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Abstract—In this paper we present an analytic study of the
impact of churn in cluster-based overlay networks. Cluster-based
overlays keep the best of unstructured and structured overlays
in terms of scalability, fault-tolerance and stability. Most of join
and leave events have no impact on the overall overlay topology
making these overlays highly robust to high churn. The only
situations that effectively give rise to topology modifications are
when clusters need to split because they exceed some maximal
size or need to merge because they fall under some minimal
size. Although these operations are scalable, they are intricate in
the sense that they need synchronization among nodes involved
in these operations. In this paper we accurately predict the
frequency at which the topology of the overlay changes according
to the number of join/leave operations. Our analysis improves
upon existing studies by showing that these relevant topological
changes are very infrequent, namely Θ(N) join/leave events are
required before any of these topological operations occur, where
N is the number of peers currently in the system. Such a result
clearly demonstrates the appropriateness of these overlays to high
churn.
Index Terms—Peer-to-peer, churn, analytical study

I. INTRODUCTION

A comprehensive set of measurement studies have shown
a very high rate of churn in peer-to-peer systems [1]. Churn
is the propensity of peers to continuously join and leave the
system (voluntarily or not). This dynamics, if not efficiently
managed, quickly gives rise to dropped messages, data in-
consistency, increased latency, and increased bandwidth. To
guarantee successful lookup operations, a recurrent prerequi-
site that should hold in all P2P systems is their ability to
deal with churn. Most popular P2P systems (e.g., Gnutella [2],
kaZaA [3]) rely on unstructured overlays. These overlays are
based on random graphs, i.e., logical relationships among
peers are mostly set according to a random process which
makes joining and leaving operations constraint free. Data
placement enjoy the same absence of constraints. Any data
can be placed on any peer thereby imposing flooding or
random walk techniques to retrieve them. It is well known
that flooding does not scale due to network overflow (e.g.
Gnutella V0.4), while random walk method performs badly
when the graph is not regular (i.e., when peers degree show a
high discrepancy) [4]. This has led to structured overlays (also
called Distributed Hash Tables (DHTs)) in which peers self-
organise in structured graphs. Typically, peers self-organise
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according to a distance function based on their identifier,
allowing to partition the identifier space among all the peers
of the system. Most proposed structured overlays (e.g., [5],
[6], [7]) are highly satisfactory in terms of efficiency and
scalability when evolving in weakly dynamic environments
(i.e., their key-based routing interface guarantees operations
whose complexity in messages and latency usually scale
logarithmically with system size). However, in the presence of
very frequent peers connections and/or disconnections, a very
large number of join and leave operations are locally triggered
engendering accordingly multiple and concurrent maintenance
traffic. Ensuring routing tables consistency quickly becomes
unbearable, leading to misrouting, and to possible partitioning
of the system [8].
Castro et al. [9] have shown that both structured and

unstructured graphs can be improved to be more robust to
churn at the expense of increased maintenance overhead
(e.g., augmentation of the frequency of failures detection
probes, using of the graph structure to aggregate routing
tables entries [7], usage of stabilisation algorithms, messages
acknowledgements), while Godfrey et al [10] advocate for
”intelligent” failed peers replacement strategies (based on
peers characteristics for predictive fixed strategies, or based on
randomisation for agnostic strategies) according to the focused
applications (e.g. storage, anycast server selection or tree-
based multicast). In all these approaches, reducing churn turns
out to augment the number of communication messages among
peers either to decrease failure detection latency or to select
the most appropriate replacement peer. These approaches are
therefore conflicting with reducing communication overhead.
A different approach to build a churn-resilient overlay net-

work has been proposed with cluster-based structured overlays
(e.g., [11], [8], [12], [13]). In these overlays, peers which are
close to each other according to a given proximity metric group
together into clusters that form the vertices of the structured
topology. Most of the communication traffic is captured by
clusters which severely limits both topology changes and com-
munication overhead imposed by the above solutions. However
these clusters rely on two cluster management operations,
namely the split and merge operations which are triggered
each time a cluster becomes over populated or under popu-
lated. Handling these operations requires high synchronization
among involved peers. Clearly this may tend to overwhelm



the benefit of cluster-based DHTs if both operations are too
frequent with respect to join and leave events.

A. Contributions of the paper

In this paper we demonstrate cluster-based overlay networks
robustness. Here, robustness is the ability of a system to
continue to operate correctly despite high churn rate. This
is achieved by accurately predicting the minimal number of
join and leave events that need to be globally triggered in the
system to give rise to the first split or merge operation in
the system. We show that Θ(N) join/leave events are required
before any of these topological operations occur, where N
is the number of peers currently in the system. This is an
important result as it shows that due to the rare occurrence
of those relatively costly topological operations, it is simple
for the network to correctly update routing tables in due
time and thus maintain the graph structure. This solves the
Achilles heel of DHTs, i.e., the cost induced to maintain
nodes routing tables consistency in presence of high churn.
From a practical point of view this is interesting as it shows
the appropriateness of these overlay networks as substrate
for large scale applications demanding in terms of routing
latency and topology stability such as multimedia streaming
platforms [14], and persistent data storage [15]. Prior to this
analysis presented in Section III, we present the main features
of cluster-based structured overlays networks in Section II. We
conclude our paper in Section IV.

II. CLUSTER-BASED DHT OVERLAYS IN A NUTSHELL

Cluster-based DHT overlays mainly consist in the cluster-
ized version of DHT overlays. Groups of peers substitute
peers at the vertices of the graph. These groups of peers,
typically called swarms [11], [13], clusters [12], cliques [8],
and buckets [16] are populated by peers that are close to each
other according to a given proximity metric D. This metric
can be logical (as in [11], [13], [12], [16]), or geographical
(as in [8]). These clusters form the vertices of the structured
topology. Clusters in the system are uniquely labelled. Clusters
size is lower (resp. upper) bounded. The lower bound, named
Smin in the following, usually satisfies some constraint based
on the assumed failure model. For instance Smin ≥ 4 allows
Byzantine tolerant agreement protocols to be run among these
Smin nodes. The upper bound, that we call Smax in the sequel,
is typically in O(logN) to meet scalability requirements,
where N is the current number of nodes in the system.
Let us briefly describe how cluster-based overlays typically

evolve according to these properties. When peer n enters the
system, it joins the cluster whose label matches the proximity
metric D. Once a cluster size exceeds Smax, this cluster
splits into two smallest clusters, each one populating with the
peers that are closer to each other. When n leaves, it simply
leaves its cluster. When a cluster size reaches Smin this cluster
merges with its closest neighbour. According to the proposed
overlays, all cluster members or only a subset of them (but at
least Smin of them) are in charge of routing lookup requests,
replicating all data-items that match the cluster label, and

handling cluster operations (split/merge and create). In the
following we assume that only Smin peers are in charge of
these operations. We call these peers core members of a cluster.
The other peers of the cluster (if any) are inactive until they
replace left core members. We call these nodes spare members
of the cluster. In PeerCube [12], spare members allow to make
join and leave events transparent to the overlay topology by
simply having any peer that joins a cluster to join it as a spare
member.
As a consequence, by clusterizing DHTs, both node degree

and network diameter are reduced, making maintenance and
routing protocols more efficient. For instance, routing in
PeerCube [12] is achieved in log2(N/ log2 N) hops w.h.p.
and require O(log N) messages. Data structures (routing ta-
bles or finger tables) are locally maintained by moving the
information they store among cluster members, instead of
reconstructing them each time a new node joins the system
which is typically the case for ”classical” DHTs network
overlays. As an illustration, Figure 1 shows the maintenance
cost of a classic hypercubic topology (where each node
represents a vertex of the graph) compared to a cluster-based
hypercubic one, i.e., PeerCube [12]. The number of routing
tables updates per node in a network of around N = 5, 000
nodes is depicted. Bursts of joins and leave are cyclically
generated. For PeerCube, the upper bound on clusters size is
set to Smax = 12, and the lower bound is set to Smin = 4.
Curves depict the number of routing tables updates per node
generated in PeerCube (denoted by PeerCube) and in a pure
hypercube (denoted by Hypercube). As expected, one can
notice the benefit of both clustering and using newcomers as
hot spares as it drastically reduces the number of routing tables
updates for both joins and departures events.
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Fig. 1: Number of routing table updates per node as a function of
join and leave events.

III. ANALYSING THE CHURN IMPACT ON CLUSTER-BASED
TOPOLOGIES

In this section, we accurately analyse the frequency at
which split, and merge operations occur with respect
to join and leave operations. Specifically, we derive the
minimum number of join and leave events needed to trigger



a split or merge operation, in expectation and with very
high probability. This formally shows the impact of churn on
cluster-based topologies. We model this problem as the ”balls-
and-urns” problem, where each cluster is modelled as an urn
and each join or leave event as a ball.

A. The model

Consider a system composed of n urns initially empty
in which balls are thrown one by one. The throwings are
independent from each other and each ball is thrown into
urn i with probability pi. For every i = 1, . . . , n, we denote
by Ui(m) the number of balls in urn i after throwing the
m-th ball. It is well-known that the joint distribution of the
Ui(m) is given, for k ≥ 1 and integers m1, . . . , mn such that
m1 + · · · + mn = m, by

�{U1(m) = m1, .., Un(m) = mn} =
(

m

m1 · · ·mn

) n∏
i=1

pmi

i

Moreover, for every i = 1, . . . , n, we have

�{Ui(m) = k} =
(

m

k

)
pk

i (1 − pi)m−k.

For every h = 1, . . . , n, we denote by p(h) the probabil-
ity distribution defined by p(h) = 1

sh
(p1, . . . , ph), where

sh = p1 + · · · + ph. Clearly, we have sn = 1. We denote
by M(m, h) the maximum content in the urns after throwing
the m-th ball, when the number of urns is equal to h and the
throwing distribution is p(h), i.e.

M(m, h) = max{U1(m), . . . , Uh(m)}.

It is easy to check that, with probability 1, we have

M(m, n) ∈ {�m/n�, . . . , m},

where, for every x ∈ �, �x� is the smallest integer ≥ x.
Theorem 1: For every m ≥ 1, n ≥ 1 and k ≥ 1, we have

�{M(m, n) ≤ k} =
{

1 if k ≥ m
0 if k ≤ �m/n� − 1

and, for n ≥ 2 and �m/n� ≤ k ≤ m − 1,

�{M(m, n) ≤ k} =
k∑

j=0

(
m

j

)
pj

n(1 − pn)m−j
�{M(m − j, n − 1) ≤ k}.

Proof: Let k ≥ 1. The result is trivial in the 2 first cases.
We denote by Un(m) the row vector (U1(m), . . . , Un(m))
and by �n the row vector of dimension n with all its entries

equal to 1. For n ≥ 2 and �m/n� ≤ k ≤ m − 1, we have

�{M(m, n) ≤ k} = �{Un(m) ≤ k�n}

=
k∑

j=0

�{Un−1(m) ≤ k�n−1, Un(m) = j}

=
k∑

j=0

�{Un(m) = j}�{Un−1(m) ≤ k�n−1|Un(m) = j}

=
k∑

j=0

(
m

j

)
pj

n(1 − pn)m−j
�{Un−1(m − j) ≤ k�n−1}

=
k∑

j=0

(
m

j

)
pj

n(1 − pn)m−j
�{M(m − j, n − 1) ≤ k}.

Note that in this theorem, the random variable
M(m − j, n − 1) is the maximum content in the urns
after throwing m− j balls into n−1 urns, when the throwing
distribution is p(n − 1). From Theorem 1 we can derive the
expected value of the maximum M(m, n) as:

E(M(m, n)) =
∞∑

k=1

�{M(m, n) ≥ k}

= m −
m−1∑

k=�m/n�
�{M(m, n) ≤ k} (1)

where, as usual convention, an empty sum equals 0.
Lemma 2: For every m ≥ 1, and n ≥ 1, we have

m

n
≤ E(M(m, n)) ≤ log n + m log(1 + qn),

where qn = max{pi, i = 1, . . . , n}.
Proof: The lower bound is straightforward since

M(m, n) ≥ �m/n�. Following the idea of [8], in which
only the uniform distribution is considered, we introduce the
random variable 2M(m,n). It is easy to check that

2M(m,n) ≤
n∑

i=1

2Ui(m).

This leads to

E(2M(m,n)) ≤
n∑

i=1

E(2Ui(m))

=
n∑

i=1

m∑
j=1

2j

(
m

j

)
pj

i (1 − pi)m−j

=
n∑

i=1

(1 + pi)m ≤ n(1 + qn)m.



The Jensen’s inequality for concave functions applied to
logarithm function in base 2 leads to

E(M(m, n)) = E(log 2M(m,n))
≤ log E(2M(m,n))
≤ log n + m log(1 + qn).

When the throwing distribution is uniform, i.e. when pi =
1/n for every i = 1, . . . , n, we obtain a result similar to the
one presented in [8]:

E(M(m, n)) ≤ log n + m log(1 +
1
n

). (2)

B. Evaluating the impact of churn in cluster-based overlays

We are now ready to derive the minimum number of join
and leave events needed to trigger a topological change in
cluster-based overlays. More precisely, we first derive the
minimum number of events m0 needed to trigger the first
expected split or merge operation. Then, we refine this result
by calculating the minimum number of events m2 needed to
trigger the first split or merge operation with probability 1− ε
with ε ≤ 10−3. We assume that it is equiprobable that the next
event occurring in the system is a join or a leave event. In the
following, the lifetime of a cluster is defined as the number of
join/leave operations that occur in that cluster until that cluster
gives rise to a split or a merge operation.
Lemma 3: Let L = Smax − Smin, where Smax and Smin

respectively represent the upper bound and lower bound of
clusters size, and H be the maximal expected lifetime of any
cluster before it splits or merges. Then

H = �L2/4�.
Proof: From cluster-based overlays operations, the min-

imal condition for a cluster to split is that its size exceeds
Smax, while the condition for it to merge with another cluster
is that its size undershoots Smin. This process can be modelled
as a gambler’s ruin game with states 0, 1, . . . , L, where state k
means that the number of peers in the spare set of a cluster is
equal to k. States 0 and L are absorbing states. In state 0 the
cluster has to merge, while in state L the cluster has to split
into two new clusters. Assuming that join and leave events
have the same probability, equal to 1/2, to occur in a given
cluster, then the average lifetime Ek of the game starting from
state k, with 0 ≤ k ≤ L, satisfies the following equations

Ek =
{

0 for k = 0 or k = L

1 + Ek−1
2 + Ek+1

2 for k = 1, . . . , L − 1

It is easily checked that the solution to these equations is given,
for every k = 0, . . . , L, by Ek = k(L − k). By definition, H
is the maximal value of Ek . It is obtained for k = �L/2�
and k = �L/2�. At both points, the value of the maximum
is the same and is given by H = �L2/4�, which represents
the maximal expected number of events occurring in a cluster
before this cluster splits or merges.

In our context, Equation 1 can be interpreted as the expected
maximal number of events (both join and leave events) that
may occur in any given cluster of the system. Thus by setting
H = E(M(m, n)), we deduce the minimum number m0 of
join and leave events occurring in the system, in expectation,
before any cluster splits or merges. More precisely, m0 being
an integer, it is given by

m0 = inf{m ≥ 0 | E(M(m, n)) ≥ H} (3)

where n is the number of clusters of the overlay. Indeed, since
E(M(m, n)) is increasing with m, the value m0 exists. Note
that the result obtained in [8] is obtained using an the upper
bound of E(M(m, n)) given in Relation (2). The authors thus
compute a lower bound m1 of m0 with

m1 = inf{m ≥ 0 | log n + m log(1 + 1/n) ≥ �L2/4�}
which leads to

m1 =
⌈�L2/4� − log n

log(1 + 1/n)

⌉+

, (4)

where x+ is defined by x+ = max{x, 0}. Note that when
H − log n ≤ 0 we have m1 = 0, meaning that the system is
frozen since there are no joins nor leaves. Such a situation is
reported in Table I, where for N = 200 peers in the system
(actually for all values of N less than or equal to 28) the
lower bound m1 of m0 is null. In the experiments below,
Smax = �log N�, and n = �N/Smax�. We set Smin to 4.
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Fig. 2: Lower bounds, upper bounds and exact values of the
expectation E(M(m,n)) as functions of m for N = 1, 000 peers
(i.e., n = 100 and H = 9).

Figure 2 plots three curves representing the respectively
the expectation E(M(m, n)), and both its lower and upper
bounds. These curves have been calculated for a population
of N = 1, 000 peers, which gives n = 100 clusters, and
H = 9. From these curves we deduce both values of m0

(as derived in equation (3)) and m1 (equation (4)). We get
m0 = 352 while m1 = 160. This shows the gap between
the exact value of the expectation E(M(m, n)) and its upper
bound. As we could guess, the lower bound is trivially far from
E(M(m, n)). The main lesson learnt from these experiments
is that, in expectation, a large number of join and leave events



is required before the first relevant topological change occurs
in cluster-based structured overlays. So far the value ofm0 has
been derived by using the expectation E(M(m, n)) as given
in Equation 1. A more accurate evaluation of the number of
join and leave events occurring in the system before the first
cluster splits or merges can be done at the same cost using
the distribution of M(m, n) instead of its expectation (see
Theorem 1). Thus we define m2 as the minimum number of
join and leave events such that M(m2, n) > �L2/4� with a
high probability, say 1 − ε, where ε is close to 0 i.,e.,

m2 = inf{m ≥ 0 | �{M(m, n) > H} ≥ 1 − ε}.
Note that, since M(m, n) is increasing with m, so is
�{M(m, n) > H} from 0 to 1 so that m2 exists.
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Fig. 3: �{M(m, n) > H} as a function of m for N = 1, 000 (i.e.,
n = 100 and H = 9). Value m2 = 556 is obtained with ε = 10−3.

Figure 3 plots the curve of the complementary cumulative
distribution function of M(m, n) at point H = �L2/4� as a
function of m for a population of N = 1, 000 peers, which
gives n = 100 clusters, L = 6 and H = 9. We get that
m2 = 556 events (both join and leave) are necessary for the
first cluster to split or to merge with probability 10−3. This
curve clearly confirms the trend that a large number of join
and leave events is required before the first topological change
occurs in cluster-based overlays.
Observations of both Figures 2 and 3 for specific values of

N are confirmed in Table I. This table summarises for different
values of the system size the corresponding values of m0, m1,
and m2 with ε = 10−3, 10−5, and 10−7.

N H m2 m0 m1

ε = 10−3 10−5 10−7

200 4 72 81 87 34 0
500 6 210 233 249 116 8
600 9 363 395 417 229 130
700 9 413 449 474 261 141
800 9 462 502 530 291 150
900 9 509 553 584 322 158
1,000 9 556 604 638 352 165
2,000 12 1309 1407 1471 910 568
4,000 16 3193 3384 3518 2380 1763

TABLE I: Computation of m0, and m1 as function of N , and m2 as
function of both N and ε.

IV. CONCLUSION AND FUTURE WORKS

This work has precisely analysed robustness of cluster-based
overlays in terms of their capability to continue to operate
correctly despite high churn. It has shown that a very large
number of join and leave events are globally necessary before
the first topological change occurs in those overlay networks.
As future work we intend to accurately predict long term
behavior of cluster-based overlays by studying whether right
after the first split or merge operation is triggered, a cascade
of other clusters may or not reach their maximal expected
lifetime, and thus may undergo a split or merge operation. In
that respect the current result is a first step to a future analysis
that should closely model the long term behavior of cluster-
based overlays.
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