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Surface-wave solitons, induced by the pyroelectric effect, are formed at the interface between a photorefrac-
tive ferroelectric medium and a linear medium. These optical solitons are trapped in both transverse dimen-
sions and are efficiently attracted to the interface. The asymmetric shape of the nonlinear index change
formed under the charge saturation regime is responsible for the surface-wave solitons’ formation. Experi-
mental demonstrations are performed in a lithium niobate sample with moderate temperature change. The
phenomenon is successfully explained through numerical simulations.

Since the first theoretical study of nonlinear optical
surface waves [1,2], they have attracted a lot of at-
tention from the scientific community. These self-
trapped waves are formed at the interface between
two media with at least medium having nonlinear op-
tical properties. Most demonstrations concern a self-
confined wave whose energy is, for the most part, lo-
cated in a nonlinear medium of higher average
refractive index than the adjacent medium. Trapping
at the interface occurs thanks to a balance between
the repelling force due to the presence of the nearby
low-index medium and the self-formation of an asym-
metric index profile that pushes the beam toward the
surface. When a local nonlinearity is used, such as
the Kerr effect, the asymmetric index profile forms
because the beam is distorted as a result of the
nearby interface. For such a pure local nonlinear ef-
fect the beam thus has to be launched in the vicinity
of the interface to give rise to a surface wave. As an
example, discrete surface solitons (SSs) have recently
been demonstrated at the boundary of photonic lat-
tices in a Kerr medium [3,4] and in a quasi-local
photorefractive (PR) medium [5]. In contrast, a non-
local nonlinearity, for which the refractive index per-
turbation extends away from the beam, offers an
easier way to form surface waves. Indeed, light can
be attracted to the surface from far away to finally
form a surface wave. Such a nonlocal SS has recently
been formed at a bulk-dielectric interface by using a
thermal nonlinearity [6]. Surface waves can also be
observed by using a nonlocal PR nonlinearity when
charge diffusion is dominant [7,8], which can even
lead to formation of SSs when an additional strong
electrical bias is applied [9].

In this Letter we present the formation of SSs that
belong to the latter category. They are formed by use
of the pyroelectric effect in a PR medium. The SS is
efficiently trapped in two transverse dimensions
while it travels few micrometers under the sample
surface. Experimental demonstrations are performed
in a photonic grade LiNbO; crystal [10].

The recent discovery of pyroelectric spatial solitons
[11] in a PR medium, so-called pyrolitons, has opened
up new possibilities. The use of the pyroelectric effect

also provides an optimized arrangement to propagate
a wave at the surface with very low loss, since no
electrodes are present at the interface. Considering
the very large soliton bending observed in bulk stron-
tium barium niobate (SBN) [12] and LiNbO; [13], it
constitutes a favorable configuration to observe SSs.
Indeed, such a beam lateral displacement is the sign
of an asymmetric induced index profile that can effi-
ciently constrain a beam against an interface. This
asymmetric index profile is attributed to higher-order
space charge field components [14] induced by a satu-
ration of charges involved in the PR effect. The un-
derlying physics was successfully exposed in the
framework of a numerical model for LiNbO; [15].

To show that these characteristics are suitable to
trap a SS, numerical 2D simulations have been de-
veloped first.

To model beam self-trapping in pyroelectric PR
crystal we consider a time-dependent band-transport
model with a single deep trap. Electrons are dis-
placed by the photovoltaic effect and under drift cur-
rent along the crystal ¢ axis while charge diffusion is
neglected. An open-circuit crystal at homogeneous
and steady temperature is considered.

When illuminated with a light intensity distribu-
tion I(x,y), the evolution of the charge density p is
given by
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where the free electron density NV, ionized donor den-

sity N, and total internal electric field E are given by
Eqgs. (2)—(4), respectively:
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N, is the total donor density; NV, is the density of ion-
ized shallow acceptors. I;=£/s is the equivalent dark
irradiance with 8 and s the thermal and photoexcita-
tion coefficients, y is the recombination coefficient, u
is the electron mobility, B, is the photovoltaic coeffi-
cient, and e is electron charge.

The pyroelectric field E,;, due to the spontaneous
polarization change is given by

1
E,,=AE=-—pAT. (5)
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where ¢, and ¢, are the vacuum and relative dielec-
tric constants, respectively, p is the pyroelectric coef-
ficient, and AT is the temperature variation relative
to equilibrium room temperature. Any temperature
change induces a spontaneous polarization variation
and thus gives rise to an internal electric field E .

The electric field evolution is obtained by solving it-
eratively, in the two transverse dimensions x and y,
the set of equations (1)—(4) [15] in conjunction with
the wave propagation equation. Starting from initial
conditions, the electron density is calculated from Eq.
(2), and space charge variation after a time step At is
deduced from Eq. (1). Then the ionized donor density
is obtained from Eq. (3), and the electric field is de-
duced from Eq. (4). The inferred 2D refractive index
perturbation An due to the linear electro-optic effect
is finally used to calculate light propagation along
the z axis in the perturbed medium by a split-step
Fourier transform method according to the nonlinear
propagation equation (6):
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where A, =8/mx?+5/9y? is the transverse operator,
A is the slowly varying amplitude of the light field,
and % is the wavenumber in the medium. To success-
fully solve the propagation equation the weak optical
field that is present in air is truncated. Neglecting
this evanescent field is acceptable, since the beam
propagates at grazing incidence along a steep index
interface.

A numerical simulation showing the formation of a
SS is presented in Fig. 1. Initial PR parameters are
Ny=2x10*'m=3, N,=N}=0.99 N;, N=0; other pa-
rameters are similar to those in [15]. A 17 um FWHM
532 nm focused beam is launched about 60 um below
the LiNbO3; sample edge and propagates with a slight
angle toward the LiNbO; air interface [Fig. 1(a)l.
When the beam hits the interface, interference
fringes are formed over a large area [Fig. 1(b)], be-
cause the beam has diffracted along its propagation
in this initial linear regime. As the PR effect devel-
ops, beam self-focusing occurs, and fringes start to
vanish [Figs. 1(c) and 1(d)]. In a more advanced state
the beam sticks to the interface and propagates un-
changed owing to an asymmetric induced index dis-

Intensity (a) gintensity  (b)

Intensity

Intensity

Fig. 1. Numerical simulation showing the formation of a
SS in LiNbOg3 by using pyroelectricity. Left column, side-
view intensity distribution of the beam; right column, cor-
responding view at the exit face along with refractive index
distribution An at three characteristic times. AT=20°C
and initial PR parameters N;=2x102'm=3, N,=N}
=0.99 N, N=0.

tribution [Figs. 1(e) and 1(f)]. Such a simulation, with
an initial tilted beam, reveals that the nonlinear self-
bending is able to counteract total reflection. Simula-
tions performed with a beam injected parallel to the
interface also form a stable SS. Because the initial
ratio N /N, is slightly larger than unity, saturation
of the deep center occurs when light is present, which
finally induces an asymmetric space charge field and
index distribution [15]. Note that trapping against
the +c interface is not possible, since both beam
bending and the repelling effect occur in the same di-
rection, which pushes the beam away from the inter-
face.

To experimentally demonstrate the pyrolelectric
SS, 20-mm-long LiNbOj; samples are cut from a
0.5-mm-thick c-cut photonic grade wafer. A 532 nm
extraordinary polarized beam is focused to a 13 um
(FWHM) spot at the entrance of the sample and
propagates in the 20-mm-long direction. A Peltier el-
ement is used to control the sample temperature with
stability better than 0.1°C. Input and output faces of
the crystal are observed on a CCD camera via imag-
ing lenses.
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Fig. 2. Experimental demonstration of a pyroelectric SS in
a 2-cm-long LiNbOj3 sample. (a) Beam intensity profile
along the ¢ axis and (b) distribution at the entrance face of
the sample. (c), (d) Evolution of output beam intensity once
sample temperature is set to 40°C; (e), (f) formed soliton
and its profile. The dashed line indicates the interface
location.
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(Color online) Side view of (a) a beam launched inside a LiNbO3 sample in diffraction regime and (b) when a py-

roelectric SS is formed. The dashed line is beam reflection location in the linear regime. Views are constructed from several

images.

The launched beam intensity profile and distribu-
tion are depicted in Figs. 2(a) and 2(b). This beam is
injected about 60 um under the —c interface and
travels with a small angle toward this face. Total re-
flection occurs in the middle of the sample and forms
Lloyd fringes in a large region [Fig. 2(c)]. When the
crystal temperature is raised from room temperature
(20°C) to 40°C the interference fringes gradually
disappear as the PR effect builds up [Fig. 2(d)]. This
self-trapping is due to the screening of the internal
pyroelectric field as depicted in [11]. Two minutes af-
ter the temperature change this 80 uW beam exits in
an optimally confined SS [Fig. 2(e)]. The beam
FWHM is 7 um along the ¢ axis and 13 wm perpen-
dicular to the ¢ axis. It is trapped against the inter-
face as revealed by the asymmetric beam profile
along the ¢ axis [Fig. 2(f)]. A steeper intensity change
is present at the interface because of the large index
difference between air and LiNbOj. An additional ex-
periment has been performed to confirm that, once
formed, the SS sticks to the interface. A LiNbOg
sample with an unpolished —c face is used, and obser-
vations are made with a low-magnification optical
system from above this surface. These observations
rely on light scattering along the unpolished inter-
face. When a 100 uW focused beam (15 um FWHM)
is launched 80 um below the —c face, no scattered
light is first detected, while after about 5 mm propa-
gation distance scattering is observed because some
light reaches the interface as a result of beam diffrac-
tion [Fig. 3(a)l. When the crystal temperature is
raised to 40°C, a SS is formed about 2 mm after the
entrance face as shown by the narrow line of scat-
tered light observed up to the exit face [Fig. 3(b)].

In conclusion we have shown that a 2D SS can be
formed at the interface between a low-index medium
and a medium with an optical nonlinearity that gives
rise to an asymmetric index distribution. The experi-
mental demonstration is performed in a PR pyroelec-
tric LiNbOg3 crystal where the nonlinearity is trig-

gered by a 20°C temperature increase. Efficient light
attraction and localization underneath the surface is
due to charge saturation as corroborated with a nu-
merical model.

E. Fazio is grateful to the Université de Franche—
Comté for the visiting professorship under which
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