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ABSTRACT

Context. After several generations of interferometers in radioastronomy, wide-field imaging at high angular resolution
is today a major goal for trying to match optical wide-field performances.
Aims. All the radio-interferometric, wide-field imaging methods currently belong to the mosaicking family. Based on a
30 years old, original idea from Ekers & Rots, we aim at proposing an alternate formalism.
Methods. Starting from their ideal case, we successively evaluate the impact of the standard ingredients of interferometric
imaging, i.e. the sampling function, the visibility gridding, the data weighting, and the processing of the short spacings
either from single-dish antennas or from heterogeneous arrays. After a comparison with standard nonlinear mosaicking,
we assess the compatibility of the proposed processing with 1) a method of dealing with the effect of celestial projection
and 2) the elongation of the primary beam along the scanning direction when using the on-the-fly observing mode.
Results. The dirty image resulting from the proposed scheme can be expressed as a convolution of the sky brightness
distribution with a set of wide-field dirty beams varying with the sky coordinates. The wide-field dirty beams are locally
shift-invariant as they do not depend strongly on position on the sky: Their shapes vary on angular scales typically
larger or equal to the primary beamwidth. A comparison with standard nonlinear mosaicking shows that both processing
schemes are not mathematically equivalent, though they both recover the sky brightness. In particular, the weighting
scheme is very different in both methods. Moreover, the proposed scheme naturally processes the short spacings from
both single-dish antennas and heterogeneous arrays. Finally, the sky gridding of the measured visibilities, required by
the proposed scheme, may potentially save large amounts of hard-disk space and cpu processing power over mosaicking
when handling data sets acquired with the on-the-fly observing mode.
Conclusions. We propose to call this promising family of imaging methods wide-field synthesis because it explicitly
synthesizes visibilities at a much finer spatial frequency resolution than the one set by the diameter of the interferometer
antennas.

Key words. techniques: wide-field - techniques: interferometric - methods: data analysis - methods: image processing

1. Introduction

The instantaneous field of view of an interferometer is nat-
urally limited by the primary beam size of the individual
antennas. For the ALMA 12m-antennas, this field of view
is ∼ 9′′ at 690 GHz and ∼ 27′′ at 230 GHz. The astro-
physical sources in the (sub)-millimeter domain are often
much larger than this, but still structured on much smaller
angular scales. Interferometric wide-field techniques enable
us to fully image these sources at high angular resolution.
These techniques first require an observing mode that in
one way or another scans the sky on spatial scales larger
than the primary beam. The most common observing mode
in use today, known as stop-and-go mosaicking, consists in
repeatedly observing sky positions typically separated by
half the primary beam size. The improvement of the track-
ing behavior of modern antennas now leads astronomers to
consider on-the-fly observations, with the antennas slewing
continuously across the sky. The improvements in correla-
tor and receiver technologies are also leading to techniques
that could potentially sample the antenna focal planes with
multi-beam receivers instead of the single-pixel receivers in-
stalled on current interferometers.

Send offprint requests to: e-mail: pety@iram.fr

The ideal measurement equation of interferometric
wide-field imaging is

V (up, αs) =

∫

αp

B(αp − αs) I(αp) e
−i2παpup dαp, (1)

where V is the visibility function of 1) up (the spatial fre-
quency with respect to the fixed phase center) and 2) αs

(the scanned sky angle), I is the sky brightness, and B
the antenna power pattern or primary beam of an antenna
of the interferometer (Thompson et al. 1986, chapter 2).
For simplicity, 1) we assume that the primary beam is in-
dependent of azimuth and elevation, and 2) we use one-
dimensional notation without loss of generality. We do not
deal with polarimetry (see e.g. Hamaker et al. 1996; Sault
et al. 1996a, 1999) because it is adds another level of com-
plexity over our first goal here, i.e. wide-field considera-
tions. Several aspects make Eq. 1 peculiar with respect
to the ideal measurement equation for single-field obser-
vations. First, the visibility is a function not only of the uv
spatial frequency (up) but also of the scanned sky coordi-
nate (αs). Second, Eq. 1 is a mix between a Fourier trans-
form and a convolution equation. It can be regarded, for
example, as the Fourier transform along the αp dimension
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of the function, B(αp − αs) I(αp), of the (αp,αs) variables.
But Eq. 1 can also be written as the convolution:

V (up, αs) =

∫

αp

B(αs − αp) I(αp, up) dαp, (2)

where B(αs − αp) ≡ B(αp − αs) (3)

and I(αp, up) ≡ I(αp) e
−i2παpup . (4)

For each up kept constant, V (up,αs) is the convolution of
B and I. Indeed, I(αp, up = 0) = I(αp), so we derive

V (up = 0, αs) =

∫

αp

B(αs − αp) I(αp) dαp, (5)

i.e., the convolution equation for single-dish observations.
Ekers & Rots (1979) were the first to show that the

measurement equation (Eq. 1) enables us to recover spatial
frequencies of the sky brightness at a much finer uv resolu-
tion than the uv resolution set by the diameter of the inter-
ferometer antennas. Interestingly enough, the goal of Ekers
& Rots (1979) was “just” to find a way to produce the miss-
ing short spacings of a multiplying interferometer. However,
Cornwell (1988) realized that Ekers & Rots’ scheme has a
much stronger impact, because it explains why an inter-
ferometer is able to do wide-field imaging. Cornwell (1988)
also demonstrated that on-the-fly scanning is not absolutely
necessary to interferometric wide-field imaging. Indeed, the
large-scale information can be retrieved in mosaics of single-
field observations, provided that the sampling of the single
fields follows the sky-plane Nyquist sampling theorem.

As a result, all the information about the sky brightness
is coded in the visibility function. From a data-processing
viewpoint, all the current radio-interferometric wide-field
imaging methods (see, e.g., Gueth et al. 1995; Sault et al.
1996b; Cornwell et al. 1993; Bhatnagar & Cornwell 2004;
Bhatnagar et al. 2008; Cotton & Uson 2008) belong to
the mosaicking family1 pioneered by Cornwell (1988). In
this family, the processing starts with Fourier transform-
ing V (up,αs) along the up dimension (i.e. at constant αs)
to produce a set of single-field dirty images before linearly
combining them and forming a wide-field dirty image. In
this paper, we propose an alternate processing, which starts
with a Fourier transform of V (up,αs) along the αs dimen-
sion (i.e. at constant up). We show how this explicitely
synthesizes the spatial frequencies needed to do wide-field
imaging, which are linearly combined to form a “wide-field
uv plane”, i.e., one uv-plane containing all the spatial fre-
quency information measured during the wide-field obser-
vation. Inverse Fourier transform will produce a dirty im-
age, which can then be deconvolved using standard meth-
ods. The existence of two different ways to extract the wide-
field information from the visibility function raises several
questions: Are they equivalent? What are their relative
merits?

We thus aim at revisiting the mathematical foundations
of wide-field imaging and deconvolution. Sections 2 to 7 pro-
pose the new algorithm, which we call wide-field synthesis:
Section 2 first defines the notations and it then lays out
the basic concepts used throughout the paper. Section 3

1 In the rest of this paper, stop-and-go mosaicking refer to
the observing mode, while mosaicking alone refer to the imaging
family.

states the steps needed to go beyond the Ekers & Rots
scheme and explores the consequences of incomplete sam-
pling of both the uv and sky planes. Section 4 discusses the
effects of gridding by convolution and regular resampling.
Section 5 describes how to influence the dirty beam shapes
and thus the deconvolution. Section 6 states how to in-
troduce short spacings measured either from a single-dish
antenna or from heterogeneous interferometers. Section 7
compares the proposed wide-field synthesis algorithm with
standard nonlinear mosaicking. Some detailed demonstra-
tions are factored out in Appendix A to enable an eas-
ier reading of the main paper, while ensuring that inter-
ested readers can follow the demonstrations. Appendices B
and C then explain how the wide-field synthesis algorithm
can cope with non-ideal effects: Appendix B discusses how
at least one standard way to cope with sky projection prob-
lems is compatible with the wide-field synthesis algorithm.
Appendix C explores the consequences of using the on-the-
fly observing mode. Finally, we assume good familiarity
with single-field imaging in various places. We refer the
reader to well-known references: e.g. chapter 6 of Thompson
et al. (1986) and Sramek & Schwab (1989).

2. Notations and basic concepts

2.1. Notations

In this paper, we use the Bracewell (2000)’s notation to
display the relationship between a function I(α) and its
direct Fourier transform I(u), i.e.,

I(α) ⊃ I(u), (6)

where (α,u) is the couple of Fourier conjugate variables. We
also use the following sign conventions for the direct and
inverse Fourier transforms

I(u) ≡
∫

α

I(α) e−i2παu dα (7)

and

I(α) ≡
∫

u

I(u) e+i2πuα du. (8)

As V is a function of two independent quantities (up and
αs), the Fourier transform may be applied independently
on each dimension, while the other dimension stays con-
stant. Several additional conventions are used to express
this. First, we introduce a specific notation to state that
either the first or the second dimension stays constant:

Vup
(αs) ≡ V (up = constant, αs), (9)

and

V αs(up) ≡ V (up, αs = constant). (10)

Second, we use a bottom/top line to derive the notation
of the Fourier transform along the first/second dimension
from the notation of the original function. Third, on the
Fourier transform sign (i.e. ⊃), we explicitly state the di-
mension along which the Fourier transform is computed.
For instance, if D is a function of (αp,αs), then the Fourier
transform of D along the first dimension is expressed as

D(αp, αs)
αp

⊃
up

D(up, αs), (11)
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Table 1. Definition of the symbols used to expose the wide-
field synthesis formalism.

Symbol & Definition Plane(s)a

αs Scanned angle sky
us Scanned spatial frequency uv
αp Phased angle sky
up Phased spatial frequency uv
I Sky brightness sky
B Primary beam sky
V Visibility function uv & sky
S Sampling function uv & sky
∆ Set of single-field dirty beams sky & sky
D Set of wide-field dirty beams sky & sky
Ω Sky-plane weighting function sky & sky
W uv-plane weighting function (Ω ⊃ W ) uv & uv
G Gridding function (= g γ) uv & sky
g uv-plane gridding function uv
γ Sky-plane gridding function sky

Idirty Wide-field dirty image sky

Notes.
(a) Planes of definition of the associated symbols.

while the Fourier transform of D along the second dimen-
sion is expressed as

D(αp, αs)
αs⊃
us

D(αp, us). (12)

We also use a more compact notation when doing the
Fourier transform on both dimensions simultaneously, i.e.,

D(αp, αs)
(αp,αs)

⊃
(up,us)

D(up, us). (13)

Finally, the convolution of two functions G and V is noted
and defined as

{G ⋆ V }(u) ≡
∫

v

G(u− v)V (v) dv. (14)

For reference, Table 1 summarizes the definitions of the
symbols used most throughout the paper. With the one-
dimensional notation used throughout the paper, the num-
ber of planes quoted directly gives the number of associated
dimensions of the symbols. Generalization to images would
require a doubling of the number of planes/dimensions.
Table 2 defines the uv and angular scales that are relevant
to wide-field interferometric imaging, and Fig. 1 sketches
the different angular scales. Each angular scale (θ) is re-
lated to a uv scale (d) through θ = 1/d, where θ and d
are measured in radians and in units of λ (the wavelength
of the observation). In the rest of the paper, we explicitely
distinguish between θprim ≡ 1/dprim, the angular scale as-
sociated to the diameter of the interferometer antennas,
and θfwhm, the full width at half maximum of the primary
beam. The relation between θprim and θfwhm depends on
the illumination of the receiver feed by the antenna optics.
In radio astronomy, we typically have θfwhm ∼ 1.2 θprim (see
e.g. Goldsmith 1998, chapter 6). Finally, the notion of
anti-aliasing scale (θalias) is introduced and discussed in
Sect. 4.2.

2.2. Basic concepts

Figure 2 illustrates the principles underlying 1) the setup
to get interferometric wide-field observations and 2) our

Table 2. Definition of the uv and sky scales relevant to
wide-field interferometric imaging.

Symbol Definition
[λ,rad]a Conjugate uv and angular scale
dmax, θsyn Maximum baseline length & Synthesized beam
dprim, θprim Antenna diameter & Primary beamwidth
dalias, θalias Minimum image size for tolerable aliasing
dfield, θfield Targeted field of view

dimage, θimage Final image size

Notes.
(a) The chosen units (radians for θ and wavelength for

d) imply that the conjugate scales are linked through θ = 1/d,
instead of the usual θ = λ/d.

Fig. 1. Visualization of the different angular scales rele-
vant to wide-field interferometric imaging. The notion of
anti-aliasing scale (θalias) is introduced and discussed in
Sect. 4.2.

proposition to process them. For simplicity, we display the
minimum possible complexity without loss of generality.
The top row displays the sky plane. The middle row rep-
resents the 4-dimensional measurement space at different
stages of the processing. As it is difficult to display a 4-
dimensional space on a sheet of paper, the bottom row
shows 2-dimensional cuts of the measurement space at the
same processing stages.

2.2.1. Observation setup and measurement space

Panel a) displays the sky region for which we aim for es-
timating the sky brigthness, I(α). The field of view of an
interferometer observing in a given direction of the sky has
a typical size set by the primary beam shape. In our ex-
ample, this is illustrated by any of the circles whose diam-
eter is θprim. As we aim at observing a wider field of view,
e.g. θfield, the interferometer needs to scan the targeted sky
field. We assume that we scan through stop-and-go mo-
saicking, ending up with a 7-field mosaic.

After calibration, the output of the interferometer is
a visibility function, V (up,αs), whose relation to the sky
brightness is given by the measurement equation (Eq. 1).
Panel b.1) shows the measurement space as a mosaic of
single-field uv planes: The uv plane coverage of each single-
field observation is displayed as a blue sub-panel at the

3
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Fig. 2. Illustration of the principles of wide-field synthesis, which enables us to image wide-field interferometric observa-
tions. The top row displays the sky plane. The middle row displays the 4-dimensional visibility space and the bottom row
shows 2-dimensional cuts of this space at different stages of the processing. In panels b) to d), the scanned dimensions
(αs and us) are displayed in blue while the phased spatial scale dimensions (up) are displayed in red and the spatial
scale dimensions (u) of the final wide-field uv plane are displayed in black. The grey zones of panels b.2) and c.2) show
the regions of the visibility space without measurements (missing short-spacings). In detail, panel a) shows a possible
scanning strategy of the sky to measure the unknown brightness distribution at high angular resolution: For simplicity
it is here just a 7-field mosaic. Panel b.1) and b.2) sketch the space of measured visibilities: The uv plane at each of
the 7 measured sky positions is displayed as a blue square box in panel b.1) and a blue vertical line in panel b.2). For
simplicity, only 6 visibilities are plotted in panel b.1). Panels c.1) and c.2) sketch the space of synthesized visibilities after
Fourier transform of the measured visibilities along the scanned coordinate (αs): At each measured spatial frequency up

(displayed on the blue axes) is associated one space of synthesized wide-field spatial frequencies displayed as one of the
red squares in panel c.1) and the red vertical lines in panel c.2). The wide-field spatial scales are synthesized 1) on a
grid whose cell size is related to the total field of view of the observation and 2) only inside circles whose radius is the
primary diameter of the interferometer antennas. Panels d.1) and d.2) display the final, wide-field uv plane. This plane is
built by application of the shift-and-average operator along the black lines on panel c.2), lines that display the region of
constant u spatial frequency in the (up,us) space. Standard inverse Fourier transform and deconvolution methods then
produce a wide-field distribution of sky brightnesses as shown in panel e).
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sky position where it has been measured and which is fea-
tured by the red axes. We assume 1) that the interfer-
ometer has only 3 antennas and 2) that only a single in-
tegration is observed per sky position. This implies only
6 visibilities per single-field uv plane. In panel b.2), the
uv planes at constant αs are displayed as the blue verti-
cal lines. The measured spatial frequencies belong to the
[−dmax,−dmin] and [+dmin,+dmax] ranges, where dmin and
dmax are respectively the shortest and longest measured
baseline length. dmin is related to the minimum tolerable
distance between two antennas to avoid collision. Here, we
chose dmin ∼ 1.5 dprim. The grey zone between −dmin, and
+dmin displays the missing short spacings.

2.2.2. Processing by explicit synthesis of the wide-field
spatial frequencies

All the information about the sky brightness, I(α), is some-
how coded in the visibility function, V (up,αs). The high
spatial frequencies (from dmin to dmax) are clearly coded
along the up dimension. The uncertainty relation between
Fourier conjugate quantities also implies that the typical
spatial frequency resolution along the up dimension is only
dprim because the field of view of a single pointing has a
typical size of θprim. However, wide-field imaging implies
measuring all the spatial frequencies with a finer resolu-
tion, dfield = 1/θfield. The missing information must then
be hidden in the αs dimension.

In Sect. 3, we show that Fourier transforming the mea-
sured visibilities along the αs dimension (i.e. at constant
up) can synthesize the missing spatial frequencies, because
the αs dimension is sampled from −θfield/2 to +θfield/2,
implying a typical spatial-frequency resolution of the us

dimension equal to dfield. Conversely, the αs dimension is
probed by the primary beams with a typical angular res-
olution of θprim, implying that the us spatial frequencies
will only be synthesized inside the [−dprim,+dprim] range.
Panels c.1) and c.2) illustrate the effects of the Fourier
transform of V (up,us) along the αs dimension, in 4 and 2
dimensions, respectively. The red subpanels or vertical lines
display the us spatial frequencies around each constant up

spatial frequency.
In panels d.1) and d.2) (i.e. after the Fourier trans-

form along the αs dimension), V (up,us) contains all the
measured information about the sky brightness in a spatial
frequency space. However, the information is ordered in a
strange and redundant way. Indeed, we show that V (up,us)

is linearly related to I(up+us). To first order, the informa-
tion about a given spatial frequency u is stored in all the
values of V (up,us) which verifies u = up + us (black lines
on panel c.2).

A shift operation will reorder the spatial scale infor-
mation and averaging will compress the redundancy (illus-
trated by the halving of the number of the space dimen-
sions). The use of a shift-and-average operator thus pro-
duces a final uv plane containing all the spatial scale in-
formation to image a wide field in an intuitive form. We
thus call this space the wide-field uv plane. Panels d.1) and
d.2) display this space, where the minimum relevant spa-
tial frequency is related to the total field of view, while the
maximum one is related to the interferometer resolution.

Sections 3 and 4 show that applying the shift-and-
average operator to V produces the Fourier transform of a
dirty image, which is a local convolution of the sky bright-

ness by a slowly varying dirty beam. As a result, inverse
Fourier transform of

〈

V
〉

and deconvolution methods will
produce a wide-field distribution of sky brightness as shown
in panel e) at the top right of Fig. 2.

3. Beyond the Ekers & Rots scheme

In the real world, the visibility function is not only sam-
pled, but this sampling is incomplete for two main reasons.
1) The instrument has a finite spatial resolution, and the
scanning of the sky is limited, implying that the sampling
in both planes has a finite support. 2) The uv coverage
and the sky-scanning coverage can have holes caused either
by intrinsic limitations (e.g. lack of short spacings or small
number of baselines) or by acquisition problems (implying
data flagging). The incomplete sampling makes the mathe-
matics on the general case complex. We thus start with the
ideal case where we assume that the visibility function is
continuously sampled along the up and αs dimension. We
then look at the general case.

3.1. Ideal case: Infinite, continuous sampling

Starting from the measurement equation 1, Ekers & Rots
(1979) first demonstrated (see Sect. A.1) that2

∀(up, us), V up
(us) = B(−us) I(up + us). (15)

For each constant up spatial frequency, the Fourier trans-

form thus synthesizes a function, V up
(us), which is sim-

ply related to I(up+us), the Fourier components of the

sky brightness around up. V (up,us) is only defined in the
[−dprim,+dprim] interval along the us dimension because

B(-us) is itself only defined inside this interval, since B(-
us) is the autocorrelation of the antenna illumination.

We search to derive a single estimate of the Fourier com-
ponents I(u) of the sky brightness. Equation 15 indicates
that the fraction V (up, us)/B(−us) gives us an estimate of

I(u) for each couple (up, us) that satisfies u = up + us.

However, the information about I is strangely ordered.
There are two possible ways to look at this ordering. 1)
Starting from the measurement space, the Ekers & Rots
scheme synthesizes frequencies around each up measure in-
side the interval [up − dprim, up + dprim] at the dfield spatial
frequency resolution. 2) Starting from our goal, we want to
estimate I at a given spatial frequency u with a dfield spa-
tial frequency resolution. We thus search for all the couples
(up, us) satisfying u = up+us, which are displayed in panel
c.2) of Fig. 2 as the diagonal black lines. It immediately re-
sults that 1) there are several estimates of I for each spatial
frequency u and 2) the number of estimates varies with u.
We can average them to get a better estimate of I(u).

2 The convolution theorem, which states that the Fourier
transform of the convolution of two functions is the product of
the Fourier transform of both individual functions, is a special
case for Eq. 15: It can be recovered by setting up = 0. Indeed,
as already mentioned in the introduction, the ideal measure-
ment equation 1 can be interpreted as a convolution with an
additional phase term. By Fourier transforming along the αs

dimension, the convolution translates into a product of Fourier
transforms B and I , while the phase term translates into a shift
of coordinates: up + us.
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This last viewpoint thus suggests averaging in the
(up,us) space along linepaths defined by u = up + us. Such
an operator can mathematically be defined as

〈F 〉(u)≡
∫∫

upus

δ[u− (up + us)]W (up, us)F (up, us) dupdus, (16)

where F is the function to be averaged and W is a normal-
ized weighting function. Using the properties of the Dirac
function, we can reduce the double integral to

〈F 〉(u) =
∫

up

W (up, u− up)F (up, u− up) dup. (17)

In this equation, we easily recognize a shift-and-average op-
erator. The normalized weighting function plays a critical
role in the following formalism, and we propose clever ways
to define W in Sect. 5. In the ideal case studied here, W
can be defined as

W (up, us) ≡ 1/(2
√
2 dprim) for us[−dprim,+dprim],

W (up, us) ≡ 0 for other values of us.

In other words, we have just normalized the integral by the
constant length (2

√
2 dprim) of the averaging linepath.

3.1.1. Wide-field dirty image, dirty beam and image-plane
measurement equation

Section 3.2 shows that the incomplete sky and uv sam-
pling forbid us to apply the shift-and-average operator to
the V (up, us)/B(−us) function. To guide us in this general
case, we thus explore the consequences of applying this op-
erator to V in the ideal case. It is easy to demonstrate that
the result is the Fourier transform of a dirty image, i.e.,

Idirty(u) =
〈

V
〉

(u). (18)

Indeed, substituting
〈

V
〉

(u) with the help of Eqs. 17 and 15
and taking the inverse Fourier transform, we get

Idirty(u) = D(u) I(u), (19)

with D(u) ≡
∫

up

W (up, u− up)B(up − u) dup. (20)

Here, Idirty conforms to the usual idea of dirty image, i.e.,
the convolution of a dirty beam by the sky brightness:

Idirty(α) = {D ⋆ I}(α) . (21)

In contrast to the usual situation for single-field observa-
tions, the mix between a Fourier transform and a convo-
lution of Eq. 1, associated with the specific processing3

changes the image-plane measurement equation from a con-
volution of a dirty beam with the product B I to a convo-
lution of a dirty beam with I. The dependency on the pri-
mary beam is still there. It is just transferred from a product
of the sky brightness distribution into the definition of the
dirty beam.

3 i.e. direct Fourier transform along the αs dimension, shift-
and-average to define a final wide-field uv plane, and inverse
Fourier transform.

3.1.2. Summary and interpretation

In summary, a theoretical implementation of wide-field syn-
thesis implies

1. the possibility of Fourier transforming the visibility
function along the αs dimension (i.e. at constant up),
which gives us a set of synthesized uv planes;

2. the possibility of shifting-and-averaging these synthe-
sized uv planes to build the final, wide-field uv plane
containing all the available information.

Using those tools, we are able to write the wide-field image-
plane measurement equation as a convolution of a wide-field
dirty beam (D) by the sky brightness (I), i.e.,

Idirty(α) =

∫

α′

D(α − α′) I(α′) dα′. (22)

We can write a convolution equation in this ideal case be-
cause the wide-field response of the instrument is shift-
invariant; i.e., D only depends on differences of the sky
coordinates.

It is well-known that for a single-field observation, the
dirty beam is the inverse Fourier transform of the sampling
function. The shape of this sampling function is due to the
combination of aperture synthesis (the interferometer an-
tennas give a limited number of independent baselines) and
Earth-rotation synthesis (the rotation of the Earth changes
the projection of the physical baselines onto the plane per-
pendicular to the instantaneous line of sight). By analyzing
via a Fourier transform, the evolution of the visibility func-
tion with the sky position, the Ekers & Rots scheme syn-
thesizes visibilities at spatial frequencies needed to image a
larger field of view than the interferometer primary beam.
We thus propose to call this specific processing: wide-field
synthesis.

3.2. General case: Incomplete sampling

Reality imposes limitations on the synthesis of spatial fre-
quencies. Indeed, we have already stated that the visibility
function is incompletely sampled both in the uv and sky
planes. To take the sampling effects into account, we in-
troduce the sampling function S(up,αs), which is a sum of
Dirac functions at measured positions4. The sampling func-
tion cannot be factored into the product of two functions,
each only acting on one plane. Indeed, the Earth rotation
happening during the source scanning implies a coupling of
both dimensions of the sampling function. In other words,
the uv coverage will vary with the scanned sky coordinate.
This leads us to a shift-dependent situation, precluding us
from writing the wide-field image-plane measurement equa-
tion as a true convolution. We nevertheless search for a
wide-field image-plane measurement equation as close as
possible to a convolution because all the inversion meth-
ods devised in the past three decades in radioastronomy
are tuned to deconvolve images. The simplest mathemati-
cal way to generalize Eq. 22 to a shift-dependent situation
is to write it as

Idirty(α) =

∫

α′

D(α − α′, α) I(α′) dα′. (23)

4 Loosely speaking, the sampling function can be thought as
a function whose value is 1 where there is a measure and 0
elsewhere.
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In this section, we show how the linear character of the
imaging process allows us to do this. Section 3.2.1 derives
the impact of incomplete sampling on the Ekers & Rots
equation, and Sect. 3.2.2 derives the wide-field measure-
ment equation in the uv plane. Section 3.2.3 interprets these
results.

3.2.1. Effect on the Ekers & Rots equation

The sampled visibility function, SV , is defined as the prod-
uct of S and V and SV its Fourier transform along αs, i.e.,

SV (up, αs) ≡ S(up, αs)V (up, αs), (24)

and SV (up, αs)
αs⊃
us

SV (up, us). (25)

Because SVup
is the product of two functions of αs, we

can use the convolution theorem to show that SV up
is the

convolution of Sup
by V up

, i.e.,

SV up
(us) =

∫

u′

s

Sup
(us − u′

s)V up
(u′

s) du
′
s. (26)

By replacing V up
with the help of the Ekers & Rots relation

(Eq. 15), we derive

SV up
(us) =

∫

u′

s

Sup
(us − u′

s)B(−u′
s) I(up + u′

s) du
′
s. (27)

As B is bounded inside the [−dprim,+dprim] interval,

SV up
(us) is a local average, weighted by Sup

(us −
u′
s)B(−u′

s), of I(up+u′
s) around the up spatial frequency.

As expected, we recover Eq. 15 for the ideal case
(i.e., infinite, continuous visibility function) because then
Sup

(us − u′
s) = δ(us − u′

s). A more interesting case arises
when the visibility function is continuously sampled over a
limited sky field of view, i.e.,

∀up, S(up, αs) = 1 if |αs| ≤ θfield/2, (28)

∀up, S(up, αs) = 0 if |αs| > θfield/2. (29)

After Fourier transform this gives

∀up, S(up, us) =
1

dfield
sinc

(

us

dfield

)

. (30)

In this case, the local average of the sky brightness Fourier
components happens on a typical uv scale equal to dfield.
However, the sinc function is known to decay only slowly.
Some observing strategy (e.g. quickly observing outside the
edges of the targeted field of view to provide a bandguard)
could be considered to apodize the sky-plane dependence of
the sampling function, resulting in faster decaying S func-
tions, hence in less mixing of the wide-field spatial frequen-
cies.

3.2.2. uv-plane wide-field measurement equation

Because we aim at estimating the Fourier component of I,
we introduce the following change of variables u′ ≡ up+ u′

s
and du′ = du′

s, to derive

SV up
(us) =

∫

u′

Sup
(up + us − u′)B(up − u′) I(u′) du′. (31)

We then shift-and-average SV (up,us) to build the Fourier
transform of a wide-field dirty image

Idirty(u) ≡
〈

SV
〉

(u), with u= up+us. (32)

Substituting the shift-and-average operator by its definition
and using Eq. 31 to replace SV up

(us), we derive

Idirty(u)

=

∫∫

upu′

W (up, u−up)S(up, u−u′)B(up−u′) I(u′) dupdu
′.(33)

This uv-plane wide-field measurement equation can be
written as

Idirty(u) =

∫

u′

D(u′, u− u′) I(u′) du′, (34)

if we enforce the following equality

D(u′, u−u′) ≡
∫

up

W (up, u−up)S(up, u−u′)B(up−u′) dup.(35)

This is one way to define D, which is convenient though
unusual. It is implicit in this definition that we need to
make a change of variable (u′′ = u− u′) to derive

D(u′, u′′) ≡
∫

up

W (up, u
′+u′′−up)S(up, u

′′)B(up−u′) dup.(36)

In the following, we use either one or the other definition
of D, depending on convenience.

3.2.3. Interpretation

Appendix A.2 demonstrates that the image and uv-plane
wide-field measurement equations (Eqs. 23 and 34) are
equivalent if

D(αp, αs)
(αp,αs)

⊃
(up,us)

D(up, us). (37)

The image-plane wide-field measurement equation (Eq. 23)
can be written as

Idirty(α) = {Dα ⋆ I}(α) . (38)

Its interpretation is straightforward: The sky brightness dis-
tribution is convolved with a dirty beam, D(α′,α′′), which
varies with the sky coordinate α′′. This raises the question
of the rate of change of the dirty beam with the sky coor-
dinate. This question is addressed in Sects. 4.2 and 5.

4. Gridding by convolution and regular resampling

We want to Fourier transform the raw visibilities along the
sky dimension (αs) at some constant value in the up dimen-
sion. The raw data, however, is sampled on an irregular grid
in both the uv and sky planes. We need to grid the mea-
sured visibilities in both the uv and the sky planes before
Fourier transformation for different reasons. First, the grid-
ding in the uv plane will handle the variation in the spatial
frequency as the sky is scanned, i.e., the difficulty and per-
haps the impossibility of Fourier-transforming at a com-
pletely constant up value. Second, the gridding along the
sky dimension allows the use of Fast Fourier Transforms.
As usual, we grid through convolution and regular resam-
pling.
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4.1. Convolution

4.1.1. Definitions

We first define a gridding kernel that depends on both
dimensions, G(u, αs). This gridding kernel can be chosen
as the product of two functions, simplifying the following
demonstrations:

G(up, αs) ≡ g(up) γ(αs). (39)

We then define the sampled visibility function gridded in
both the uv and sky planes as

SV G(up, αs) ≡ {G ⋆ SV }(up, αs) (40)

=

∫∫

u′

pα
′

s

g(up − u′
p) γ(αs − α′

s)SV (u′
p, α

′
s) du

′
pdα

′
s. (41)

Finally, when assessing the impact of the gridding on the
measurement equation 34, a new function,

Σ(up, αs, α
′′
s ) ≡ S(up, αs)B(α′′

s − αs), (42)

and its Fourier transforms naturally appear in the equa-
tions. Defining the following Fourier transform relationships

Σ(up, αs, α
′′
s )

α′′

s⊃
u′′

s

Σ(up, us, α
′′
s ), (43)

and

Σ(up, us, α
′′
s )

αs⊃
us

Σ(up, us, u
′′
s ), (44)

we easily derive

Σ(up, αs, u
′′
s ) = S(up, αs)B(u′′

s ) e
−i2πu′′

s αs , (45)

and

Σ(up, us, u
′′
s ) = S(up, us + u′′

s )B(u′′
s ). (46)

Using these notations, we have before gridding,

SV (up, αs) =

∫

αp

Σ(up, αs, αp) I(αp) e
−i2παpup dαp, (47)

and

D(u′, u−u′)=

∫

up

W (up, u−up)Σ(up, u−up, up−u′) dup.(48)

4.1.2. Conservation of the wide-field measurement equation

Appendix A.3 demonstrates that the wide-field dirty image
is here again the convolution of the sky brightness I by a
wide-field dirty beam Dα or, in the Fourier plane,

I
G

dirty(u) ≡
〈

SV
G
〉

(u) =

∫

u′

D
G
(u′, u− u′) I(u′) du′ (49)

with

D
G
(u′, u− u′)≡

∫

up

W (up, u− up)Σ
G
(up, u− up, u

′) dup, (50)

where Σ
G
(up, αs, u

′)

≡
∫∫

u′

pα
′

s

g(up − u′
p) γ(αs − α′

s)Σ(u
′
p, α

′
s, u

′
p − u′) du′

pdα
′
s. (51)

We thus have equations that resemble those containing the
sampling function alone, except for 1) the replacement of
the generalized sampling function Σ by its gridded version

Σ
G
and 2) the way the variables are linked together both

in the gridding of Σ (i.e., Eq. 51) and in the averaging of

Σ
G
(i.e., Eq. 50).

4.2. Regular resampling

It is well known that too low a resampling rate in one
space implies power aliasing in the conjugate space (See
e.g. Bracewell 2000; Press et al. 1992). Aliasing must be
avoided as much as possible because it folds power outside
the imaged region back into it. Table 3 defines the inter-
vals of definition of the different functions we are dealing
with (i.e., visibilities, primary beam, dirty image, and dirty
beam), as well as the associated sampling rates needed to
enforce Nyquist sampling. The boundary values of the def-
inition intervals (|u|max and |α|max) are related to the sam-
pling rates (∂α and ∂u, respectively) through

|u|max .∂α = |α|max .∂u =
1

nsamp
, (52)

where nsamp is an integer characterizing the sampling.
Nyquist sampling implies nsamp = 2. However, slight over-
sampling (e.g. nsamp = 3) is often recommended because
the measures suffer from errors and the deconvolution is
a nonlinear process. In this section, we examine the prop-
erties of the different functions to define their associated
sampling rates.

4.2.1. The αs sampling rate of the visibility function

When Fourier transforming the measurement Eq. 1 along
the αs axis, we derive the Ekers & Rots equation (15).
This equation implies that V (up,us) is bounded inside the
[−dprim,+dprim] spatial frequency interval along the us

axis. As a result, the visibility function needs to be regularly
resampled at a rate of only 0.5/dprim to satisfy the Nyquist
theorem. This was first pointed out by Cornwell (1988).
This sampling rate is equal to θprim/2 or ∼ θfwhm/2.4. The
“usual, wrong” habit of sampling at θfwhm/2 is indeed un-
dersampling with aliasing as a consequence. Mangum et al.
(2007) discuss the consequences of undersampling in-depth
in the framework of single-dish imaging.

4.2.2. The up sampling rate of the visibility function

Now, the Fourier transform of the measurement equation 1
along the up axis gives

V
∼
(αp, αs) = B(αp − αs) I(αp), (53)

where V
∼
(αp, αs)

αp

⊃
up

V (up, αs). (54)

We use the tilde sign under V to denote the inverse Fourier
transform of V along its first dimension. A well-known
Fourier transform property implies that B has infinite sup-
port because B is bounded. The resampling rate along the
up axis therefore depends on the properties of the product
of B(αp − αs) times I(αp) as a function of αp. While no
unique answer exists, three facts help us to find the right

8
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Table 3. Interval ranges of definition and associated sam-
pling rates for the used functions.

Functions Intervals Samplings
Visibilities |up| ≤ dmax ∂up = 2 dalias/nsamp

|αp| ≤ θalias/2 ∂αp = θsyn/nsamp

|us| ≤ dprim ∂us = 2 dimage/nsamp

|αs| ≤ θimage/2 ∂αs = θprim/nsamp

Primary beam |u′

s| ≤ dprim ∂u′

s = 2 dalias/nsamp

|α′

s| ≤ θalias/2 ∂α′

s = θprim/nsamp

|u′′

s | ≤ dprim ∂u′′

s = 2 dalias/nsamp

|α′′

s | ≤ θalias/2 ∂α′′

s = θprim/nsamp

Dirty image |u| ≤ dmax ∂u = 2 dimage/nsamp

|α| ≤ θimage/2 ∂α = θsyn/nsamp

Dirty beam |u′| ≤ dmax ∂u′ = 2 dimage/nsamp

|α′| ≤ θimage/2 ∂α′ = θsyn/nsamp

|u′′| ≤ dprim ∂u′′ = 2 dimage/nsamp

|α′′| ≤ θimage/2 ∂α′′ = θprim/nsamp

Table 4. Minimum sizes of the dirty beam images to get
an image fidelity or a dynamic range greater than a given
value.

Minimum fidelity θalias/θfwhm
a

or dynamic range (fb = 0)b (fb = 0.0625) (fb = 0.1)
102 2.2 2.2 2.2
103 3.5 3.7 6.6
104 8.4 13.4 13.7
105 19.8 > 20.0 > 20.0

Notes.
(a) The image sizes are expressed in units of the primary

beam full width at half maxium. (b) The computation is done
for 3 different ratios of the secondary-to-primary diameters (i.e.
fb, the antenna blockage factors). The values are derived from
the modeling of the antenna power patterns shown in Fig. 3.

sampling rate: 1) B falls off relatively quickly. 2) The result
depends on the spatial distribution of the sky brightness
and in particular on the dynamic range in brightness needed
to accurately image it. 3) The measure of V

∼
(αp,αs) has a

limited accuracy owing to thermal noise, phase noise, and
other possible systematics (e.g. pointing errors). For sim-
plicity, we quantify the measurement accuracy by a single
number, namely the maximum instrumental fidelity mea-
sured in the image plane as defined in Pety et al. (2001).
There are two cases:

1. The maximum instrumental fidelity limits the dynamic
range in brightness. For instance, Pety et al. (2001)
showed that the fidelity of interferometric imaging at
(sub)-millimeter wavelengths will be limited to a few
hundred. In this case, V

∼
(αp,αs) aliasing can be toler-

ated when the amplitude of B is less than a fraction of
the inverse of the maximum instrumental fidelity.

2. The maximum instrumental fidelity is much greater
than the image fidelity, as can be the case at centimeter
wavelengths. In this case, V

∼
(αp,αs) aliasing can only be

tolerated when the amplitude of B is less than a fraction
of the inverse of the dynamic range of the image.

The criterion derived in each case gives a typical image
size (θalias), which can be converted into the desired up

sampling rate. To be more quantitative, Fig. 3 models the

Fig. 3. Simple models of the antenna power patterns as
a function of the sky angle in units of half the primary
beam FWHM (θfwhm). In the 3 cases shown, the illumi-
nation is Gaussian with an edge taper of 12.5 dB but 3
different ratios of the secondary-to-primary diameters (i.e.
fb, the antenna blockage factors) are considered (see e.g.
Goldsmith 1998, chapter 6). The middle and bottom pan-
els respectively model ALMA and PdBI antennas. The red
lines define the minimum angular sizes for which the an-
tenna power pattern is less than a given fraction.

normalized antenna power patterns of an antenna illumi-
nated by a Gaussian beam of 12.5 dB edge taper and with
a given blockage factor (ratio of the secondary-to-primary
diameters). The top panel presents an ideal case with-
out secondary miror, while the middle and bottom pan-
els present simple models of the ALMA and PdBI anten-
nas. The largest angular sizes at which the power patterns
are less than a given value, P0, is a first-order estimate of
θalias/2 to get a fidelity or dynamic range higher than 1/P0.
Table 4 gives the values of θalias/θfwhm as a function of the
searched fidelity or dynamic range. This condition is suffi-
cient but not necessary. Indeed, the aliasing properties also
depend on the brightness distribution of the source.

4.2.3. The u sampling rate of Idirty(u)

We have no garantee that the sky outside the targeted field
of view is devoid of signal, so the only way to ensure a
given dynamic range inside the targeted field of view is to
choose the image size large enough so that the aliasing of
potential outside sources is negligible. This means that the
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dirty image size must be equal to the field-of-view size plus
the tolerable aliasing size

θimage = θfield + θalias. (55)

The conjugate uv distance and associated uv sampling then
are

dimage =
dfield

1 + dfield

dalias

and ∂u =
dimage

nsamp
. (56)

4.2.4. The u′ and u′′ sampling rates of D(u′,u′′)

The u′′ axis must thus be sampled at the same rate as
the second dimension of the definition space of S, i.e., as
us. Moreover, u′ has in this equation a behavior (u′ =
up + u′′

s ) similar to u (= up + us). It must thus have the
same sampling behavior as u. This sampling rate (∂u′ =
dimage/nsamp) is quite high. Some deconvolution methods
(see below) allow us to relax this sampling rate.

4.3. Absence of gridding “correction”

Imaging of single-field observations goes through the fol-
lowing steps: 1) convolution by a gridding kernel, 2) regular
resampling, 3) fast Fourier transform, and 4) gridding “cor-
rection”. The so-called gridding “correction” is a division
of the dirty beam and dirty image by the Fourier transform
of the gridding kernel used in the initial convolution. This
step is mandatory when imaging single-field observations
to keep the image-plane measurement equation as a sim-
ple convolution equation (see e.g. Sramek & Schwab 1989).
When imaging wide-field observations, as proposed here,
the Fourier transform along the αs dimension, followed by
the shift-and-average operation, freeze the convolution ker-
nel into the dirty beam of the wide-field measurement equa-
tion. This is why the gridding “correction” step is irrelevant
here.

5. Dirty beams, weighting, and deconvolution

In radioastronomy, the dirty beam is the response of the
interferometer to a point source. In the wide-field synthesis
framework, the response of the interferometer to a point
source, D, a priori depends on the source position on the
sky. D(α′,α′′) can thus be interpreted as a set of dirty
beams, with each dirty beam referred to by its fixed α′′

sky coordinate. These simple facts raise several questions.
What are the properties of the convolution kernel? Is it
possible to modify these properties? How do we deconvolve
the dirty image?

5.1. A set of wide-field dirty beams

With the wide-field synthesis framework proposed here,
Appendix A.6 shows that
D(α′, α′′) =

∫∫

αpαs

B(α′′−α′−αs)Ω(α
′−αp, α

′′−αs)∆(αp, αs) dαpdαs.(57)

where ∆(αp, αs)
αp

⊃
up

S(up, αs), (58)

and Ω(α′, α′′)
(α′,α′′)

⊃
(u′,u′′)

W (u′, u′′). (59)

∆(αp,αs) is the single-field dirty beam, associated with the
uv sampling at the sky coordinate αs. And Ω(α′,α′′) will be
called the image plane weighting function, while W (u′,u′′)
is the uv plane weighting function. The set of wide-field
dirty beams D is then the double convolution of the image
plane weighting function and the single-field dirty beams,
apodized by the primary beam at the current sky position
αs.

While the shape of the single-field dirty beam is directly
given by the Fourier transform of the sampling function,
the shape of the wide-field dirty beam depends, directly or
through Fourier transforms, on the sampling function (S),
the primary beam shape (B), and the weighting function
(W ). Moreover, the wide-field dirty beam shape a priori
varies slowly with the sky position, since it is basically con-
stant over the primary beamwidth as stated in Sect. 4.2.
It nevertheless varies, implying, for instance, a “slow” vari-
ation of the synthesized resolution over the whole field of
view.

While the single-field and wide-field dirty beam expres-
sions seem very different, they share the same property of
expressing the way the interferometer is used to synthe-
size a telescope of larger diameter in the image plane. In
other words, the sampling function for single-field imag-
ing and D for wide-field imaging express the sensitivity of
the interferometer to a given spatial frequency. These uv
space functions are called the transfer functions of the in-
terferometer (Thompson et al. 1986, chapter 5). Modifying
the transfer function has a direct impact on the measured
quantity. Once the interferometer is designed and the ob-
servations are done, the only way to change this transfer
function is data weighting.

An ideal set of wide-field dirty beams, D(α′,α′′), would
have the following properties. All the wide-field dirty beams
should be identical (i.e., independent of the α′′ sky coordi-
nate) and equal to a narrow Gaussian (its FWHM giving
the image resolution). This would give the product of a wide
Gaussian of u′ by a Dirac function of u′′, as the ideal wide-
field transfer function, D(u′,u′′).

5.2. Dirty beam shapes and weighting

When imaging single-field observations, giving a multiplica-
tive weight to each visibility sample is an easy way to
modify the shape of the dirty beam and thus the prop-
erties of the dirty and deconvolved images. Natural weight-
ing (which maximizes signal-to-noise ratio), robust weight-
ing (which maximizes resolution), and tapering (which en-
hances brightness sensitivity at the cost of a lower resolu-
tion) are the most popular weighting techniques (see e.g.
Sramek & Schwab 1989).

In the case of wide-field synthesis, a multiplicative
weight can also be attributed to each visibility sample be-
fore any processing. However, the weighting is also at the
heart of the wide-field synthesis because it is an essential
part of the shift-and-average operation. No constraint has
been set on the weighting function up to this point, which
indicates that the weighting function (W ) gives us a de-
gree of freedom in the imaging process. We look in turn at
both kinds of weighting. In both cases, an obvious issue is
the definition of the optimum weighting functions. As in the
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case of single-field imaging, there is no single answer to this
question. It depends on the conditions of the observation
and on the imaging goals.

5.2.1. Weighting the measured visibilities

Natural weighting consists of slightly changing the defini-
tion of the sampling function. It is now set to a normalized
natural weight where there is a measure and 0 elsewhere.
The natural weight is usually defined as the inverse of
the thermal noise variance, computed from the radiometric
equation, i.e., from the system temperature, the frequency
resolution, and the integration time. Using this weighting
scheme before computing the first Fourier transform along
the αs sky dimension makes sense because the observing
conditions (and thus the noise) vary from visibility to visi-
bility.

We propose to generalize this weighting scheme to other
observing conditions than just the system noise. Indeed,
critical limitations of interferometric wide-field imaging are
pointing errors, tracking errors, atmospheric phase noise (in
the (sub)-millimeter domain), etc. While techniques exist
for coping with these problems (e.g., water vapor radiome-
ter, direction-dependent gains: Bhatnagar et al. 2008), they
are not perfect. The usual way to deal with the remaining
problems is to flag the source data based on a priori knowl-
edge of the problems, e.g., pointing measurement, tracking
errors, rms phase noise on calibrators, etc. However, flag-
ging involves the definition of thresholds, while reality is
never black and white. It can thus be asked whether some
weighting scheme could be devised to minimize the effect of
pointing errors, tracking errors or phase noise on the result-
ing image. We propose to modulate natural weighting based
on the a priori knowledge of the observing conditions.

5.2.2. Weighting the synthesized visibilities

Robust weighting or tapering the measured visibilities do
not make sense in wide-field synthesis because the dirty
image is made from the synthesized visibilities after the first
Fourier transform along the αs sky dimension. A weighting
function W then appears naturally as part of the shift-
and-average operator. Its optimum value depends on the
properties of the measured sampling function. Here are a
few examples.

Infinite, continuous sampling. This is the ideal case stud-
ied in Sect. 3.1. Knowing that the Ekers & Rots equa-
tion (15) links the quantity we want to estimate, i.e., I,
to many noisy5 measurements, V (up,us), via a product

by B (assumed to be perfectly defined), we can invoke
a simple least-squares argument (see e.g. Bevington
& Robinson 2003) to demonstrate that the optimum
weighting function is

W (up, u− up) =
w(up, u− up)B(up − u)

∫

up
w(up, u− up)B

2
(up − u) dup

, (60)

with w(up,us) the weight computed from the inverse

of the noise variance of V (up,us). Using Eq. 20, it is

then easy to demonstrate that D(u) = 1, and then

5 The noise is assumed to have a Gaussian probability distri-
bution function.

Idirty(α) = I(α). The dirty image is a direct estimate of
the sky brightness; i.e., deconvolution is superfluous.

Complete sampling. The signal is Nyquist-sampled, but it
has a finite support in both the uv and sky planes, im-
plying a finite synthesized resolution and a finite field
of view. In contrast to the previous case, this one may
have practical applications, e.g., observations done with
ALMA in its compact configuration. Indeed, the large
number of independent baselines coupled to the design
of the ALMA compact configuration ensure a complete,
almost Gaussian, sampling for each snapshot. In this
case, the best choice may be to choose the weighting
function so that all the dirty beams are identical to the
same Gaussian function. In this case, the deconvolution
would also be superfluous.

Incomplete sampling. This is the more general case studied
in Sect. 3.2. The signal not only has a finite support but
it also is undersampled (at least in the uv plane). The
deconvolution is mandatory. The choice of the weighting
function thus will depend on imaging goals.
If the user needs the best signal-to-noise ratio, some
kind of natural weighting will be needed. It is tempting
to use Eq. 60 as a natural weighting scheme. However,
the main condition for derivation of this weighting func-
tion, i.e., the Ekers & Rots equation (15), is not valid
anymore, as the noisy measured quantity (SV ) is now
linked to the quantity we want to estimate (I) by a local
average (see Eq. 31). This is why it was more appropri-
ate to try to get a Gaussian dirty beam shape in the
complete sampling case.
If the signal-to-noise ratio is high enough, the user has
two choices. Either he/she wants to maximize angular
resolution power and needs some kind of robust weight-
ing, or he/she wants to get the more homogeneous dirty
beam shape over the whole field of view. This require-
ment cannot always be fully met. The Ekers & Rots
scheme enables us to recover unmeasured spatial fre-
quencies only in regions near to measured ones, because
B has a finite support.

5.3. Deconvolution

Writing the image-plane measurement equation in a
convolution-like way is very interesting because all the de-
convolution methods developed in the past 30 years are op-
timized to treat deconvolution problems (see e.g. Högbom
1974; Clark 1980; Schwab 1984; Narayan & Nityananda
1986). For instance, it should be possible to deconvolve
Eq. 23 with just slight modifications to the standard
CLEAN algorithms. Indeed, Eq. 23 can be interpreted as
the convolution of the sky brightness by a set of dirty
beams, so that the only change, once a CLEAN component
is found, would be the need to find the right dirty beam
in this set in order to remove the CLEAN component from
the residual image.

Following Clark (1980) and Schwab (1984), most al-
gorithms today deconvolve in alternate minor and major
cycles. During a minor cycle, a solution of the deconvolu-
tion is sought with a simplified (hence approximate) dirty
beam. During a major cycle, the current solution is sub-
tracted either from the original dirty image using the exact
dirty beam or from the measured visibilities, implying a
new gridding step. In both cases, the major cycles result in
greater accuracy. The iteration of minor and major cycles
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enables one to find an accurate solution with better com-
puting efficiency. In our case, the approximate dirty beams
used in the minor cycle could be 1) dirty beams of a much
smaller size than the image, or 2) a reduced set of dirty
beams (i.e., guessing that the typical variation sizescale of
the dirty beams with the sky coordinate is much larger
than the primary beamwidth), or 3) both simultaneously.
The model would be subtracted from the original visibili-
ties before re-imaging at each major cycle. The trade-off is
between the memory space needed to store a full set of ac-
curate dirty beams and the time needed to image the data
at each major step. Some quantitative analysis is needed to
know how far the dirty beams can be approximated in the
minor cycle.

It is worth noting that the accuracy of the deconvolved
image will be affected by edge effects. Indeed, the dirty
brightness at the edges of the observed field of view is at-
tenuated by the primary beam shape. When deconvolving
these edges, the deconvolved brightness will be less precise,
because the primary beam has a low amplitude there. This
only affects the edges, because inside the field of view, every
sky position should be observed a fraction of the time with
a primary beam amplitude between 0.5 and 1. This edge
effect is nevertheless expected to be much less troublesome
than the inhomogeneous noise level resulting from standard
mosaicking imaging (see Sect. 7.1).

6. Short spacings

6.1. The missing flux problem

Radio interferometers are bandpass instruments; i.e., they
filter out not only the spacings longer than the largest base-
line length but also the spacings shorter than the shortest
baseline length, which is typically comparable to the di-
ameter of the interferometer antennas. In particular, radio
interferometers do not measure the visibility at the center
of the uv plane (the so-called “zero spacing”), which is the
total flux of the source in the measured field of view.

The lack of short baselines or short spacings has strong
effects as soon as the size of the source is more than about
1/3 to 1/2 of the interferometer primary beam. Indeed,
when the size of the source is small compared to the pri-
mary beam of the interferometer, the deconvolution algo-
rithms use, in one way or another, the information of the
flux at the lowest measured spatial frequencies for extrap-
olating the total flux of the source. The extreme case is a
point source at the phase center for which the amplitude
of all the visibilities is constant and equal to the total flux
of the source: Extrapolation is then exact. However, the
larger the size of the source, the worse the extrapolation,
which then underestimates the total source flux. This is
the well-known problem of the missing flux that observers
sometimes note when comparing a source flux measured by
a mm interferometer with the flux observed with a single-
dish antenna.

Wide-field synthesis does not recover the full short spac-
ings. Let us assume that the visibility function is continu-
ously sampled from dmin to dmax, with dmin ∼ 1.5 dprim.
The length of the averaging linepath6, L(u), can be inter-
preted as the number of measures that contribute to the
estimation of I(u). Figure 4 shows the variations of L(u)

6 The notion of averaging linepath has been introduced in
Sect. 3.1 (see in particular Eq. 16).

Fig. 4. Length of the averaging linepaths displayed as black
lines in panel c.2) of Fig. 2, as a function of the spatial scale
in the final, wide-field uv plane. In the case of a continuous
sampling of up between dmin and dmax, these quantities can
be interpreted as the number of measures that contribute
to the estimate of I(u).

function when starting from a visibility function continu-
ously defined in the [dmin, dmax] interval along the up di-

mension. We can expect to recover I(u) only inside the
[dmin − dprim, dmax + dprim] interval. In particular, informa-
tion on short spacings lower than dmin − dprim (e.g. the
crucial zero spacing) cannot be recovered when using a
homegeneous interferometer, and the short spacings in the
interval [dmin − dprim, dmin] are recovered with increasing
accuracy from dmin − dprim to dmin. Both effects imply the
need for complementary instruments to accurately measure
the missing short-spacings.

6.2. Usual hardware and software solutions

To derive the correct result for larger source sizes, it is
necessary to complement the interferometer data with ad-
ditional data, which contain the missing short-spacing in-
formation. The IRAM-30m single-dish telescope is used to
complement the Plateau de Bure Interferometer. Short-
spacing information can also be in part recovered with a
secondary array of smaller antennas and shorter baselines
(e.g. the CARMA interferometer). In the ALMA project,
the short-spacing information will be derived by a combina-
tion of four 12m-single-dish antennas and an interferometer
of 12 antennas of 7 meters called ACA (Atacama Compact
Array).

From the software point-of-view, two main families of
algorithms exist in the standard processing of mosaics.
Either the short-spacing information is combined on the
deconvolved image (i.e., the interferometer data is imaged
and deconvolved separately) through a hybridization in the
Fourier plane (see e.g. Pety et al. 2001), or the long and
short-spacing information is imaged and/or deconvolved
jointly. In this category, we find the pseudo-visibility tech-
nique, which produces interferometric-like visibilities from
single-dish maps (see e.g. Pety et al. 2001; Rodŕıguez-
Fernández et al. 2008, and references therein), and the
multi-resolution deconvolution algorithms, which work on
images containing different spatial frequency ranges.

In the next two sections, we show how wide-field synthe-
sis naturally processes the short-spacing information either
from single-dish or from heterogeneous arrays.

6.3. Processing short spacings from single-dish measurements

The single-dish measurement equation can be written as

Isd(α) = Ssd(α)

∫

α′

Bsd(α
′ − α) I(α′) dα′, (61)
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where Isd is the measured single-dish intensity, Ssd the
single-dish sampling function, and Bsd the single-dish an-
tenna power pattern. As already stated in the introduc-
tion, the above integral is identical to the ideal measure-
ment equation of interferometric wide-field imaging taken
in up = 0. If we define a single-dish visibility function as

Vsd(up = 0, α) ≡
∫

α′

Bsd(α
′ − α) I(α′) dα′, (62)

we can thus write the measured single-dish intensity as

Isd(α) = Ssd(α)Vsd(up = 0, α). (63)

The recognition that the single-dish measurement equa-
tion is a particular case of the interferometric wide-field
measurement equation opens the way to treating both the
single-dish and interferometric data sets through exactly
the same processing steps. We just have to define a hybrid
sampling function, Shyb, as

Shyb(up 6= 0, α) = S(up, α) (64)

Shyb(up = 0, α) = Ssd(α), (65)

the Fourier transform of the hybrid primary beam, Bhyb,
as

Bhyb(up 6= 0, u′) = B(up − u′) (66)

Bhyb(up = 0, u′) = Bsd(−u′), (67)

and a hybrid weighting function, Whyb, as

Whyb(up 6= 0, u′ + u′′ − up) = Whyb(up, u
′ + u′′ − up), (68)

Whyb(up = 0, u′ + u′′) = Wsd(u
′ + u′′). (69)

All the processing steps described in the previous sections
(including a potential gridding step of single-dish, on-the-
fly data) can then be directly applied to the hybrid data
set. Using the wide-field synthesis formalism, we can easily
write

Ihyb(u) =

∫

u′

Dhyb(u
′, u− u′) I(u′) du′, (70)

with Ihyb(u) = Idirty(u) +Wsd(u) Isd(u) (71)

and Dhyb(u
′, u′′)

= D(u′, u′′) +Wsd(u
′ + u′′)Ssd(u

′′)Bsd(−u′). (72)

We thus see that Ihyb is a linear combination of the infor-

mation measured by the single-dish (Isd) and by the inter-
ferometer (Idirty). There, Wsd(u) plays a particular role for
two reasons. First, its dependency on the spatial frequency
(u) enables us to filter out the highest spatial frequencies
that are measured by the single-dish antenna with low ac-
curacy. Second, it is well-known that the relative weight of
the single-dish to interferometric data is a critical parame-
ter in the processing of the short spacings from single-dish
data (see e.g. Rodŕıguez-Fernández et al. 2008). This rela-
tive weight is a free parameter within the restrictions set by
the noise level (i.e., we want the single-dish data to bring
information and not just noise to the interferometric data),
and a criterion must therefore be defined to adjust it to
an optimal value. We refer the reader to the discussion of
Sect. 5, which also applies here.

Table 5. Definition of the symbols used to expose the pro-
cessing of the short spacings.

Symbol & Definition Plane(s)
Isd Measured single-dish intensity sky
Bsd Single-dish antenna power pattern sky
Ssd Single-dish sampling function sky
Vsd Single-dish visibility function sky
Wsd Single-dish uv-plane weighting function uv
bi Voltage pattern of antenna i sky
Bij Power pattern of antenna i and j (= bi b

⋆
j ) sky

Vij Visibility between antenna i and j uv & sky
Ihyb Hybrid dirty image sky
Bhyb Hybrid antenna power pattern sky
Shyb Hybrid sampling function uv & sky
Whyb Hybrid uv-plane weighting function uv & uv
Dhyb Set of hybrid dirty beams sky & sky

Notes. This table uses similar conventions as Table 1. The top
part defines symbols related to single-dish measurements. The
middle part defines symbols related to heterogeneous-array mea-
surements. The bottom part defines hybrid symbols, which re-
sults from combinations of single-dish and heterogeneous-array
measurements.

6.4. Processing short spacings from heterogeneous arrays

A heterogeneous array is an interferometer composed with
antennas of different diameters. ALMA and CARMA are
two such examples. The measurement equation for a het-
erogeneous array is

Vij(up, αs)=

∫

αp

bi(αp−αs) b
⋆
j (αp−αs) I(αp) e

−i2παpup dαp, (73)

where bi and bj are the voltage reception patterns of the
antenna pair that forms the ij baseline and the asterisk de-
notes the complex conjugate (Thompson et al. 1986, chap-
ter 3). The formalism developed in the previous sections
holds as long as we redefine

Bij(α) ≡ bi(α) b
⋆
j (α). (74)

A simple application of the correlation theorem implies that

Bij(u) =

∫

u′

bi(u + u′) bj(u
′) du′. (75)

The use of the baseline indices ij must be generalized
throughout the equations because the knowledge of the an-
tenna type must be attached to each individual data point
(visibility). As a result, the wide-field synthesis formalism
can be easily adapted to heterogeneous arrays at the price
of additional bookkeeping.

6.5. Two textbook cases: IRAM-30m + PdBI and ALMA +
ACA

Figure 5 sketches why wide-field synthesis naturally han-
dles the short spacings in two textbook cases. In the ideal
case, the Fourier transform along the αs dimension pro-
duces visibilities, which are related to the wide-field spatial
frequencies of the source brightness weighted by the transfer
function of the interferometer. In this sense, Fig. 5 displays
the natural weighting of the synthesized wide-field visibil-
ities at the position of each measured visibility. Handling
visibilities from antenna of different sizes just implies that
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Fig. 5. Sketches of the natural weighting of the synthesized
wide-field visibilities. Each measured spatial frequency will
produce wide-field spatial frequencies apodized by the
transfer function (B) centered on the measured spatial fre-
quency. The used transfer function depends on the tele-
scopes used, explaining why wide-synthesis naturally han-
dles the short spacing either from a single-dish antenna or
from a heterogeneous array. The synthesized visibilities in
the overlapping regions will then be averaged. Two text-
book examples are illustrated: 1) the combination of data
from the IRAM-30m single-dish (red transfer function) and
from the Plateau de Bure Interferometer (black transfer
functions) at the top; and 2) the combination of data from
ALMA 12m-antennas used either in single-dish mode (red
transfer function), in interferometric mode (black transfer
functions) and of data from the ACA 7m-antennas (blue
transfer functions) at the bottom. The minimum uv dis-
tances measured by each interferometer were set from the
minimum possible distance between antennas (24 m for
PdBI, 15 m for ALMA and 9 m for ACA).

the natural weighting function of the synthesized visibilities
will have a different shape.

The top panel of Fig. 5 displays how the IRAM-30m
single-dish is used to complement the Plateau de Bure inter-
ferometer visibilities. The bottom panel displays how ACA
is used to produce the short spacing information for ALMA.
The four 12m-antennas will provide the single-dish informa-
tion, while the 12 additional 7m-antennas will form with
ALMA a heterogeneous array. In the first design, ACA and
ALMA form two independent interferometers; i.e., they are
not cross-correlated. The single-dish antennas, ACA and
ALMA, thus appear as three different instruments. It is
thus possible to decompose the hybrid set of wide-field dirty

beams obtained by processing the 3 sets of data together
in 3 different sets of dirty beams

Dhyb(u
′, u′′) = D12m(u

′, u′′)+D7m(u
′, u′′)+Dsd(u

′, u′′), (76)

with Dhyb(u
′, u′′) ≡

∫

up

Whyb(up, u
′ + u′′ − up)Shyb(up, u

′′)Bhyb(up, u
′) dup.(77)

For a multiplying interferometer,

∀ |up| < dprim, S(up, αs) = 0 and S(up, us) = 0. (78)

This implies that Dsd contributes at up = 0 in the sum

over up in Eq. 77, D7m contributes for 9m < up <∼ 40m

and D12m(u
′,u′′) contributes for 15m < up < 150m in the

most compact configuration of ALMA.

7. Comparison with standard nonlinear mosaicking

7.1. Mosaicking in a nutshell

Several excellent descriptions of the mosaicking imag-
ing and deconvolution algorithms can be found (see e.g.
Cornwell 1988; Cornwell et al. 1993; Sault et al. 1996b).
Here, we summarize the approach implemented in the
gildas/mapping software used to image and deconvolve
the data from the Plateau de Bure Interferometer. This ap-
proach is based on original ideas by F. Viallefond in the
early 90s (Gueth et al. 1995).

The basic ideas of nonlinear mosaicking are 1) imaging
the different fields of the mosaic independently, 2) linearly
adding the single-field dirty images into a dirty mosaic, and
3) jointly deconvolving the dirty mosaic.

7.1.1. Single-field imaging

For simplicity, we skip the gridding convolution in the fol-
lowing equations because the gridding step does not change
the nature of the equations. Imaging the fields individually
means that we will work at constant αs. We first define the
single-field dirty image of the αs-field as

Isfd(αp, αs)
αp

⊃
up

Isfd(up, αs), (79)

where the Fourier transform of the single-field dirty image
is the product of the sampling function S(up, αs) and the
visibility function V (up, αs):

Isfd(up, αs) ≡ SV (up, αs). (80)

From the previous equations, it is easily demonstrated that

Isfd(αp, αs) =

∫

α′

p

∆(αp−α′
p, αs)

[

B(α′
p − αs)I(α

′
p)
]

dα′
p, (81)

where the single-field dirty beam is defined as

∆(αp, αs)
αp

⊃
up

S(up, αs). (82)

We can rewrite the previous equation as

Iαs

sfd(αp) = {∆αs ⋆ (BαsI)}(αp) , (83)

meaning that the single-field dirty images can be written as
a local convolution of BαsI and ∆αs , the single-field dirty
beam associated to the currently imaged field.
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Table 6. Definition of the symbols used to expose the mo-
saicking formalism.

Symbol & Definition Plane(s)
αs Scanned angle sky
us Scanned spatial frequency uv
αp Phased angle sky
up Phased spatial frequency uv
I Sky brightness sky
B Primary beam sky
V Visibility function uv & sky
S Sampling function uv & sky
∆ Set of single-field dirty beams sky & sky
Isfd Set of single-field dirty images sky & sky
Dmos Set of mosaicked dirty beams sky & sky
Ωmos Mosaicking sky weighting function sky & sky
Wmos Mosaicking uv weighting function uv & uv
Imos Mosaicked dirty image sky
Nmos Mosaicked noise image sky
R Residual image sky

SNR Signal-to-noise ratio image sky

Notes. This table uses similar conventions as Table 1. The top
part repeats the symbols which have the same meaning in both
the mosaicking and the wide-field synthesis formalisms, while
the bottom part defines symbols that either have a different
meaning in both formalisms or are used only in the mosaicking
formalism.

7.1.2. Mosaicking the dirty images

In gildas/mapping7, the single-field dirty images are
formed on the same grid (in particular the same pixel size
and the same image size covering about twice the mosaic
field of view). These single-field dirty images are then lin-
early averaged as

Imos(αp) ≡
∫

αs

Ωmos(αp, αs) Isfd(αp, αs) dαs, (84)

where Ωmos(αp, αs) ≡
w(αs)B(αp − αs)

∫

αs
w(αs)B2(αp − αs) dαs

(85)

and w(αs) is the sky plane weighting function, i.e.,

w(αs) =
∑

i

δ(αs − αi)
1

σ2
i

. (86)

In the previous equation, the αi are the positions of each
sky-plane measurement, and σi is the rms noise associated
with Iαi

sfd. Cornwell et al. (1993) demonstrates that the noise
in the mosaic image naturally varies across the field as

Nmos(αp) =
1

√

∫

αs
w(αs)B2(αp − αs) dαs

. (87)

In particular, it rises sharply at the edges of the mosaic.

7.1.3. Joint deconvolution

Standard algorithms of single-field deconvolution must be
adapted to the mosaicking case because both the dirty
beam and the noise vary across the mosaic field of view. We

7 See http://www.iram.fr/IRAMFR/GILDAS for more informa-
tion about the GILDAS software.

describe here the adaptations made in gildas/mapping
of the simplest CLEAN deconvolution method, described
in Högbom (1974). Adaptations of more evolved CLEAN
deconvolution methods are also implemented following the
same basic rules.

1. We first initialize the residual and signal-to-noise maps
from the dirty and noise maps

R0(αp) = Imos(αp) (88)

and SNR0(αp) =
Imos(αp)

Nmos(αp)
. (89)

2. The kth CLEAN component is sought on the SNRk−1

map instead of the Rk−1 map to ensure that noise peaks
at the edges of the mosaic are not confused with the true
signal of the same magnitude.

3. Using that the kth CLEAN component is a point source
of intensity Ik at position αk, the residual and signal-
to-noise maps are then upgraded as follows:
Rk(αp) = Rk−1(αp)

−γIk

∫

αs

Ωmos(αp, αs)∆(αp−αk, αs)B(αk−αs) dαs, (90)

and SNRk(αp) =
Rk(αp)

Nmos(αp)
. (91)

Here γ(∼ 0.2) is the usual loop gain that ensures con-
vergence of the CLEAN algorithms.

4. Steps 2 and 3 are iterated as long as the stopping crite-
rion is not met.

7.1.4. Wide-field measurement equation

To help the comparison between mosaicking and wide-field
synthesis, we now go one step further than is usually done
in the description of mosaicking; i.e., we write the image-
plane measurement equation as a wide-field measurement
equation of the same kind as Eq. 23. Substituting Eq. 81
into Eq. 84 and reordering the terms after inverting the
order of the sum over αs and αp, one obtains

Imos(αp) =

∫

α′

p

Dmos(αp − α′
p, αp) I(α

′
p) dα

′
p, (92)

with Dmos(α
′, α′′)

=

∫

αs

B(α′′ − α′ − αs)Ωmos(α
′′, αs)∆(α′, αs) dαs. (93)

Taking the inverse Fourier transforms of Dmos, we get the
mosaicking transfer function
Dmos(u

′, u− u′)=

∫∫

upus

Wmos(u−up, us−u′)S(up, up−us)B(up−u′) dupdus, (94)

with Ωmos(α
′, α′′)

(α′,α′′)

⊃
(u′,u′′)

Wmos(u
′, u′′). (95)
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7.2. Comparison

While both mosaicking and wide-field synthesis produce
image-plane measurement equations of the same kind (see
Eqs. 23 and 92), the comparison of the dirty beams (Eqs. 57
and 93) and of the transfer functions (Eqs. 35 and 94) im-
mediately shows the different dependencies on the primary
beams (B), the single-field dirty beams (∆), the image-
plane weighting functions (Ω), and their respective Fourier
transforms (B, S and W ). This means that mosaicking
is not mathematically equivalent to wide-field synthesis,
though both methods recover the sky brightness. These dif-
ferences come directly from the differences in the process-
ing. If we momentarily forget the gridding steps, mosaicking
starts with a Fourier transform along the up dimension of
the visibility function, and most of the processing thus hap-
pens in the sky plane, while wide-field synthesis starts with
a Fourier transform along the αs dimension, and most of
the processing thus happens in the uv plane.

Moreover, both methods are irreducible to each other.
Wide-field synthesis gives a more complex dirty beam for-
mulation in the image plane, which could give the impres-
sion that it is a generalization of mosaicking. Indeed, the
wide-field image-plane weighting function can be chosen as
the product of a Dirac function of α′ times a function ω of
α′′,

i.e., Ω(α′, α′′) = δ(α′)ω(α′′). (96)

This implies a wide-field uv-plane weighting function in-
dependent of u′; i.e., W (u′,u′′) = ω(u′′). This choice is a
clear limitation because it enables us to influence the trans-
fer function only locally (around each measured up spatial
frequency), while weighting is generally intended to globally
influence the transfer function (see Sect. 5). Eitherway, in
this case, the wide-field dirty beam can easily be simplified
to

D(α′, α′′)=

∫

αs

B(α′′−α′−αs)ω(α
′′−αs)∆(α′, αs) dαs.(97)

While this simplified formulation of the wide-field dirty
beam is closer to the mosaicking formulation, they still dif-
fer in a major way: ω(α′′-αs) is a shift-invariant function
contrary to Ωmos(α

′′,αs). This is the shift-dependent prop-
erty of Ωmos(α

′′,αs), which implies the additional complex-
ity (integral over us in addition to the integral over up) of
the mosaicking (Eq. 94) over the wide-field transfer func-
tion (Eq. 35).

One main difference between the two processing meth-
ods is that standard mosaicking prescribes a precise weight-
ing function, while we argue that the wide-field weighting
function should be defined according to the context (see
Sect. 5). Another important difference is the treatment of
the short spacings, which are naturally processed in the
wide-field synthesis methods, but which needs a very spe-
cific treatment in mosaicking (see Sect. 6 and references
therein). Finally, while mosaicking implies a gridding only
of up dimension of the measured visibilities, wide-field syn-
thesis naturally requires a gridding of both the up and αs di-
mensions. As the Nyquist sampling along the αs dimension
is only 0.5/dprim, the gridding of the sky plane can result
in a large reduction of the data storage space and cpu pro-
cessing cost when processing on-the-fly and/or multi-beam
observations.

8. Summary

Interferometric wide-field imaging implies scanning the sky
in one way or another (e.g. stop-and-go mosaicking, on-the-
fly scanning, sampling of the focal plane by multi-beams).
This produces sampled visibilities SV , which depends both
on the uv-plane and sky coordinates (e.g., up and αs).

Based on a basic idea by Ekers & Rots (1979), we pro-
posed a new way to image the interferometric wide-field
sampled visibilities: SV (up,αs). After gridding the mea-
sured visibilities both in the uv and sky planes, the gridded
visibilities SV G are Fourier-transformed along the αs sky

dimension, yielding synthesized visibilities SV
G
sampled on

a uv grid whose cell size is related to the total field of view;
i.e., it is much finer than the diameter of the interferometer
antennas. We thus proposed calling this processing scheme
“wide-field synthesis”.

The Fourier transform is performed for each constant
up value. As many independent estimates of the uv plane
are produced as independent values of up measured. A shift-
and-average operator is then used to build a final, wide-field
uv plane, which translates into a wide-field dirty image after
inverse Fourier transform, i.e.,

I
G

dirty(u) ≡
∫

up

W (up, u− up)SV
G
(up, u− up) dup, (98)

where W is a normalized weighting function. Using these
tools, we demonstrated that:

1. The dirty image (IGdirty) is a convolution of the sky

brightness distribution (I) with a set of wide-field dirty
beams (DG) varying with the sky coordinate α, i.e.,

IGdirty(α) =

∫

α′

DG(α − α′, α) I(α′) dα′. (99)

Compared to single-field imaging, the dependency on
the primary beam is transferred from a product of the
sky brightness distribution into the definition of the set
of wide-field dirty beams.

2. The set of gridded dirty beams (DG) can be computed
from the ungridded sampling function (S), the transfer
function (B, the inverse Fourier transform of the pri-
mary beam), and the gridding convolution kernel (See
Eq. 42, 50 and 51).

3. The dependence of the wide-field dirty beams on the
sky position is slowly-varying, with their shape varying
on an angular scale typically larger than or equal to the
primary beamwidth.

Adaptations of the existing deconvolution algorithms
should be straightforward.

A comparison with standard nonlinear mosaicking
shows that it is not mathematically equivalent to the wide-
field synthesis proposed here, though both methods do re-
cover the sky brightness. The main advantages of wide-field
synthesis over standard nonlinear mosaicking are

1. Weighting is at the heart of the wide-field synthesis be-
cause it is an essential part of the shift-and-average op-
eration. Indeed, not only can a multiplicative weight be
attributed to each visibility sample before any process-
ing, but the uv-plane weighting function (W , see Eq. 98)
is also a degree of freedom, which should be set accord-
ing to the conditions of the observation and the imaging
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goals, e.g. highest signal-to-noise ratio, highest resolu-
tion, or most uniform resolution over the field of view.
The W weighting function thus enables us to modify
the wide-field response of the instrument. On the other
hand, mosaicking requires a precise weighting function
in the image plane, which freezes the wide-field response
of the interferometer.

2. Wide-field synthesis naturally processes the short spac-
ings from both single-dish antennas and heterogeneous
arrays along with the long spacings. Both of them can
then be jointly deconvolved.

3. The gridding of the sky plane dimension of the mea-
sured visibilities, required by the wide-field synthesis,
may potentially save large amounts of hard-disk space
and cpu processing power relative to mosaicking when
handling data sets acquired with the on-the-fly observ-
ing mode. Wide-field synthesis could thus be particu-
larly well suited to process on-the-fly observations.

The wide-field synthesis algorithm is compatible with
the uvw-unfaceting technique devised by Sault et al.
(1996a) to deal with the celestial projection effect, known as
non-coplanar baselines (see appendix B). Finally, on-the-fly
observations imply an elongation of the primary beam along
the scanning direction. These effects can be decreased by
an increase in the primary beam sampling rate. However, it
may limit the dynamic range of the image brightness if the
primary beam sampling rate is too coarse (see appendix C).
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Rodŕıguez-Fernández, N. J., Pety, J., & Gueth, F. 2009, Imaging of
interferometric On-The-Fly observations: Context and discussion
of possible methods, IRAM memo 2009-2

Sault, R. J., Bock, D. C.-J., & Duncan, A. R. 1999, A&AS, 139, 387
Sault, R. J., Hamaker, J. P., & Bregman, J. D. 1996a, A&AS, 117,

149
Sault, R. J., Staveley-Smith, L., & Brouw, W. N. 1996b, A&AS, 120,

375
Schwab, F. R. 1984, AJ, 89, 1076
Sramek, R. A. & Schwab, F. R. 1989, Synthesis Imaging in Radio

Astronomy, Conference series (Astronomical Society of the Pacific),
117–

Thompson, A. R., Moran, J. M., & Swenson, G. W. J. 1986,
Interferometry and Synthesis in Radio Astronomy (John Wiley &
Sons)

17
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Appendix A: Demonstrations

A.1. Ekers & Rots scheme

Fourier-transforming the visibility function along the αs di-
mension at constant up, we derive with simple replacements

V up
(us) (A.1)

=

∫

αs

Vup
(αs) e

−i2παsus dαs (A.2)

=

∫∫

αsαp

B(αp − αs) I(αp) e
−i2π(αpup+αsus) dαsdαp. (A.3)

We then use the following change of variables β ≡ αp − αs

and dβ = −dαs, to get

V up
(us) (A.4)

=

∫∫

αpβ

B(β) I(αp) e
−i2π [αp(up + us)− βus] dαpdβ (A.5)

=

[
∫

β

B(β) e−i2πβ(−us) dβ

]

[

∫

αp

I(αp) e
−i2παp(up+us) dαp

]

(A.6)

= B(−us) I(up + us). (A.7)

A.2. Incomplete sampling

We here demonstrate that Eq. 23 and Eq. 34 are equivalent.
To do this, we take the direct Fourier transform of Idirty(α)

Idirty(u) (A.8)

=

∫∫

αα′

D(α− α′, α) I(α′)e−i2παu dαdα′, (A.9)

and we replace I(α′) by its formulation as a function of its
Fourier transform

I(α′) =

∫

u′

I(u′) e+i2πu′α′

du′. (A.10)

We thus derive Idirty(u)

=

∫

u′

[
∫∫

αα′

D(α− α′, α)e−i2π(αu−α′u′) dαdα′

]

I(u′) du′.(A.11)

Using the following change of variables α′′ ≡ α − α′, α′ =
α − α′′ and dα′′ = −dα′, the innermost integral can be
written as

∫∫

αα′

D(α− α′, α) e−i2π(αu−α′u′) dαdα′ (A.12)

=

∫

α

[
∫

α′′

D(α′′, α) e−i2πα′′u′

dα′′

]

e−i2πα(u−u′) dα (A.13)

=

∫

α

D(u′, α) e−i2πα(u−u′) dα (A.14)

= D(u′, u− u′). (A.15)

In the last two steps, we have simply recognized two differ-
ent steps of Fourier transforms of D. Finally,

Idirty(u) =

∫

u′

D(u′, u− u′) I(u′) du′. (A.16)

A.3. Gridding

The gridding kernel can be defined as the product of two
functions, each one operating in its own dimension. We use
this to study separately the effect of gridding in the uv and
sky planes. We then use the intermediate results to get the
effect of gridding simultaneously in both planes.

A.4. Gridding in the uv plane

We define the sampled visibility function gridded in the uv
plane as

SV g(up, αs) ≡ {g ⋆ SV αs}(up) (A.17)

=

∫

u′

p

g(up − u′
p)SV

αs(u′
p) du

′
p, (A.18)

Using that the gridding is here applied on the up dimension,
while the Fourier transform is applied on the αs dimension,
it is easy to show that the gridding and Fourier-transform
operations commute:

SV
g

up
(us) (A.19)

=

∫∫

αsu′

p

g(up − u′
p)S(u

′
p, αs)V (u′

p, αs)e
−i2παsus dαsdu

′
p(A.20)

=

∫

u′

p

g(up − u′
p)SV u′

p
(us) du

′
p (A.21)

Defining the Fourier transform of the uv gridded dirty im-
age, we derive

I
g

dirty(u) ≡
〈

SV
g
〉

(u) (A.22)

=

∫∫

upu′

p

W (up, u− up) g(up − u′
p)SV u′

p
(u− up) dupdu

′
p.(A.23)

Using Eq. 31 to replace SV u′

p
(u − up), we can write the

Fourier transform of the uv gridded dirty image as

I
g

dirty(u) =

∫

u′

D
g
(u′, u− u′) I(u′) du′, (A.24)

with

D
g
(u′, u−u′) ≡

∫

up

W (up, u−up)Σ
g
(up, u−up, u

′) dup(A.25)

and Σ
g
(up, us, u

′)

≡
∫

u′

p

g(up − u′
p)S(u

′
p, us − u′ + u′

p)B(u′
p − u′) du′

p. (A.26)

Using S(u′
p, us − u′ + u′

p)

=

[
∫

αs

Su′

p
(αs) e

−i2παsus dαs

]

e−i2π(u′

p−u′)αs , (A.27)

and Σ
g
(up, αs, u

′)
αs⊃
us

Σ
g
(up, us, u

′), (A.28)

we derive Σ
g
(up, αs, u

′) =
∫

u′

p

g(up−u′
p)S(u

′
p, αs)B(u′

p−u′) e−i2π(u′

p−u′)αsdu′
p, (A.29)
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J. Pety and N. Rodŕıguez-Fernández: Revisiting the theory of interferometric wide-field synthesis

or

Σ
g
(up, αs, u

′) =

∫

u′

p

g(up − u′
p)Σ(u

′
p, αs, u

′
p − u′) du′

p. (A.30)

Thus, Σ
g
is the uv gridded version of the generalized sam-

pling function Σ.

A.4.1. Gridding in the sky plane

We define the sampled visibility function gridded in the sky
plane as

SV γ(up, αs) ≡
{

γ ⋆ SVup

}

(αs) (A.31)

=

∫

α′

s

γ(αs − α′
s)SVup

(α′
s) dα

′
s, (A.32)

Applying the convolution theorem on the Fourier transform
along the αs dimension, we derive

SV
γ

up
(us) = γ(us)SV up

(us). (A.33)

Defining the Fourier transform of the sky-gridded dirty im-
age, we derive

I
γ

dirty(u) ≡
〈

SV
γ
〉

(u) (A.34)

=

∫

up

W (up, u− up) γ(u − up)SV up
(u− up) dup. (A.35)

Using Eq. 31 to replace SV up
(u − up), we can write the

Fourier transform of the sky-gridded dirty image as

I
γ

dirty(u) =

∫

u′

D
γ
(u′, u− u′) I(u′) du′ (A.36)

with D
γ
(u′, u− u′)

≡
∫

up

W (up, u− up)Σ
γ
(up, u− up, up − u′) dup (A.37)

and Σ
γ
(up, us, u

′′
s ) ≡ γ(us)S(up, us + u′′

s )B(u′′
s ), (A.38)

or, with the definition of Σ (i.e., Eq. 45),

Σ
γ
(up, us, u

′′
s ) ≡ γ(us)Σ(up, us, u

′′
s ). (A.39)

Using Σ
γ
(up, αs, u

′′
s )

αs

⊃
us

Σ
γ
(up, us, u

′′
s ), (A.40)

and the convolution theorem when taking the inverse
Fourier transform of Σ

γ
, we derive

Σ
γ
(up, αs, u

′′
s ) =

∫

α′

s

γ(αs − α′
s)Σ(up, α

′
s, u

′′
s ) dα

′
s. (A.41)

Thus, Σ
γ
is the sky gridded version of the generalized sam-

pling function Σ.

A.5. Gridding in both planes

Starting from the definition of SV G (Eq. 41), we Fourier-
transform it along the sky dimension at constant up. Using
that the gridding along the up dimension can be factored
out of the Fourier transform, we derive

SV
G

up
(us) =

∫

u′

p

g(up − u′
p)SV

γ

u′

p
(us) du

′
p. (A.42)

Using Eq. A.33, we now replace SV
γ

u′

p
(us) in the previous

equation to get

SV
G

up
(us) = γ(us)

∫

u′

p

g(up − u′
p)SV u′

p
(us) du

′
p, (A.43)

or SV
G

up
(us) = γ(us)SV

g

up
(us). (A.44)

From this relation, it is easy to deduce that

Σ
G
(up, us, u

′) = γ(us)Σ
g
(up, us, u

′). (A.45)

Using the convolution theorem when taking the inverse

Fourier transform of Σ
G

along the us dimension and re-
placing Σ

g
(up,α

′
s,u

′) with Eq. A.30, we finally derive

Σ
G
(up, αs, u

′)

≡
∫∫

u′

pα
′

s

g(up− u′
p) γ(αs −α′

s)Σ(u
′
p, α

′
s, u

′
p− u′) du′

pdα
′
s.(A.46)

A.6. Wide-field vs single-field dirty beams

The notation 59 yields W (u′, u′′) = Ω(u′, u′′). Using this in
Eq. 35 gives
D(u′, u′′)

=

∫

up

Ω(up, u
′ + u′′ − up)S(up, u

′′)B(up − u′) dup. (A.47)

Taking the inverse Fourier transform along the u′′ axis of
Eq. A.47 and reordering the integral to factor out the term
independent of u′′, we can write

D(u′, α′′) =

∫

up

B(up − u′) FT1(up, u
′, α′′) dup, (A.48)

where

FT1(up, u
′, α′′) (A.49)

≡
∫

u′′

Ω(up, u
′ + u′′ − up)S(up, u

′′) e+i2πu′′α′′

du′′. (A.50)

We now introduce the following definition

S(up, u
′′) ≡

∫

αs

S(up, αs) e
−i2παsu

′′

dαs, (A.51)

to derive

FT1(up, u
′, α′′)

=

∫

αs

S(up, αs)

[
∫

u′′

Ω(up, u
′ + u′′ − up)e

+i2πu′′(α′′
−αs) du′′

]

dαs.
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Using the following change of variables v ≡ u′′ + u′ − up,
u′′ = v − u′ + up and dv = du′′ on the innermost integral,
we get

FT1(up, u
′, α′′)

=

∫

αs

S(up, αs)Ω(up, α
′′ − αs) e

+i2π(up−u′)(α′′
−αs) dαs.

Substituting this result into Eq. A.48 and taking the inverse
Fourier transform along the u′ axis, we can write
D(α′, α′′) =

∫∫

upαs

Ω(up, α
′′−αs)S(up, αs) FT2(up, αs, α

′, α′′) dupdαs, (A.52)

where

FT2(up, αs, α
′, α′′)

≡
∫

u′

B(up − u′) e+i2πup(α
′′
−αs) e+i2πu′(α′

−α′′+αs) du′.

Using the following change of variables v ≡ up − u′, u′ =
up − v and dv = du′, we get

FT2(up, αs, α
′, α′′) = B(α′′ − α′ − αs) e

+i2πupα
′

. (A.53)

Substituting this result into Eq. A.52 and re-ordering the
terms, we can write

D(α′, α′′) =

∫

αs

B(α′′ − α′ −αs) FT3(αs, α
′, α′′) dαs, (A.54)

where

FT3(αs, α
′, α′′)≡

∫

up

Ω(up, α
′′ − αs)S(up, αs) e

+i2πupα
′

dup.

A simple application of the convolution theorem gives

FT3(αs, α
′, α′′)≡

∫

αp

Ω(α′ − αp, α
′′ − αs)∆(αp, αs) dαp,

where ∆(αp, αs)
αp

⊃
up

S(up, αs). (A.55)

Substituting this result into Eq. A.54, we finally derive the
desired expression, i.e., Eq. 57.

Appendix B: From the celestial sphere onto a

single tangent plane

Eq. 1 neglects projection effects, known as non-coplanar
baselines. Any method which deals with interferometric
wide-field imaging must take this problem into account.
After a short introduction to the problem, we show how
wide-field synthesis is compatible with at least one method,
namely the uvw-unfaceting of Sault et al. (1996b). This
method tries to build a final wide-field uv plane from differ-
ent pieces, just as our wide-field synthesis approach does.
Another promising method is the w-projection, based on
original ideas of Frater & Docherty (1980) and first suc-
cessfully implemented by Cornwell et al. (2008). We did
not look yet at its compatibility with wide-field synthesis.

B.1. w-axis distortion

When projection effects are taken into account, the mea-
surement equation reads
V (w, up, αs)

=

∫

αp

B(αp−αs)
I(αp)

√

1− α2
p

e−i2π[αpup+w(
√

1−α2
p−1)] dαp.(B.1)

In this equation, we continue to work in 1 dimension for
the sky cosine direction (αp), but we explicitly introduce
the dependence along the direction perpendicular to the
sky plane. This dependence appears in two ways, which is

handled in very different ways. First, the factor
√

1− α2
p

can be absorbed into a generalized sky brightness function

I(αp) ≡
I(αp)

√

1− α2
p

. (B.2)

After imaging and deconvolution, I(αp) can be easily re-
stored from the deconvolved I(αp) image. The second de-
pendence appears as an additional phase, which is written
as

P (αp, w) ≡ e−i2πw(
√

1−α2
p−1). (B.3)

Thompson et al. (1986, chapter 4) shows that this addi-
tional phase can be neglected only if8

π

4

θ2field
θsyn

≪ 1 or π
λdmax

d2field
≪ 1. (B.4)

The first form of the criterion indicates that the approx-
imation gets worse at high spatial dynamic range (i.e.,
θfield/θsyn ≪ 1) while the second form indicates that the
approximation gets worse at long wavelengths.

B.2. uvw-unfaceting

For stop-and-go mosaicking, it is usual to delay-track at
the center of the primary beam for each pointing/field of
the mosaic. This phase center is also the natural center of
projection of each pointing/field. Stop-and-go mosaicking
thus naturally paves the celestial sphere with as many tan-
gent planes as there are pointings/fields; i.e., this observ-
ing scheme is somehow enforcing a uvw-faceting scheme.
In the framework of on-the-fly observations with ALMA,
D’Addario & Emerson (2000) indicate that the phase cen-
ter will be modified between each on-the-fly scan while it
will stay constant during each on-the-fly scan. This is a
compromise between loss of coherence and technical possi-
bilities of the phase-locked loop. Using this hypothesis, the
maximum sky area covered by the on-the-fly scan must take
into account the maximum tolerable w-axis distortion.

The easiest way to deal with such data is to image each
pointing/field around its phase center and then to reproject
this image onto the mosaic tangent plane as displayed on
Fig. 5 of Sault et al. (1996b). These authors point out that
this scheme implies a typical w-axis distortion ǫ less than

ǫ ≤ (1 − cos θalias) sin θcenter ∼
1

2
θcenter θ

2
alias, (B.5)

8 In contrast to the convention used in this paper, the dmax

and dfield unit is meter instead of unit of λ in the second form
of the criterion, in order to explicitely show the dependence on
the wavelength.

20
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where θcenter is the angle from the pointing/field center and
θalias is the anti-aliasing scale defined in Sect. 4.2. In par-
ticular, ǫ is 0 at the phase center of each pointing/field.
In other words, this scheme limits the magnitude of the
w-axis distortion to its magnitude on a size equal to the
anti-aliasing scale (i.e., a few time the primary beamwidth)
instead of a size equal to the total mosaic field of view. This
scheme thus solves the projection effect as long as the w-
axis distortion is negligible at sizes smaller than or equal to
the anti-aliasing scale. A natural name for this processing
scheme is uvw-unfaceting because it is the combination of a
faceting observing mode (i.e., regular change of phase cen-
ter) and a linear transform of the uv coordinates to derive
a single sine projection for the whole field of view.

Sault et al. (1996b) also demonstrate that the reprojec-
tion may be done much more easily and quickly in the uvw
space before imaging the visibilities because it is then just
a simple transformation of the uv coordinates, followed by
a multiplication of the visibilities by a phase term. Finally,
Sault et al. (1996b) note that it is the linear character of this
uv coordinate transform which preserves the measurement
equation 1. As the change of coordinates happens before
any other processing, it also conserves all the equations de-
rived in the previous sections to implement the wide-field
synthesis.

Appendix C: On-the-fly observing mode and

effective primary beam

Usual interferometric observing modes (including stop-and-
go mosaicking) implies that the interferometer antennas ob-
serve a fixed point of the sky during the integration time.
Conversely, the on-the-fly observing mode implies that the
antennas slew on the sky during the integration time. This
implies that the measurement equation 1 must be written
as (Holdaway & Foster 1994; Rodŕıguez-Fernández et al.
2009):
V (ûp,α̂s) =

1

δt

∫ t0+δt/2

t0−δt/2

[

∫

αp

B{αp − αs(t)} I(αp) e
−i2παpup(t) dαp

]

dt, (C.1)

where δt is the integration time and ûp and α̂s are the mean
spatial frequency and direction cosine, defined as

ûp ≡ 1

δt

∫ t0+δt/2

t0−δt/2

up(t) dt and α̂s ≡
1

δt

∫ t0+δt/2

t0−δt/2

αs(t) dt.(C.2)

In this section, we analyze the consequences of the antenna
slewing on the accuracy of the wide-field synthesis.

C.1. Time averaging

In all interferometric observing modes, it is usual to adjust
the integration time so that up(t) can be approximated as
ûp. To do this, it is enough to ensure that up(t) always
varies less than the uv distance associated with tolerable
aliasing (dalias, see Sect. 4.2) during the integration time
(δt)

δt ≪ dalias
dmax ωearth

or
dt

1 sec
≪ 6900

θalias/θsyn
, (C.3)

Table C.1. Definition of the symbols used to explore the
influence of on-the-fly scanning on the measurement equa-
tion.

Symbol & Definition
δt Integration time
α̂s Scanned angle averaged during δt
ûp Spatial frequency averaged during δt
δαs Angular distance scanned during δt
vslew Slew angular velocity of the telescope
A Primary beam apodizing function
Beff Effective primary beam resulting

from OTF scanning: Beff(α) = {B ⋆ A}(α)
ωearth Angular velocity of a spatial frequency

due to Earth rotation

where dmax is the maximum baseline length, ωearth is the
angular velocity of a spatial frequency due to the Earth ro-
tation (7.27× 10−5 rad s−1), θalias and θsyn are respectively
the minimum field of view giving a tolerable aliasing and
the synthesized beam angular values.

C.2. Effective primary beam

Assuming that condition C.3 is ensured, we can write
Eq. C.1 with the same form as Eq. 1 by the introduction of
an effective primary beam (Beff); i.e.,

V (ûp, α̂s) =

∫

αp

Beff(αp − α̂s) I(αp) e
−i2παpûp dαp, (C.4)

where Beff(αp − α̂s) ≡
1

δt

∫ t0+δt/2

t0−δt/2

B{αp − αs(t)} dt.(C.5)

Using the following change of variables

β ≡ αs(t)− α̂s, dβ =
dαs(t)

dt
dt or dt =

dβ

vslew(β)
, (C.6)

we derive

Beff(αp − α̂s) =

∫

β

B {(αp − α̂s)− β} A(β) dβ (C.7)

with A(β) ≡ 1

vslew(β) δt
Π

(

β

δαs

)

(C.8)

and δαs ≡
∫ t0+δt/2

t0−δt/2

vslew(t) dt. (C.9)

In these equations, vslew(β) is the slew angular velocity of
the telescope as a function of the sky position, δαs is the an-
gular distance covered during δt, A is an apodizing function,
and Π(β) is the usual rectangle function, which reproduces
the finite character of the time integration.

C.3. Interpretation

The form of the measurement equation is conserved when
averaging the visibility function over a finite integration
time, as long as the true primary beam is replaced by an
effective primary beam, which is the convolution of the true
primary beam by an apodizing function. To go further, it
is important to return to the two dimensional case. Indeed,
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Fig.C.1. Assessement of the relative error implied by the
use of the true primary beam instead of the effective pri-
mary beam when analyzing interferometric on-the-fly data
sets. Left: Inverse Fourier transform of interferometer pri-
mary beam, B (i.e. the autocorrelation of the antenna il-
lumination). Right: Relative error as a function of sam-
pling rate of the primary beam. The curves of different col-
ors show the results at different normalized uv distances
(u/dprim) from the center of B.

the convolution must be done along the slewing direction,
resulting in an effective primary beam elongated in a par-
ticular direction.

In principle, the equations derived in Sect. 3 can be ac-
commodated just by replacing the true primary beam by
its effective associate. In practice, the probability to take
into account the effective primary beam is low because its
shape varies with time. Indeed, it is often assumed that the
sky is slewed along a straight line at constant angular veloc-
ity. Even in this simplest case, it is advisable to slew along
at least two perpendicular directions to average system-
atic errors, implying two different effective primary beams.
However, practical reasons may/will lead to complex scan-
ning patterns: 1) The limitation of the acceleration when
trying to image a square region leads to spiral or Lissajous
scanning patterns; 2) The probable absence of derotators
in future multi-beam receivers (B. Lazareff, private commu-
nication) implies the need to take into account the Earth
rotation in the scanning patterns of the off-axis pixels.

C.4. Approximation accuracy

In the following, we thus ask what is the trade-off accu-
racy of using the true primary beam instead of the effective
primary beam. The first point to mention is that using dif-
ferent scanning patterns somehow helps because the averag-
ing process then makes the bias less systematic. Following
Holdaway & Foster (1994), we quantify the accuracy lost in
the Fourier plane. Indeed, the Ekers & Rots scheme tries to
estimate missing sky brightness Fourier components from
their measurements apodized by the Fourier transform of
the primary beam. In the Fourier space, the above convolu-
tion just translates into a product. The Fourier transform
of the apodizing function thus degrades the sensitivity of
the measured visibility, V (up,αs), to spatial frequencies at
the edges of the interval [up−dprim, up+dprim]. To guide us
in our quantification of the accuracy lost, we now explore
the simplest case of linear scanning at constant velocity,
where vslew(β) is constant and δαs = vslew δt. The Fourier
transform of the apodizing function is then a sinc function:

A(u) = sinc(u δαs). (C.10)

The relative error implied by the use of the true primary
beam instead of the effective primary beam is then

Beff(u)−B(u)

Beff(u)
= 1− 1

A(u)
= 1− 1

sinc(u δαs)
. (C.11)

Fig. C.1 shows this relative error as a function of the num-
ber of samples per primary beam FWHM in the image
plane (i.e., θfwhm/δαs) for different uv distances (in units of
dprim). We see that we derive a 1% accuracy at all u when
we sample the image plane at a rate of 5 dumps per primary
beam. However getting a 0.1% accuracy needs quite high
sampling rates (about 15). This must be compared with the
accuracy of knowledge of B.

We note that if a better accuracy is needed than the
one achievable with the highest sampling rate, it is in the-
ory possible to replace in the correlator software the rect-
angle apodizing function by another function which falls
more smoothly. To avoid the loss of sensitivity inherent to
the use of such an apodizing function (by throwing away
data at the edges of the time interval of integration), would
require, for instance, to half-overlap the integration inter-
vals. This would imply more book-keeping in the correlator
software and some noise correlation between the measured
visibilities.
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