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ON NODAL PRIME FANO THREEFOLDS OF DEGREE
10

OLIVIER DEBARRE, ATANAS ILIEV, AND LAURENT MANIVEL

ABSTRACT. We study the geometry and the period map of nodal
complex prime Fano threefolds with index 1 and degree 10. We
show that these threefolds are birationally isomorphic to Verra
solids, i.e., hypersurfaces of bidegree (2,2) in P? x P2, Using
Verra’s results on the period map for these solids and on the Prym
map for double étale covers of plane sextic curves, we prove that
the fiber of the period map for our nodal threefolds is birationally
the union of two surfaces, for which we give several descriptions.
This result is the analog in the nodal case of a result of in
the smooth case.

Dedicated to Fabrizio Catanese on his 60th birthday
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1. INTRODUCTION

Nodal prime Fano threefolds of degree 10. There are 10 irre-
ducible families of smooth complex Fano threefolds X with Picard
group Z[Ky]|, one for each degree (—Kx)> = 2g — 2, where g €
{2,3,...,10,12}. The article is a sequel to [DIM], where we studied
the geometry and the period map of smooth complex Fano threefolds
X with Picard group Z[K x| and degree 10. Following again Logachev
([Ed], §5), we study here complex Fano threefolds X with Picard group
Z|Kx] and degree 10 which are general with one node O. They are de-
generations of their smooth counterparts and their geometry is made
easier to study by the fact that they are (in two ways) birationally
conic bundles over P2,

Two conic bundle structures. More precisely, the nodal variety X
is anticanonically embedded in P7, and it has long been known that
the projection from its node O maps X birationally onto a (singular)
intersection of three quadrics Xo C P®. The variety Xo, hence also
X, is therefore (birationally) a conic bundle, with discriminant a septic
curve 'z, union of a line I'; and a smooth sextic T'g (see [BI], 5.6.2),
and associated connected double étale cover 7 : T'gU rur? - rguly
(§f-2). On the other hand, the “double projection” of X from O (i.e.,
the linear projection from the 4-dimensional embedded Zariski tangent
space at O) is also (birationally) a conic bundle, with discriminant
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curve another smooth plane sextic I'y and associated connected double
étale cover 7 : I'f — I'§ (SET).

Birational isomorphism with Verra solids. We show (Theorem
f.5) that these two conic bundle structures define a birational map
from X onto a (general) hypersurface T C P? x P? of bidegree (2,2).
These threefolds T were studied by Verra in [V]; both projections to P2
are conic bundles and define connected double étale covers = and 7*
of the discriminant curves, which are nonisomorphic smooth sextics.
In particular, the associated Prym varieties Prym(7) and Prym(7*)
are isomorphic (to the intermediate Jacobian J(T")) and Verra showed
that the Prym map from the space of connected double étale covers of
smooth plane sextics to the moduli space of 9-dimensional principally
polarized abelian varieties has degree 2.

Fibers of the period map. This information is very useful for the
determination of the fiber of the period map of our nodal threefolds
X, i.e., for the description of all nodal threefolds of the same type
with intermediate Jacobian isomorphic to J(X). This J(X) is a 10-
dimensional extension by C* of the intermediate Jacobian of its normal-
ization, which is also the intermediate Jacobian of T', and the extension
class depends only on T (87.3). A nodal X can be uniquely recon-
structed from the data of a general sextic I's and an even thetacharac-
teristic M on the union of I'g and a line I'y: by work of Dixon, Catanese,
and Beauville, the sheaf M (on P?) has a free resolution by a 7 x 7 sym-
metric matrix of linear forms, which defines the net of quadrics whose
intersection is Xo (Theorem f.I and Remark (.9). We show that given
the double cover « : fﬁ — I'g, the set of even thetacharacteristics M
on I'g UT'y, which induce 7 on I'g, is isomorphic to the quotient of the
special surface S°¥(w) (as defined in [BJ)) by its natural involution o
(Proposition f.3). Together with Verra’s result, this implies that the
general fiber of the period map for our nodal threefolds is birationally
the union of the two surfaces S°4(m) /o and S°Y(7*) /o~ (§73).

A result of Logachev ([Ld], Proposition 5.8) says that the surface S°44
is also isomorphic to the minimal model F,,,(X) of the normalization
of the Fano surface F,;(X) of conics contained in X. On the one hand,
we obtain the analog in the nodal case of the reconstruction theorem
of [DIM], Theorem 9.1: a general nodal X can be reconstructed from
the surface F,(X). On the other hand, the present description of the
fiber of the period map at a nodal X fits in with the construction in
[DIM]] of two (proper smooth) surfaces in the fiber of the period map
at a smooth X', one of them isomorphic to F,,(X’)/¢ ([DIM]], Theorem
6.4). In both the smooth and nodal cases, the threefolds in the fiber
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of the period map are obtained one from another by explicit birational
transformations called line and conic transformations (see §fl.3 and
7).

Unfortunately, because of properness issues, we cannot deduce from
our present results that a general fiber of the period map for smooth
prime Fano threefolds of degree 10 consists of just these two surfaces
(although we prove here that these surfaces are distinct, which was a
point missing from [DIM]), although we certainly think that this is the
case.

Singularities of the theta divisor. The singular locus of the theta
divisor of the intermediate Jacobian of a Verra solid was described
in [M]. This description fits in with a conjectural description of the
singular locus of the theta divisor of the intermediate Jacobian of a
smooth prime Fano threefold of degree 10 that we give in §. This
conjecture would imply the conjecture about the general fiber of the
period map mentioned above.

2. NOTATION

e As a general rule, V,,, denotes an m-dimensional (complex) vector
space, P,, an m-dimensional projective space, and I',, a plane curve
of degree m. We fix a 5-dimensional complex vector space V5 and
we consider the Pliicker embedding G(2,V;) C Py = P(A%V5) and its
smooth intersection W with a general P7 (§B-])).

e O € W is a general point, ) C Py is a general quadric with vertex
O, and X = W NQ C Py is an anticanonically embedded prime Fano
threefold with one node at O; X — X is the blow-up of O.

e po : P; --» PY is the projection from O. We write Qo = po(Q) C
PY,, general quadric, Wo = po(W) C PY,, base-locus of a pencil T
of quadrics or rank 6, and Xp = po(X) C PY, base-locus of the net
IT = (I'y, Qo) of quadrics.

e W, contains the 3-plane P, = po(Tw,) and X contains the
smooth quadric surface Q = P3, N Qp. The singular locus of Wy is
a rational normal cubic curve Cp C P3,. The singular locus of Xy is
Qﬂgo:{sl,...,sﬁ}. N _

o P, — P§, is the blow-up along P}, Wo C Pj is the (smooth)
strict transform of Wy, and Xo C Wy the (smooth) strict transform
of Xo.

e The projection py : X --+» P%, from the 4-plane Ty o is a bira-
tional conic bundle with associated double étale cover 7* : fg — I}
and involution o*.
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o [, =T'quUTIy C IIis the discriminant curve of the net of quadrics
IT that contain X, with associated double étale cover m : fﬁ uriu
I'? - T UTy and involution o. We write {p1,...,ps} = I't N s and
{ﬁl, e ’ﬁﬁ} — 1—‘% ﬂ PG.

e [},(X) is the connected surface that parametrizes conics on X, with
singular locus the smooth connected curve fg of conics on X passing
through O, and v : ﬁg(X) — Fy(X) is the normalization (§6.7). The
smooth surface ﬁg(X ) carries an involution ¢; its minimal model is
Fo(X).

o S and S°d are the special surfaces associated with 7, with
involution ¢ (§5.3). There is an isomorphism p : Fy,,(X) < 5044 (§54).

o T C P?xP?%isa Verra solid, i.e., a smooth hypersurface of bidegree
(2,2).

3. THE FOURFOLDS W AND Wy
3.1. The fourfold W. As explained in [DIM], §3, the intersections
W =G(2,V5) NP; C P(A*15),

whenever smooth and 4-dimensional, are all isomorphic under the ac-
tion of PGL(Vs). They correspond dually to pencils P+ of skew-
symmetric forms on V5 which are all of maximal rank. The map that
sends a form in the pencil to its kernel has image a smooth conic
cy C P(V;) that spans a 2-plane P(Us), where U C V5 is the unique
common maximal isotropic subspace to all forms in the pencil (see §0]]
for explicit equations).

3.2. Quadrics containing . To any one-dimensional subspace V; C
V5, one associates a Pliicker quadric in | #g(2,v;)(2)| obtained as the pull-
back of G(2,Vs/V1) by the rational map P(A?Vz) --» P(A2(V5/V1)).

This gives a linear map
e P(Vs) — | Iaew) (2)] =~ PY

whose image consists of quadrics of rank 6. Since no such quadric
contains P7 and |.#y(2)| has dimension 4, we obtain an isomorphism

(1) Yw : P(Vs) = [Aw(2)].

The quadric vy ([V1]) C Py has rank 6 except if the vertex of v¢([V4]),
which is the 3-plane P(V} A V5) contained in G(2, V), meets P; along
a 2-plane, which must be contained in W. This happens if and only if

W] € v ([DIM], §3.3).
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Given a point O € W, corresponding to a 2-dimensional subspace
Vo C Vs, the quadrics that contain W and are singular at O corre-
spond, via the isomorphism ([ll), to the projective line P(Vy) C P(Vs).

3.3. The P%*-bundle P(.#Z,) — P%. As in [DIM], §3.4, we define,
for any hyperplane V; C Vi, the 4-dimensional vector space My, =
A?V,; N Vg (where Vg C A2V is the vector space such that Py = P(V3))
and the quadric surface

Qwyv, = G2, V) NP(My,) C W.

Let P4 C P(VZ’) be the set of hyperplanes V; C V5 that contain Vp,
and consider the rank-3 vector bundle .#Zp — P% whose fiber over [V]
is My, /A*Vo and the associated P2-bundle P(.#p) — P%.

3.4. The fourfold Wy. Let O be a point of W, let Vo C V5 be the
corresponding 2-dimensional subspace, and let po : P7 --+ P% be the
projection from O. We set

WO :po(W) C PGO

The group Aut(W) acts on W with four orbits Oy, ..., O4 indexed by
their dimensions (§0-]), so there are four different Wy. We will restrict
ourselves to the (general) case O € Oy, although similar studies can be
made for the other orbits.

Since O € Oy, the line P(Vp) C P(V5) does not meet the conic ¢y
(8D.1), hence all quadrics in the pencil vy (P(Vp)) are singular at O and
have rank 6 (§8.9). This pencil projects to a pencil of rank-6 quadrics in
PY, whose base-locus contains the fourfold Wo. Since Wy has degree 4,
it is equal to this base-locus and contains the 3-plane P3, = po(Tw0).
The locus of the vertices of these quadrics is a rational normal cubic
curve Cp C P3,, which is the singular locus of Wy and parametrizes
lines in W through O (see §P.9 for explicit computations).

In fact, all pencils of rank-6 quadrics in P% are isomorphic ([,
Chapter XIII, §11). In particular, all quadrics in the pencil have a
common 3-plane, and the fourfold that they define in P° is isomorphic

to Wo.

3.5. The P2-bundle WO — P#,. Let P}, parametrize 5-planes in Py
that contain Ty o (or, equivalently, 4-planes in PY, that contain Pj).

Let € : ?60 — PY be the blow-up of P}, with f’% C PY x P?,, and let
Wo C P6O be the strict transform of Wp.

We will prove in §93 that the projection Wy — P2, is a P2-bundle,
and that WO is smooth. Furthermore, there is an isomorphism P2 ~
P}, such that the induced isomorphism P% x P% ~ P%, x P gives
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by restriction an isomorphism between the P-bundles P(Mo) — PZ,
and Wo — P, (see §023).

Finally, the strict transform f";’,v of P}, in Wo is the intersection
of the exceptional divisor of ¢ with WO; it has therefore dimension
3 everywhere. Since it contains the inverse image of the cubic curve
Co C P}, which is a surface (§0.3), it must be the blow-up of P,
along Co. The fibers of the projection P3, — P2, are the bisecant
lines to Cp.

4. THE THREEFOLDS X AND Xp

We consider here singular threefolds
X=G(12,V5)nP;NQ,

where Q) is a quadric in P?, such that X has a unique singular point
O, which is a node.

Lemma 4.1 (Logachev). The intersection G(2,V) N Pz is smooth,
hence isomorphic to W, and one may choose ) to be a cone with vertex

0.

Proof. We follow [Ld], Lemmas 3.5 and 5.7. If the intersection W’ =
G(2,V)NPy is singular, the corresponding pencil P# of skew-symmetric
forms on V5 contains a form of rank < 2, and one checks that the
singular locus of W' is

Sing(W') = U G(2, ker(w)) N Py,
wePt, rank(w)<2

hence is a union of linear spaces of dimension > 1. In particular, the
intersection with the quadric € either has at least two singular points or
a singular point which is not a node. It follows that W = G(2,V) NP
is smooth.

Consider now the map

Hyperplanes in Tp, 0| _ p2
|Iw(2)] --» { containing Tw o =P

Q — TQ/7O.

It is not defined exactly when €)' is singular at O, which happens along
the projective line vy (P (Vo)) (8B.2). Since it is nonconstant, it is
therefore surjective.

Assume that €2 is smooth at O. Since W N € is singular at O, we
have Tw,o C Tq,, hence there exists a quadric ' D W smooth at O
such that Ty o = To,0. Some linear combination of {2 and Q' is then
singular at O and still cuts out X on W. U
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Conversely, we will from now on consider a general quadric 2 with
vertex O in the orbit O,. The intersection X = W N is then smooth
except for one node at O and the group Pic(X) is generated by the
class of Ox(1).[]

We keep the notation of §B.4 and set Qo = po(2) and Xo = po(X).
Let X — X be the blow-up of O. The projection pp from O induces a
morphism

X5 Xo cWo C P
which is an isomorphism except on the union of the lines in X through
O. There are six such lines, corresponding to the six points sy, ..., Sg
of Sing(Wp) N Qp, which are the six singular points of X¢.

The threefold X C P is the complete intersection of three quadrics
and conversely, given the intersection of Wy with a general smooth
quadric o, its inverse image under the birational map W --+ Wy is
a variety of type %3¢ with a node at O.

4.1. The conic bundle py : X --» P}, and the double cover
7 I'§ — I';. Keeping the notation of §B.5, consider the projection

pw: X - P,

from the 4-plane Ty 0. It is also induced on X C PE by the projection
from the 3-plane P, = po(Tw ), hence is a well-defined morphism

on the strict transform Xo of Xo in the blow-up f’% of PY, along P},
where P, C P¢) x P},

Proposition 4.2. The variety )?O 1s smooth and the projection )N(O —
P, is a conic bundle with discriminant a smooth sextic Iy C P,

We denote the associated double cover by 7* : fg — I'g. It is étale
by [BT], prop. 1.5, and connected.fj
Also, fibers of Xp — P3, project to conics in Xp. Since the strict

transform of P}, in Wy is a P!-bundle (§D.9), they meet the quadric
() in two points.

IThe lines from the two rulings of the exceptional divisor of the blow-up of O in
X are numerically, but not algebraically, equivalent (see §@; the reader will check
that the proof of this fact does not use the fact that X is locally factoriall), hence
the local ring Ox o is factorial ([M], (3.31)) and the Lefschetz Theorem still applies
(Id], Exp. XII, cor. 3.6; the hypotheses H' (X, Ox (—k)) = H2(X, Ox (—k)) = 0 for
all k£ > 0 follow from Kodaira vanishing on W).

2Any nontrivial conic bundle over P2 defines a nonzero element of the Brauer
group of C(PQO) which, since the Brauer group of P2o is trivial, must have some
nontrivial residue: the double cover of at least one component of the discriminant
curve must be irreducible.
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Proof. We saw in §B. that WO — P?, is a P%-bundle. The smoothness
of )~(O then follows from the Bertini theorem, which also implies that
the discriminant curve is smooth. The fact that it is a sextic follows
either from direct calculations or from Theorem [.5. O

With the notation of §B.3, consider now the rank-3 vector bundle
Mo — PZ whose fiber over [Vy] is My, /A?*Vp. Inside P(.#p), the
quadric Qo defines a conic bundle Qq o — P%, and Qq o is smooth by
the Bertini theorem.

Proposition 4.3. The double cover associated with the conic bundle
Qa.0 — P is isomorphic to 7 : T — T%.

Proof. We saw in §5.3 that the P2-bundles Wy — P}, and P(4p) —
P2 are isomorphic and the isomorphism restricts to an isomorphism
between the conic bundles Xp — P}, and Qg0 — P%, because they
are pull-backs of the same quadric Qo C PY. Tt follows that the
associated double covers are isomorphic. O

4.2. The double cover f6 — I's. Let P be the net of quadrics in PGO
which contain X. The discriminant curve I'; C P (which parametrizes
singular quadrics in P) is the union of the line I'; of quadrics that
contain Wy, and a sextic I's. The pencil ['; meets I'g transversely at
six points py, ..., pg corresponding to quadrics whose vertices are the
six singular points sy, ..., s¢ of Xo ([B]], §5.6.2).

All quadrics in P have rank at least 6 (because rank-5 quadrics in
PY, have codimension 3). In particular, there is a double étale cover

m:LgUT UT? 5 TgUTy

corresponding to the choice of a (2-dimensional) family of 3-planes
contained in a quadric of rank 6 in P. The 3-plane P3, is contained
in all the quadrics in the pencil I'; and defines the component I't and
points {py,..., P} = 1 N [s. The curve I'g is smooth and connected
(footnote B).

4.3. Line transformations. Let ¢ be a general line contained in X.
As in the smooth case ([DIM], §6.2), one can perform a line transfor-
mation of X along /:

X, - - X;

X __wl_% XE)
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where ¢ is the blow-up of ¢, with exceptional divisor F, the birational
map x is an (—FE)-flop, €’ is the blow-down onto a line ¢/ C X, of a
divisor £’ = —K % (E), and X, is another nodal threefold of type

Z10. The map 1, is associated with a linear subsystem of |.Z2(2)|. Tts
inverse ¢, ' is the line transformation of X, along the line ¢'. Moreover,
1y is defined at the node O of X and ;! is defined at the node O’ of
Xy.

As explained in [[D] §4.1-4.3, this is a general process. One can also
perform it with the image ¢o of ¢ in X and obtain a diagram ([[H],
Theorem 4.3.3.(ii))

v %
Xowo == =7 Xoy,

l yz

Pe
Xo --%-5 P2,

where pj is a conic bundle and p, is again associated with a linear
subsystem of [.#7 (2)|. The birational conic bundle p, can be described
geometrically as follows ([BI]], §1.4.4 or §6.4.2): a general point z € X
is mapped to the unique quadric in P = P? containing the 2-plane
(0o, x). Its discriminant curve is I'; = 'y U T.

Lemma 4.4. Let X, --» X,0r C PS, be the projection from the node
O" of Xy and let l,, be the image of the line ' C X,. There is a
commutative diagram

XO - ip{f—) X&O’

I |
| pw | Per
+ +

P, P

Proof. A general fiber of py is a conic which meets ) in two points
(§fET]). Tts strict transform F on X is a quartic curve that passes twice
through the node O and does not meet ¢, hence its image 1, (F) C X,
has degree 8 and passes twice through the node O’ of X,. Moreover,

E'x(e7H(F) = (=Kg —x(E)) - x(e"(F))
= (-Kg,—E)-e'(F)
= Oy (1)(=2E) - e \(F)
= deg(F)=4.
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The image of F'in X/ is therefore an octic that passes twice through the
node O and meets ¢ in 4 points. Its image in X ,, is a rational sextic
that meets £}, in 4 points. Since the map py is associated with a linear
subsystem of |f;i) (2)], it contracts this sextic. In other words, images

of general fibers of py by 1,0 are contracted by py, which proves the
lemma. ]

4.4. The Verra solid associated with X. A Verra solid ([V]]) is a
smooth hypersurface of bidegree (2,2) in P? x P2

Theorem 4.5. A general nodal Fano threefold of type 21 is birational
to a general Verra solid.

More precisely, let X be a general nodal Fano threefold of type Z7o.
We show that for a suitable choice of ¢ C X, the two birational conic
bundle structures:

e py : X —-» P, with discriminant curve T'§ (1)), and
e py: X --» P, with discriminant curve I'¢ U Ty (§E.3),

induce a birational isomorphism

w@ = (pWapZ) X > T7
where T' C P%, x P is a general Verra solid. In particular, the sextics

I'¢ and I'; are general.

Proof of the theorem. Recall that Xp = Wy N Qo contains the smooth
quadric surface @ = P3, N Qp. Instead of choosing a general line as in
8.3, we choose a line ¢ contained in @), not passing through any of the
six singular points of X.
In suitable coordinates, Wo C P is the intersection of the quadrics
M(x) = xox1 + T3 + 475
QQ(J?) = I1X2 —+ T34 —+ Ts5Xg,
and P3, = P({eg, e, €4, ¢6)) (§P-F). We may assume ¢ = P((eq, €4)).
The quadric €2y contains ¢, hence its equation is of the form
Qo(z) = xaXo(2) + 24 s (7)) + q(2)),
where Ay and A4 are linear and ¢ quadratic in o’ = (g, 1, T3, Ts5, Tg).
The projection py : Xo --+ P%, sends x to (w1, 23,75). The map
pe s Xo -+ P = (Q1,Q5,Q0) sends a general point © € Xp to the
unique quadric in P containing the 2-plane (¢, z) (§£.3). We obtain
pe(x) = (2 04(2") — 23X2(2), 23 M4 (27) — 250 (2), 75 — 21.75).

A general (conic) fiber of py is mapped by p, onto a conic in P because
pe becomes linear once restricted to a fiber of py .
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Similarly, let us consider the fiber of py at the general point [Qp] € P.
It is the set of points * € Xy such that the 2-plane (¢, z) is con-
tained in p. This means A\y(z') = Ay(2') = 0, and consequently
q(z’) = 0, so that z/ describes a plane conic in its parameter space
P({eg,e1,€3,€5,66)). Since the projection to P, factors through this
4-plane, a general fiber of p, is mapped by py birationally onto a conic
in P,

Since the restriction of py (resp. py) to a general fiber of p, (resp. py)
is birational onto its image, the product map

Yo = (pw,pe) : Xo --+ Py x P

is birational onto its image T' C P%, x P. Let (d,e) be the bidegree of
this hypersurface: d (resp. e) is the degree of the image by py (resp. py)
of a general fiber of p, (resp. py/). Since these plane curves are conics,
we have d = e = 2, and T is a Verra solid.

Finally, the fact that T is general follows from a dimension count. [

Remark 4.6. Let p; : T — P%, and py : T — P be the two projections.
The surface ¥y(Q) C T is isomorphic to the blow-up of Q at the siz
singular points s1,...,s¢ of Xo. It is also equal to p;*(T'y).

For z in @ - ¢, the only quadrics in P that contain the 2-plane (¢, x)
are in the pencil T';. This implies py(Q) C I'y and ,(Q) C py*(T1).
A dimension count shows that given the Verra solid T C P%, x P, the
line I'; C P is general. It follows that p,'(T';) is a smooth del Pezzo
surface of degree 2 which is equal to ,(Q); its anticanonical (finite)
map is the double cover pig : ¥(Q) — P

With the notation of §f.1, it follows from the comments at the end of
8.9 that the inverse image @ of () in X, is isomorphic to the blow-up
of @ at the six singular points of Xy. We have a commutative diagram

Since piq is finite, 1o must be a morphism; since @ and 1,(Q) are
both del Pezzo surfaces of degree 2, it is an isomorphism.

Remark 4.7. Let us analyze more closely the conic bundle structure
pe : X —--+ P for our choice of ¢ C (). Following the classical construc-
tion of [BY)], 1.4.4, we set

X, ={(P,Q,) €G2,PE)xP|LCPcCQ}



ON NODAL PRIME FANO THREEFOLDS OF DEGREE 10 13

and consider the birational map
v X - X,
. — (), pe()).

Away from I'q, the second projection ¢, : X, — P is a conic bundle with
discriminant curve I'g, whereas ¢, *(I';) is the union of two components:
Q1 ={(P,Q,) € G2,PY) x| ¢CPCP}~PxTy,

and the closure of
{(P,Q,) €G2,PE)x T | PNP}, =, PCQ,}.

They correspond respectively to the two components I'{ and I'? of
7 HTy) (see §.3). We have p(Q) = @ and lines £~ C @ that meet ¢
map to sections of (); — I';. Consider the diagram

Q —— Q@ - Ye(Q)
N N
Xg <« - - X - ——-—-—-- - T

x”ﬁ /

The map pag : we(Q) — I'1 has six reducible fibers, above the points
p1, - .., pe of '1NIg, and each contains one exceptional divisor E1, ..., Fg
of . Since lines /T C @ from the same ruling as ¢ map to fibers of psg,
the other components must be the strict transforms ¢;, ..., ¢d of these
lines passing through sq, ..., sg.

As mentioned above, a general line /= C @ from the other ruling
maps to a section of pyg that does not meet £, ..., Eg, hence must
meet (], ..., 0¢; moreover, these components of reducible fibers of the

conic bundle py : T — P correspond to the points of T'{ N fﬁ, which
we denoted by p; in §L.3. We also denote by ¢7,...,¢; the strict
transforms of those lines passing through sy, ..., ss. The line ¢, meets
Ej if and only if 7 # j, and meets E; if and only if ¢ = 5. It maps
by both projections p; and p, to a line. Finally, /i + E; is rationally
equivalent to £*.

5. THE VARIETY OF CONICS CONTAINED IN X

5.1. The surfaces F,(X) and F(X). We follow [Ld], §5, but with
the notation of [DIM], §5. In particular, F},(X) is the variety of conicsf

3As remarked in [DIM], §3.1, any nonreduced conic contained in W is contained
in a 2-plane contained in W. Since the family of these 2-planes has dimension 1
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contained in X, and
F(X) = {(c,[Vi]) € Fy(X) x P(V5') | e C G(2,Va)}.

The projection F'(X) — F,(X) is an isomorphism except over the one
point corresponding to the only p-conic ¢y contained in X ([DIMI,
§5.1).

We define as in [DIM], §5.2 an involution ¢ on F(X) as follows. For
any hyperplane V, C Vs, define quadric surfaces

QW,V4 = G<27 ‘/4) N P<MV4) and QQ,V4 =0n P<MV4>'
If (¢, [V4]) € F(X), the intersection
XN P(MV4) = QW,V4 N QQ,V47

has dimension 1.[] Since ¢ is reduced, one checks by direct calculation
that as a 1-cycle, it is the sum of ¢ and another (reduced) conic con-
tained in X, which we denote by ¢(c). One checks as in [Ld|, Lemma
3.7, that since X is general, t(c) # ¢ for all ¢, and some quadric in
the pencil (Qw,v,, Qa,v,) is a pair of distinct planes. This defines a
fixed-point-free involution ¢ on F'(X).

5.2. Conics in X passing through O. Since O € Oy, any such conic
¢ is a T-conic, hence is contained in a unique G(2,V}), and [V,] € P,
The quadric Qq,y, is then a cone with vertex O.

If Qq,v, is reducible, i.e., if [V4] € I}, the conics ¢ and ¢(c) meet at
O and another point. The two points of 7*([V4]) correspond to the
two 2-planes contained in Qq v, , hence to [¢] and [¢(c)]. By Proposition

.3, these conics ¢ are parametrized by the curve fg

If Qq,v, is irreducible, ¢ U ¢(c) is the intersection of the cone Qq.v,
with a pair of planes, and ¢ is the union of two (among the six) lines
in X through O.

Theorem 5.1 ([Ld], §5). The variety Fy(X) is an irreducible surface.
Its singular locus is the smooth connected curve L'y of conics on X pass-
ing through O described above, and its normalization F,(X) is smooth.

Moreover, the curve of o-conics (which is disjoint from fg) is excep-
tional on F,(X), and its inverse image on F,(X) can be contracted to
a smooth surface F,,(X) (as in the smooth case; sce [DIM], §5.3). The
involution ¢ induces an involution on F,(X).

and none of them contain O, and nonreduced conics have codimension 3, all conics
contained in a general X are reduced.

4This is because, as we saw in §E, X is locally factorial and Pic(X) is generated
by Ox (1), hence the degree of any surface contained in X is divisible by 10.
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Logachev also proves that the inverse image of fg in ﬁg(X ) has two
connected components I'5 . and I'g _, which map isomorphically to I'g

by the normalization v : F,(X) — F,(X). They can be described as
follows.
_ Let ¢ C X be a conic passing through O corresponding to a point of
I's. The curve po(c) is a line ¢ C X that meets, but is not contained
in, the smooth quadric surface Q@ = P3,NQo. The two points of v~ ([c])
correspond to the conics [(U (] € fg yand (UL € fgﬁ contained in
Xo, where ¢* and ¢~ are the two lines in Q) passing through its point
of intersection with /.

In particular, I'y , carries an involution o7 induced by the involution

o* of T%. On the other hand, the involution ¢ of ﬁg(X) maps fgﬂL

isomorphically onto fl"va_. The identification fg n 1>f1"vg’_ induced by
the normalization v is 1o 0%} = 0% o 4.

5.3. The special surfaces S¢" and S°%. There is an embedding
PV — F((f) that sends a line in P to its intersection with I's. Its inverse
image in Téﬁ) is a surface S with two connected components 5" and

Sedd “each endowed with an involution o. They are defined by
Sever — {[D] € S | h°(Tg, 7" Op(1)(D)) even}

and similarly for S ([B3], §2, cor.). By [BJ, prop. 3, they are smooth
because ['g, being general, has no tritangent lines.

In particular, the point p; +- - -+ pg of fé& defined at the end of §{.2
is in S. We will show in Proposition [6.3 that it is in S°%9.

5.4. The isomorphism F,(X) = 5°4, Let ¢ be a conic on X such
that O ¢ (c). The projection pp(c) is a conic in Xp, and the set of
quadrics in P that contain (pp(c)) is a line L, C P. For each point p of
L.NTg, if the vertex v, of Q, is not in the 2-plane (po(c)), the 3-plane
(po(c),v,) defines a point p € I above p. This defines a point py([c])
in S.

One checks by direct calculation (§0.2) that the 2-plane II = (cyx) is
disjoint from Ty . It follows that cx satisfies the conditions above,
hence p,([cx]) is well-defined. Moreover, the line L., is I';, and for
each p; € Ty N T, the 3-planes P3, and (po(cx), vp,) meet only at v,,,
hence belong to different families; it follows that we have py([cx]) =
o(p1+---+Dg), which is in the surface S°44. We have therefore defined
a rational map

Pyt Fy(X) ——» 5%
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Logachev then proves ([Ld], §5) that p, induces an isomorphism
(2) p: Fp(X) 5 50dd,

This isomorphism commutes with the involutions ¢ and o: since the 3-
planes (po(c), v,) and (po(¢(c)), v,) meet in codimension 1, they belong
to different families, hence p, ot = 0 o p,.

Let us explain how p is defined on the normalization ﬁg(X ). If

¢ C X is a conic passing through O corresponding to a point of fg and
¢ = po(c), the two points of v71([¢]) correspond to the conics [¢ U (7]
and [£ U (7], wher