components with aspects of as-

semblies.

The idea behind the use of lightweight components in

composite services is also to enable adapting non-functional

concerns at the same layer than the functional core of the

application. We use aspects of assembly in the publisher’s

and subscriber’s composite service to add the access con-

trol logic (Figure 8). Since we manage all concerns of the

application on the same layer, we cannot deal directly with

subscriptions handled by the underlying service infrastruc-

ture. We have to manage authorizations of all subscribers at

the application layer.

In Bacon works [1], group cryptography is used to ensure

confidentiality of events between trusted brokers. Encryp-

tion keys are updated when principals are declared unau-

thorized instead of when they unsubscribe, which makes

updates happen less frequently in this kind of environment.

We use the same technique to ensure that non-authorized

entities cannot receive messages.

Events are encrypted with a group key. When observers

notify the security system in the event producer, the group

key is changed. Modifications of the key are spread to the

subscribers of the event channel using the observers. In-

deed, since they are in subscribers’ context and they are

trusted parties, observers can safely deliver the new key.

Figure 8. Implementation using SLCA

Aspects of assembly allow us to manage different autho-

rization rules based on appearing and disappearing trusted

observers in the environment. Thanks to properties of as-

pects of assembly, we can enable several rules to be used

at the same time for dynamic authorization. Even if they

are enabled, they won’t apply until all observers needed by

the rule, defined in pointcuts, are present. The reactive dis-

covery process of Web service for device makes adaptation

of authorization rules reactive. This is useful in cases of

context overlappings and transitions, or simply to ensure

that access won’t be denied because of slight changes in

the highly dynamic infrastructure of ubiquitous computing.

4.3. Validation

We validate our contribution by three means: we cal-

culate the reactivity of the dynamic authorization process ;

we compare the number of message exchanged for the ac-

cess control process and the amount of unauthorized mes-

sages received with quasi-static authorization and with our

dynamic authorization.

The process of taking into account changes in contextual

information in the authorization involves several operations.

Hence, the time elapsed between the variation of a contex-

tual information and the modification of the authorization is

the time needed for those operations: data processing by the

observer (o), communication between the observer and the

proxy component of the event provider (c), and reprocessing

the authorization leading to a key change in the composite

authorization service (p). reaction time = o + c + p. o

and p are local data processing and take typically less than

1 ms to execute. c depends on how many hops there are be-

tween the subscriber and the event provider. In ubiquitous

computing, wireless networks are often used, so c may suf-

fer from an important variance. An average of 40 ms then

constitutes the predominent value of the reaction time.

In quasi-static authorization, like lease-based systems,

the value of the lease is several orders higher. The UPnP



specification for example recommends it to be at least half

an hour. In security aware systems though, it shouldn’t be

less than one minute to be efficient enough. The reaction

time would then be at most the value of the lease, since the

authorization is reenforced at the same time.

The number of messages used for the authorization pro-

cess in quasi-static authorization is periodically increased.

Indeed, the leased subscription makes those messages to be

send at every lease. Thus, this number follows a linear law,

function of the time spent using the system. In dynamic au-

thorization, messages are sent only when dynamic informa-

tion is modified. It can be higher than the linear number of

messages from quasi-static authorization if context changes

more often than the lease time. Else, it can be lower in num-

ber of message sent, but still more reactive.

The number of received non-authorized messages in dy-

namic authorization is zero. In quasi-static authorization,

depending on the rate of sent events and the length of the

lease, it can be very important.

5. Conclusion and trends

We have described a solution that allows dynamic autho-

rization policies based on dynamic information to be used to

manage asynchronous communications access control. Re-

active management of dynamic information changes makes

the solution efficient. Context is effectively an improvement

for access control systems in the authorization process.

Future works will study in what conditions the reactive

discovery used by service for device can be secured with

the implementation for publish/subscribe eventing we have

described. We will also experience how easily we can mod-

ify the dynamic information validation to handle inequality

operations, like ranges of values for context information in-

stead of equalities.

6 References

[1] J. Bacon, D. Eyers, J. Singh, and P. Pietzuch. Access con-

trol in publish/subscribe systems. In Proceedings of the

second international conference on Distributed event-based

systems, pages 23–34. ACM, 2008.

[2] J. Bacon, K. Moody, and W. Yao. A model of OASIS role-

based access control and its support for active security. ACM

Transactions on Information and System Security (TISSEC),

5(4):492–540, 2002.

[3] D. G. Cholewka, R. A. Botha, and J. H. P. Eloff. A context-

sensitive access control model and prototype implementa-

tion. In Proceedings of the IFIP TC11 Fifteenth Annual

Working Conference on Information Security for Global

Information Infrastructures, pages 341–350. Kluwer Aca-

demic Publishers, 2000.

[4] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. Context

is key. Commun. ACM, 48(3):49–53, 2005.

[5] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The

many faces of publish/subscribe. ACM computing Surveys,

35(2):114–131, 2003.

[6] V. Hourdin, J.-Y. Tigli, S. Lavirotte, G. Rey, and M. Riveill.

SLCA, composite services for ubiquitous computing. In

Proceedings of the 5th International Mobility Conference,

Yilan, Taiwan, 2008. Singapore Chapter of ACM.

[7] R. Hulsebosch, A. Salden, M. Bargh, P. Ebben, and J. Re-

itsma. Context sensitive access control. In Proceedings of

the tenth ACM symposium on Access control models and

technologies, pages 111–119. ACM, 2005.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J. marc Loingtier, and J. Irwin. Aspect-oriented

programming. In ECOOP. SpringerVerlag, 1997.

[9] Y. Kim, C. Mon, D. Jeong, J. Lee, C. Song, and D. Baik.

Context-aware access control mechanism for ubiquitous ap-

plications. Lecture Notes in Computer Science (LNCS),

3528:236–242, 2005.

[10] T. Kindberg, K. Zhang, and N. Shankar. Context authentica-

tion using constrained channels. In Fourth IEEE Workshop

on Mobile Computing Systems and Applications, pages 14–

21. IEEE Computer Society, 2002.

[11] Mobilegov. Mobilegov Access Control R©. See related in-

formation on http://www.mobilegov.com/, June 2009.

[12] R. Sandhu and P. Samarati. Access control: principle and

practice. IEEE Communications Magazine, 32(9):40–48,

1994.

[13] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-

Foo-Wo, E. Callegari, and M. Riveill. WComp Middleware

for Ubiquitous Computing: Aspects and Composite Event-

based Web Services. Annals of Telecommunications (AoT),

64(3–4):197–214, Apr 2009.

[14] M. Weiser. The computer for the twenty-first century. Sci-

entific American, 265(3):94–104, Sep 1991.

[15] A. Westin and O. Ruebhausen. Privacy and freedom.

Atheneum New York, 1967.


