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SEMICLASSICAL MEASURES FOR THE SCHRODINGER EQUATION
ON THE TORUS

NALINI ANANTHARAMAN AND FABRICIO MACIA

ABSTRACT. In this article, the structure of semiclassical measures for solutions to the
linear Schrodinger equation on the torus is analysed. We show that the disintegration of
such a measure on every invariant lagrangian torus is absolutely continuous with respect
to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in
terms of the sequence of initial data and show that it satisfies an explicit propagation law.
As a consequence, we also prove an observability inequality, saying that the L?-norm of a
solution on any open subset of the torus controls the full L?-norm.

1. INTRODUCTION

Consider the torus T? := (R/27Z)? equipped with the standard flat metric. We denote
by A the associated Laplacian. We are interested in understanding dynamical properties
related to propagation of singularities by the (time-dependent) linear Schrédinger equation

i%(t, x) = (—%A + V(t,:c)) u(t, x), u)i—o = uo € L*(T?).
More precisely, given a sequence of initial conditions u,, € L*(T¢), we shall investigate the
regularity properties of the Wigner distributions and semiclassical measures associated
with u,(t,z). These describe how the L?*norm is distributed in the cotangent bundle
T*T? = T¢ x R? (position x frequency). Our main results, Theorems 1 and 3 below,
provide a description of the regularity properties and, more generally, the global structure
of semiclassical measures associated to sequences of solutions to the Schrédinger equation.
These results are aimed to give a description of the high-frequency behavior of the
linear Schrodinger flow. This aspect of the dynamics is particularly relevant in the study
of the quantum-classical correspondence principle, but is also related to other dynamical
properties such as dispersion and unique continuation (see the discussion below and the
articles [19, 21, 3| for a more precise account and detailed references on these issues). As
a corollary of Theorem 3, we prove an observability inequality on any open subset of the
torus, for the Schrédinger equation with a time-independent potential : Theorem 4.

We assume the following regularity condition on the potential V' € L (]R X ']I‘d) :

F. Macia was supported by grants MTM2007-61755, MTM2010-16467 (MEC) and Santander-
Complutense 34/07-15844. N. Anantharaman wishes to acknowledge the support of Agence Nationale
de la Recherche, under the grant ANR-09-JCJC-0099-01.
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2 NALINI ANANTHARAMAN AND FABRICIO MACIA

(R) For every T' > 0, for every € > 0, there exists a compact set K. C [0,T] x T¢, of
Lebesgue measure < €, and V, € C([0,T]xT?), such that |V — V| < eon ([0,T] x T%)\ K..

We believe that this assumption should not be necessary. In any case, assumption (R)
already covers a broad class of examples.

We shall focus on the propagator starting at time 0, denoted by Uy (t); i.e. u(t) =
Uv(t)’LLQ

Let us define the notion of Wigner distribution. We will use the semiclassical point of
view, and denote by (uj) our family of initial conditions, where h > 0 is a real parameter
going to 0. The parameter h acts as a scaling factor on the frequencies, and the limit
h — 0% corresponds to the high-frequency regime. We will always assume that the
functions u;, are normalized in L2(T?). The Wigner distribution associated to uy (at scale
h) is a distribution on the cotangent bundle T*T¢, defined by

| alw&ul (dr.dg) = (o, Opy(@)un) e, for all @ € CX(T7TY),
T*Td

where Opy,(a) is the operator on L?(T?) associated to a by the Weyl quantization (Section
8). More explicitly, we have

[ ala.pul, dnd) = —

~ N N~ h’ .
s 2 T (306+0),

—ik.x 711

where (k) == [ un( )(2 jzdr and ap(§) = [raa(z,§)S Gmada denote the respective

Fourier coefficients of uj, and a, with respect to the variable z € T?. We note that, if a is
a function on 7*T¢ = T4 x R¢ that depends only on the first coordinate, then

1) | ooyl (@.d9) = [ a@lunto)Pds

The main object of our study will be the Wigner distributions w{} (tun - When no
confusion arises, we will more simply denote them by wy(t, ). By standard estimates on
the norm of Oph( ) (the Calderon-Vaillancourt theorem, section 8), t — wy(t, -) belongs
to L*(R; D’ (T*Td)), and is uniformly bounded in that space as h — 07. Thus, one can

extract subsequences that converge in the weak-* topology on L*°(R; D’ (T*Td)). In other
words, after possibly extracting a subsequence, we have

/R e(t)a(x, &)wy(t, dz, d&)dt B / a(x,&)u(t, dx, df)dt

for all p € L'(R) and a € C°(T*T?). It also follows from standard properties of the Weyl
quantization that the limit p has the following properties :
o i€ L®(R; M (T*T?)), meaning that for almost all ¢, u(t,-) is a positive measure
on T*T<,
e The unitary character of Uy (t) implies that [,..o, pu(t, dz, d€) does not depend on t;
from the normalization of u;, we have fT*’]I‘d w(t,dz,d¢) < 1, the inequality coming
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from the fact that 7*T? is not compact, and that there may be an escape of mass
to infinity.

e Define the geodesic flow ¢, : T*T? — T*T? by ¢.(x,€) = (x + 7£,€) (7 € R).
The Weyl quantization enjoys the following property :

) - 58.0m,(@)] = 7 Ony (€0,

This implies that p(t,-) is invariant under ¢,, for almost all ¢ and all 7 € R (the
argument is recalled in Lemma 11).
We refer to [19] for details. We can now state our first main result, which deals with the
regularity properties of the measures p.

Theorem 1. (i) Let p be a weak-x limit of the family wy. Then, for almost all t,
Jga 11t -, dE) is an absolutely continuous measure on T?.

(ii) In fact, the following stronger statement holds. Let ji be the measure on R? image
of u(t,-) under the projection map (x,&) — &. Then i does not depend on t.

For every bounded measurable function f, and every L'-function 0(t) write

/R /T dXRdf(x,f)u(t,dx,dﬁ)ﬁ(t)dt: /R /R ( 5 f(x,f),ug(t,dx)) i(dE)6(t)dt,

where pe(t,-) is the disintegration® of w(t,-) with respect to the variable &. Then for fi-
almost every &, the measure je(t,-) is absolutely continuous.

The first assertion in Theorem 1 may be restated in a simpler, concise way.

Corollary 2. Let (u,) be a sequence in L*(T?), such that |u,||r2eray = 1 for alln. Consider
the sequence of probability measures v, on T¢, defined by

(3) vo(dz) = ( /0 1 |Uv(t)un(x)|2dt) dz.

Let v be any weak-+ limit of the sequence (v,) : then v is absolutely continuous.

Our next result enlightens the structure of the set of semiclassical measures arising as
weak-+ limits of sequences (wy). It gives a description of the Radon-Nikodym derivatives
of the measures [o,u(t,-,d¢) and clarifies the link between u(0,-) and u(t,-). It was
already noted in [19] (in the case V' = 0) that the dependence of p(t,-) on the sequence
of initial conditions is a subtle issue : although wpy(0,-) = wf}h completely determines
wp(t,-) = wll}v(t)uh for all ¢, it is not true that the weak-* limits of wy,(0, -) determine u(t, -)
for all ¢. In [19], one can find examples of two sequences (uy) and (vy,) of initial conditions,
such that w! and w! have the same limit in D'(7*T%), but w[’}V(t)uh and w(]}V(t)Uh have
different limits in L>(R; D'(T*T4)).

In order to state Theorem 3, we must introduce some notation. We call a submodule
A C Z% primitive if (A) NZ? = A (where (A) denotes the linear subspace of R? spanned by

"When w(t,-) is a probability measure, pe(t,-) is the conditional law of x knowing &, when the pair
(z,€) is distributed according to u(t, -)
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A). If b is a function on T¢, let /b\k, k € Z%, denote the Fourier coefficients of b. If /l;k =0
for £ ¢ A, we will say that b has only Fourier modes in A. This means that b is constant
in the directions orthogonal to (A). Let L} (T?) denote the subspace of L? (T) consisting
of functions with Fourier modes in A. If b € L?(T?), we denote by (b), its orthogonal
projection onto LA (T¢), in other words, the average of b along A+ :

zkx

Z by, (t d/2

keA

Given b € LY (']I'd), we will denote by m; the multiplication operator by b, acting on
L3 (T?).
Finally, we denote by Uy, (t) the unitary propagator of the equation

i%(t,x) = (—%A + <V>A(t,:c)) v(t,x), v]—o € LA(T9).

Theorem 3. For any sequence (up,), we can extract a subsequence such that the following

hold :

e the subsequence wy(t,-) converges weakly-x to a limit u(t,-);

e for each primitive submodule A C Z%, we can build from the sequence of initial
conditions (uy) a nonnegative trace class operator o, acting on L3 (T?);?

e for almost all t, we have

[ utt-a) = St

where va(t,-) is the measure on T¢, whose non-vanishing Fourier modes correspond
to frequencies in A, defined by

/Td b(SL’)VA(t, da:) =Tr (TTl(b>A U(V)A (t) OA U(V)A (t)*) y
if b e L (T?).

Theorem 3 tells us more about the dependence of wu(t,-) with respect to ¢. If two
sequences of initial conditions (u;) and (vy) give rise to the same family of operators oy,
then they also give rise to the same limit u(¢,-). There are cases in which the measures vy
can be determined from the semiclassical measure u(0,-) of the sequence of initial data :
in Corollary 30 in Section 6 we show that if 1(0, T¢ x A1) = 0 then v, vanishes identically.

Technically speaking, the operators o, are built in terms of 2-microlocal semiclassical
measures, that describe how the sequences (uy,) concentrate along certain coisotropic man-
ifolds in phase-space. The technical construction of o, will only be achieved at the end of
Section 5.

We shall prove, as a consequence of Theorem 3, the following result:

2This means that the integral kernel of o4 is constant in the directions orthogonal to A.
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Theorem 4. Suppose V € L>(T?) does not depend on time and satisfies condition (R).
Then for every open set w C T4 and every T > 0 there exists a constant C' = C(T,w) > 0
such that:

T
) Jeallsgoey < € [ 100 Ol

for every initial datum uy € L? (']I'd).

Note that this result implies the unique continuation property for the Schrodinger prop-
agator Uy from any open set (0,7) x w. In other words, if Uy (t)up = 0 on w for all
t € [0,T], then uy = 0. Estimate (4) is usually known as an observability inequality; these
type of estimates are especially relevant in Control Theory (see [18]).

As a consequence of this result, with the notation of Theorem 1 (ii), we deduce the

following :

Corollary 5. For ji-almost every &, we have
T
T
t,w)dt > .
| ety = s

This lower bound is uniform w.r.t. the initial data u; and to &.

Relations to other work. In the case V = 0, Corollary 2 and the first assertion in
Theorem 1 have been obtained by Zygmund [28] in the case d = 1. In the final remark of [5],
Bourgain indicates a proof in arbitrary dimension, using fine properties of the distribution
of lattice points on paraboloids. When the sequence (u,,) consists of eigenfunctions of A
(vn(dx) = |u,(z)|?dz, in that case), the conclusion of Corollary 2 was proved by Zygmund
(d = 2), Bourgain (no restriction on d) and precised in terms of regularity by Jakobson
in [17], by studying the distribution of lattice points on ellipsoids. More results on the
regularity of 1 can be found in [1, 8, 25, 24].

Our methods are very different, and there is no obvious adaptation of the technique of
[5, 17] to the case V' # 0. Theorem 3 was proved in dimension d = 2 for V' = 0 in [20]
using semiclassical methods, and we develop and refine the ideas therein. We use in a
decisive way the dynamics of the geodesic flow (since we are on a flat torus, the geodesic
flow is a completely explicit object), and we use the decomposition of the momentum space
into resonant vectors of various orders. The other main ingredient is the two-microlocal
calculus, in the spirit of the developments by Nier [26] and Fermanian-Kammerer [10, 11],
and also [23, 12|. Our proof is written on the “square” torus. More precisely, the property of
the lattice I' = Z¢ C R? and of the scalar product (-,-) (principal symbol of the laplacian)
that we use is that [(z,y) € QVy € QI' & = € QI']. This assumption can be removed and
the results can be adapted to more general lattices, but this requires a slightly different
presentation, that will appear in the work [2]. Moreover, it seems reasonable to think that
Theorems 1 and 3 can be extended to more general completely integrable systems and their
quantizations [2]. The generalized statement would be that the disintegration of the limit
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measure on regular lagrangian tori is absolutely continuous, with respect to the Lebesgue
measure on these tori.

Theorem 4 was first established by Jaffard [16] in the case V' = 0 using techniques based
on the theory of lacunary Fourier series developed by Kahane. Since then, several proofs
of this result based on microlocal methods and semiclassical measures (still for V' = 0) are
available [6, 22, 21]. Our proof of Theorem 4 will follow the lines of that given in [21] and
is based on the structure and propagation result for semiclassical measures obtained in
Theorem 3. At the same time as this paper was being written, Burq and Zworski |7] have
given a proof of Theorem 4 in the case V' € C (T?), which is an adaptation of their previous
work [6]. Here, we exploit our results about the structure of semiclassical measures to avoid
the semiclassical normal form argument (Burq and Zworski’s Propositions 2.5 and 2.10)
and to lower the regularity of the potential.

Corollary 5 implies Corollary 4 of the article by Wunsch [27] (which is expressed in terms
of wavefront sets) and holds in arbitrary dimension whereas Wunsch’s method is restricted
to d = 2.

Acknowledgement. Much of this work was done while the second author was visiting
the Département de Mathématiques at Université Paris-Sud, in fall-winter 2009. He wishes
to thank this institution for its kind hospitality.

2. DECOMPOSITION OF AN INVARIANT MEASURE ON THE TORUS

Before we start our construction in §3, we recall a few basic facts on the geodesic flow
and its invariant measures.

Denote by £ the family of all submodules A of Z? which are primitive, in the sense that
(A)NZ% = A (where (A) denotes the linear subspace of R? spanned by A). For each A € L,
we define

A ={¢eR?: ¢ k=0, VkeA},
Ty := (A) /27A.
Note that T, is a submanifold of T¢ diffeomorphic to a torus of dimension rkA. Its
cotangent bundle 7*T, is Ty x (A). We shall use the notation T,. to refer to the torus
At/ (27TZd N AL). Denote by Q; C R? for j =0, ..., d, the set of resonant vectors of order
exactly j, that is:
Q= {fERd:rkAgzd—j},

where A¢ = {k; €Zi: k&= 0}. Note that the sets ; form a partition of R?, and that
Qp = {0}; more generally, £ € Q; if and only if the geodesic issued from any x € T¢
in the direction ¢ is dense in a subtorus of T¢ of dimension j. The set Q := U;l;é Q; is
usually called the set of resonant directions, whereas Qg = R?\ € is referred to as the set
of non-resonant vectors. Finally, write

RA = AJ_ N Qd—rkA-

The relevance of these definitions to the study of the geodesic flow is explained by the
following remark. Saying that & € R, is equivalent to saying that (for any z, € T?) the
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time-average % fOT duo+te (x) dt converges weakly to the Haar measure on the torus zo+Ty,
as ' — oo.

By construction, for £ € Ry we have A¢ = A; moreover, if tk A = d—1 then Ry = A*+\{0}.
Finally,

(5) R = | | Ra,

that is, the sets R, form a partition of R?. As a consequence, the following result holds.

Lemma 6. Let ;1 be a finite, positive Radon measure® on T*T¢. Then u decomposes as a
sum of positive measures:

(6) p=> plrixn,-
Ael

Given any € M, (T*Td) we define the Fourier coefficients of ;1 as the complex measures
on R¢:

—ik-x
e e
i (k,-) ;:/ (27r)d/2u(da:,-), k ez

One has, in the sense of distributions,

zka:

= (k€ R

kezd

Lemma 7. Let € My (T*T?) and A € L. The distribution:

= ike) v )d/2

keA

is a finite, positive Radon measure on T*T9.

Proof. Let a € C (T*Td) and {vy, ...,v,} be a basis of A+. Suppose

ik-x

ale, &)=Y alk £>(€)d/2,

kezd

then it is not difficult to see that

T T
Th,Tu—oo T ... / / a erZt v;, & | dty...dt,

(a), (x,&) == lim
- Z ( § d/2’

keA

3We denote by M (T*Td) the set of all such measures.
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that (a), is non-negative as soon as a is, H<a>AHL°0(T*’]I‘d) < HaHLOO<T*Td>, and that (a), €
o (T*Td) as well. Therefore,

(ONTE ERCNCRPICEn

defines a positive distribution, which is a positive Radon measure by Schwartz’s theorem.

0

Recall that a measure u € M, (T*Td) is invariant under the action of the geodesic flow®
on T*T¢ whenever:

(7) (¢r), p=p, with ¢r (z,§) = (z + 7€),

for all 7 € R. Let us also introduce, for v € R? the translations 7% : T*T¢ — T*T¢ defined
by:

7" (2,§) = (x +v,8).

Lemma 8. Let p be a positive invariant measure on T*T. Then every term in the de-
composition (6) is a positive invariant measure, and

(8) :u—"]l‘deA = </~L>A—|Td><RA-

Moreover, this last identity is equivalent to the following invariance property:

L
Tol|Taxpy = HlTaxr,, for everyv e A~

Proof. The invariance of the measures jt|ray g, is clearly a consequence of that of p and of
the form of the geodesic flow on T*T?. To check (8) is suffices to show that i (k,-)]z, =0
as soon as k ¢ A. Start noticing that (7) is equivalent to the fact that u solves the equation:

§ Vo (z,8) =0.
This is in turn equivalent to:
i(k-&p(k &) =0, for every k € 7%,

from which we infer:

(9) suppfi(k,") C{€ €R? : k- £ =0} .
Now remark that Ry N {§ cRY: k&= 0} # () if and only if k¥ € A. This concludes the
proof of the lemma. 0

“In what follows, we shall refer to such a measure simply as a positive invariant measure.
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3. SECOND MICROLOCALIZATION ON A RESONANT AFFINE SUBSPACE

We now start with our main construction. Theorem 1 (i) and Corollary 2 will be proved
at the end of §4, and Theorem 3 in §5.

Given A € £, we denote by S the class of smooth functions a (x,&,n) on T*T?¢ x (A)
that are:

(i) compactly supported w.r.t. (x,§) € T*T¢,

(ii) homogeneous of degree zero at infinity in € (A). That is, if we denote by Sa)
the unit sphere in (A) (i.e. Sy := (A) NS*!) there exist Ry > 0 and anom €
Cso (T*Td X S<A>) with

Ui

0 (5, ,1) = anonm (as,g, W) . for [y > Ro and (z,€) € T"T:

we also write
a(z,§,00n) = Ghom (x,f, |Z—|> , for n#0;

(iii) such that their non-vanishing Fourier coefficients (in the z variable) correspond to
frequencies k € A:

eik-m

a’(xvgan) = Za(kagan)i

42"
kcA (2m) /

We will also express this fact by saying that a has only z-Fourier modes in A.

Let (ux) be a bounded sequence in L? (']I'd) and suppose that its Wigner distributions
wy, (t) = w[}}v(t)uh converge to a semiclassical measure y € L™ (R;M+ (T*Td)) in the
weak- topology of L (R; D' (T*T?)).

Our purpose in this section is to analyse the structure of the restriction p|payg,. To
achieve this we shall introduce a two-microlocal distribution describing the concentration
of the sequence (Uy (t) up) on the resonant subspaces:

At ={ceR?: Py (&) =0},

where P, denotes the orthogonal projection of R? onto (A). Similar objects have been
introduced in the local, Euclidean, case by Nier [26] and Fermanian-Kammerer [10, 11]
under the name of two-microlocal semiclassical measures. A specific concentration scale
may also be specified in the two-microlocal variable, giving rise to the two-scale semiclas-
sical measures studied by Miller [23] and Gérard and Fermanian-Kammerer [12|. We shall
follow the approach in [11], although it will be important to take into account the global
nature of the objects we shall be dealing with.

By Lemma 8, it suffices to characterize the action of p|axg, on test functions having
only z-Fourier modes in A. With this in mind, we introduce two auxiliary distributions
which describe more precisely how wy, (t) concentrates along T? x At and that act on
symbols on the class S}.
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Let x € C° (R) be a nonnegative cut-off function that is identically equal to one near
the origin. Let R > 0. For a € S}, we define

wite®.0)= [ (1=x (B ) (0.6 2 ) ) (@),
10 (0.0 = |

() 5 i

Remark 9. If A = {0} then wj , = 0 and wy p,g (t) = wy (t) @ do.
Remark 10. For every R > 0 and a € S} the following holds.

/md ¢ (‘” & PAT(S)) wp (1) (da, d€) = (wy 5 (£) @) + (wanr (1), a) .

The Calderén-Vaillancourt theorem (see the appendix for a precise statement) ensures
that both w,[l"R and wy g are bounded in L™ (R; (8}\)/) After possibly extracting subse-
quences, we have the existence of a limit : for every ¢ € L' (R) and a € S},

/Rgo ) {a*(t,),a)dt := lim lim . o (t) <w,/1\’R (t),a)dt,

and

R—00 h—0t+

and

(11) Lo ® G0 dt = Jim i [ o (0) (wnn(®),) .

R—00 h—01 Jp

Define, for (z,&,n) € T*T¢ x R? and 7 € R,

r (2,6,m) = (z+7E,&,1),
and, when 71 # 0,

Since the distributions® w,ﬁ r and wy p p satisfy a transport equation with respect to the
&-variable the following result holds.

Lemma 11. The distributions i (t,-) and i (t,-) are ¢°-invariant for almost every t:
(%), fin (£7) = in (1), (62), i (1,) = i (t,-),  for every 7 € R
Proof. Let a € C° (T*T). Then

d 1
(12) pr (wp (1) ,a) =1 <uh (t,-), [_§A +V(t,),Op, (a)} up, (t, )> .
Now, using identity (2) for the Weyl quantization we deduce:
d 1
(13) p (wy, (t) ,a) = 5 (wy, (t),€ - Opa) + <[,}“/ (t) ,a> ,

51t is convenient to use the word “distribution”, but we actually mean elements of L*° (R; (S}X)/)
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where

(14) <‘C?/ (t) >a> =1 <uh (tv ) ) [V (ta ) ) Oph (a)] Up (ta )) .
Note that this quantity is bounded in A for ¢ varying on a compact set. Integration in ¢
against a function ¢ € C} (R) gives:

[e®n®.¢-0ad=-b [ & ®@w®.ad-h [ ok
R R R
Replacing a in the above identity by

V() (e 55 ) o (o () o (055

and letting h — 0% and R — oo we obtain:
(fin (t, )§8a>—0and<u ), & 0pa) =0

which is the desired invariance property. 0

Positivity and invariance properties of the accumulation points fiy (¢,-) and i (¢,-) are
described in the next two results.

Theorem 12. (i) For a.e. t € R, ™ (t,-) is positive, 0-homogeneous and supported at
infinity in the variable n (i.e., it vanishes when paired with a compactly supported function).
As a consequence, i (t,-) may be identified © with a positive measure on T*T¢ x Sy

For a.e. t € R, the projection of jix (t,-) on T*T¢ is a positive measure.

(ii) Both ™ (t,-) and fis (t,-) are ¢°-invariant.

(i1 ) Let

/A i (4, dn) ] @eyerixry a (L) = /<A> fin (-, dN) ] (z6)eTax Ry -

Then both ™ (t,-) and ua (t,-) are positive measures on T*T?, invariant by the geodesic
flow, and satisfy:

(15> N(tv'ﬂ'ﬂ’de/\ = :uA (tv') + A (tv')'

Note that identity (15) is a consequence of the decomposition property expressed in
Remark 10.

The following result is the key step of our proof, it states that both p® and p, have
some extra regularity in the variable x, for two different reasons :

Theorem 13. (i) For a.e. t € R, jis (t,-) is concentrated on T¢ x At x (A) and its
projection on T¢ is absolutely continuous with respect to the Lebesque measure.
(ii) For a.e. t € R, the measure i (t,-) satisfies the invariance property:

(16) (qul—)* ﬂA (ta ) = ﬂA (t7 ) , TeR

6More precisely, there exists a positive measure M2 (t,-) on T*T?¢ x Say such that
fT*dem) a(z, & n)ph (t,d¢, dn) = fT*deS<A> a(z, &, con)M*A (t,d¢, dn) . For simplicity we will identify
M? (t,-) and i* (t,-), and we will write the integrals in the most convenient way according to the context.
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Remark 14. As we shall prove in Section 5, the distributions [is (t,-) verify a prop-
agation law that is related to unitary propagator generated by the self-adjoint operator
SN+ (V) (t,-), where (V') denotes the average of V along A*.

Remark 15. The invariance property (16) provides ji* with additional reqularity. This is
clearly seen when tk A = 1. In that case, (16) implies that, for a.e. t € R, the measure
pA () satisfies for every v € Sy :

(17) (720), ™ (8, N waxcryxeny = B (8 ) maxrycqny, s €R.

On the other hand, Lemma 8 implies that (17) also holds for every v € A+. Therefore, we
conclude that i (t, )| taxryx(ay 8 constant in x € T¢ in this case.

Remark 16. Theorems 12 (iii), and 13 (i), together with Lemma 6 imply that, for a.e.
t € R, we have a decomposition:

M(t7'> :ZMA<t7'>+Z/~LA<t7'>7

Ael AeLl

where the second term in the above sum defines a positive measure whose projection on T¢
15 absolutely continuous with respect to the Lebesgue measure.

The rest of this section is devoted to the proofs of Theorems 12 and 13.

3.1. Computation and structure of jiy. We use the linear isomorphism
xa: AT X (A) =R (s,y) = sty

and denote by x : T*A+ x T* (A) — T*R? the induced canonical transformation. Explic-
itly, ¥a goes as follows : let (s,0) € T*A+ = A+ x (A+)" and (y,n) € T* (A) = (A) x (A)".
Extend o to a linear form on R? vanishing on (A), and 7 to a linear form on R¢ vanishing
on At. Then xa(s,0,y,m) = (s +y,0+n) € T"R? = R? x (RY)*.

The map ya goes to the quotient and gives a smooth Riemannian covering :

A s Tar X Ty = T (s,9) = s+

7a will denote its extension to the cotangent bundles T*T . x T*Ty — T*T?. Let py
denote the degree of my.

There is a linear isomorphism T} : L2 .

(RY) — L%, (At x (A)) given by

loc

1
Tau:= ——=(uoxa).
VDA
Note that because of the factor pxl/ 2, T\ maps L? (']Td) isometrically into a subspace of
L2 (Tpr x Tp) = L* (Tpr; L*(Ty)). Moreover, Ty maps L} (T?) into L* (Ty) C L? (Tyr x Ta),
since if the non-vanishing Fourier modes of u correspond only to frequencies k € A, then

1
18 Thu(s,y) = —u for every s € Ty
(18) At (s, y) T () y AL



SEMICLASSICAL MEASURES ON THE TORUS 13

Since x, is linear, the following holds for any a € C* (T*Rd):
T Opy, (a) = Opy, (a0 xa) Ta-

Denote by Opﬁl and Opﬁ the Weyl quantization operators defined on smooth test functions
on T* A+ xT* {A) which act on the variables T*A+ and T* (A) respectively, leaving the other

frozen. The composition OpﬁL Op; gives the whole Weyl quantization Op,, on T*At x
T*(A). Now, if a € S} we have, in view of (18), that a o 7 does not depend on s € Ty
and therefore we write a o Ty (0, y,n) for a o Tx(s,0,y,n). We have

(19) Tx Opy, (a) = Opj (a o 7 (hDy, ) Th.
Note that for every o € A*, the operators Opi (a o 7y (0, -)) map L?(T,) into itself. To
be even more precise, it maps the subspace Ty (L% (T)) into itself.
Remark 17. Leta € Sy; setag (x,€,1) == x (n/R) a (2,£,n) and define aly y € C (A x T*T,)
by
ap a (0,y,1) = ag (7a (0,y,hn) ,n) = ar(y,o + hn,n), (y,n) € T*Ty, o€ A"
It is simple to check that (19) gives:

Tx Op,, (a) Ty = Opy (aj p (ADs, ) ,
and
(wanr (), <TAuh ), Op1 (aRA (hDsy, - ) )) Taup, (t >L2 LT
Note that for every R > 0,t € R and (s,0) € T*Ty., the operator

Opy (aj s (0.-))
is compact on L*(Ty), since a%,,A 15 compactly supported in the variable 7.

Given a Hilbert space H, denote respectively by K (H) and L' (H) the spaces of compact
and trace class operators on H. A measure on a polish space T, taking values in £! (H),
is defined as a bounded linear functional p from C, (T) to L' (H); p is said to be positive
if, for every nonnegative b € C. (T'), p (b) is a positive hermitian operator. The set of such
measures is denoted by M (T'; L' (H)); they can be identified in a natural way to positive
linear functionals on C, (T (H)). Background and further details on operator-valued
measures may be found for instance in [14].

In view of Remark 17, it turns out that the limiting object relevant in the computation
of fis is the one presented in the next result. For K € C° (T*Ty1; K (L? (T,))) denote:

(20) (np (t), K == (TaUy (t) up, K (5, hDy) TaUy (t) up) - (T, Li22(T0))

Proposition 18. Suppose (uy,) is bounded in L? (Td). Then, modulo a subsequence, the
following convergence takes place:

(21) lim [ () <n£ (t),K)dt = /Rgo (t) Tr /T*T K (s,0) pa (t,ds,do) dt,

h—0t R
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for every K € C° (T*Ty1; K (L?(Ty))) and every ¢ € L' (R); in other words, py is the
limit of nl (t) in the weak-x topology of L= (R, D' (T*Ty.; LY (L2 (Tx)))).

Then pa is an L*>®-function in t taking values in the set of positive, L' (L* (Ty))-valued
measures on T*T .. We have fT*TAL Tr pa(t,ds,do) < 1 for a.e. t.

Moreover, for almost every t the measure py (t,-) is invariant by the geodesic flow
¢rlrer,, 1 (8,0) = (s +70,0) (T ER).

This result is the analogue of Theorems 1 and 2 of [19] in the context of operator-valued
measures. Its proof follows the lines of those results, after the adaptation of the symbolic
calculus to operator valued symbols as developed for instance in [14].

When taking the limits h — 0 and R — 400 one should have in mind the following
facts. For any a € S5, we have for fixed R

Op? (a]}%,A (07 )) = Opll\ (a%,A (U’ )) + O(h)

where the remainder O(h) is estimated in the operator norm (using the Calderon-Vaillancourt
theorem). In addition, the following limit takes place in the strong topology of C° (T*T1; L (L? (Ty))):

I%ggo Opll\ (a’%,A (07 )) = Opll\ ((I?\ (07 )) 5

where af is defined by setting h = 0 and R = oo in the definition of a’}i A- In other words,
ax(o,y,n) = a(@a(o,y,0),m) = aly,o,n).

Combining what we have done so far, we find
Corollary 19. Let py € L (R; My (T*Tyr; £ (L (Ty)))) be a weak-+ limit of (n}y). Let
fia be defined by (10) and (11). Then, for every a € Sk and a.e. t € R we have:

/ a(z,€,n) fua (t, dx, d€, dn)
T*Tdx (A)

=Tr </T*T Op? (a} (0,4)) pa (t.ds, dcr)) :

Remark 20. Ifa € S} does not depend on n € RY then the above identity can be rewritten
as:

(22> / a ('Ta g) :&A (tu d.T, d€7 dn) = TrLQ(TA) (/ Maomy <0> ﬁA (tu dS7 dO')) )
T*Tdx (A) T

where for o € A+, m, (o) denotes the operator of multiplication by a (., ) in L? (T,).

Since all the arguments above actually hold with L*(Tyx) replaced by the smaller space
TA(LA(T?), and since Maor, (0) = Tamg(o)Tx on this space (where my(c) is again the
multiplication operator by a(., o)), we can write the above identity as:

(23> / a (.’,U, g) :&A (tu d.T, d£7 dn) = TrLi(Td) (/ ma(J)TA*ﬁA (t7 dS7 dO') TA) .
T*Td x (A) T
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And when a = a(x) does not depend on &, this reduces to

(24) / a () fip (t, dz,d§, dn) = Trpz2 ra /
T*Td x (A) A T

which proves the absolute continuity of the projection of iy to T9.

maTxpa (t,ds,do) TA>

*TAL

3.2. Computation and structure of i*. The positivity of ji* (¢,-) can be deduced
following the lines of [12] §2.1, or those of the proof of Theorem 1 in [14]; the idea
is recalled in Corollary 35 in the appendix. Given a € S there exists Ry > 0 and
nom € C° (T*T% x Spy) such that

a<x7£777> = (hom (x7£7 %) s for ‘7]‘ > RO-

Clearly, for R large enough, the value <w,[1‘ r() ,a> only depends on ayo,. Therefore, the

limiting distribution fi* (,-) can be viewed as an element of the dual of C>° (T *Td x S<A>).
Let us now check the invariance property (16). Set

a® (x,&,m) = (1 —X (%)) a(z,&mn).

Notice that since a has only Fourier modes in A:

€ g (e PAEY A nf,, Bi
E-&ca <5L‘7€77)_ h 8960' <l‘,§, 3 )

Therefore, by equations (13) and (14), and taking into account that a’® vanishes near n = 0,
we have, for every ¢ € C! (R):

@) e (ot 500 yar =~ [0 (wkalt). 10 i
(26) +/Rg0(t) <£’(, (t),ﬁaR> dt.

Writing 1 = rw with r > 0 and w € S(,) we find, for R large enough:

) =t 6n) = (1= (F9)) o 2. 6.0);

moreover, since b® is homogeneous of degree —1 in the variable 7, the Calderén-Vaillancourt
theorem implies that the operator:

B;L\,R := Op,, (bR <:L’,£, %))

fim sup 1Bo Rl (12 (pay) <

satisfies:

7| Q
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Therefore,

1
lim lim [ ¢'(¢) <w£R (t), ﬂaR> dt =0,
R ’ U]

R—o00 h—0+

and

. 1 : c’
lim sup <‘C}\l/ (t) ) maR> S Chlrzrisolip H [‘/7 Bljz\,R] Hg(L?(Td)) S E ||V||L0<>(’]I‘d) .

h—0t

After letting h — 0" and R — oo in (25), (26), we conclude that for almost every ¢ € R:
w- Vit (t,z,6,w) = 0.
This is equivalent to (16).
4. SUCCESSIVE SECOND MICROLOCALIZATIONS CORRESPONDING TO A SEQUENCE OF
LATTICES

Let us summarize what we have done in the previous section. The semiclassical measure
w(t,.) has been decomposed as a sum

”(tv ) = ZMA(ta ) + ZMA(ta ')7
A A

where A runs over the set of primitive submodules of Z¢, and where
alt,.) = /<A> U | PO /<A> FA(E . dn) o .

The “distributions” jiy and i* have the following properties :
o jin(t,dz,d, dn) is in L® (R; (S})');
. f<A> fin(t, ., dn) is in LR, M (T*T?));

e for a € S}, we have

/ a(xafﬂ?) An (tvdxadgadn) =Tr </ Op? (a’('vaa'))ﬁ/\ (t7d57d0)>
T+Td x (A) T*T, |

where pj (t) is a positive measure on T*T,., taking values in L(Ty(L%(T?))),
invariant under the geodesic flow (s,0) — (s + 70,0) (7 € R).
In addition,

o for a € Si, (i’ (t,dx,d€, dn), a(x, &, m)) is obtained as the limit of

(utn(® 0y = [ (1 . (P;Tﬁf))) a (as,g, & Ah@) wn (t) (da, d€)

where the weak-* limit holds in L=(R,S}), as h — 0 then R — +oo (along
subsequences);

o [iMt, dx,dE, dn) is in L®(R, My (T*T% x Si));
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e 1A is invariant by the two flows, ¢° : (z,&,n) — (z + 7£,€,m), and ¢! : (z,&,n) —
(a7, E0) (7 €R)

This can be considered as the first step of an induction procedure, the k-th step of which
will read as follows :

Step k of the induction : At step k, we have decomposed pu(t,.) as a sum

pt) =D D )+ Y e,

1<I<k A1DA2D..DN\; A1DA2D...DAg

where the sums run over the strictly decreasing sequences of primitive submodules of Z? (of
lengths [ < k in the first term, of length & in the second term). These measures themselves
are obtained as

~A1Ao. Ay

A1Ao.. Aj_
e 1(t7') luAl (tv'adnla"'7d771)-|TdXRA17

K, /
RA2 (Al)X...XRAl (Alfl)X<Al>

Iu/AlAQ...Ak (t’ ) — / [LAlAQ...Ak
Ry (A1) X xRy (Ag—1) X% (Ag)

where we denoted Ry(A’) := A+ N (A) N Quear—rka, for A C A

(t, .7d7]17 e ,d?]k)—‘TdXRAl,

Let us denote by Sk1,---,Ak the class of smooth functions a(x,&,m,...,m) on T*T? x
(A1) x ... x (A;) that are (i) smooth and compactly supported in (z,&) € T*T¢; (ii)
homogeneous of degree 0 at infinity in each variable ny,...,n; (iii) such that their non-
vanishing x-Fourier coefficients correspond to frequencies in Ag.

The “distributions” ﬂﬁ;AQ“'A”I and fi*142+M have the following properties :

ﬂﬁ;AQ“'Al‘l is in L= (R, (S, ,)"). With respect to the variables n; € (A;), j =
1,...,01—1, it is 0-homogeneous and supported at infinity. Thus, (as in footnote 6)

we may identify it with a distribution on the unit sphere S<A1> X ... X S<Al_1> ;
~ArAg. A .. .
b f</\l> MA; ? : 1<t7 '7d?7l) 1S 1n LOO<]R7M+<T Td X S(A1> X ... X S<Al—1>));
o fora € S}, . ,,, we have

(27)

~A1Aa. Ay

/ a(z,&n, o m) iy, (t,dx,dE, dny, ..., dn)
T*Tex (A1) X...x{A;_1)
(28)

~A1Ao. A
=Tr / Opjl\l (CL ('707 oonlu"'aoonlfla')) pAll s <t7 dS,dO', dnlu"'vdnlfl)
T*TAL XS(A1>><...><S<A171>

where ﬁﬁ;Az”Al‘l(t) is a positive measure on T"Ty1 X S(a;) X ... X Sia,_y), taking
values in L!(Ty, L3 (T?)). It is invariant under the flows (s,0,m1,...,m-1) = (s +

7-0-70-77717"'7771*1) and (870-77717"'777[*1> = (5"‘7‘2_;7077717---777#1) (T € R? j =
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1,...,1 —1). Equation (28) implies that the projection of ﬁﬁ;AQ"'Al‘l on T¢ is

absolutely continuous.

e ForaeSy A (phh2De(t dx, dE, dny, ... dng), a(z, €m0, ..., M) is obtained as
the limit of

<wh(t,dx,d§)aa <l‘,§, P?ng’ ’PI;:g) (1 X (;A—;}f)) (1 X (%))>

The weak limit holds in L®(R, (S}, ,,)), as h — 0 then Ry — +o00,..., Ry —
+oo (along subsequences);

o fphrheteis in L®(R, My (TT? X Siayy X ... Say));
o jiM1A2- M s invariant by the k + 1 flows, ¢° : (2,&,n) — (v + 76,11, ..., mk), and

& (2,6 m, ) <x+7\:’7_jl’€’?71""’nk> (where j =1,...,k, 7 € R).

How to go from step k to step k + 1.

Mg Ay :
The term Y11 D n,5a,5..o0, Ha, ' remains untouched after step k.

A1Aa.

To decompose further the term > Ao, oA, H M we proceed as follows. Using

~A1As.

the positivity of M we use the procedure described in Section 2 to write

AiAoo Ay ~A1Ao. A
K - H -InkERAk+1(Ak)7
App1CAg

where the sum runs over all primitive submodules Ay, of Ax. Moreover, by the proof of
Lemma 8, all the x-Fourier modes of ﬂA1A2...Ak—‘nk€RAk+1(Ak) are in Ay ,1. To generalize the

analysis of Section 3, we consider test functions a € Sﬁfl Apsr- For such a function a, we
let

(wiz e @), a)
o (30 o+ (559)

a (x,&, PAlh<§), E aPAHTI(S)) wy, (t) (dz, d§),

and
AlAQ...Ak
<wAk+17h7R1 ..... Ry, (t),a

LG (0 () ()
a (‘”SPAT@ PA+T(£>) w (t) (dz, d€).
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: : A1Ag.. A
By the Calderén-Vaillancourt theorem, both wﬁlAQ h[}f g, and w, R 2+ are bounded
k41,0000, I s ALy g

in L>*(R (SkJrl Apsr)) After extracting subsequences, we can take the following limits :

. . . AiAz..A
lim - lim lim < w7 TR >— (piihe-fen g
Rk+1 —+00 R;—>+400 h—0 e
and
: : : ArAz.. A ~AAs. A
lim .-+ lim lim <wA1 Sk, (1) a> =: <,LLA1 2 ’“,a>.
Rpy1—r+00 R{—s+00 h—0 k1M I8 Itk k+1

By the arguments of §3, one then shows that jitA2-+1 and uA1A2 Ak gatisty all of the

induction hypotheses at step k 4+ 1. In particular, we obtain the following analogues of
Theorems 12 and 13.

Theorem 21. (i) j’iA2-Me+1(¢.) is positive, zero-homogeneous in the variables 1, €
(A1), k1 € (Mga), and supported at infinity. It can thus be identified with a pos-

itive measure on T*T% x Siayy X oo X Siap,,)-
~ﬁ;ﬁf[x’“ (t,-) s zero-homogeneous in the variables ;1 € (A1), ...,mx € (Ag), and sup-

ported at infinity. It can thus be identified with a distribution on T*T? x Seary X ... X Sa,) X

(Aki1)-

The projection of uﬁ;ﬁf A (¢) on T*T? Siay X ... X Sa,) s positive.

(ii) For a.e. t € R, pMA2-Res1 (¢ ) and [cﬁ;Af Me(t, ) satisfy the invariance properties:

(¢]) ~AN1Aa.. Ay (t, ) _ ﬂAlAQ...Ak (t, ')’

Ak+1 Ak1

((b_]) ~ Ak+1 (t’ .> — [LAlA2~~~Ak+1 (t, _)’
forj=0,....k, T €R.
(iii) Let

pal e (L, ) = / ARt dy, . de) g emaxhy,
Ragy (Ar)xoxRay o (Ag)x(

MA1A2...Ak+1 (t, ) — / ﬂA1A2...Ak+1 (t, ., dnl’ o ’dnk+1)'| (2.6)€Tx Ry,
RA2(A1)X...XRAk+1 (Ak)X<Ak+1>

Then both ,uAlAQ A () and ptdeAeea (g are positive measures on T*T, invariant
by the geodesic ﬂow, and satisfy:

(29) PN et ) = () g AN (g, ),

Theorem 22. (i) For a.e. t € R, ﬂﬁ;ﬁf Me(t, ) is supported on T? x Ay X Siagy X ... x

Siap) X (Ag41) and its projection on T< is absolutely continuous with respect to the Lebesque
measure.
(ii) The measure ji*A2+2+1 (¢, .) satisfies the additional invariance properties:

(gbi-i-l)* ﬁAlAg...Ak+1 (t, ) — ﬂAlAg...AkH (t, ) ,
for T € R.
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The ideas are identical to those of Sections 2 and 3, and detailed proofs will be omitted.

Remark 23. By construction, if Ay, = {0}, we have i*122-+1 = 0, and the induction
Mg Ay :
stops. The measure Hog,y is then constant in x.
Similarly to Remark 15, one can also see that if tk Ay, 1 = 1, the invariance properties

of Az Mt imply that it is constant in .

Proof of Theorem 1 (i) and of Corollary 2. We write

:u(ta ) = Z Z Mﬁ;AQmAlil(tv ')7

1<I<d+1 A1DA2D..DN\;

and we know that each term is a positive measure on 7*T?, whose projection on T¢ is
absolutely continuous. This proves Theorem 1 (i).

Corollary 2 is a direct consequence of Theorem 1 (i) and of the identity (1), with
one little subtlety. Because T*T¢ is not compact, if w;, converges weakly-* to u and

( fol |Uv(t)uh(x)\2dt> dx converges weakly- to a probability measure v on T¢, it does not

Y= /01 /R u(t, - de)dt.

This is only true if we know a priori that dede w(t, dx, d§) = 1 for almost all ¢, which means
that there is no escape of mass to infinity. To check that Theorem 1 implies Corollary 2,
we must explain why, for any normalized sequence (u,,) € L?(T?), we can find a sequence
of parameters h, — 0 such that the sequence wfjg does not escape to infinity. Let us
choose h,, such that

(30) oo JwB)PP — 1,

keZd, ||| <hz*

follow automatically that

which is always possible. If we let @, (x) = 3\ cza jxj<n ﬁn(k)%, equation (30) implies

that w’g: has the same limit as wZZ. On the other hand wgz is supported in the compact
set T¢ x B(0,1) C T¢ x RY. Thus w" cannot escape to infinity. Let us point out that
with this choice of scale (h,,), the sequence (u,,) becomes h,-oscillating, in the terminology
introduced in [13, 15].

5. PROPAGATION LAW FOR pj

We now study how pa (¢, -) (defined in Proposition 18 (21)) depends on ¢. This will allow
us to complete the proof of Theorem 3 and will be crucial in the proof of the observability
inequality, Theorem 4. We use the notation of §3.1. In particular, s will always be a
variable in T, 1, and y a variable in Tj.

In order to state our main result, let us introduce some notation. Let \A/k (t), k € Z,
denote the Fourier coefficients of the potential V' (¢,-). We denote by (V') , (¢, -) the average
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of V (t,-) along A+, in other words :

. eik-x
(V)yt,-)=> Vi(t)—.
keZA (27T)d/2
We put H<AV>A (t) := —3Ax + (V), (t,-) where Ay is the Laplacian on (A), and denote by

U(/%/M (t) the unitary evolution in L?(T,), starting at ¢ = 0, generated by H(/%/M (t).

Proposition 24. Let py € L (R; My (T*Tpr; L (L*(Ty)))) be a limit of (nfy) as in
Proposition 18.
Let (s,0) — K(o) be a function in C° (T*Tp1; K (L% (Ty))) that does not depend on s.
Then

d
—Tr/ K (o) pp (t,ds,do) = z'Tr/ [H{},M (t,), K (0)] pa (t,ds,do).
dt TAL XRA

TALXRA

Corollary 25. Let py (t,-) be the measure defined in Theorem 12.
For any a € C¥ (T*']I‘d) with Fourier coefficients in A the following holds:

/ a (SL’, f) 27N <t7 dSL’, df) =Tr (/ U(I}/>A (t)* Maomp (U) U(I}/)A (t) ﬁA (07 dS7 dO')) :
T*Td T, XRA

Proposition 24 will be a consequence of a more general propagation law. For fixed
s € Ty, denote by U (¢, s) (t € R) the propagator corresponding to the unitary evolution
on L?(Ty), starting at ¢ = 0, generated by

1
H\é (tv 8) = _éAA +V <t7 A (87 y)) :
Our main goal in this section will be to establish the following result.

Lemma 26. For all K as in Proposition 24,

d
—Tr / (0) pa (t,ds,do) = iTr / [H (t,5), K (0)] pa (t,ds, do)
dt T,1LxRa

T, xXRA

(where 4 is interpreted in distribution sense).

That Proposition 24 follows from Lemma 26 is a consequence of the invariance of py (¢, )
with respect to the geodesic flow.
Proof that Lemma 26 implies Proposition 24. Assume that Lemma 26 holds. Since p, (¢, -)
is invariant by s +— s+70 (7 € R), it follows from Lemma 8 that ja (¢, )]t , xr, is invariant
by all translations s +— s 4+ v with v € A+, Therefore,
PA (t7')-|TAL><RA = d$®/ PA (tadsv')_lRA'

T,o

1
/ H{) (t,s)ds = ——AA+/ V (t, ma (s,y))ds:Hf%A (t),
T,L 2 T,L

A
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the result follows. 0

Next we shall prove Lemma 26, first in the smooth case, then for continuous potentials
and finally for potentials that satisfy assumption (R).

5.1. The case of a C™ potential. Here we shall assume that V € C°°(R x T¢). The
restriction of n (¢) to the class of test functions that do not depend on s € T, satisfies a

certain propagation law, that we now describe. This generalizes statement (ii) in Theorem
2 of [19].

Lemma 27. If K € C° (A K (L*(T4))) is a function that does not depend on s then

(31) % (it (8), K) = i (Tawn, [HY (82) K (WD) Town) oy | oy ) -

Proof. 1t is simple to check that (19) gives:
TAATY = Ap+ Apr.
Moreover, it is clear that:
[Aps, K (hDy)] = 0.
Therefore, equation (20), in the case when K does not depend on s, gives (31). O

Taking limits in equation (31) and taking into account that we can restrict g to (s, o) €
Tarr x Rp (since it is a positive measure), concludes the proof of Lemma 26 in this case.

5.2. The case of a continuous potential. In this section, we assume that V € C(R x
T9). In this case, Lemma 27 still holds, but we cannot obtain 26 by simply taking limits.
Instead, we shall use an elementary approximation argument.

We introduce a sequence V,, of C'™ potentials, such that

1
|V —Valloe < —.
n

We rewrite equation (31),

% {npy (t), K) =i (Thun(t), [Hy, (t,-), K (hDy)] Taun(t))

+ i (Taup(t), [V — Vi, K (hDs)] Taup(t)) .
We use the inequality
[(Taun, [V = Vi, K (hDy)] Thup)| < 2[|V = Vo[ e sup | K(0)]

ocAL

to estimate the error when replacing V' by V,,.
In the limit A — 0,

(Taup, [HY (t,+), K (hDy)] Taup) — Tr / [HY (t,), K (0)] pa (¢, ds, do)

T*T, |
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since V,, is smooth. We use again the inequality

< 2|V = Vil sup [[K (o)

Tr / V — Vi, K (0)] pn (¢, ds, do)
T*T, |

oeAt
to estimate the error when replacing V,, by V.
Letting h — 0 and then n — +00, we find that
d
—Tr/ K (o) pa (t,ds,do) = iTr/ [H{ (t,8), K (0)] pa (t,ds, do)
dt - Jper, | T*T, |
d

where £ is meant in the distribution sense.
Again, we can restrict gy to (s,0) € Ty1 X Ry since it is a positive measure. This
concludes the proof of Lemma 26 in the continuous case.

5.3. Case of an L*> potential. Let us turn to the case of a potential V' that satisfies
condition (R) of the introduction. We use again an approximation argument, but we have
to use the fact that we already know that the limit measures are absolutely continuous.
It is enough to consider the restriction of ni(t) to t € [0, 7], for any arbitrary T. For
any € > 0, we then consider the set K. and the function V. described in Assumption
(R). Consider an open set Wy, of Lebesgue measure < 2¢ such that K. C Ws. Let us
introduce a continuous function x. taking values in [0, 1], and which takes the value 1 on
the complement of Wy, and 0 on K, (this is where we use the fact that K. is closed).
Lemma 27 still holds. We use it to write

(32) G (1) K) = i (Taun), [, (1,), K (D)) Taun (1))
+ i (Taun(t), [xe(t) (V(t) — Ve(t)) , K (hDs)] Taun(t))
+ i (Taun(t), [V(1 = xe)(t), K (hDy)] Taun(t)) -
Arguing as in §5.2, we see that
(Taun, [Hy v, (t,-), K (hDy)] Tauy,)

converges to
(33) Tr / [H) .\ (t,-), K (0)] pa (t, ds, do)
T*T, 1

in the limit h — 0, since .V, is continuous. Note that we can replace V. by V in this
limiting term (33), up to an error of 2e sup ¢, || K (0)||. Analogously, we are going to show
that in the limit A — 0 the remaining error terms give a contribution that vanishes as €
tends to zero. In other words, we are going to show that the following equation holds,
(34)

d
—Tr/ K (o) pa (t,ds,do) = iTr/ [HQEV (t,s),K (0)} pa (t,ds,do)+ sup || K (o) R,
T*T, |

dt T*TAL O'EAJ‘

where R, does not depend on K, and goes to 0 as ¢ — 0. To do so, we estimate the error
terms involved.
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The term [(Thun(t), [xe(V — Vi), K (hDy)] Thun(t))| is easily seen to be bounded from
above by 2esup,caL || K (0)]-

We now turn to the error term involving V(1 — x.) in (32). We use the fact that this
function is supported on a set of small measure, and that we know that the limit measures
are absolutely continuous. We deal with the first term in the commutator, the second one
may be treated analogously. Clearly

[(Taun(t), V(1 = xe) K (hDs) Taun(t))| < [V zee sup [|[K (@) [[lun(®I[(1 = xe)un@)]-

geNL
Integrating along an L' function 6(t),

T
/ 0(t) (Taun(t), V(1 — x)K (hDy) Taun(t)) dt’

0

< [Vl sup 1K (o] / Olllan (O = xun(t)]dt
oc
1/2 T 1/2
<[V sup [ K(o)] ( / 6] lun(t >H2dt) ( [ i —Xe)uh(t)szt)
oc L

= [Vl sup IR (/OT |9(t)|dt) N (/OT Ol Xe)uh(t)szt) -

By Corollary 2 we know that fOT 10()]|[(1 — xe)un(t)||*dt converges as h — 0 (along a

subsequence) to
T
| [l o) Pt
0 Jrd

where v; is an absolutely continuous probability measure on T?. The function |1 — (¢, z)]
takes values in [0, 1] and is supported in W, of measure < 2¢. Thus,

/0 /Td 0(D)][1 = xe(t, 2) [Pri(da)dt — 0

as € — 0.
Equation (34) is now proved. Restricting pj to (s,0) € Ty1 X Ry, it follows that
(35)
d
_Tr/ K (o) pp (t,ds,do) = iTr/ [H>/<\€V (t,s), K (cr)} pa (t,ds,do)+ sup || K (o) R,
dt TAL X RA TAL X RA oeNL

There remains to show how to conclude Lemma 26 from equation (35). To do so, we prove
that

(36) Tr /T . [Hy (t,-), K (0)] pa (t,ds, do)
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is the same as
(37) Tr/ [H{} (t,"), K (cr)} pa (t,ds,do)
TAL XRA

up to an error which goes to 0 with e. The difference between both is

Tr/ V(1 —xo)(t), K (0)] pa (t,ds,do) = Tr/ V(1—=x)(t)K (o) pa (t,ds, do)
T, xRa T

AL XEBA
- Tr/ K (0) V(1 = x)(E)pn (t ds, do)
T,1L xXRA
Let us consider for instance
(39) Tr / VA = x)OK (0) pa (¢, ds, do)
T,1LxRa
For any 6 € L'(R), the measure

a € C([0,T] x T%) — / : o(t)Tr / moK (o) pa (t, ds, do) dt

AL X Rp

is absolutely continuous, therefore

/0 0(1&)T1"/T B} V(1 —x)(t)K (o) pa (t,ds,do)dt

goes to 0 when ¢ — 0.
This finishes the proof of Lemma 26.

Remark 28. The same argument applies to show that the operator-valued measure
ﬁﬁ;Az”Al‘l (t,ds,do,dny, ..., dn)

appearing in (28) satisfies the propagation law analogous to Proposition 24

d

—Tr

- / K (o) gy M1 (4, ds, do, dip, - dig-y)
T*TA% XRA2 (A1)><...><RAl (Al—l)

. A ~N1Ao A
= ’LTI"/ |:H<‘}>Al (t’ ) K (O‘)} pAll 2.1 (t’ ds,do, d’r]l, ceey d’f]l_l) .
T*']TAIL XRAQ(AI)X---XRAl(AL—l)

5.4. End of proof of Theorem 3. To end the proof of Theorem 3, we let

e = SN[

0<k<d—1A1DA2D---DARDA

where Aq, ..., Ay run over the set of strictly decreasing sequences of submodules, such that

A, C A. We also let

ne Y Y

/ A2 (0, ds, doy dy, . dng, d)
nggdfl AlDAQDDAkDA TdXRAIXRAQ(Al)XXRA(Ak)X<A>
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where the ﬁﬁlAQ“'A’“ are the operator-valued measures appearing in (28).

6. PROPAGATION OF [i AND END OF THE PROOF OF THEOREM 1

We have already proved statement (i) of Theorem 1; we shall now concentrate on (ii).
We shall need a preliminary result, which is of independent interest, that describes the
propagation of fi, the projection of 1 onto the variable ¢ € R,

Proposition 29. Suppose that py € M (T*Td) is a semiclassical measure of (uy). Then
i1 1s constant for a.e. t and,

(39) p= [ wotan.).
Td
Proof. We write for a € C>°(R?) and T € R:
(Uy(T)up,a (hDy) Uy (T)up) — (up,a (hD,) up)

= /O (Uy (t)up, [a (th),—g +V] Uy (t)up)dt = —i /O (Uy (t)un, [a (hDs) , V] Uy ()us) dt.

If Ve C®°(R x T%), we have the estimate coming from pseudodifferential calculus,

I[a(hDz), V]Il L2(ray— r2(ray = O(h).

This implies that, for every T' € R:

(40) im (U (T)n. (D) U (TYun) = [ a(€) p (d.d).

h—0t

which in turn shows (39).

When V € C(R x T9), we establish (40) by showing that
H[(I(th), V]”LQ(TUZ)HLQ(TUZ) h:)()o.
This can be proved by an approximation argument as in §5.2 :
l[a(hD,),V]=|a(hD,),V,] +[a(hD,),V —V,],

with [a (hD,), V,] h—>00 if V,, € C*°(R x T%), and
—

lfa(hDs),V = ValllLz—r> < 2[|a(hDz)|[ 2 — 2|V = Vil o=
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If V satisfies Assumption (R), we write with the same notation as in §5.3,
T
/ (Uy ()up, [a (hDy) , V]Uy (t)up)dt
" T
:/ (Uy (t)up, [a (hDy) , Vex Uy (t)up)dt
X 0
+ [ Ot fa (D2) (v = ViU e

" /0 (Uv (D)un, [a (ADq) , V(1 = xo) Uy (¢)un)dt.

For fixed e, the term fOT(UV(t)uh, [a (hDy) , Vexe]Uy (t)up)dt goes to 0 as h — 0. The
term | f0T<UV(t)uh, la (hDy), (V — Vo) xJUy (t)up)dt| is less than 2¢|la (hD,)||. Finally,

/0 (Uy(t)up,[a (hD,), V(1 — Xe)]UV(t)uh)dt’

T
< 2||V||c>o/ la(hDe)Uy ()un | 2(pa) | (1 = xe) Uy () un]| L2 (pa) dt
0

T 12 , . 1/2
<2Vl ( / ||a<th>Uv<t>uh||%2(Td>dt) ( / ||<1—><5>Uv<t>uh||iz<w>dt)

and this goes to 0 at the limits h — 0 and ¢ — 0, by the same argument as in §5.3. Again,
we conclude that (40) holds in this case. This concludes the proof of the proposition. [

Corollary 30. Let A be a primitive submodule of Z%. If g (Td X AL) =0 then oy = 0,
where oy 1is the operator appearing in Theorem 3.

6.1. End of proof of Theorem 1. Let us turn to the proof of the last assertion of
Theorem 1. Let us consider the disintegration of the limit measure p with respect to &.
Here, to simplify the discussion, after normalizing ;1 we may assume that it is a probability
measure (this is no loss of generality, since the result is trivially true when p = 0). We
call i the probability measure on R?, image of p(t, -) under the projection map (z, &) + &.
We know that it does not depend on ¢t. We denote by pe(t,-) the conditional law of x
knowing &, when the pair (z,¢) is distributed according to u(t,-). Starting from Theorem
1 (i), we now show that, for fi-almost every &, the probability measure yi(t, -) is absolutely
continuous.

We consider a filtration, that is to say, a sequence F,, C F,n41 of Borel o-fields of R?,
such that U,F, generates the whole o-field of Borel sets. We will choose F,, generated
by a finite partition made of hypercubes (that is, a family of disjoint sets of the form
la1,b1) X ... X [ag, bg), where ag < by can be finite or infinite). For every &, there is a unique
such hypercube containing &, and we denote this hypercube by F,, (). Finally, we choose
F, such that i does not put any weight on the boundary of each hypercube.
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We know (by the martingale convergence theorem) that, for ji-almost every &, for every
continuous compactly supported function f and every non-negative integrable 6,

: dexfn(g) [z, m)p(t, dx, dn)o(t)dt
(41) /Td f(x, ) pe(t,dx)0(t)dt = hgn Tl T % F @000

Fix £ such that (41) holds. Since p(t, -) is itself the limit of the Wigner distributions wy (¢, -)
and since it does not put any weight on the boundary of F,(§), we can choose

— a sequence of smooth compactly supported functions x,, (obtained by convolution of the
characteristic function of F,,(£) by a smooth kernel), and

— a sequence h,,, going to zero as fast as we wish,

such that

T f'ﬂ‘dXRd Xi(n)f(% n)whn(ta d:L‘, dn)e(t)dt
B O s oy 71

for all smooth compactly supported f and every 6.
The absolute continuity of ;¢ now follows from Theorem 1 (i), applied to the sequence
of functions

|1 Opy,, (Oxn)un, |

Up,

n

7. OBSERVABILITY ESTIMATES

We now turn to the proof of Theorem 4. Using the uniqueness-compactness argument
of Bardos, Lebeau and Rauch [4] and a Littlewood-Payley decomposition, one can reduce
the proof of Theorem 4 to the following Proposition 31. This is clearly detailed in [7], from
which we borrow the notation. This reduction requires the potential to be time-independent
and this is why we make this assumption in Theorem 4.

Let x € C ((—1/2,2)) be a cut-off function equal to 1 close to 1 and define, for h > 0:

Myug == x <h2 (—%A + V))

Proposition 31. Given any T > 0 and any open set w C T¢, there exist C,hy > 0 such
that:

T
(13) Mtolageoy < € [ 10 () el

for every 0 < h < hy and every ug € L? (']I'd).

Proof. We argue by contradiction; if (43) were false, then there would exist a sequence (h,,)
tending to zero and (ug,,) in L? (']Td) such that I, ug, = won,

T
. 2
Juoall sy = L T [ [0 (€)=
0
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After eventually extracting a subsequence, we can assume that (uo,) has a semiclassical
measure o and that the Wigner distributions of (Uy (f) ug,) converge weak-* to some
e L™ (R; My (T*']I'd)). By construction, we have that:

po (T*T?) =1, o (T* x {0}) = 0;

and therefore, by Proposition 29, the same holds for p (t,-) for a.e. ¢ € R. Moreover,

(44) /Tu(t,wad) dt = 0.

Now, we shall use Theorem 3 to obtain a contradiction. We first establish the inequality
for d = 1 and then use an induction on the dimension.

Case d = 1. Since p (¢, T x {0}) = 0 and p (¢, -) is invariant by the geodesic flow, it turns
out that p (¢,-) is constant. Since (44) holds, necessarily p (t,-) = 0, which contradicts the
fact that u (¢,7*T) = 1. This establishes Proposition 31, and therefore, Theorem 4 for
d=1.

Case d > 2. We make the induction hypothesis that Proposition 31 holds for all tori
R™ /27T with n < d — 1, and I" a lattice in R™ such that [(z,y) € QVy € QI' & = € QI'].

Now, as shown in Theorem 3, for b € L* (Td) we have:

| @t dnde) =3 [ b inttdn) = 32T (m, Ui (003 Ui (0).

where my,, denotes multiplication by (b)x and o, is a trace-class positive operator on
L?(Ty), where recall, Ty = (A) /27A.
For A = 0, the measure v, (t) is constant in x, and since v, (t,w) = 0 we have v, (t) = 0.
The fact that p (¢, T x {0}) = 0 implies that o5 = 0 for A = Z%. Therefore, it suffices
to show that o, = 0 for every primitive non-zero submodule A C Z? of rank < d — 1.
The torus Ty has dimension < d —1 and falls into the range of our induction hypothesis.
Since (44) holds, we conclude that:

T
/ Tl” (m<1W>A U(V>A(t) OA U<V>A(t)*) dt = 0,
0
and hence

T
/ Tr (ml{wm U(V)A (t) OA U(V)A (t)*> dt = 0,
0
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where (w), is the open set where (1,)4 > 0. By our induction hypothesis we have:”

Tr(op) < C(T, (w)a) /OT Tr (m1<w>,\ Uya(t) o U<V)A(t)*> dt,

and thus o, = 0 (for all A) and (¢, T*T?) = 0. This contradicts the fact that (¢, 7T?)
1.

Ol

Coming back to the semiclassical measures of Theorem 1, it is now obvious that

T p T
R4 dt >
/0 pltyw x RO = C(T,w)

Corollary 5 can then be derived by the same argument as in §6.1.

po(T°TY).

8. APPENDIX : PSEUDODIFFERENTIAL CALCULUS

In the paper, we use the Weyl quantization with parameter h, that associates to a
function a on T*R? = R? x R? an operator Opy,(a), with kernel

1 T+y e
K" = €(x—y) g¢
a('x7y> (27Th)d /]R;da< 9 7§) en dg

If a is smooth and has uniformly bounded derivatives, then this defines a continuous

operator S(R?) — S(R?), and also S'(R?) — S'(R?). If a is (27Z)%-periodic with respect

to the first variable (which is always the case in this paper), the operator preserves the space

of (27Z)%-periodic distributions on R¢. We note the relation Opy,(a(z,&)) = Op,(a(z, hE)).
We use two standard results of pseudodifferential calculus.

Theorem 32. (The Calderén-Vaillancourt theorem)
There exists an integer Kq, and a constant Cyq > 0 (depending on the dimension d) such
that, if a if a smooth function on T*T?, with uniformly bounded derivatives, then

10D, (@) 22 (ray— £2(10) < Ca Z sup |0%al.

*Td
aeNd fol<Ky T

A proof in the case of L?*(R?) can be found in [9]. It can be adapted to the case of a
compact manifold by working locally, in coordinate charts.

We also recall the following formula for the product of two pseudodifferential operators
(see for instance [9], p. 79) : Op,(a) o Op,(b) = Op, (afd), where

aljb(x’ g) B ﬁ /R4d eéa(uw@)<‘Faz)<u1)(‘FbZ><u2)dU1dU27

"To deduce this from Theorem 4, it suffices to write op as a linear combination of orthogonal projectors
on an orthonormal basis of eigenfunctions of oj:

OA = Z An |Pn) (Dnl
neN
since A, > 0 and ) A, < 0o the observability inequality for o follows from the fact that it holds for

every ¢n.
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where we let z = (1,£) € R?? a, is the function w — a(z + w), and F is the Fourier
transform. We can deduce from this formula and from the Calderén-Vaillancourt theorem
the following estimate :

Proposition 33. Let a and b be two smooth functions on T*T¢, with uniformly bounded
derivatives.

|Op;(a) o Op;(b) — Op1<ab>HL2(Td)HL2(Td) <y Z sup [0° D(a, b)l,

a€eN2d |a|<Ky 7T
where we denote D(a,b) the function D(a,b)(x,&) = (0,0, — 0,0¢) (a(x,£)b(y,n)) | s=y.n=e-
We finally deduce the following corollary. We use the notations of Section 3.

Corollary 34. Let a € C®(T? x R?%) have uniformly bounded derivatives, and let x €
C>(RY) be a nonnegative cut-off function such that VX 18 smooth. Let 0 < h <1 and
R > 1. Denote
B Pr¢
(o) = ale. O (5 )
Assume that a > 0, and denote bg = \/ar, Then

10p, (ag) — Opy, (br)?| 12(ray—s r2eray = O(h) + O(R™")
in the limits h — 0 and R — +o00.

Corollary 35. Let a € C°(T? x R? x R%), 0-homogeneous in the third variable outside
a compact set, with uniformly bounded derivatives, and let x € C*(R?) be a nonnegative
cut-off function such that /X is smooth. Let 0 < h <1 and R > 1. Denote

o=+ ) - ()

Assume that a > 0, and denote b® = vaR. Then

HOph(aR) - Oph<bR)2HL2(Td)—>L2(Td) = O(Rfl)
i the limits h — 0 and R — +o00.
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