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SEMICLASSICAL MEASURES FOR THE SCHRÖDINGER EQUATION

ON THE TORUS

NALINI ANANTHARAMAN AND FABRICIO MACIÀ

Abstract. Our main result is the following : let (un) be a sequence in L2(Td), such that
‖un‖L2(Td) = 1 for all n. Consider the sequence of probability measures νn on Td, defined

by νn(dx) =
(∫ 1

0
|eit∆/2un(x)|2dt

)
dx. Let ν be any weak-∗ limit of the sequence (νn) :

then ν is absolutely continuous. This generalizes a former result of Bourgain and Jakobson,
who considered the case when the functions un are eigenfunctions of the Laplacian. Our
approach is different from theirs, it relies on the notion of (two-microlocal) semiclassical
measures, and the properties of the geodesic flow on the torus.

1. Introduction

Consider the torus Td := (R/2πZ)d equipped with the standard flat metric. We de-
note by ∆ the associated Laplacian. We are interested in understanding the regularizing
properties of the Schrödinger equation

i
∂u

∂t
= −1

2
∆u, u⌉t=0 ∈ L2(Td).

More precisely, given a sequence of initial conditions un ∈ L2(Td), we shall investigate
regularity properties that are uniform with respect to (un). As a consequence of Theorem
2 below, we will prove :

Theorem 1. Let (un) be a sequence in L2(Td), such that ‖un‖L2(Td) = 1 for all n. Consider

the sequence of probability measures νn on T
d, defined by

(1) νn(dx) =

(∫ 1

0

|eit∆/2un(x)|2dt
)
dx.

Let ν be any weak-∗ limit of the sequence (νn) : then ν is absolutely continuous.

This is an expression of the dispersive properties of the unitary group eit∆/2 on the
flat torus Td. It should be noted that this result does not hold in a general compact
Riemannian manifold (M, g). For instance, in the class of manifolds with periodic geodesic
flow (as is the standard sphere Sd) the analogous of Theorem 1 is known to be false. In
fact, any measure carried uniformly by a single geodesic may be realized as a weak-∗ limit
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N. Anantharaman wishes to acknowledge the support of Agence Nationale de la Recherche, under the
grant ANR-09-JCJC-0099-01.
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2 NALINI ANANTHARAMAN AND FABRICIO MACIÀ

of probability measures of the form (1), see [8]. This shows in particular that a dispersive
Strichartz estimate

(2)
∥∥eit∆/2u

∥∥
Lp([0,1]×M)

≤ C ‖u‖L2(M)

cannot hold on such a manifold for any p > 2 (see [10]). On the other hand, estimate (2)
holds on T1 with p = 4, as shown by Zygmund [13].1 Whether such an estimate holds on
the flat torus Td, d ≥ 2, for some p > 2 seems to be an open problem. In this direction,
Theorem 1 shows that one cannot disprove the validity of the dispersive estimate (2) on
Td by using the strategy explained above for the sphere. For the optimistic minds, this
supports the idea that (2) might hold on Td for some p = p (d) > 2.

When the sequence (un) consists of eigenfunctions of ∆, we see that νn(dx) = |un(x)|2dx;
in this case, the theorem was proved by Bourgain and Jakobson [7]. Theorem 1 can be
seen as a generalization of their result. However, our proof is quite different from theirs,
and is completely self-contained. Instead of working directly on Td, we use the notion of
Wigner distributions, defined on the cotangent bundle T ∗Td = Td × Rd. This allows us
to use the dynamics of the geodesic flow; since we are on a flat torus, the geodesic flow is
completely explicit, and we use the decomposition of the momentum space into resonant
vectors of various orders. We underline that, although we wrote everything working on the
“square” torus, the arguments are valid on any flat torus.

Let us restate Theorem 1 using the notion of Wigner distributions. We will use semi-
classical notations, and denote (uh) our family of initial conditions, where h > 0 is a real
parameter going to 0. We will always assume that the functions uh are normalized in
L2(Td). The Wigner distribution associated to uh (at scale h) is a distribution on the
cotangent bundle T ∗Td = Td × Rd, defined by∫

T ∗Td

a(x, ξ)wh
uh
(dx, dξ) = 〈uh,Oph(a)uh〉L2(Td) , for all a ∈ C∞

c (T ∗
T
d),

where Oph(a) is the operator on L2(Td) associated to a by the Weyl quantization (Section
5). More explicitely, we have

∫

T ∗Td

a(x, ξ)wh
uh
(dx, dξ) =

1

(2π)d/2

∑

k,j∈Zd

ûh(k)ûh(j)âj−k

(
h

2
(k + j)

)
,

where ûh(k) :=
∫
Td uh(x)

e−ik.x

(2π)d/2
dx and âk(ξ) :=

∫
Td a(x, ξ)

e−ik.x

(2π)d/2
dx denote the respective

Fourier coefficients of uh and a, with respect to the variable x ∈ Td. We note that, if a is
a function on T ∗Td = Td × Rd that depends only on the first coordinate, then

(3)

∫

T ∗Td

a(x)wh
uh
(dx, dξ) =

∫

Td

a(x)|uh(x)|2dx.

The main object of our study will be the Wigner distributions wh
eit∆/2uh

, that, when no

confusion arises, we will more simply denote by wh(t, ·). By standard estimates on the

1Bourgain has shown in [1] that (2) is actually false when d = 1, p = 6, and d = 2, p = 4. In both cases,
the estimate is known to hold on the whole Euclidean space Rd.
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norm of Oph(a) (the Calderón-Vaillancourt theorem, section 5), t 7→ wh(t, ·) belongs to
L∞(R;D′

(
T ∗

T
d
)
), and is uniformly bounded in that space as h −→ 0+. Thus, one can

extract subsequences that converge in the weak-∗ topology on L∞(R;D′
(
T ∗Td

)
). In other

words, after possibly extracting a subsequence, we have
∫

R

ϕ(t)a(x, ξ)wh(t, dx, dξ)dt −→
h−→0

∫

R

ϕ(t)a(x, ξ)µ(t, dx, dξ)dt

for all ϕ ∈ L1(R) and a ∈ C∞
c (T ∗Td). It also follows from standard properties of the Weyl

quantization that the limit µ has the following properties :

• µ ∈ L∞(R;M+(T
∗Td)), meaning that for almost all t, µ(t, ·) is a positive measure

on T ∗Td.
• The unitarity of eit∆/2 implies that

∫
T ∗Td µ(t, dx, dξ) does not depend on t; from the

normalization of uh, we have
∫
T ∗Td µ(t, dx, dξ) ≤ 1, the inequality coming from the

fact that T ∗Td is not compact, and that there may be an escape of mass to infinity.
• Define the geodesic flow φs : T

∗Td −→ T ∗Td by φs(x, ξ) := (x + sξ, ξ). The Weyl
quantization has the property that Egorov’s theorem is satisfied in its exact form:

e−it∆/2Oph(a)e
it∆/2 = Oph(a ◦ φt/h).

This implies that µ(t, ·) is invariant under φs, for almost all t and all s.

We refer to [8] for details.

Theorem 2. Let µ be a weak-∗ limit of the family wh. Then, for almost all t,
∫
Rd µ(t, ·, dξ)

is an absolutely continuous measure on Td.

Remark 3. Theorem 1 is a consequence of Theorem 2 and (3), with one little subtlety.

Because T ∗Td is not compact, if wh converges weakly-∗ to µ and
(∫ 1

0
|eit∆/2uh(x)|2dt

)
dx

converges weakly-∗ to a probability measure ν on Td, it does not follow automatically that

ν =

∫ 1

0

∫

Rd

µ(t, ·, dξ)dt.

This is only true if we know a priori that
∫
Td×Rd µ(t, dx, dξ) = 1 for almost all t, which

means that there is no escape of mass to infinity. To check that Theorem 2 implies Theorem
1, we must explain why, for any normalized sequence (un) ∈ L2(Td), we can find a sequence
of parameters hn −→ 0 such that the sequence whn

un
does not escape to infinity. Let us choose

hn such that

(4)
∑

k∈Zd,‖k‖≤h−1
n

|ûn(k)|2 −→
n−→+∞

1,

which is always possible. If we let ũn(x) =
∑

k∈Zd,‖k‖≤h−1
n

ûn(k)
eik.x

(2π)d/2
, equation (4) implies

that whn
ũn

has the same limit as whn
un
. On the other hand whn

ũn
is supported in the compact

set Td × B(0, 1) ⊂ Td × Rd. Thus whn
ũn

cannot escape to infinity.
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Although wh(0, ·) = wh
uh

completely determines wh(t, ·) = wh
eit∆/2uh

for all t, it is not true

that the weak-∗ limits of wh(0, ·) determine µ(t, ·) for all t. In [8], one can find an example
of two sequences (uh) and (vh) of initial conditions, such that wh

uh
and wh

vh
have the same

limit in D′(T ∗Td), but wh
eit∆/2uh

and wh
eit∆/2vh

have different limits in L∞(R;D′(T ∗Td)).

The proof of Theorem 2 will also enlighten the link between µ(0, ·) and µ(t, ·), expressed
in Theorem 4 below. We call a submodule Λ ⊂ Zd primitive if 〈Λ〉 ∩ Zd = Λ (where
〈Λ〉 denotes the linear subspace of Rd spanned by Λ). For such a submodule, 〈Λ〉 /2πZd

is an embedded submanifold of Td, isomorphic to a torus of smaller dimension. If b is a
function on T

d such that b̂(k) = 0 if k 6∈ Λ, we will say that b has only Fourier modes in Λ.
This means that b is constant in the directions orthogonal to 〈Λ〉. Such a function defines
naturally a function on the torus TΛ = 〈Λ〉 /2πZd. We will denote mb the multiplication
operator by b, acting on L2(TΛ). We will also denote by ∆Λ the Laplace operator on TΛ,
for the metric that is inherited from T

d.

Theorem 4. For any sequence (uh), we can extract a subsequence such that the following
hold :

• the subsequence wh(t, ·) converges weakly-∗ to a limit µ(t, ·);
• for each primitive submodule Λ ⊂ Zd, we can build a nonnegative trace class opera-
tor σΛ, acting on L2(TΛ); the operators σΛ are defined only in terms of the sequence
of initial conditions (uh);

• for almost all t, we have
∫

Rd

µ(t, ·, dξ) =
∑

Λ

νΛ(t, ·),

where νΛ(t, ·) is the measure on Td, whose non-vanishing Fourier modes correspond
to frequencies in Λ, defined by

∫

Td

b(x)νΛ(t, dx) = Tr
(
mb e

it∆Λ/2σΛe
−it∆Λ/2

)
,

if b ∈ C∞
(
Td
)
.

We note that Theorem 4 implies Theorem 2. Besides, it tells us more about the depen-
dence of µ(t, ·) with respect to t. If two sequences of initial conditions (uh) and (vh) give
rise to the same family of operators σΛ, then they also give rise to the same limit µ(t, ·).
Unfortunately, it is quite lengthy to describe how the operators σΛ are constructed from
the functions (uh) : the definition of σΛ will only be given at the end of Section 4.

Theorems 2 and 4 were proved for d = 2 in [9]. Our proof is an extension of the ideas
therein.

Acknowledgement. Much of this work was done while the second author was visiting
the Département de Mathématiques at Université Paris-Sud, in fall-winter 2009. He wishes
to thank this institution for its kind hospitality.
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2. Decomposition of an invariant measure on the torus

Denote by L the family of all submodules Λ of Zd which are primitive, in the sense that
〈Λ〉∩Zd = Λ (where 〈Λ〉 denotes the linear subspace of Rd spanned by Λ). For each Λ ∈ L,
we define

Λ⊥ :=
{
ξ ∈ R

d : ξ · k = 0, k ∈ Λ
}
,

TΛ := 〈Λ〉 /2πZd.

Note that TΛ is a submanifold of Td diffeomorphic to a torus of dimension rkΛ. Its
cotangent bundle T ∗TΛ is TΛ × 〈Λ〉. We shall use the notation TΛ⊥ to refer to the torus
Λ⊥/2πZd. Denote by Ωj ⊂ Rd, for j = 0, ..., d, the set of resonant vectors of order exactly
j, that is:

Ωj :=
{
ξ ∈ R

d : rk Λξ = d− j
}
,

where Λξ :=
{
k ∈ Zd : k · ξ = 0

}
. Note that the sets Ωj form a partition of Rd, and that

Ω0 = {0}; more generally, ξ ∈ Ωj if and only if the geodesic issued from any x ∈ Td

in the direction ξ is dense in a subtorus of Td of dimension j. The set Ω :=
⋃d−1

j=0 Ωj is

usually called the set of resonant directions, whereas Ωd = R
d \ Ω is referred to as the set

of non-resonant vectors. Finally, write

RΛ := Λ⊥ ∩ Ωd−rkΛ.

Saying that ξ ∈ RΛ is equivalent to saying that (for any x0 ∈ T
d) the time-average

1
T

∫ T

0
δx0+tξ (x) dt converges weakly to the Haar measure on the torus x0+TΛ⊥, as T → ∞.

By construction, for ξ ∈ RΛ we have Λξ = Λ; moreover, if rk Λ = d−1 then RΛ = Λ⊥ \{0}.
Finally,

(5) R
d =

⊔

Λ∈L

RΛ,

that is, the sets RΛ form a partition of Rd. As a consequence, the following result holds.

Lemma 5. Let µ be a finite, positive Radon measure2 on T ∗Td. Then µ decomposes as a
sum of positive measures:

(6) µ =
∑

Λ∈L

µ⌉Td×RΛ
.

Given any µ ∈ M+

(
T ∗Td

)
we define the Fourier coefficients of µ as the complex measures

on Rd:

µ̂ (k, ·) :=
∫

Td

e−ik·x

(2π)d/2
µ (dx, ·) , k ∈ Z

d.

One has, in the sense of distributions,

µ (x, ξ) =
∑

k∈Zd

µ̂ (k, ξ)
eik·x

(2π)d/2
.

2We denote by M+

(
T ∗Td

)
the set of all such measures.
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Lemma 6. Let µ ∈ M+

(
T ∗Td

)
and Λ ∈ L. The distribution:

〈µ〉Λ (x, ξ) :=
∑

k∈Λ

µ̂ (k, ξ)
eik·x

(2π)d/2

is a finite, positive Radon measure on T ∗Td.

Proof. Let a ∈ C∞
c

(
T ∗Td

)
and {v1, ..., vn} be a basis of Λ⊥. Suppose

a (x, ξ) =
∑

k∈Zd

â (k, ξ)
eik·x

(2π)d/2
;

then it is not difficult to see that

〈a〉Λ (x, ξ) := lim
T1,...,Tn→∞

1

T1...Tn

∫ T1

0

...

∫ Tn

0

a

(
x+

n∑

j=1

tjvj , ξ

)
dt1...dtn

=
∑

k∈Λ

â (k, ξ)
eik·x

(2π)d/2
,

that 〈a〉Λ is non-negative as soon as a is, ‖〈a〉Λ‖L∞(T ∗Td) ≤ ‖a‖L∞(T ∗Td), and that 〈a〉Λ ∈
C∞

c

(
T ∗Td

)
as well. Therefore,

〈〈µ〉Λ , a〉 =
∫

T ∗Td

〈a〉Λ (x, ξ)µ (dx, dξ)

defines a positive distribution, which is a positive Radon measure by Schwartz’s theorem.
�

Recall that a measure µ ∈ M+

(
T ∗Td

)
is invariant under the action of the geodesic flow3

on T ∗Td whenever:

(7) (φs)∗ µ = µ, with φs (x, ξ) = (x+ sξ, ξ) .

Let us also introduce, for v ∈ Rd and s ∈ R the translations τ vs : T ∗Td → T ∗Td defined by:

τ vs (x, ξ) = (x+ sv, ξ) .

Lemma 7. Let µ be a positive invariant measure on T ∗Td. Then every term in the de-
composition (6) is a positive invariant measure, and

(8) µ⌉Td×RΛ
= 〈µ〉Λ⌉Td×RΛ

.

Moreover, this last identity is equivalent to the following invariance property:

(τ vs )∗ µ⌉Td×RΛ
= µ⌉Td×RΛ

, for every s ∈ R and v ∈ Λ⊥.

3In what follows, we shall refer to such a measure simply as a positive invariant measure.
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Proof. The invariance of the measures µ⌉Td×RΛ
is clearly a consequence of that of µ and of

the form of the geodesic flow on T ∗
T
d. To check (8) is suffices to show that µ̂ (k, ·)⌉RΛ

= 0
as soon as k /∈ Λ. Start noticing that (7) is equivalent to the fact that µ solves the equation:

ξ · ∇xµ (x, ξ) = 0.

This is in turn equivalent to:

i (k · ξ) µ̂ (k, ξ) = 0, for every k ∈ Z
d,

from which we infer:

(9) supp µ̂ (k, ·) ⊂
{
ξ ∈ R

d : k · ξ = 0
}
.

Now remark that RΛ ∩
{
ξ ∈ Rd : k · ξ = 0

}
6= ∅ if and only if k ∈ Λ. This concludes the

proof of the lemma. �

3. Second microlocalization on a resonant affine subspace

Given Λ ∈ L, we denote by S1
Λ the class of smooth symbols a (x, ξ, η) on T ∗Td×Rd that

are:

(i) compactly supported on (x, ξ) ∈ T ∗Td,
(ii) homogeneous of degree zero at infinity in η ∈ R

d, i.e. such that there exist R0 > 0
and ahom ∈ C∞

c

(
T ∗Td × Sd−1

)
with

a (x, ξ, η) = ahom

(
x, ξ,

η

|η|

)
, for |η| > R0 and (x, ξ) ∈ T ∗

T
d;

(iii) such that their non vanishing Fourier coefficients (in the x variable) correspond to
frequencies k ∈ Λ:

a (x, ξ, η) =
∑

k∈Λ

â (k, ξ, η)
eik·x

(2π)d/2
.

We will also express this fact by saying that a has only x-Fourier modes in Λ.

Let (uh) be a bounded sequence in L2
(
Td
)
and suppose that its Wigner distributions

wh (t) := wh
eit∆x/2uh

converge to a semiclassical measure µ ∈ L∞
(
R;M+

(
T ∗Td

))
in the

weak-∗ topology of L∞
(
R;D′

(
T ∗Td

))
.

Our purpose in this section is to analyse the structure of the restriction µ⌉Td×RΛ
. To

achieve this we shall introduce a two-microlocal distribution describing the concentration
of the sequence

(
eit∆/2uh

)
on the resonant subspaces:

Λ⊥ =
{
ξ ∈ R

d : PΛ (ξ) = 0
}
,

where PΛ denotes the orthogonal projection of Rd onto 〈Λ〉. Similar objects have been
introduced in the local, Euclidean, case by Fermanian-Kammerer [3, 4] under the name
of two-microlocal semiclassical measures, by Gérard and Fermanian-Kammerer [5] when a
specific concentration scale is preferred, and also by Miller [11] and Nier [12]. We shall
follow the approach in [4], although it will be important to take into account the global
nature of the objects we shall be dealing with.
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Note that, by Lemma 7, it suffices to characterize the action of µ⌉Td×RΛ
on test functions

having only x-Fourier modes in Λ. With this in mind, we introduce two auxiliary distri-
butions which describe more precisely how wh (t) concentrates along Td ×Λ⊥ and that act
on symbols on the class S1

Λ.
Let χ ∈ C∞

c (R) be a nonnegative cut-off function that is identically equal to one near
the origin. For a ∈ S1

Λ, we define

〈
wΛ

h,R (t) , a
〉
:=

∫

T ∗Td

(
1− χ

(
PΛ (ξ)

Rh

))
a

(
x, ξ,

PΛ (ξ)

h

)
wh (t) (dx, dξ) ,

and

(10) 〈wΛ,h,R (t) , a〉 :=
∫

T ∗Td

χ

(
PΛ (ξ)

Rh

)
a

(
x, ξ,

PΛ (ξ)

h

)
wh (t) (dx, dξ) .

Remark 8. If Λ = {0} then wΛ
h,R = 0 and wΛ,h,R (t) = wh (t)⊗ δ0.

Remark 9. For every R > 0 and a ∈ S1
Λ the following holds.

∫

T ∗Td

a

(
x, ξ,

PΛ (ξ)

h

)
wh (t) (dx, dξ) =

〈
wΛ

h,R (t) , a
〉
+ 〈wΛ,h,R (t) , a〉 .

The Calderón-Vaillancourt theorem (see the appendix for a precise statement) ensures
that both wΛ

h,R and wΛ,h,R are bounded in L∞
(
R; (S1

Λ)
′)
. After possibly extracting subse-

quences, we have for every ϕ ∈ L1 (R) and a ∈ S1
Λ,∫

R

ϕ (t)
〈
µ̃Λ (t, ·) , a

〉
dt := lim

R→∞
lim
h→0+

∫

R

ϕ (t)
〈
wΛ

h,R (t) , a
〉
dt,

and ∫

R

ϕ (t) 〈µ̃Λ (t, ·) , a〉 dt := lim
R→∞

lim
h→0+

∫

R

ϕ (t) 〈wΛ,h,R (t) , a〉 dt.

Both limiting distributions µ̃Λ (t, ·) and µ̃Λ (t, ·) are supported on T ∗Td × 〈Λ〉 since the
same holds for each wΛ,h,R (t) and wΛ

h,R (t). Define, for (x, ξ, η) ∈ T ∗
T
d × R

d and s ∈ R,

φ0
s (x, ξ, η) := (x+ sξ, ξ, η) ,

φ1
s (x, ξ, η) := (x+ sη, ξ, η) .

The distributions wΛ
h,R and wΛ,h,R satisfy a transport equation on the extra variable η.

Lemma 10. For every a ∈ S1
Λ we have

〈
wΛ

h,R (t) , a
〉
=
〈
wΛ

h,R (0) , a ◦ φ0
t/h

〉
=
〈
wΛ

h,R (0) , a ◦ φ1
t

〉
,

〈wΛ,h,R (t) , a〉 =
〈
wΛ,h,R (0) , a ◦ φ0

t/h

〉
=
〈
wΛ,h,R (0) , a ◦ φ1

t

〉
.

Proof. Egorov’s theorem for the Weyl quantization on the torus states that

〈wh (t) , a〉 =
〈
wh (0) , a ◦ φt/h

〉
.
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In view of the expressions defining wΛ
h,R and wΛ,h,R we conclude that the same holds for

these distributions:
〈
wΛ

h,R (t) , a
〉
=
〈
wΛ

h,R (0) , a ◦ φ0
t/h

〉
, 〈wΛ,h,R (t) , a〉 =

〈
wΛ,h,R (0) , a ◦ φ0

t/h

〉
.

Since the Fourier coefficients of a only correspond to frequencies on Λ we have

a

(
φt/h (x, ξ) ,

PΛ (ξ)

h

)
= a

(
x+ t

PΛ (ξ)

h
, ξ,

PΛ (ξ)

h

)
= a

(
φ1
t

(
x, ξ,

PΛ (ξ)

h

))
,

and the result follows. �

The structure of the accumulation points µ̃Λ (t, ·) and µ̃Λ (t, ·) is described in the next
two results.

Theorem 11. (i) For a.e. t ∈ R, µ̃Λ (t, ·) and µ̃Λ (t, ·) are distributions supported on
T ∗Td × 〈Λ〉; in addition, µ̃Λ (t, ·) is a positive measure, which is zero-homogeneous in the
variable η ∈ 〈Λ〉. The projection of µ̃Λ (t, ·) on T ∗Td is a positive measure.

(ii) Let

µΛ (t, ·) :=
∫

〈Λ〉

µ̃Λ (t, ·, dη)⌉Td×RΛ
, µΛ (t, ·) :=

∫

〈Λ〉

µ̃Λ (t, ·, dη)⌉Td×RΛ
.

Then both µΛ (t, ·) and µΛ (t, ·) are positive measures on T ∗Td, invariant by the geodesic
flow, and satisfy:

(11) µ (t, ·)⌉Td×RΛ
= µΛ (t, ·) + µΛ (t, ·) .

Note that identity (11) is a consequence of the decomposition property expressed in
Remark 9.

The following is the key step of our proof, it says that both µΛ and µΛ have some extra
regularity in the variable x, for two different reasons :

Theorem 12. (i) For a.e. t ∈ R, the measure µΛ (t, ·) is concentrated on Td ×Λ⊥ and its
projection on Td is absolutely continuous with respect to the Lebesgue measure.

(ii) For a.e. t ∈ R, the measure µ̃Λ (t, ·) satisfies the invariance properties:

(12)
(
φ0
s

)
∗
µ̃Λ (t, ·) = µ̃Λ (t, ·) ,

(
φ1
s

)
∗
µ̃Λ (t, ·) = µ̃Λ (t, ·) , s ∈ R.

Remark 13. If rkΛ = 1 then 〈Λ〉 = 〈Λ〉 ∩ Ω1. Therefore, (12) and Lemma 7 imply that,
for a.e. t ∈ R, the measure µ̃Λ (t, ·) satisfies for every v ∈ Λ:

(13) (τ vs )∗ µ̃
Λ (t, ·)⌉Td×RΛ×〈Λ〉 = µ̃Λ (t, ·)⌉Td×RΛ×〈Λ〉, s ∈ R.

On the other hand, the invariance by the geodesic flow implies that (13) also holds for every
v ∈ Λ⊥. Therefore, we conclude that µ̃Λ (t, ·)⌉Td×RΛ×〈Λ〉 is constant in x ∈ Td in this case.

Remark 14. Theorems 11 (ii), and 12 (i), together with Lemma 5 imply that, for a.e.
t ∈ R, we have a decomposition:

µ (t, ·) =
∑

Λ∈L

µΛ (t, ·) +
∑

Λ∈L

µΛ (t, ·) ,
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where the second term in the above sum defines a positive measure whose projection on Td

is absolutely continuous with respect to the Lebesgue measure.

The rest of this section is devoted to the proofs of Theorem 11 (i) and Theorem 12.

3.1. Computation and structure of µ̃Λ. The map

πΛ : TΛ⊥ × TΛ → T
d : (s, y) 7→ s+ y

is a smooth Riemannian covering; π̃Λ will denote its extension to the cotangent bundles
T ∗TΛ⊥ × T ∗TΛ → T ∗Td. Let us denote by χΛ : Λ⊥ × 〈Λ〉 → Rd the lift of πΛ to the
universal cover and by χ̃Λ : T ∗Λ⊥ × T ∗ 〈Λ〉 → T ∗Rd the induced canonical transformation.
There is a linear isomorphism TΛ : L2

loc

(
Rd
)
→ L2

loc

(
Λ⊥ × 〈Λ〉

)
given by TΛu := u ◦ χΛ.

Note that TΛ maps L2
(
Td
)
into L2 (TΛ⊥ × TΛ) = L2 (TΛ⊥;L2 (TΛ)); in other words, for

any u ∈ L2
(
T
d
)
, the function TΛu = u ◦ πΛ is a well-defined element of L2 (TΛ⊥;L2 (TΛ)).

If the non-vanishing Fourier modes of u correspond only to frequencies k ∈ Λ, then

(14) TΛu (s, y) = u (y) for every s ∈ TΛ⊥ .

Since χ̃Λ is linear, the following holds for any a ∈ C∞
(
T ∗

R
d
)
:

TΛ Oph (a) = Oph (a ◦ χ̃Λ) TΛ.

Denote by OpΛ⊥

h and OpΛ
h the Weyl quantization operators defined on smooth test functions

on T ∗Λ⊥×T ∗ 〈Λ〉 which act on the variables T ∗Λ⊥ and T ∗ 〈Λ〉 respectively, leaving the other
frozen. The composition OpΛ⊥

h OpΛ
h gives the whole Weyl quantization Oph on T ∗Λ⊥ ×

T ∗ 〈Λ〉. Now, if a ∈ C∞
c (S1

Λ) we have, in view of (14), that a ◦ π̃Λ does not depend on
s ∈ TΛ⊥ and therefore:

(15) TΛOph (a) = OpΛ
h (a ◦ π̃Λ (hDs, ·)) TΛ.

Note that for every σ ∈ Λ⊥, the operators OpΛ
h (a ◦ π̃Λ (σ, ·)) map L2 (TΛ) into itself. Denote

by ∆Λ the Laplacian on TΛ. We shall use the following version of Egorov’s theorem adapted
to our setting.

Lemma 15. Let a ∈ S1
Λ; define

bh (t, x, ξ) := a ◦ φ1
t

(
x, ξ,

PΛ (ξ)

h

)
,

and ahΛ ∈ C∞
c

(
Λ⊥ × T ∗

TΛ

)
by

ahΛ (σ, y, η) := a (π̃Λ (σ, y, hη) , η) , (y, η) ∈ T ∗
TΛ, σ ∈ Λ⊥.

Then we have

Oph (bh (t, ·)) = T ∗
Λe

−it∆Λ/2 OpΛ
1

(
ahΛ (hDs, ·)

)
eit∆Λ/2TΛ.

Proof. Identity (15) applied to bh (t, ·) gives:
Oph (bh (t, ·)) = T ∗

Λ OpΛ
h (bh (t, π̃Λ (hDs, ·)))TΛ

= T ∗
Λ OpΛ

1 (a (π̃Λ (hDs, y + tη, hη) , η))TΛ.
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Egorov’s theorem for the Weyl quantization OpΛ
h gives, for every σ ∈ Λ⊥,

OpΛ
1 (a (π̃Λ (σ, y + tη, hη) , η)) = e−it∆Λ/2OpΛ

1

(
ahΛ (σ, ·)

)
eit∆Λ/2,

and the result follows. �

This, combined with Lemma 10 gives the following.

Lemma 16. With the preceding notations, and setting aR (x, ξ, η) := χ (η/R) a (x, ξ, η),
we have:

〈wΛ,h,R (t) , a〉 = 1

pΛ

〈
TΛuh, e

−it∆Λ/2OpΛ
1

(
ahR,Λ (hDs, ·)

)
eit∆Λ/2TΛuh

〉
L2(TΛ⊥ ;L2(TΛ))

,

where pΛ ∈ N is the degree of πΛ.

Remark 17. Note that for every R > 0, t ∈ R and σ ∈ Λ⊥, the operator

e−it∆Λ/2OpΛ
1

(
ahR,Λ (σ, ·)

)
eit∆Λ/2

is compact on L2 (TΛ).

Given a Hilbert space H , denote respectively by K (H) and L1 (H) the spaces of compact
and trace class operators on H . A measure on a polish space T , taking values in L1 (H),
is a bounded linear functional ρ from Cc (T ) to L1 (H); ρ is said to be positive if, for every
nonnegative b ∈ Cc (T ), ρ (b) is a positive hermitian operator. The set of such measures
is denoted by M+ (T ;L1 (H)); they can be identified in a natural way to positive linear
functionals on Cc (T ;K (H)). Background and further details on operator-valued measures
may be found for instance in [6].

In view of Lemma 16 and Remark 17, it turns out that the limiting object relevant in
the computation of µ̃Λ is the one presented in the next result.

Lemma 18. The functional nΛ
h that associates to K ∈ Cc

(
Λ⊥;K (L2 (TΛ))

)
the value

nΛ
h (K) :=

1

pΛ
〈TΛuh, K (hDs) TΛuh〉L2(TΛ⊥ ;L2(TΛ))

is a positive measure on Λ⊥ taking values on the set of trace-class operators L1 (L2 (TΛ)).
If (uh) is bounded in L2

(
T
d
)
then the measures

(
nΛ
h

)
are uniformly bounded.

Proof. We have the following bound:
∣∣nΛ

h (K)
∣∣ ≤ 1

pΛ
‖TΛuh‖2L2(TΛ⊥ ;L2(TΛ)) sup

σ∈Λ⊥

‖K (σ)‖L(L2(TΛ))

= ‖uh‖2L2(Td) sup
σ∈Λ⊥

‖K (σ)‖L(L2(TΛ))
,

that ensures that nΛ
h are uniformly bounded functionals on Cc

(
Λ⊥;K (L2 (TΛ))

)
. Moreover,

the measures nΛ
h are positive in the sense that if K (σ) is a positive operator for every

σ ∈ Λ⊥, then nΛ
h (K) ≥ 0. �

Combining everything we have done so far we obtain:
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Lemma 19. Let ρ̃Λ ∈ M+

(
Λ⊥;L1 (L2 (TΛ))

)
be a weak-∗ limit of

(
nΛ
h

)
. Let µ̃Λ be defined

by (10). Then, for every a ∈ S1
Λ and a.e. t ∈ R we have:

∫

Td×Λ⊥×〈Λ〉

a (x, ξ, η) µ̃Λ (t, dx, dξ, dη) = Tr

(∫

Λ⊥

e−it∆Λ/2OpΛ
1

(
a0Λ (σ, ·)

)
e
it∆Λ/2
Λ ρ̃Λ (dσ)

)
.

Remark 20. If a ∈ S1
Λ does not depend on η ∈ Rd then the above identity can be rewritten

as:
∫

Td×Λ⊥×〈Λ〉

a (x, ξ) µ̃Λ (t, dx, dξ, dη) = Tr

(
e−it∆Λ/2

∫

Λ⊥

ma (σ) e
it∆Λ/2ρ̃Λ (dσ)

)
,

where for σ ∈ Λ⊥, ma (σ) denotes the operator of multiplication by a (·, σ) in L2 (TΛ).

¿From this identity it follows that the projection of µ̃Λ on Td acts on a function b ∈ C
(
Td
)

as:

(16)

∫

Td×Λ⊥×〈Λ〉

b (x) µ̃Λ (t, dx, dξ, dη) = Tr (mb◦πΛ
ρΛ (t)) ,

where

i∂tρΛ (t) =
1

2
[−∆Λ, ρΛ (t)] , ρΛ (0) =

∫

Λ⊥

ρ̃Λ (dσ) .

In particular, identity (16) shows that the projection of µ̃Λ on Td can be extended to a
linear functional on L∞

(
Td
)
; and in particular, it is absolutely continuous with respect to

the Lebesgue measure (see Proposition 15 in [9] for a general result in this direction).

3.2. Computation and structure of µ̃Λ. The positivity of µ̃Λ (t, ·) can be deduced
following the lines of [5] §2.1, or those of the proof of Theorem 1 in [6]; the idea is re-
called in Corollary 27 in the appendix. Given a ∈ S1

Λ there exists R0 > 0 and ahom ∈
C∞

c

(
T ∗Td × Sd−1

)
such that

a (x, ξ, η) = ahom

(
x, ξ,

η

|η|

)
, for |η| ≥ R0.

Clearly, for R large enough, the value 〈wΛ,h,R (t) , a〉 only depends on ahom. Therefore, the
limiting distribution µ̃Λ (t, ·) is zero-homogeneous in the last variable η ∈ R

d. Since each of
the wΛ,h,R (t) is concentrated on T ∗Td×〈Λ〉 so is µ̃Λ (t, ·). Let us now check the invariance
property (12). Recall that, by Lemma 10 we have

〈
wΛ

h,R (t) , a
〉
=
〈
wΛ

h,R (0) , aR ◦ φ1
t

〉

with

aR (x, ξ, η) :=
(
1− χ

( η
R

))
a (x, ξ, η) .

Writing η = rω with r > 0 and ω ∈ Sd−1 we find, for R large enough:

aR ◦ φ1
t (x, ξ, η) =

(
1− χ

( r

R
ω
))

ahom (x,+trω, ξ, ω) .
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Therefore, since aR ◦ φ1
t vanishes near r = 0,

1

r
∂ta

R ◦ φ1
t − ω · ∇xa

R ◦ φ1
t = 0,

in other words, for ϕ differentiable we have:

−
∫

R

ϕ′ (t)

〈
1

|η|w
Λ
h,R (t) , a

〉
dt+

∫

R

ϕ (t)
〈
ω · ∇xw

Λ
h,R (t) , ahom

〉
= 0

which gives, letting h → 0+ and R → ∞,

ω · ∇xµ̃
Λ = 0.

This is equivalent to (12).

4. Successive second microlocalizations corresponding to a sequence of
lattices

Let us summarize what we have done in the previous section. The semiclassical measure
µ(t, .) has been decomposed as a sum

µ(t, .) =
∑

Λ

µΛ(t, .) +
∑

Λ

µΛ(t, .),

where Λ runs over the set of primitive submodules of Zd, and where

µΛ(t, .) =

∫

Rd

µ̃Λ(t, ., dη)⌉Td×RΛ
, µΛ(t, .) =

∫

Rd

µ̃Λ(t, ., dη)⌉Td×RΛ
.

The distributions µ̃Λ and µ̃Λ have the following properties :

• µ̃Λ(t, dx, dξ, dη) is in L∞
(
R,D′

(
T ∗Td × Rd

))
and all its x-Fourier modes are in Λ;

•
∫
Rd µ̃

Λ(t, ., dη) is in L∞(R,M+(T
∗Td));

• with respect to the variable η, µ̃Λ(t, dx, dξ, dη) is supported on {η ∈ 〈Λ〉};
•
∫
Rd×Rd µ̃Λ(t, ., dξ, dη) is an absolutely continuous measure on Td. In fact, with the
notations of Section 3, we have

∫
b(x)µ̃Λ(t, dx, dξ, dη) = Tr

(
mb◦πΛ

∫

Λ⊥

eit∆Λ/2ρ̃Λ (dr) e
−it∆Λ/2

)

if all the Fourier modes of b are in Λ, and where mb◦πΛ
is the multiplication operator

by b ◦ πΛ, acting on L2(TΛ).

On the other hand,

• for a ∈ S1
Λ, 〈µ̃Λ(t, dx, dξ, dη), a(x, ξ, η)〉 is obtained as the limit of

〈
wΛ

h,R (t) , a
〉
:=

∫

T ∗Td

(
1− χ

(
PΛ (ξ)

Rh

))
a

(
x, ξ,

PΛ (ξ)

h

)
wh (t) (dx, dξ) ,

where the weak limit holds in L∞(R,S1′

Λ ), as h −→ 0 then R −→ +∞ (along a
subsequence);
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• µ̃Λ(t, dx, dξ, dη) is in L∞(R,M+(T
∗Td ×Rd)) and all its x-Fourier modes are in Λ;

• with respect to the variable η, the measure µ̃Λ(t, dx, dξ, dη) is 0-homogeneous, and
it is supported on {η ∈ 〈Λ〉};

• µ̃Λ is invariant by the two flows, φ0
s : (x, ξ, η) 7→ (x+ sξ, ξ, η), and φ1

s : (x, ξ, η) 7→
(x+ sη, ξ, η).

This can be considered as the first step of an induction procedure, the k-th step of which
will read as follows :

Step k of the induction : At step k, we have decomposed µ(t, .) as a sum

µ(t, .) =
∑

1≤l≤k

∑

Λ1⊃Λ2⊃...⊃Λl

µ
Λ1Λ2...Λl−1

Λl
(t, .) +

∑

Λ1⊃Λ2⊃...⊃Λk

µΛ1Λ2...Λk(t, .),

where the sums run over the strictly decreasing sequences of primitive submodules of Zd

(of lengths l ≤ k in the first term, of length k in the second term). We have

µ
Λ1Λ2...Λl−1

Λl
(t, .) =

∫

RΛ2
(Λ1)×...×RΛl

(Λl−1)×Rd

µ̃
Λ1Λ2...Λl−1

Λl
(t, ., dη1, . . . , dηl)⌉Td×RΛ1

,

µΛ1Λ2...Λk(t, .) =

∫

RΛ2
(Λ1)×...×RΛk

(Λk−1)×Rd

µ̃Λ1Λ2...Λk(t, ., dη1, . . . , dηk)⌉Td×RΛ1
,

where we denoted RΛ(Λ
′) := Λ′⊥∩〈Λ′〉∩Ωrk Λ′−rkΛ, for Λ ⊂ Λ′. The distributions µ̃

Λ1Λ2...Λl−1

Λl

and µ̃Λ1Λ2...Λk have the following properties :

• µ̃
Λ1Λ2...Λl−1

Λl
is in L∞

(
R,D′

(
T ∗Td × (Rd)l

))
and all its x-Fourier modes are in Λl;

•
∫
Rd µ̃

Λ1Λ2...Λl−1

Λl
(t, ., dηl) is in L∞(R,M+(T

∗Td × (Rd)l−1));

• with respect to the variables η1, . . . , ηl, µ̃Λ(t, .) is supported on {η1 ∈ 〈Λ1〉,..., ηl ∈
〈Λl〉}; besides, it is 0-homogeneous in each variable η1, . . . , ηl−1;

•
∫
(Rd)l+1 µ̃

Λ1Λ2...Λl−1

Λl
(t, ., dξ, dη1, . . . , dηl) is an absolutely continuous measure on Td.

In fact, for b ∈ C(Td), it admits the expression
∫

b(x)µ̃
Λ1Λ2...Λl−1

Λl
(t, dx, dξ, dη1, . . . , dηl)

= Tr

(
mb◦πΛl

.

∫
eit∆Λl

/2ρ̃
Λ1Λ2...Λl−1

Λl
(dξ, dη1, . . . , dηl−1) e

−it∆Λl
/2

)
,

where ρ̃
Λ1Λ2...Λl−1

Λl
is a positive measure on Λ⊥

l × (〈Λ1〉 ∩ Λ⊥
l )× . . .× (〈Λl−1〉 ∩ Λ⊥

l ),

taking values in L1(L2(TΛl
)). This expression holds if b has only Fourier modes in

Λl, and mb◦πΛl
denotes the multiplication operator by b ◦ πΛl

, acting on L2(TΛl
).

In addition, let us denote by Sk
Λk

the class of smooth functions a(x, ξ, η1, . . . , ηk) on

T ∗Td × (Rd)k that are (i) smooth and compactly supported in (x, ξ) ∈ T ∗Td; (ii) homoge-
neous of degree 0 at infinity in each variable η1, . . . , ηk; (iii) such that their non-vanishing
x-Fourier coefficients correspond to frequencies in Λk.
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• For a ∈ Sk
Λk
, 〈µ̃Λ1Λ2...Λk(t, dx, dξ, dη1, . . . , dηk), a(x, ξ, η1, . . . , ηk)〉 is obtained as the

limit of
〈
wh(t, dx, dξ), a

(
x, ξ,

PΛ1
ξ

h
, · · · , PΛk

ξ

h

)(
1− χ

(
PΛ1

ξ

R1h

))
. . .

(
1− χ

(
PΛk

ξ

Rkh

))〉
.

The weak limit holds in L∞(R,Sk′

Λk
), as h −→ 0 then Rk −→ +∞,..., R1 −→ +∞

(along subsequences);

• µ̃Λ1Λ2...Λk is in L∞(R,M+(T
∗
T
d × (Rd)k)) and all its x-Fourier modes are in Λk;

• with respect to the variables η1, . . . , ηk, µ̃Λ(t, .) is supported on {η1 ∈ 〈Λ1〉, ..., ηk ∈
〈Λk〉}; besides, it is 0-homogeneous in each variable η1, . . . , ηk;

• µ̃Λ1Λ2...Λk is invariant by the k + 1 flows, φ0
s : (x, ξ, η) 7→ (x+ sξ, ξ, η1, . . . , ηk), and

φj
s : (x, ξ, η1, . . . , ηk) 7→ (x+ sηj , ξ, η1, . . . , ηk) (where j = 1, . . . , k).

We now indicate how to go from step k to step k + 1. The proofs are iden-
tical to those of Sections 2 and 3, and details will be omitted. Of course, the term∑

1≤l≤k

∑
Λ1⊃Λ2⊃...⊃Λl

µ
Λ1Λ2...Λl−1

Λl
remains untouched after step k. To decompose further

the term
∑

Λ1⊃Λ2⊃...⊃Λk
µΛ1Λ2...Λk , we proceed as follows. Using the positivity of µ̃Λ1Λ2...Λk ,

we use the procedure described in Section 2 to write

µ̃Λ1Λ2...Λk =
∑

Λk+1⊂Λk

µ̃Λ1Λ2...Λk⌉ηk∈RΛk+1
(Λk),

where the sum runs over all primitive submodules Λk+1 of Λk. Moreover, by the proof
of Lemma 7, all the x-Fourier modes of µ̃Λ1Λ2...Λk⌉ηk∈RΛk+1

(Λk) are in Λk+1. To generalize

the analysis of Section 3, we only need to consider test functions a ∈ Sk+1
Λk+1

. For such a
function a, we let

〈
w

Λ1Λ2...Λk+1

h,R1,...,Rk
(t) , a

〉

:=

∫

T ∗Td

(
1− χ

(
PΛ1

(ξ)

R1h

))
. . .

(
1− χ

(
PΛk

(ξ)

Rkh

))(
1− χ

(
PΛk+1

(ξ)

Rk+1h

))

a

(
x, ξ,

PΛ1
(ξ)

h
, · · · , PΛk+1

(ξ)

h

)
wh (t) (dx, dξ) ,

and
〈
wΛ1Λ2...Λk

Λk+1,h,R1,...,Rk
(t) , a

〉

:=

∫

T ∗Td

(
1− χ

(
PΛ1

(ξ)

R1h

))
. . .

(
1− χ

(
PΛk

(ξ)

Rkh

))
χ

(
PΛk+1

(ξ)

Rk+1h

)

a

(
x, ξ,

PΛ1
(ξ)

h
, · · · , PΛk+1

(ξ)

h

)
wh (t) (dx, dξ) .
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By the Calderón-Vaillancourt theorem, both wΛ1Λ2...Λk
Λk+1,h,R1,...,Rk

and w
Λ1Λ2...Λk+1

h,R1,...,Rk
are bounded in

L∞(R, (Sk+1
Λk+1

)′). After possibly extracting subsequences, we can take the following limits :

lim
R1−→+∞

· · · lim
Rk+1−→+∞

lim
h−→0

〈
w

Λ1Λ2...Λk+1

h,R1,...,Rk
(t) , a

〉
=:
〈
µ̃Λ1Λ2...Λk+1, a

〉
,

and

lim
R1−→+∞

· · · lim
Rk+1−→+∞

lim
h−→0

〈
wΛ1Λ2...Λk

Λk+1,h,R1,...,Rk
(t) , a

〉
=:
〈
µ̃Λ1Λ2...Λk
Λk+1

, a
〉
.

The following is a direct generalization of Theorem 11 :

Theorem 21. (i) For a.e. t ∈ R, µ̃Λ1Λ2...Λk
Λk+1

(t, .) and µ̃Λ1Λ2...Λk+1 (t, ·) are distributions

supported on T ∗
T
d × 〈Λ1〉 × . . . × 〈Λk+1〉; in addition, µ̃Λ1Λ2...Λk+1 (t, ·) is a positive mea-

sure, zero-homogeneous in the variables η1 ∈ 〈Λ1〉 , . . . , ηk+1 ∈ 〈Λk+1〉. The projection of
µ̃Λ1Λ2...Λk
Λk+1

(t, ·) on T ∗Td×〈Λ1〉×. . .×〈Λk〉 is positive, and zero-homogeneous in the variables

η1 ∈ 〈Λ1〉 , . . . , ηk ∈ 〈Λk〉.
(ii) Let

µΛ1Λ2...Λk
Λk+1

(t, .) =

∫

RΛ2
(Λ1)×...×RΛk+1

(Λk)×Rd

µ̃Λ1Λ2...Λk
Λk+1

(t, ., dη1, . . . , dηk + 1)⌉Td×RΛ1
,

µΛ1Λ2...Λk+1(t, .) =

∫

RΛ2
(Λ1)×...×RΛk+1

(Λk)×Rd

µ̃Λ1Λ2...Λk+1(t, ., dη1, . . . , dηk+1)⌉Td×RΛ1
.

Then both µΛ1Λ2...Λk
Λk+1

(t, .) and µΛ1Λ2...Λk+1(t, .) are positive measures on T ∗
T
d, invariant

by the geodesic flow, and satisfy:

(17) µΛ1Λ2...Λk⌉ηk∈RΛk+1
(Λk)(t, .) = µΛ1Λ2...Λk

Λk+1
(t, .) + µΛ1Λ2...Λk+1(t, .).

As a generalization of Theorem 12, we get :

Theorem 22. (i) For a.e. t ∈ R, the measure µ̃Λ1Λ2...Λk
Λk+1

(t, .) is concentrated on Td ×
Λ⊥

k+1 ×
(
Λ⊥

k+1 ∩ 〈Λ1〉
)
× . . .×

(
Λ⊥

k+1 ∩ 〈Λk〉
)
× 〈Λk+1〉 and its projection on T

d is absolutely
continuous with respect to the Lebesgue measure.

(ii) For a.e. t ∈ R, the measure µ̃Λ1Λ2...Λk+1 (t, ·) satisfies the invariance properties:
(
φj
s

)
∗
µ̃Λ1Λ2...Λk+1 (t, ·) = µ̃Λ1Λ2...Λk+1 (t, ·) ,

for j = 0, . . . , k + 1.

The absolute continuity in (i) is obtained by showing that

(18)

∫
b(x)µ̃Λ1Λ2...Λk

Λk+1
(t, dx, dξ, dη1, . . . , dηk+1)

= Tr

(
mb◦πΛk+1

.

∫
eit∆Λk+1

/2ρ̃Λ1Λ2...Λk
Λk+1

(dξ, dη1, . . . , dηk) e
−it∆Λk+1

/2

)
,

where ρ̃Λ1Λ2...Λk
Λk+1

is a positive measure on Λ⊥
k+1×

(
Λ⊥

k+1 ∩ 〈Λ1〉
)
× . . .×

(
Λ⊥

k+1 ∩ 〈Λk〉
)
, taking

values in L1(L2(TΛk+1
)).
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Remark 23. By construction, if Λk+1 = {0}, we have µ̃Λ1Λ2...Λk+1 = 0, and the induc-
tion stops. Similarly to Remark 13, one can also see that if rkΛk+1 = 1, the invariance
properties of µ̃Λ1Λ2...Λk+1 imply that it is constant in x.

End of proof of Theorem 4 : To end the proof of Theorem 4, we let

νΛ(t, ·) =
∑

0≤k≤d−1

∑

Λ1⊃Λ2⊃···⊃Λk⊃Λ

∫

Rd

µΛ1Λ2...Λk
Λ (t, ·, dξ),

where Λ1, . . . ,Λk run over the set of strictly decreasing sequences of submodules, such that
Λk ⊂ Λ. And we let

σΛ =
∑

0≤k≤d−1

∑

Λ1⊃Λ2⊃···⊃Λk⊃Λ

∫
ρ̃Λ1Λ2...Λk
Λ (dξ, dη1, . . . , dηk) ,

where the ρ̃Λ1Λ2...Λk
Λ are the operator-valued measures appearing in (18).

5. Appendix : pseudodifferential calculus

In the paper, we use the Weyl quantization with parameter h, that associates to a
function a on T ∗Rd = Rd × Rd an operator Oph(a), with kernel

Kh
a (x, y) =

1

(2πh)d

∫

Rd

a

(
x+ y

2
, ξ

)
e

i
h
ξ.(x−y)dξ.

If a is smooth and has uniformly bounded derivatives, then this defines a continuous
operator S(Rd) −→ S(Rd), and also S ′(Rd) −→ S ′(Rd). If a is (2πZ)d-periodic with respect
to the first variable (which is always the case in this paper), the operator preserves the space
of (2πZ)d-periodic distributions on Rd. We note the relation Oph(a(x, ξ)) = Op1(a(x, hξ)).

We use two standard results of pseudodifferential calculus.

Theorem 24. (The Calderón-Vaillancourt theorem)
There exists an integer Kd, and a constant Cd > 0 (depending on the dimension d) such

that, if a if a smooth function on T ∗Td, with uniformly bounded derivatives, then

‖Op1(a)‖L2(Td)−→L2(Td) ≤
∑

α∈N2d,|α|≤Kd

sup
T ∗Td

|∂αa|.

A proof in the case of L2(Rd) can be found in [2]. It can be adapted to the case of a
compact manifold by working locally, in coordinate charts.

We also recall the following formula for the product of two pseudodifferential operators
(see for instance [2], p. 79) : Op1(a) ◦Op1(b) = Op1(a♯b), where

a♯b(x, ξ) =
1

(2π)4d

∫

R4d

e
i
2
σ(u1,u2)(Faz)(u1)(Fbz)(u2)du1du2,

where we let z = (x, ξ) ∈ R2d, az is the function ω 7→ a(z + ω), and F is the Fourier
transform. We can deduce from this formula and from the Calderón-Vaillancourt theorem
the following estimate :
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Proposition 25. Let a and b be two smooth functions on T ∗Td, with uniformly bounded
derivatives.

‖Op1(a) ◦Op1(b)−Op1(ab)‖L2(Td)−→L2(Td) ≤ Cd

∑

α∈N2d,|α|≤Kd

sup
T ∗Td

|∂αD(a, b)|,

where we denote D(a, b) the function D(a, b)(x, ξ) = (∂x∂η − ∂y∂ξ) (a(x, ξ)b(y, η))⌉x=y,η=ξ.

We finally deduce the following corollary. We use the notations of Section 3.

Corollary 26. Let a ∈ C∞(Td × Rd) have uniformly bounded derivatives, and let χ ∈
C∞

c (Rd) be a nonnegative cut-off function. Let 0 < h < 1 and R > 1. Denote

aR(x, ξ) = a(x, ξ)χ

(
PΛξ

hR

)
.

Assume that a > 0, and denote bR =
√
aR, Then

‖Oph(aR)−Oph(bR)
2‖L2(Td)−→L2(Td) = O(h) +O(R−1)

in the limits h −→ 0 and R −→ +∞.

Corollary 27. Let a ∈ C∞(Td × Rd × Rd), 0-homogeneous in the third variable outside
a compact set, with uniformly bounded derivatives, and let χ ∈ C∞

c (Rd) be a nonnegative
cut-off function. Let 0 < h < 1 and R > 1. Denote

aR(x, ξ) = a

(
x, ξ,

PΛξ

h

)(
1− χ

(
PΛξ

hR

))
.

Assume that a > 0, and denote bR =
√
aR. Then

‖Oph(a
R)−Oph(b

R)2‖L2(Td)−→L2(Td) = O(R−1)

in the limits h −→ 0 and R −→ +∞.
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