Jonathan LEDY, Hervé BOEGLEN, Benoît HILT, AbdelHafid ABOUAISSA, Rodolphe VAUZELLE

An Enhanced AODV Protocol for VANETs with Realistic Radio Propagation Model Validation

Laboratoire MIPS/GRTC Université de Haute Alsace, France

Laboratoire XLIM/SIC Université de Poitiers, 1 France

Contents

1. Context and Introduction

2. Contribution: V-AODV

3. Comparative Evaluation of AODV and V-AODV

4. Conclusions and Future Works

Vehicular Ad-hoc NETworks (VANETs)

- From Infrastructure to Ad-Hoc Networks
- From MANETs to VANETs

An example of VANET

1. Introduction

Main Concern: Unstable Topology

Broken Routes:

- Fading
- Time variation
- Nodes mobility
- Multi-paths effects

Main Challenge in VANETs: QoS

1. Introduction

How AODV creates a route between nodes A and E via Route Request and Route Reply.

<u>Problem</u>: Protocol Based on Number of Hops, without Quality Of Service.

2. V-AODV QoS in AODV Routing Protocol

QoS Metrics:

- Bandwidth
- Delay
- Bit Error Rate (BER)
- Packet Loss Probability
- Security
- etc...

In our work, we focused on Delay and BER parameters.

2. V-AODV QoS in AODV Routing Protocol

Delay

The delay cost function of a node i :

Where : $D_{i,j}$: the estimated delay to the next hop, D_{max} : the limit bound of delay supported by a flow, $\sum D$

 \sum_{i}^{D} : the accumulated delay from the source "i" to the destination "j".

2. V-AODV QoS in AODV Routing Protocol

BER

BER cost function :

$$c_{BER} = \frac{1}{BER_{max} - BER_{estimated}}$$

Total cost function :

$$C_{ETE} = \frac{1}{BER_{max} - BER_{estimated}} + \frac{D_{i,j}}{D_{max} - \sum_{i=1}^{j} D_{i}}$$

2. V-AODV with Standard Propagation Model

Simulation Parameters

- Network Simulator -Ns-2
- FreeSpace Propagation Model
- 10 Nodes
- 3 Communications
- Same Mobility for all Simulations

All simulations on Linux

- Core2Duo
- RAM: 4 Go

2. V-AODV with Standard Propagation Model

Differents Protocols ... approximately the same results

Protocol	AODV-Standard	V-AODV-Delay
Average End-to-End Delay	0,00331	0,00348
Average Nbr of Hop	1,000	1,000
Average Packets Drop	0,000	0,000

- No packets loss,
- Very good end-to-end delay,
- Only one hop between source and destination...

All seems to be perfect !

Let us make the same simulations with another propagation model.

2. V-AODV with Realistic Propagation Model

Ns2 Propagation Model

- FreeSpace
- Two Ray Ground

Communication Ray Tracer Propagation Model (CRT)

- Ray Tracer Model
- Error Model based on BER for each link
- BER parameter is added to every packet transmitted

$$PER = 1 - (1 - BER)^{N}$$

The Signal to Noise Ratio (SNR) given by CRT is used to calculate the BER which gives the Packet Error Rate (PER) of each link.

2. V-AODV with Realistic Propagation Model

FreeSpace Propagation Model

CRT Propagation Model

A realistic environment: the Munich City Center

Performance evaluation parameters used to measure the performance of AODV and V-AODV routing protocols.

Average end-to-end delay (AEED)

Packet Delivery Ratio

 $PDR = \frac{Number of successfully Delivered Packets}{Total Number of transmitted Packets}$

Normalized Oversized Load

 $NOL = \frac{Total Number of Routing Packets}{Number of Successfully Delivered Packets}$

4 Differents Protocols

- AODV Standard
- V-AODV (Delay)
- V-AODV (BER)
- V-AODV (Delay+BER)

2 Differents Propagation Models - Standard Ns2 Free Space Model

- Realistic CRT Model

Average End to End Delay

Average end-to-end delay depending on Propagation Model and Protocol

- V-AODV (Delay) improves the AEED
- V-AODV (BER) decreases the AEED
- V-AODV (Delay+BER) improves the AEED

Number of dropped packets

Average number of dropped packets depending on Propagation Model and Protocol

- V-AODV-Delay decreases the QoS for dropped packets
- V-AODV-BER improves the QoS for dropped packets
- V-AODV-Delay+BER decreases the QoS for dropped packets ¹⁶

Average PDR depending on Propagation Model and Protocol

- V-AODV-Delay decreases the PDR
- V-AODV-BER increases the PDR
- V-AODV-Delay+BER decreases the PDR

Normalized Overhead Load

Average NOL depending on Propagation Model and Protocol

- V-AODV-Delay and V-AODV-Delay+BER needs more packets to discover and to maintain routes

- V-AODV-BER needs less packets to discover and to maintain ¹⁸ routes

4. Conclusions

V-AODV-Delay Main Characteristics Improves the AEED, but decreases the PDR.

V-AODV-BER Main Characteristics Improves the PDR, but decreases the AEED.

V-AODV-Delay+BER Main Characteristics V-AODV-Delay+BER has the same advantage and disadvantage than V-AODV-Delay.

4. Conclusions

Main Conclusion:

It seems to be a nonsense to evaluate a protocol for VANETs with a simplistic propagation model like Free Space or Two Ray Ground.

In order to properly evaluate a new protocol for VANETs, a realistic radio propagation model has to be used.

4. Future Works

We now have a way to really evaluate any new wireless protocol, and the ability to compare it precisely with others.

Our future work will try to improve V-AODV by including new metrics and combining them.

We will also evaluate the protocol in different environments like highways or larger cities.

Jonathan LEDY, Hervé BOEGLEN, Benoît HILT, AbdelHafid ABOUAISSA, Rodolphe VAUZELLE

An Enhanced AODV Protocol for VANETs with Realistic Radio Propagation Model Validation

Laboratoire MIPS/GRTC Université de Haute Alsace, France

Laboratoire XLIM/SIC Université de Poitiers, 22 France