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Abstract. In this paper, multigrid methods are tested on unilateral problems with friction. An 
optimal strategy is presented and efficiency of the solver is discussed on several examples.
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1 Introduction

Multigrid methods have been widely used in fluids mechanics when large numbers 
of degrees of freedom are involved. Usually the geometries are sufficiently simple 
to enable the generation of multiple overlapped meshes in an easy way (essentially 
in the context of finite difference methods). In nonlinear structure mechanics, the 
computational costs increase because of the treatment of nonlinearities and finite 
elements methods are dominant because of the complexity of the geometries. The 
present work investigates the ability of multigrid methods to reduce the computa-
tional times and analyzes the specific problems of formulation and implementation 
related to the treatment of nonlinearities in the context of finite element methods. 
This work is conducted on contact problems involving unilateral contact and fric-
tion between an elastic body and a rigid obstacle. The nonlinearities are stiff because 
the contact behavior laws are nonsmooth (the nonpenetration is characterized by the 
nonregularized Signorini conditions) and nondifferentiable because of the use of the 
nonregularized Coulomb law.

2 The Frictional Contact Problem

2.1 The Contact Model

Details of the formulation are to be found in [21, 29, 30]. Considering 2D problems, 
let � be an open bounded set of lR2, which is the interior of an elastic obstacle, with



a sufficiently smooth boundary � = �F ∪ �D ∪ �C , in contact with a rigid body.
The boundary �D (respectively �F ) is the part of � on which the displacements (re-
spectively the forces) are prescribed. Part �C is that on which the contact is possible
with the rigid obstacle. Let σ be the stress tensor, K the elasticity tensor, ε the strain
tensor and u the displacement.

• Unilateral contact conditions
On the contact boundary �C , the displacement u and the unknown contact force
F are written in local coordinates (n,t) where n denotes the outward normal unit
vector to �C :

σ.n = F on �C (1)

u = uN n + uT (2)

F = FN n + FT (3)

On �C , the unilateral conditions are written as follows where d denotes the initial
gap:

uN ≤ d (4)

FN ≤ 0 (5)

(uN − d).FN = 0 (6)

This is a Signorini problem. Neither regularization nor penalty are used.

• The Coulomb friction law
It is written as follows where µ denotes the friction coefficient:

‖FT ‖ ≤ µ|FN | with if ‖FT ‖ < µ|FN | then u̇T = 0 (7)

if ‖FT ‖ = µ|FN | then u̇T is colinear

and opposite to FT (8)

As presented in [6,29,30], by introducing an incremental formulation, it was es-
tablished that the problem to be solved at each step, is subsequently very similar
to the static one. In that case, the unknowns are the displacement increments and
there are extra terms both in the functional which has to be minimized and in the
convex characterizing the constraints. In this paper, we consider only the static
problem using the following displacement formulation for the friction ((9) and
(10)). Formulation and numerical algorithms can easily be extended to quasist-
atic evolutive problems [6, 29]. As for the unilateral contact, no regularization
(compliance) is used.

‖FT ‖ ≤ µ|FN | with if ‖FT ‖ < µ|FN | then uT = 0 (9)

if ‖FT ‖ = µ|FN | then uT is colinear

and opposite to FT (10)



2.2 Variational Formulation

The variational formulation of the Coulomb problem can be written as an implicit
variational inequality [8]. By introducing a fixed point problem P1 on the sliding
limit g [27, 29], the problem can be solved as a sequence of classical variational in-
equalities including nevertheless a nondifferentiable term. Because of the symmetry
of the elasticity mapping, these problems can be solved as minimization problems
under constraints (problem P2).

Problem P1: Find the sliding limit function G, fixed point of the application
g → µ|FN(ug)| where ug is solution to the problem P2 depending on g.

Problem P2: Let φ1 be the load applied in �, φ2 be the load applied to part �F of
the boundary, and g be given,

find ug ∈ lK = {v, v = 0 on �D and vN ≤ d on �C} such that:

J (ug) ≤ J (v) ∀ v ∈ lK (11)

with

J (v) = 1

2
a(v, v) − (f, v) + j (v) (12)

where: a(u, v) =
∫

�

gradsu K gradsv dx (13)

j (v) =
∫

�C

g‖vT ‖ dl (14)

(f, v) =
∫

�

φ1v dx +
∫

�F

φ2v dl (15)

3 Preconditioner for Mixed Formulation

In this section, we adopt the mixed formulation proposed in [1]. The problem is split
into two parts involving the pair x = (u, λ), where u denotes the displacement vector
and λ the contact nodal forces, say a differentiable part G and a nondifferentiable one
F :

G(x) + F(x) = 0 (16)

This last problem is solved using the Generalized Newton Method (GNM):

xi+1 = x1 − (Ki + Ji)
−1(G(xi) + F(xi)) (17)



where Ki = ∂G(xi) and Ji ∈ ∂F (xi). The tangent matrix A = Ki + Ji is nonsym-
metric (with zeros on the diagonal) and the previous linear system can be solved by
the Conjugate Gradient Squared Method (CGS) associated with the coarse/fine pre-
conditioner proposed in [2]. The basic idea of the preconditioner is to assume that
the tangent matrix A has been obtained through the refinement of a coarser mesh.
The matrix A is split into four parts (index c refers to coarse level and f to the fine
one):

A =
[

Aff Af c

Acf Acc

]
(18)

A block factorization of matrix A gives:

A =
[

Aff 0

Acf Acc − Acf A−1
ff Afc

][
I A−1

ff Afc

0 I

]
(19)

We postulate the following preconditioner:

C =
[

Aff 0

Acf A∗
cc

][
I A−1

ff Afc

0 I

]
(20)

where A∗
cc is the tangent matrix on the coarse grid. The coarse/fine preconditioner

requires to solve two sub-systems with the matrix Aff . It is possible to define an
approximated LDU factorization of this matrix associated to each contact status [2].
This preconditioner is very efficient because it is not necessary to find an optimal
parameter.

4 Formulation and Implementation of the Multigrid Method for
Contact Problems

Classically, in the linear case, the efficiency of multigrid methods can be explained
in terms of the spatial frequencies of the error between the solution and the iterates
when this error is written in the basis of the eigenvectors of the discretized mapping.
The smoothers (Gauss–Seidel method for example) are known to quickly reduce the
high frequencies of the error, but a large number of iterations is required to reduce
the low components. Multigrid methods increase the convergence on the low fre-
quencies of the error. They correct the solution obtained after only a few smoothings
on the fine grid (where the solution is needed) by a correcting error computed on a
coarse grid with the current defect of equilibrium. The sequence is then composed of
a few smoothings of the solution on the fine grid (large system) and of complete res-
olution to determine a correction error on a coarse grid (small system). Appropriate
interpolation and restriction have to be carried out between the grids.



With linear problems, the problem to be solved on the coarse grid is similar to the
initial one defined on the fine grid. With nonlinear problems, one of the difficulties
is to write an appropriate problem on the coarse grid, which is defined on the error
and associated with the defect of equilibrium computed on the fine grid and carried
onto the coarse one. Here, several alternatives arise. Section 4.2.1 is devoted to the
problem written on the error. In Section 4.2.2 different methods of carrying the non-
linearity information needed onto the coarse grid from the fine one are proposed and
tested.

4.1 Basic Solvers

4.1.1 The Discrete Problem

Finite element discretization of problems P1 and P2 gives the following problems P3
and P4 written in lR2Nh , where Nh is the number of fine mesh nodes. Let lKh ⊂ lR2Nh

be the cone defined by:

lKh = Kh,1 × Kh,2 × . . . × Kh,2Nh

Let Ih be the set of indexes of the equations relating to the normal components
of the contact nodes. Let Lh be the set of suffixes of the tangential components of
the nodes of �C .

Kh,i = ] − ∞, d ] if i ∈ Ih

Kh,i = lR otherwise

Problem P3: find the sliding limit Gh fixed point of the application
gh → µ|Fh,N(uh)| where uh is the solution to the problem P4 depending on
gh.

Problem P4: find uh ∈ lKh such that:

Jh(uh) ≤ Jh(vh) ∀ vh ∈ lKh (21)

where: Jh(vh) = 1

2
vT
h Ahvh − vT

h fh + |vh|T gh (22)

with

|vh|T = (|vh,1|, |vh,2|, . . . , |vh,2Nh |) (23)

|vh|T gh =
∑
i∈Lh

|vh,i |gh,i (24)

and

– Ah = (ah,ij ) is the matrix (2Nh × 2Nh) associated to the elasticity operator,



– fh = (fh,ij ) is the load vector,
– gh is the vector associated to the sliding limit g (gh ∈ lRcard(Lh)).

The discrete problem P4 on the fine grid has been derived from an appropriate
form of the approximation problem given in [23].

The problem P3 is solved using a fixed point algorithm (successive approxima-
tions). Starting with g0

h equal to zero (frictionless case), the solution to problem P4

gives the displacement u�
h and the contact force F�

h,N at each step � (F�
h,N is com-

puted directly from the defect of equilibrium Ahu
�
h−fh). We then define the iterative

process as g�+1
h = µ|F�

h,N |.

4.1.2 Gauss–Seidel Algorithm for the Contact

Problem P4, where the sliding limit g�
h is given by the fixed point method, is solved

by an internal multigrid process. The first step in the multigrid process is the smooth-
ing step for which a Gauss–Seidel method is often used. Here we consider a Cryer–
Christopherson method [7] adapted to deal with the nondifferential term due to fric-
tion [21,29,30]. It is a Successive Over-Relaxation method with Projection (SORP):

uk+1
h,i = PKh,i ((1 − ω)uk

h,i + ωm) (25)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m = 1

ah,ii

⎛
⎝fh,i −

i−1∑
j=1

ah,ij u
k+1
h,j −

2Nh∑
j=i+1

ah,ij u
k
h,j − sgn(m)g�

h,i

⎞
⎠

if m ∈ lR∗
m = 0 else

(26)
with g�

h,i = 0 if i 
∈ Lh. The second alternative of (26) occurs when there is no com-
patibility between the calculated m and its assumed sign, i.e., we obtain a negative
(or positive) value of m when its sign (denoted sgn(m)) was taken to be positive (or
negative).

PKh,i is the projection operator on Kh,i and ω is the relaxation coefficient
(ω ∈ [1, 2 [). Because of the lack of theoretical estimates, an optimal value of the re-
laxation coefficient can be only obtained through dichotomic research and this Over-
Relaxation method will be used only when the method acts as a solver on the coarse
grid. When the method acts as a smoother on the fine grid, ω is set equal to 1 and the
smoother is then the Symmetric Gauss–Seidel method with Projection (SGSP) [9].

4.1.3 Mathematical Programming Solver and Complementary Formulation

The frictional contact problem introduced in Section 2 can also be formulated, after
discretization, as a complementarity problem [5, 9, 16, 29, 30]).



Problem P5: let f be given, find the displacement u and the contact force F such
that: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗
huh = f ∗

h + Fh

for i ∈ Ih(normal components)⎧⎪⎨
⎪⎩

uh,i ≤ 0

Fh,i ≤ 0

uh,iFh,i = 0

for i ∈ Lh(tangential components)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uh,i = λ2 − λ1

Fh,i = 1
2 (ϕ1 − ϕ2)

λi ≤ 0

ϕi ≤ 0 i = 1, 2

λiϕi = 0

(27)

Problem P5 has been reduced to the contact variables by using a condensation pro-
cedure described in [29]. Matrix A∗

h is the full sized condensed stiffness matrix which
turns out to be nonsymmetric because of the friction, and f ∗

h is the condensed load-
ing force vector. The tangential contact displacement has been separated into positive
(forward) sliding λ1 and negative (backward) sliding λ2 relatively to the unit vector
t . This problem is known as a linear complementary problem, the general form of
which is written:

w − Mz = q (28)

w ≥ 0 (29)

z ≥ 0 (30)

wz = 0 (31)

We solve this problem by using the Lemke method which is a direct pivoting al-
gorithm. Details can be found in [5, 9, 16, 29].

4.2 The Two Grid Method

4.2.1 The Algorithm

We consider a fine mesh (with Nh nodes) and a coarse mesh (with NH nodes). We
consider the operator (prolongation) ph

H : lR2NH → lR2Nh and the operator (restric-
tion) pH

h : lR2Nh → lR2NH .
Starting with u0

h ∈ lKh, we define an iterative process:

uk
h → uk+1

h (32)



• Smoothing on the fine grid
We carry out ν smoothing iterates (two or three iterates) of the SGSPν procedure
(Symmetric Gauss–Seidel with Projection). We denote:

u
k+1/2
h = SGSPν

ω(uk
h, fh,Ah) (33)

We introduce the variable ek
h = uh − u

k+1/2
h , uh being the (unknown) exact

solution of problem P4. Now, in order to evaluate the correction, we have to
solve the new problem:

Problem P6: find ek
h (such that ek

h + u
k+1/2
h ∈ lKh) such that:

JC
h (ek

h) ≤ JC
h (wh) ∀ wh with wh + u

k+1/2
h ∈ lKh (34)

where

JC
h (wh) = 1

2
wT

h Ahwh − wT
h (fh − Ahu

k+1/2
h ) + |wh + u

k+1/2
h |T g�

h (35)

Problem P6 now has to be set on the coarse grid. Let rk
h = fh − Ahu

k+1/2
h and

rk
H = pH

h rk
h .

• Coarse grid correction
Three difficulties occur in treating the nonlinearities of contact problems with
friction:
– how to carry the nonpenetration condition from the fine onto the coarse grid,
– how to treat the absolute value on the coarse grid,
– how to transfer the sliding limit g�

h from the fine grid onto the coarse one?
These points will be discussed in Section 4.2.2.
We take Uk

H a vector chosen in lR2NH and we set:

lKC
H = KC

H,1 × KC
H,2 × . . . × KC

H,2NH

with {
KC

H,i = lR if i 
∈ IH

KC
H,i = ] − ∞, d − Uk

H,i ] if i ∈ IH

(36)

We define two vectors G�
H ∈ lRcard(LH) and VH ∈ lR2NH . As with classical

nonlinear multigrid methods, these vectors are chosen to approximate the values
on the coarse grid. A new problem (similar to eq. (35)) is written on the coarse
grid:

Problem P7: find ek
H ∈ lKC

H such that:



JC
H (ek

H ) ≤ JC
H (wH) ∀ wH ∈ lKC

H (37)

where JC
H (wH ) = 1

2wT
HAHwH − wT

H rH + |wH + V k
H |T G�

H .
How to choose Uk

H , V k
H and G�

H will be discussed in Section 4.2.2.
Problem P7 involving the error ek

H has to be solved (the loads are replaced by
the defect rk

H in the second member). With linear problems, it is natural to use
a direct method (Cholesky). With contact problems, the SORP method or the
Lemke method (linear programming method) will be used. When the Lemke
method is used, P7 must be changed into a complementary problem (Pb

7 ) similar
to P5 [9, 29]. The solution eH is interpolated onto the fine grid:

ek
h = pH

h ek
H (38)

The previous solution u
k+1/2
h is corrected (we must ensure that uk+1

h stays within
the convex lKh):

uk+1
h = PlKh

(u
k+1/2
h + ek

h) (39)

and we return to Equation (33) until a given degree of precision is achieved.

• Prolongation and restriction operators
The prolongation ph

H is a linear interpolation. Consistence of the formulation
is insured by choosing ph

H = (pH
h )T . With three-node triangles when each

element is divided into four triangles, we have

rk
H (x) = pH

h rk
h(x) = rk

h(x) + 1

2

∑
y∈Cx

rk
h(y).

Cx is the set of nodes connected to x [20].

• The initial condition (full multigrid)
The two grid process will be initiated by solving first the problem on the coarse
grid (problem P4) and then using the prolongation of this solution u0

H on the
fine grid as the initial condition u0

h = ph
H u0

H to start the first smoothings. This
is known as the full multigrid method. Numerical tests have confirmed that the
choice of the full multigrid method turns out to be essential for our problem, as
generally observed for nonlinear problems [9, 19].

4.2.2 Transfer of the Nonlinearities

• Convex definition
The nonpenetration condition is satisfied by the condition that the solution must
be within the convex lKk

H in problem P5. On the coarse grid, the convex lKk
H ,

associated with the error ek
H depends on the solution after the smoothing: it is



characterized by the condition (Uk
H + ek

H )N ≤ d on �C . Therefore Uk
H , which is

not needed in linear classical case, has to be evaluated on the coarse grid. There
exist various means of evaluating Uk

H from the computed solution u
k+1/2
h on the

fine grid. Four of them are considered here:
(a) Uk

H = qH
h u

k+1/2
h where qH

h is a restriction. We can use:

– the canonic injection Uk
H = u

k+1/2
h ,

– the standard operator defined in Section 4.2.1, Uk
H = 1

2pH
h u

k+1/2
h . Op-

erator pH
h has been defined for the forces: it is used here on the displace-

ments, where a coefficient 1/2 has to be introduced,
– a more sophisticate operator which involves five nodes of the fine grid.

(b) Uk
H is defined as the largest normal displacement through the node un-

der consideration and its two neighbors: Uk
H (x) = u

k+1/2
h (z) with z =

−argmax {uk+1/2
h (y), y ∈ Cx}. This is a procedure developed by Mandel

[25]. It is a very good choice because it ensures that u
k+1/2
h + eh stays within

the convex. This is convenient for theoretical reasons.
(c) Uk

H = u0
H where u0

H is the solution initially computed on the coarse grid for
the full multigrid initialization defined in Section 4.3. This is derived from
the Hackbusch [10] choice for nonlinear problems.

(d) Uk
H = Uk−1

H +ek−1
H (with the initial condition U1

H = u0
H ). This is a variant of

(c), where the computed correction ek
H is applied at each iteration (Hackbusch

with updating).
The cases (c) and (d) need the use of the nested iteration or the full multigrid
method [10]. The advantage of the full multigrid method is that it provides a
good starting solution at each level. The algorithm begins at the coarsest level.

• The undifferentiable term
The problem of the absolute value is very important from the mathematical point
of view, and the term j(v) is undifferentiable. The term |eH + V k

H | depends on
the choice of vector V k

H . An approximation of the displacement is needed on the
coarse grid. Various choices of V k

H are given in [19].

(a) V k
H = qH

h u
k+1/2
h where qH

h is a restriction. We can use:

– the standard injection V k
H = 1

2pH
h u

k+1/2
h (tangential components),

– the canonic injection.
(b) the Hackbusch choice: V k

H = u0
H where u0

H is the solution initially com-
puted on the coarse grid for the full multigrid initialization. The use of a full
multigrid is necessary in that case.

(c) the Hackbusch with updating: V k
H = V k−1

H + ek−1
H (with the initial condition

V 1
H = u0

H ).
• The sliding limit

G�
H is an approximation of the sliding limit on the coarse grid. Two cases are

proposed:



Fig. 1. Plate in contact with two rigid bodies.

(a) the restriction of the fine sliding limit at each multigrid iteration,
(b) the initial value G0

H computed with the initial resolution on the coarse grid
of the full multigrid method.

4.3 Multigrid Method

With very large sized problems, introducing several levels of grids can keep the
coarse problem small sized. This is of course important because total resolutions
are conducted on the coarse grid. It is easy to generalize the previous algorithm to a
MultiGrid Method (MGM) and to implement either V-cycle or W-cycle.

5 Optimal Strategy: Tests on the Various Alternatives

The multigrid methods have been developed in our own finite element code EU-
XENE which is a specific version of GYPTIS dedicated to the contact problems at
the LMA [18].

The optimal strategy for dealing with the nonlinearities is discussed in the case
of a plate which is part of a pressure vessel used in nuclear engineering [21] (see
Figure 1). This is an axisymmetrical problem. The structure is in contact with two
rigid solids on an oblique zone (30◦) and on a horizontal zone. The plate is squeezed
between the two rigid obstacles by prescribing a vertical displacement (0.05 mm) of
the lower one. Primary and secondary pressures are applied on the two sides of the
plate. The numerical tests have been conducted by using five meshes, with 51617
nodes for the finest one and 227 nodes for the coarsest one. Of course, the solu-
tion is always computed on the finest one. The meshes are unstructured with local
refinements in the contact zone (194 contact nodes on the finest mesh).



Numerical tests have been conducted on this example in order to compare the
various alternatives presented in Section 4 for the implementation of multigrid meth-
ods for that nonlinear problem. The main results are given and details of the numer-
ical results could be found in [17].

5.1 Convex Definition

In this case, the tests are conducted on a frictionless case. The different possible
choices for the convex definition turn out to be equivalent. For mathematical reasons,
the Mandel process is suitable. This is confirmed by other numerical results obtained
on other examples. The Mandel procedure will be used in the computations.

5.2 The Undifferentiable Term

The same example is now treated with friction. The convex is defined as chosen in
the previous paragraph. We test the various ways of choosing V k

H in (P7) as described
in Section 4.2.2.

In this case, results have shown that the use of informations from the fine grid can
be very unsatisfactory when three grids are implemented. The canonic and standard
injection should be avoided. The computations are conducted with 3 pre-smoothings,
2 post-smoothings and by using V-cycle. The “Hackbusch” procedure is always effi-
cient and will be chosen in what follows.

5.3 The Sliding Limit

We tested the two alternatives given in Section 4.2.2 for G�
H in (P7). The computa-

tions are conducted with 3 pre-smoothings and 2 post-smoothings. The results have
shown that the Coulomb’s condition |FT | = µ|FN | is verified with a good accuracy
when the “restriction” is used to define the sliding threshold Gl

H . When the “initial
value” is used, the accuracy varies from 5 to 10%. The choice for the coarse sliding
limit is therefore the restriction of the fine sliding limit.

5.4 Number of Smoothings

Taking the same example, we study the effects of the number of pre- and post-
smoothings on the convergence. The results have shown that it is convenient to per-
form both a few pre-smoothings and a few post-smoothings. We will choose in the
following 3 pre-smoothings and 2 post-smoothings which turned out to be conveni-
ent choices in the numerical tests.



Table 1. Direct and multigrid resolution for two meshes of the plate with two contact zones
(Lemke solver).

Number of d.o.f Direct method 2-grid method
CPU Iterates Smoothings CPU

26018 1′43′′ 6 33 15.7′′
103234 28′00′′ 6 33 2′16′′

5.5 Type of Multigrid Cycle

Taking the three grid example, we have compared the results using V-cycle and W-
cycle on the same example of contact with friction. The W-cycle turns out to be
slightly better than the V-cycle when considering the number of resolutions on the
coarse grid (number of 3-grid iterates) and the total number of smoothings. In the
following W-cycles are used for the case 3-grid or more.

5.6 Number of Grids

The number of grids is of course an important parameter. A large number of grids
is time and memory size consuming. The tests have shown that in the case of large
number of degrees of freedom (very fine mesh) the choice 3 or 4 grids is efficient.
For smaller sized problems 2 grids will be sufficient.

6 Global Efficiency of the Multigrid Method on a Contact
Problem

The efficiency of the method is presented here by comparing the multigrid method
to the direct resolution on two examples (other ones could be found in [17]. The
example is still that of the axisymmetrical plate in contact with two rigid obstacles
(see Figure 1). Results for 26018 and 103234 d.o.f. meshes are given in Table 1.
The Lemke solver is used both for the direct resolution and for the resolutions on
the coarse grids. The multigrid method divides the total CPU time by 8 to 10. In
Figure 2, we have plotted the evolution of the CPU time relative to the number of
degrees of freedom.

It has to be noted first that control of the efficiency of the multigrid methods for
that nonlinear problem was not as simple as for the linear case, because among other
features it depends on the contact status. So only general and qualitative comments
can be given.

It is interesting to note that in nonlinear structure mechanics such as the present
frictional contact analysis, the multigrid method was found to be efficient, even with
medium sized discretization instead that for linear problems they are proved to be
efficient only for very large sized problems. In the case of a plate with 13009 nodes,



Fig. 2. CPU time versus the number of degrees of freedom for the vessel pressure plate.

the total CPU time was already divided by 8 (Table 1) when the Lemke solver is
used.

Figure 2 shows that the rate of convergence does not seem to be strongly modified
by the nonlinearity of the problem. In our case no theoretical results exist. In Figure 2,
the rate of convergence for the two grid method is quasi linear.

We would like to make some comments on the influence of the computer pro-
cessor properties on the multigrid efficiency. When we implemented first the mul-
tigrid methods, we have tested them on a Dec Alpha processor and also on a CISC
processor. Of course, the CPU times are drastically reduced by using the very power-
ful new processors, but it turned out that multigrid methods were more efficient with
the CISC processor than with the recent ones when the multigrid resolution is com-
pared with the direct one. It should be noted that the new generation of processors
are highly efficient at computation but still relatively slow in performing addressings
and transfers. So simple solvers such as the Gauss–Seidel and SORP ones turn out
to be more and more fast because they only do a large number of multiplications
and only a small number of transfers. That kind of solvers becomes more and more
competitive regarding sophisticated methods such as the Lemke’s one and multigrid
involving a lot of transfers. So when one refers the direct computation of the solution,
it can be observed that efficiency of multigrid decreases when the processor power
increases.
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