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Abstract: Various energy management strategies for a hybrid pneumatic engine are reviewed
and a real time neural control strategy proposed. This Neural Network strategy learns off
line the optimal control given by Dynamic Programming and the resulting control model is
applied on line. The different strategies are simulated with a backward vehicle model for various
driving cycles and their fuel consumptions compared. The results show that the Neural Network
strategy is better than a classical Equivalent Consumption Minimization Strategy (ECMS) and
equivalent to a Variable Penalty Coefficient Strategy with Driving Pattern Recognition.
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1. INTRODUCTION

Several concepts have been recently proposed to improve
the global powertrain efficiency of Internal Combustion
Engines (ICE) and consequently decrease their environ-
mental impact. Among these, the hybrid-pneumatic engine
differs significantly from the well-known hybrid-electric
configuration by the use of compressed air instead of elec-
trical power. In a hybrid-pneumatic engine (Higelin et al.,
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Fig. 1. Pneumatic-hybrid scheme

2002), a traditional ICE is internally hybridized, with a
built-in pneumatic motor composed of a compressed air
tank linked to the combustion chamber by a supplemen-
tary pipe and an additional charging valve (see Figure 1).
This allows the hybrid engine to store kinetic energy of the
vehicle in the air tank without additional compressor and
to restore it to produce torque. The hybrid-pneumatic en-
gine could be considered as a parallel hybrid configuration,
where both the ICE and pneumatic motor are coupled on
? This work was partially supported by ANR project ArHyCo,
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a single crankshaft and could work separately or together
in a supercharging mode.
This concept has three main advantages, leading to sig-
nificant fuel saving: possibility to recuperate kinetic en-
ergy; no additional clutch, reducer or continuously variable
transmission; reduction in the turbo lag during accelera-
tion and possibility of strong engine downsizing, as studied
in (Doenitz et al., 2009).
To implement the proposed concept it is necessary to op-
timize not only the pneumatic motor, but also the energy
management strategy. Section 2 describes the backward
vehicle model used to simulate the control strategies.
These ones are summarized in Section 3: the reference
given off line by Dynamic Programming, the basic Causal
Strategy, the different Penalty Coefficient strategies, in-
cluding Driving Pattern Recognition techniques for adapt-
ing the penalty coefficient, and the proposed Neural Net-
work strategy, which learns off line the reference optimal
control and applies it on line. Comparisons for different
driving cycles are given in section 4.

2. VEHICLE MODEL

To simulate and compare the energy management strate-
gies on the vehicle speed profiles of some driving cycles,
backward and forward models of vehicle can be used. In
the discrete time backward model used here, the desired
vehicle speed is interpreted as a torque demand taking
into account the models of the vehicle and power transmis-
sion. This Hybrid Pneumatic Engine model is presented in
Figure 2, where the blocks refer to the equations detailed
below.
Firstly, from the cycle desired speed vd (m/s), the accel-
eration Γ (m/s2) is estimated simply by:

Γ(k) =
vd(k)− vd(k − 1)

∆t
(1)
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Fig. 2. Global model of the Hybrid Pneumatic Engine

where ∆t (s) is the sampling period. Next, considering the
forces (N) acting on the vehicle (aerodynamics Fa, rolling
resistance Fr, wheel inertia Fw), the traction force Ft is
deduced from:

mΓ(k) = −Fa(k)− Fr(k)− Fw(k) + Ft(k) (2)

where m (kg) is the vehicle mass. Then the requested
engine torque Te (Nm) can be obtained by:

Te (k) =
Ft (k) · rw
ρgb(k)

·η− sign(Ft)
gb +Taux(k)+Tfriction(k) (3)

where the transmission chain characteristics (final reduc-
tion and gear-box ratio ρgb), the wheel radius under load
rw (m), the gear box efficiency ηgb, the auxiliary Taux
and friction Tfriction torques (Nm) are taken into account.
Next, the engine speed ωe (rpm) is deduced:

ωe (k) =
vd(k)ρgb(k) 30

rwπ
(4)

In order to compare the fuel consumptions, the gearbox
switching strategy of the conventional engine mode is kept
for all the energy management strategies.
The control of the produced torque is then divided in two
levels. A supervisory level chooses the propulsion mode
umode in order to minimize the fuel consumption. A low-
level controller manipulates the engine actuators in order
to produce the requested torque. In all, four driving modes
are considered:

• two propulsive modes umode: pneumatic µp and con-
ventional µc,
• one recuperative: pneumatic pump,
• and one alternative: engine stop.

These four modes are characterized in Table 1 versus the
mass flowrates of the air trapped in the tank ṁtank and
consumed fuel ṁfuel and detailed further.

Mode Pneumatic µp Convent. µc Pump Stop

ṁtank < 0 = 0 > 0 = 0

ṁfuel = 0 > 0 = 0 = 0

Table 1. Possible driving modes

Conventional propulsive mode. This mode µc involves
a classical four-stroke combustion cycle, where the effective
work is adjusted by acting on the air mass flow through the
throttle. A representative quasi-static model of the engine
consumption ṁfuel (g/cycle) is derived from test bench

measurements (see Figure 3):

ṁfuel(k) = g (Te(k), ωe(k)) (5)

Note that the engine torque Te is bounded and the
conventional mode cannot be used below the idle speed
ωidle: {

Te min(ωe(k)) ≤ Te(k) ≤ Te max(ωe(k))
ωe(k) ≥ ωidle (6)
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Fig. 3. Conventional propulsive mode: fuel flowrate ṁfuel

versus engine speed ωe and requested torque Te

Pneumatic propulsive mode. This mode µp, where the
intake phase is suspended, can produce torque from the
compressed air, even from zero engine speed. To reduce
the computation times, all the thermodynamic cycles have
been recalculated in the form of a cartography shown in
Figure 4, giving the consumed air mass flowrate ṁtank(k)
(g/cycle):

ṁtank(k) = h (Te(k), ωe(k)) (7)

where the requested engine torque Te is also bounded:

Te min(ptank(k)) ≤ Te(k) ≤ Te max(ptank(k)) (8)

Indeed, the pneumatic motor mode cannot be used (e.g.
for stop and start functionality) below a certain value of
air-tank pressure ptank min, where the demanded torque
could not be delivered. The maximal pressure depends on
the compression ratio of the engine and when reached, the
pumping mode quickly loses its effectiveness.
Then, the tank air mass mtank (kg) is computed by
integrating the tank air flowrate ṁtank:
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ṁtank versus pressure ptank and requested torque Te

mtank(k + 1) = mtank(k) + ṁtank(k)
ωe(k)∆t

120 103
(9)

Finally, the tank pressure ptank (Pa) is deduced from:

θtank(k + 1) = θamb

(
ptank(k + 1)

pamb

) γ−1
γ

(10)

ptank(k + 1) =
r mtank(k + 1)θtank(k + 1)

Vtank
(11)

where θtank (K) is the tank temperature, θamb (K) and
pamb (Pa) the ambient temperature and pressure, γ the
specific heat ratio, Vtank (m3) the air tank volume and r
(J/kg/K) the perfect gas constant.

Recuperative pneumatic mode. This pumping mode
is used to transform the kinetic energy from the vehicle to
potential energy in the form of compressed air stored in
the air-tank. Basically it is the opposite of the pneumatic
propulsive mode (capturing air to the air-tank instead of
releasing it). More details about the thermodynamic cycles
in a pneumatic-hybrid engine could be found in (Brejaud
et al., 2009).

3. ENERGY MANAGEMENT STRATEGIES

3.1 Introduction

An energy management strategy could be considered as a
decision system where the main objective is to minimize
the overall fuel consumption (Guzzella and Sciarretta,
2005). The energy management strategies can be divided
into two main groups.

Offline. Knowing the cycle profile from the start to the
end yields to the best possible energy savings on this
cycle. This knowledge is obviously not available in real
time, but it is used by Dynamic Programming to obtain
the global optimal solution in order to benchmark the
online energy management strategies.

Online. Information about the current status of the pow-
ertrain, the past driven cycle or from on-board sensors
is only available. Causal, Penalty Coefficient and Neural
Network are online strategies.

A basic decision system, shown in Figure 5, is used
by all the energy management strategies in the case of

negative torque demand (Te ≤ 0, decceleration). On one
hand, if ωe > ωidle, the chosen mode is the recuperative
pneumatic pump (no dissipative vehicle breaking) possibly
with classical breaking if the deceleration torque is greater
than the maximum of regenerative breaking Tpump max.
On the other hand, when ωe ≤ ωidle, if ptank > ptank min
(minimal tank pressure to restart the engine), the engine
is stopped otherwise conventional idling is engaged.
Finally, if the demanded torque Te is positive, one has only
to select the conventional µc or pneumatic µp propulsive
mode, so that umode ∈ {µc, µp}.
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idlee  
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Fig. 5. Decision tree for all strategies management

3.2 Driving cycles

Different driving cycles are used to evaluate the perfor-
mance of the energy management strategies. The first one
is the well known New European Driving Cycle (NEDC)
which is a governmental reference for comparative evalua-
tion of fuel consumptions. It is refered here as cycle 1. The
other driving cycles used here are shown in Figure 6. The
ARTEMIS cycles are selected from (André, 2004) to give a
more realistic overview of the driving conditions (Traffic-
jam, Urban, Road, and Highway, called here cycles 2, 3,
4, 5). Next, a reference cycle, called cycle 10, combines
these ARTEMIS cycles. Finally, three other driving cycles
(cycles 11, 12, 13), proposed in (Ivanco et al., 2009a), are
used to validate extrapolation behavior.
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Fig. 6. Generated driving patterns

3.3 Dynamic Programming (DP)

Dynamic Programming (DP) is an off-line reference strat-
egy. Knowing the whole speed profile and having a precise



model of the system allow to calculate all the possible
states during the driving cycle and find the sequence of the
propulsion modes with the smallest overall consumption.
Let us consider, on N time steps, the non linear discrete
time vehicle model described in the previous section 2:

xk+1 = f(xk, uk,wk), k = 0, 1, ..., N − 1 (12)

where the state xk is the tank pressure ptank(k), the
control uk is the propulsive mode umode(k) ∈ {µc, µp}
and where wk includes the other inputs of the model (e.g.
gear number ρgb). Let the cost of using a control sequence
π = {u0, ..., uN−1} with the initial state x0 = x(0) be:

Jπ(x0) =

N−1∑
k=0

gk(xk, uk,wk) + hN (xN ) (13)

The cost function gk is the fuel consumption of the com-
bustion engine (5). The final cost hN (xN ) is chosen here
zero for equal initial and final pressures, infinite otherwise,
thus forcing a charge sustaining solution. Minimizing the
cost over the set Π of all admissible control sequences gives
the optimal solution:

π∗ = arg min
π∈Π

Jπ(x0) (14)

Bellman’s principle of optimality states that an optimal
input trajectory for a discrete decision problem from the
initial state to the final state is also optimal from the
current state to the final state. Based on this, Dynamic
Programming proceeds backward in time from the final
state to the initial state using:

Ji(xi) = min
ui

gi(xi, ui,wi) + Ji+1 (f (xi, ui,wi)) (15)

An equivalent Dynamic Programming algorithm which
proceeds forward in time is used here (Bertsekas, 2005).

3.4 Causal strategy

The Causal Strategy (CS) implements a rule-based control
with the aim of operating the engine in a high-efficiency
region. Though strongly application-dependant (Sciarretta
and Guzzella, 2003), it can give results close to the optimal
strategy. For the hybrid pneumatic engine, in addition
to the common rules described above, the decision is
made from the demanded torque Te, engine speed ωe and
tank pressure ptank as shown on figure 7, where ptank des
represents the desired air tank pressure.
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Fig. 7. Decision tree for the Causal Strategy

3.5 Penalty Coefficient strategies

This type of strategies is often refered to as Equivalent
Consumption Minimization Strategy (ECMS) (Paganelli
et al., 2002; Guzzella and Sciarretta, 2005). It minimises
the instantaneous consumption, but includes a charge-
sustaining penalty bounding the air tank pressure. The
energies are compared in J/cycle, with, for the pneumatic
mode:

Etank = ṁtankCpθtank (16)

with ṁtank the compressed air mass flowrate, Cp the
specific heat capacity and θtank the tank temperature, and,
for the conventional mode:

Efuel = ṁfuelLCV (17)

with ṁfuel the fuel mass flowrate and LCV is the fuel
Lower Calorific Value. The chosen mode is the one with
the penalized lowest equivalent energy:

umode =

{
µc if Etankλ > Efuel
µp else

(18)

where λ is the penalty coefficient. As in (Ivanco et al.,
2009b), one can choose a Constant Penalty Coefficient
(CPC) or a Variable Penalty Coefficient (VPC):

λ(k) = λ0 −
(

2 ptank(k)(pmax + pmin)

pmax − pmin

)n
(19)

illustrated in Figure 8, which avoids saturating the tank
pressure. Indeed, above a certain tank pressure, no energy
can be recuperated, and, under a tank pressure value, the
stop mode cannot be used. Both λ in CPC and λ0 and n
in VPC have to be determined off line to obtain the best
fuel saving for given driving cycles.
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The penalty coefficent can also be adapted on line by using
a Driving Pattern Recognition (DPR) technique (Jeon
et al., 2002; Ivanco et al., 2009b). Several driving condi-
tions can be listed, for example from the ARTEMIS cycles:
Traffic Jam, Urban, Road and Highway. These driving
patterns can be characterized by the empirical distribution
of related variables, like torque demand as shown in Figure
9. Histogram-based pattern recognition is widely used for
image classification or object tracking. Here, the current
driving condition is recognized by comparing histograms
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of a moving window with the reference ones, for example
by correlation. Then the current penalty coefficient can be
chosen as the one previously computed during the off-line
optimization for the recognized driving condition, leading
to the Constant Penalty Coefficient with Driving Pattern
Recognition (CPC-DPR) and Variable Penalty Coefficient
with Driving Pattern Recognition (VPC-DPR) strategies.

3.6 Neural Network energy management strategy

The Neural Network (NN) strategy, proposed here, con-
sists in learning, from the current avalaible variables, the
optimal control solution generated by Dynamic Program-
ming and applying the learned control in real time.
As a parsimonious and flexible universal approximator, a
perceptron with one hidden layer and a linear output unit
is used. For a scalar function, its form is given by:

fnn(ϕ) =

n∑
k=1

w2
k g

 p∑
j=1

w1
kjϕj + b1k

+ b2, (20)

where ϕ = [ϕ1 . . . ϕp]
T is the regression vector, the w1

kj , b
1
k

are the parameters of the n hidden neurons, the activation
function g is the hyperbolic tangent, and the w2

k, b2 are
the parameters of the output neuron.
The useful regressors ϕj are selected fairly elementary
by stepwise regression for a linear model: tank pressure
ptank (Pa), traction force Ft (N), vehicle speed vd (m/s)
and acceleration γ (m/s2), gearshift ρgb, engine speed ωe
(rpm), requested torque without friction and auxiliary
Te−Tfriction−Taux (Nm), friction torque Tfriction (Nm),
auxiliary torque Taux (Nm).
The outputs to be predicted, i.e. the optimal sequence
given by DP, are coded by 1 for the conventional mode
µc and -1 for the pneumatic mode µp.
Training was performed by minimizing the mean squared
error with the Levenberg-Marquardt algorithm. The cho-
sen number of hidden neurons corresponds to the mini-
mum of the fuel consumption.
Finally, the control to be used on line is given by:

umode = sign (fnn(ϕ)) (21)

4. RESULTS

In this section, the strategies are compared on the different
cycles, with a backward model of a middle class vehicle

(vehicle mass m of 1500kg, 5 speed gear box and 1.6l
gasoline engine) and a sampling period ∆t = 0.5s:

• DP: Dynamic Programming (optimal) strategy
• VPC-DPR: Variable Penalty Coefficient with Driving

Pattern Recognition strategy (for the four ARTEMIS
cycles: λ0 = (1.35, 1.55, 1.35, 0.4), n = (3, 15, 15, 1);
driving condition recognition from the greatest corre-
lation between requested torque histograms and, if
ambiguity, by comparing the current vehicle speed
vd(k) with the mean speeds v̄i of the cycles)

• VPC: Variable Penalty Coefficient strategy (λ0 = 1.4,
n = 3 (see Figure 8) obtained from the minimal sum
of the fuel consumptions of the four ARTEMIS cycles)

• NN: Neural Network strategy (structure (10 neurons)
and parameters of the neural model obtained from
cycle 10, combination of the four ARTEMIS cycles)

• CPC-DPR: Constant Penalty Coefficient with Driv-
ing Pattern Recognition strategy (same driving con-
dition recognition as in VPC-DPR,
λ0 = (2.05, 1.45, 1.35, 1.25) obtained as in VPC).

• CPC: Constant Penalty Coefficient strategy (λ = 1.6,
obtained as in VPC)

• CS: Causal Strategy (ptank des = 10bar)
• Conventional mode (no hybridization)

The initial and final tank pressures are fixed equal (10 bar)
for the DP strategy, except for the NEDC cycle, where the
final pressure exceeds 10 bar, because the braking energy
is always recuperated (see Figure 5) and the NEDC ends
with braking (see Figure 10). This initial tank pressure
is kept for the real time strategies to compare the re-
sulting consumptions. The differences in the final pressure
between all strategies are considered as negligible.
Tables 2 and 3 show the Fuel Consumption (FC in
L/100km) and Final Pressure (FP in bar). They show
that the Neural Network strategy yields to results similar
to the VPC strategies and better than the Causal and
CPC strategies. Figure 10 shows the tank pressure for
the optimal DP strategy and the neural strategy on the
European Driving Cycle (NEDC). It can be seen that the
dynamics are often similar because the chosen modes are
often the same as shown on figure 11.
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Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 10 Average
Strategy FC FP FC FP FC FP FC FP FC FP FC

DP 8.51 10.00 7.10 10.00 5.71 10.00 8.94 10.00 7.47 10.00 7.55
VPC-DPR 8.65 9.73 7.27 9.37 5.76 10.96 8.96 10.97 7.52 11.82 7.63

VPC 8.67 10.01 7.29 10.39 5.78 12.86 8.97 12.21 7.54 13.08 7.65
NN 8.56 10.4 7.28 11.05 5.81 15.2 8.96 15.15 7.54 15.05 7.63

CPC-DPR 9.07 13.52 7.30 8.47 5.78 10.36 8.94 10.97 7.53 11.72 7.72
CPC 10.33 8.97 7.25 10.63 5.81 14.96 8.96 15.24 7.62 16.11 7.99

Causal 8.91 9.80 7.53 11.75 5.86 11.42 9.02 11.18 7.61 11.59 7.79
Conventional 14.51 - 10.41 - 6.24 - 9.10 - 8.31 - 9.71

Table 2. Strategy comparison for the ARTEMIS cycles (2 to 5) and the combined cycle (10)

Cycle 1 Cycle 11 Cycle 12 Cycle 13 Average
Strategy FC FP FC FP FC FP FC FP FC

DP 6.14 17.50 7.54 10.00 7.24 10.00 7.29 10.00 7.05
VPC-DPR 6.20 19.26 7.62 10.11 7.30 12.86 7.34 10.42 7.12

VPC 6.23 19.83 7.61 10.84 7.32 13.91 7.36 12.17 7.13
NN 6.20 17.99 7.67 8.00 7.35 11.55 7.41 12.37 7.16

CPC-DPR 6.28 18.58 7.72 6.50 7.35 11.30 7.40 9.66 7.19
CPC 6.35 19.68 7.72 8.68 7.33 12.66 7.39 12.11 7.20

Causal 6.3 18.94 7.70 12.42 7.40 14.03 7.44 14.03 7.21
Conventional 7.31 - 8.40 - 8.14 - 8.12 - 7.99

Table 3. Strategy comparison for the test cycles 1 (NEDC), 11, 12 and 13
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Fig. 11. Chosen mode for the Neural Network and Dy-
namic Programming strategies on the NEDC cycle

5. CONCLUSION

We reviewed the energy management strategies for a
hybrid pneumatic engine and proposed a real time neural
control strategy. This Neural Network strategy learns off
line the optimal control given by Dynamic Programming.
Note that the presented learning is quite basic and can be
enhanced. The different strategies are simulated for various
driving cycles and their fuel consumptions compared. The
results show that the Neural Network strategy is better
than a classical Equivalent Consumption Minimization
Strategy (ECMS) and equivalent to a Variable Penalty
Coefficient Strategy with Driving Pattern Recognition.
Although a precise evaluation of the computational burden
and time has not been done, all the presented strategies,
including the proposed one, can be used in real time.
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