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LINEAR KOSZUL DUALITY AND AFFINE HECKE ALGEBRAS

IVAN MIRKOVIĆ AND SIMON RICHE

Abstract. In this paper we prove that the linear Koszul duality equivalence constructed in a
previous paper provides a geometric realization of the Iwahori-Matsumoto involution of affine
Hecke algebras.

Introduction

0.1. The Iwahori-Matsumoto involution of an affine Hecke algebra Haff is a certain involution
of Haff which naturally appears in the study of representations of p-adic groups (see e.g. [BC],
[BM]). This involution has a version for the corresponding graded affine Hecke algebra (i.e. the
associated graded of Haff , endowed with a certain filtration), which has been realized geometri-
cally by Evens and the first author in [EM]. More precisely, the graded affine Hecke algebra is
isomorphic to the equivariant homology of the Steinberg variety St, and the Iwahori-Matsumoto
involution is essentially given by a Fourier transform on this homology.

In this paper we use the realization of Haff as the equivariant K-theory of the variety St. Using
our constructions of [MR] for an appropriate choice of vector bundles, we obtain an equivalence
between two triangulated categories whose K-theory is naturally isomorphic to Haff . We show
that the morphism induced in K-theory is essentially the Iwahori-Matsumoto involution of Haff

(see Theorem 6.2.1 for a precise statement).

Our proof is based on the study of the behaviour of linear Koszul duality (in a general context)
under natural operations, inspired by the results of the second author in [R2, Section 2], and
quite similar to some compatibility properties of the Fourier transform on constructible sheaves
(see [KS, 3.7]).

0.2. Organization of the paper. In Section 1 we introduce some basic results and useful
technical tools. In Sections 2 and 3, we study the behaviour of linear Koszul duality under
a morphism of vector bundles, and under base change. In sections 4 and 5 we deduce that a
certain shift of linear Koszul duality is compatible with convolution, in a rather general context,
and that it sends the unit (for the convolution product) to the unit. Finally, in section 6 we
prove our main result, namely that linear Koszul duality gives a geometric realization of the
Iwahori-Matsumoto involution of affine Hecke algebras.

0.3. Notation. If X is a variety and F , G are sheaves of OX-modules, we denote by F ⊞ G
the OX2-module (p1)

∗F ⊕ (p2)
∗G on X2, where p1, p2 : X × X → X are the first and second

projections. We use the same notation as in [MR] for the categories of (quasi-coherent) sheaves
of dg-modules over a (quasi-coherent) sheaf of dg-algebras. If X is a noetherian scheme and
Y ⊆ X is a closed subscheme, we denote by CohY (X) the full subcategory of Coh(X) whose
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2 IVAN MIRKOVIĆ AND SIMON RICHE

objects are supported set-theoretically on Y . We use similar notation for G-equivariant sheaves
(where G is an algebraic group acting on X).

0.4. Acknowledgements. This article is a sequel to [MR]. It was started while both authors
were members of the Institute for Advanced Study in Princeton. The second author also thanks
the Université Blaise Pascal (Clermont–Ferrand II) and the Massachusetts Institute of Technol-
ogy, where part of this work was done.

1. Preliminary results

1.1. A simple lemma. Let X be a noetherian scheme, and let A be a sheaf of dg-algebras on
X, bounded and concentrated in non-positive degrees. Assume that H0(A) is locally finitely
generated as an OX -algebra, and that H(A) is locally finitely generated as an H0(A)-module.
Let Dc(A) be the subcategory of the derived category of quasi-coherent A-dg-modules (the
latter being defined as in [MR, 1.1]) whose objects have locally finitely generated cohomology
(over H(A) or, equivalently, over H0(A)). Let K(Dc(A)) be its Grothendieck group. Let also
K(H0(A)) be the Grothendieck group of the abelian category of quasi-coherent, locally finitely
generated H0(A)-modules.

Lemma 1.1.1. The natural morphism
{

K(Dc(A)) → K(H0(A))
[M] 7→

∑
i∈Z(−1)i · [Hi(M)]

is an isomorphism of abelian groups.

Proof. Let us denote by φ the morphism of the lemma. Every object of Dc(A) is isomorphic to
the image in the derived category of a bounded A-dg-module. (This follows from the fact that
A is bounded and concentrated in non-positive degrees, using truncation functors, as defined in
[MR, 2.1].) So let M be a bounded A-dg-module, such that Mj = 0 for j /∈ [[a, b]] for some
integers a < b. Let n = b− a. Consider the following filtration of M as an A-dg-module:

{0} = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn = M,

where for j ∈ [[0, n]] we put

Mj := (· · · 0 → Ma → · · · → Ma+j−1 da+j−1

−−−−→ Ker(da+j) → 0 · · · ).

Then, in K(Dc(A)) we have

[M] =

n∑

j=1

[Mj/Mj−1] =
∑

i∈Z

(−1)i · [Hi(M)],

where Hi(M) is considered as an A-dg-module concentrated in degree 0. It follows that the
natural morphism K(H0(A)) → K(Dc(A)), which sends an H0(A)-module to itself, viewed as
an A-dg-module concentrated in degree 0, is an inverse to φ. �
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1.2. Functors for G-equivariant sheaves. In the rest of this section we consider noetherian
schemes X, Y over an algebraically closed field k, endowed with an action of an algebraic group
G (over k), and a G-equivariant morphism f0 : X → Y . Let A (respectively B) be a sheaf of
OX -dg-algebras on X (respectively of OY -dg-algebras on Y ), which is quasi-coherent over OX

(respectively OY ), non-positively graded, graded-commutative, and G-equivariant. We assume
that the multiplication morphism A⊗OX

A → A and the differential d : A → A are morphisms
of complexes of G-equivariant quasi-coherent sheaves on X (and similarly for B).

We denote by CG(X,A) the category of G-equivariant quasi-coherent A-dg-modules, and by
DG(X,A) the associated derived category, and similarly for B-dg-modules (see [MR, 1.1] for
details). We denote by Dc

G(X,A) the full subcategory of DG(X,A) whose objects have locally
finitely generated cohomology, and similarly for B. We also consider a morphism of G-equivariant
dg-algebras φ : (f0)

∗B → A, and the associated morphism of dg-schemes f : (X,A) → (Y,B).
This morphism induces natural functors

f∗ : CG(X,A) → CG(Y,B), f∗ : CG(Y,B) → CG(X,A).

These functors should admit derived functors, which should satisfy nice properties (similar to
those of [R2, Section 1]) in a general context. Here for simplicity we will only prove these facts
under strong assumptions, which are always satisfied in the situations relevant to us.

We refer to [R2] and [MR] for the definitions of K-flat and K-injective dg-modules (see [Sp] for
the original definition), and to [Ke] for generalities on derived functors.

1.3. Inverse image. Assume that Y is a quasi-projective variety. We will assume furthermore
that for every G-equivariant quasi-coherent OY -module F there exists a G-equivariant quasi-
coherent OY -module P, which is flat as an OY -module, and a surjection of G-equivariant quasi-
coherent sheaves P ։ F . (This assumption is satisfied in particular if Y is normal, see [CG,
Proposition 5.1.26].) As in [R2, Theorem 1.3.5], one deduces:

Lemma 1.3.1. Let F be an object of CG(Y,B). Then there exists an object P in CG(Y,B), which

is K-flat as a B-dg-module, and a quasi-isomorphism of G-equivariant B-dg-modules P
qis
−→ F .

In particular, it follows from this lemma that f∗ admits a derived functor

Lf∗ : DG(Y,B) → DG(X,A).

Moreover, the following diagram commutes by definition, where the lower arrow is the usual
derived inverse image functor (i.e. when G is trivial):

DG(Y,B)

For
��

Lf∗

// DG(X,A)

For
��

D(Y,B)
Lf∗

// D(X,A).

It is not clear to us under what general assumptions the functor Lf∗ restricts to a functor
from Dc

G(Y,B) to Dc
G(X,A). (This is already not the case for the natural morphism (X,OX ) →

(X,ΛOX
(V)) induced by the augmentation ΛOX

(V) → OX ; here V is a non-zero locally free sheaf
of finite rank over OX , and ΛOX

(V) is its exterior algebra, endowed with the trivial differential
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and with generators in degree −1.) We will prove this property by ad hoc arguments each time
we need it.

1.4. Direct image. In this section, X and Y can be arbitrary noetherian G-schemes (over
k). Let C+

G(X,A) be the subcategory of CG(A) of bounded below dg-modules. Recall that
the category of G-equivariant quasi-coherent sheaves on X has enough injective objects. (This
follows from the fact that the averaging functor Av : F 7→ α∗(pX)∗F is a right adjoint to the
forgetful functor QCohG(X) → QCoh(X), hence sends injectives to injectives. Here α, pX :
G ×X → X are the action map and the projection.) One easily deduces the following lemma,
as in [R2, Lemma 1.3.7].

Lemma 1.4.1. Let M be an object of C+
G(X,A). Then there exists an object I of C+

G(X,A),

which is K-injective in the category CG(X,A), and a quasi-isomorphism M
qis
−→ I of G-equiva-

riant, quasi-coherent sheaves of A-dg-modules.

Assume now that A is bounded. Let Dc
G(X,A) be the full subcategory of DG(X,A) whose

objects have locally finitely generated cohomology. In particular, an object of Dc
G(X,A) has

bounded cohomology, hence is isomorphic to a bounded A-dg-module (use a truncation functor).
As K-injective objects of CG(X,A) are split on the right for the functor f∗, it follows in particular
from Lemma 1.4.1 that the derived functor Rf∗ is defined on the subcategory Dc

G(X,A):

Rf∗ : D
c
G(X,A) → DG(Y,B).

In the rest of this subsection we prove that Rf∗ takes values in the subcategory Dc
G(Y,B), under

some assumptions. More precisely we assume that A is K-flat over A0, that H(A) is locally
finitely generated over H0(A), and that H(B) is locally finitely generated over H0(B). There
exist G-schemes A, B, and G-equivariant affine morphisms pX : A → X, pY : B → Y such
that A0 = (pX)∗OA, B

0 = (pX)∗OB . We assume that A and B are noetherian schemes. The

morphism f induces a morphism of schemes f̃0 : A → B. As A is concentrated in non-positive
degrees, the morphism A0 → H0(A) is surjective. Hence H0(A) is the structure sheaf of a (G-
stable) closed subscheme A′ ⊆ A. Our final (and most important) assumption is the following:

the restriction f̃0 : A
′ → B is proper.

Lemma 1.4.2. Under the assumptions above, Rf∗ : Dc
G(X,A) → DG(Y,B) takes values in the

subcategory Dc
G(Y,B).

Proof. The natural direct image functor (pX)∗ : DQCohG(A) → DG(X,A0) is an equivalence
of categories (because pX is affine). Hence there is a forgetful functor For : Dc

G(X,A) →

DbCohG(A). (The fact that this functor takes values in DbCohG(A) follows from the fact that
H(A) is locally finitely generated over H0(A).) The same is true for B. As A is K-flat over A0,
a K-injective A-dg-module is also K-injective over A0 (see [R2, Lemma 1.3.4]). It follows that
the following diagram commutes:

Dc
G(X,A)

Rf∗ //

For
��

DG(Y,B)

For
��

DbCohG(A)
R(f̃0)∗ // DQCohG(B).
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Moreover, as H(B) is locally finitely generated over H0(B), an object M of DG(Y,B) is in the
subcategory Dc

G(Y,B) if and only if For(M) is in the subcategory DbCohG(B) ⊂ DQCohG(B).

Hence, as the left hand side functor For takes values in the subcategory DbCohGA′(A), it is

sufficient to prove that the restriction R(f̃0)∗ : DbCohGA′(A) → DQCohG(B) takes values in

the subcategory DbCohG(B). The latter fact follows from the assumption that the restriction

f̃0 : A
′ → B is proper. �

2. Linear Koszul duality and morphisms of vector bundles

2.1. Definitions. In this section we consider a smooth quasi-projective variety X over k en-
dowed with an action of a k-algebraic group G. Let E and E′ be two vector bundles over X,
and let

E

  @
@@

@@
@@

@

φ // E′

~~}}
}}

}}
}}

X

be a morphism of vector bundles. Let us stress that the morphism X → X induced by φ is
assumed to be IdX . We consider subbundles F1, F2 ⊆ E and F ′

1, F
′
2 ⊆ E′, and assume that

φ(F1) ⊆ F ′
1, φ(F2) ⊆ F ′

2.

Let E , F1, F2, E
′, F ′

1, F
′
2 be the respective sheaves of sections of E, F1, F2, E

′, F ′
1, F

′
2. We

consider X as a G×Gm-variety, with trivial Gm-action. We also consider E and E′ as G×Gm-
equivariant vector bundles, where t ∈ k

× acts by multiplication by t−2 in the fibers. Consider
the G×Gm-equivariant OX-dg-modules

X := (0 → F⊥
1 → F∨

2 → 0), X ′ := (0 → (F ′
1)

⊥ → (F ′
2)

∨ → 0),

where the (possibly) non-zero terms are in bidegrees (−1, 2) and (0, 2), and the differentials are
the natural maps. Consider also

Y := (0 → F2 → E/F1 → 0), Y ′ := (0 → F ′
2 → E ′/F ′

1 → 0),

where the (possibly) non-zero terms are in bidegrees (−1,−2) and (0,−2), and the differentials
are the opposite of the natural maps. As in [MR] we will use the following G×Gm-equivariant
(sheaves of) dg-algebras:

T := Sym(X ), T ′ := Sym(X ′),

R := Sym(Y), R′ := Sym(Y ′),

S := Sym(Y[−2]), S ′ := Sym(Y ′[−2]),

and the categories

Dc
G×Gm

(F1
R
∩E F2) := Dc

G×Gm

(X, T ),

Dc
G×Gm

(F ′
1

R
∩E′ F ′

2) := Dc
G×Gm

(X, T ′),

Dc
G×Gm

(F⊥
1

R
∩E∗ F⊥

2 ) := Dc
G×Gm

(X, R),

Dc
G×Gm

((F ′
1)

⊥ R
∩(E′)∗ (F

′
2)

⊥) := Dc
G×Gm

(X, R′).
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Then we have linear Koszul duality equivalences (see [MR, Theorem 4.3.1])

κ : Dc
G×Gm

(F1
R
∩E F2)

∼
−→ Dc

G×Gm

(F⊥
1

R
∩E∗ F⊥

2 ),

κ′ : Dc
G×Gm

(F ′
1

R
∩E′ F ′

2) → Dc
G×Gm

((F ′
1)

⊥ R
∩(E′)∗ (F

′
2)

⊥).

We also define the following “regrading” equivalences as in [MR, 3.5]:

ξ : CG×Gm
(X, S) → CG×Gm

(X, R),

ξ′ : CG×Gm
(X, S ′) → CG×Gm

(X, R′).

We denote similarly the induced equivalences between the various derived categories.

The morphism φ induces a morphism of dg-schemes Φ : F1
R
∩E F2 → F ′

1

R
∩E′ F ′

2. Consider the
(derived) direct image functor

RΦ∗ : D
c
G×Gm

(F1
R
∩E F2) → DG×Gm

(X, T ′).

(Note that this functor is just a functor of “restriction of scalars” for the morphism T ′ →
T .) If we assume that the induced morphism of schemes between non-derived intersections
F1 ∩E F2 → F ′

1 ∩E′ F ′
2 is proper, then by Lemma 1.4.2 the functor RΦ∗ takes values in the

subcategory Dc
G×Gm

(F ′
1

R
∩E′ F ′

2). We also consider the (derived) inverse image functor

LΦ∗ : Dc
G×Gm

(F ′
1

R
∩E′ F ′

2) → DG×Gm
(X, T ).

Similarly, φ induces a morphism of vector bundles

φ∨ : (E′)∗ → E∗,

which satisfies φ∨((F ′
i )

⊥) ⊂ F⊥
i for i = 1, 2. Hence the above constructions and results also

apply to φ∨. We use similar notation.

2.2. Compatibility.

Proposition 2.2.1. (i) Assume that the induced morphism of schemes F1 ∩E F2 → F ′
1∩E′ F ′

2 is

proper. Then L(Φ∨)∗ takes values in Dc
G×Gm

((F ′
1)

⊥ R
∩(E′)∗ (F

′
2)

⊥). Moreover, there is a natural

isomorphism of functors L(Φ∨)∗ ◦ κ ∼= κ′ ◦RΦ∗.

(ii) Assume that the induced morphism of schemes (F ′
1)

⊥ ∩(E′)∗ (F
′
2)

⊥ → F⊥
1 ∩E′ F⊥

2 is proper.

Then LΦ∗ takes values in Dc
G×Gm

(F1
R
∩E F2). Moreover, there is a natural isomorphism of

functors κ ◦ LΦ∗ ∼= R(Φ∨)∗ ◦ κ
′.

In particular, if both assumptions are satisfied, there is a commutative diagram:

Dc
G×Gm

(F1
R
∩E F2)

κ
∼

//

RΦ∗

��

Dc
G×Gm

(F⊥
1

R
∩E∗ F⊥

2 )

L(Φ∨)∗

��

Dc
G×Gm

(F ′
1

R
∩E′ F ′

2)

LΦ∗

OO

κ′

∼
// Dc

G×Gm

((F ′
1)

⊥ R
∩(E′)∗ (F

′
2)

⊥).

R(Φ∨)∗

OO
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Proof. We only prove (i). ((ii) can be proved similarly.) Recall that we have seen in Subsection

2.1 that the functor RΦ∗ takes values in Dc
G×Gm

(F ′
1

R
∩E′ F ′

2). In this proof (as in Subsection

2.1) we consider L(Φ∨)∗ as a functor from Dc
G×Gm

(F⊥
1

R
∩E∗ F⊥

2 ) to DG×Gm
(X,R′). As κ is an

equivalence of categories it is enough, to prove both assertions of (i), to check that L(Φ∨)∗ ◦κ is

isomorphic to the composition of κ′◦RΦ∗ and the inclusion Incl : Dc
G×Gm

((F ′
1)

⊥ R
∩(E′)∗ (F

′
2)

⊥) →֒
DG×Gm

(X,R′).

To prove this fact, it is sufficient to consider objects of the category Dc
G×Gm

(F1
R
∩E F2) satisfying

the assumptions of [MR, Lemma 3.7.2]. For such an object M, Incl ◦ κ′ ◦RΦ∗(M) is the image
in the derived category of the R′-dg-module

ξ′
(
S ′ ⊗OX

HomOX
(M,OX )

)
,

with differential the sum of four terms: the differential induced by dS′ , the one induced by dM,
and the two “Koszul differentials”. The first Koszul differential is induced by the composition
of the natural morphisms

(2.2.2) OX → F ′
2 ⊗OX

(F ′
2)

∨ → F ′
2 ⊗OX

(F2)
∨,

and the second one is defined similarly using E ′/F ′
1.

On the other hand, L(Φ∨)∗ ◦ κ(M) is the image in the derived category of the dg-module

R′ ⊗R ξ
(
S ⊗OX

HomOX
(M,OX )

)
∼= ξ′

(
S ′ ⊗S (S ⊗OX

HomOX
(M,OX ))

)

∼= ξ′
(
S ′ ⊗OX

HomOX
(M,OX))

)
.

Via these identifications, the differential is also the sum of four terms: the differential induced
by dS′ , the one induced by dM, and the two “Koszul differentials”. The first Koszul differential
is induced by the composition of the natural morphisms

(2.2.3) OX → F2 ⊗OX
F∨
2 → F ′

2 ⊗OX
F∨
2 ,

and the second one is defined similarly using E/F1.

These two dg-modules are clearly isomorphic (both (2.2.2) and (2.2.3) encode the morphism
F2 → F ′

2 induced by φ), which finishes the proof. �

2.3. Particular case: inclusion of a subbundle. We will mainly use only a very special
case of Proposition 2.2.1, which we state here for future reference. It is the case when E = E′,
φ = Id, F1 = F ′

1 (and F ′
2 is any subbundle containing F2). In this case we denote by

f : F1
R
∩E F2 → F1

R
∩E F ′

2, g : F⊥
1

R
∩E∗ (F ′

2)
⊥ → F⊥

1
R
∩E∗ F⊥

2

the morphisms of dg-schemes induced by F2 →֒ F ′
2, (F

′
2)

⊥ →֒ F⊥
2 . The assumption that the

morphisms between non-derived intersections are proper is always satisfied here (because these
morphisms are closed embeddings). Hence by Proposition 2.2.1 we have functors

Rf∗ : D
c
G×Gm

(F1
R
∩E F2) → Dc

G×Gm

(F1
R
∩E F ′

2),

Lf∗ : Dc
G×Gm

(F1
R
∩E F ′

2) → Dc
G×Gm

(F1
R
∩E F2),

and similarly for g. Moreover, the following proposition holds true.
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Proposition 2.3.1. Consider the following diagram:

Dc
G×Gm

(F1
R
∩E F2)

κ
∼

//

Rf∗
��

Dc
G×Gm

(F⊥
1

R
∩E∗ F⊥

2 )

Lg∗

��

Dc
G×Gm

(F1
R
∩E F ′

2)
κ′

∼
//

Lf∗

OO

Dc
G×Gm

(F⊥
1

R
∩E∗ (F ′

2)
⊥).

Rg∗

OO

There are natural isomorphisms of functors

{
κ′ ◦Rf∗ ∼= Lg∗ ◦ κ

κ ◦ Lf∗ ∼= Rg∗ ◦ κ
′ .

3. Linear Koszul duality and base change

3.1. Definition of the functors. Now let X and Y be smooth quasi-projective varieties over
k, endowed with actions of a k-algebraic group G, and let π : X → Y be a G-equivariant
morphism. Consider a G-equivariant vector bundle E on Y , and let F1, F2 ⊂ E be G-equivariant
subbundles. Consider also EX := E×Y X, which is a G-equivariant vector bundle on X, and the
subbundles FX

i := Fi ×Y X ⊂ EX (i = 1, 2). If E , F1, F2 are the respective sheaves of sections
of E, F1, F2, then π∗E , π∗F1, π

∗F2 are the sheaves of sections of EX , FX
1 , FX

2 , respectively.
We consider X and Y as G×Gm-varieties, with trivial Gm-action. We also consider E and EX

as G×Gm-equivariant vector bundles, where t ∈ k
× acts by multiplication by t−2 in the fibers.

As in [MR] we consider the G×Gm-equivariant OX -dg-modules

X := (0 → F⊥
1 → F∨

2 → 0)

where the (possibly) non-zero terms are in bidegrees (−1, 2) and (0, 2) and the differential is the
natural map, and

Y := (0 → F2 → E/F1 → 0)

where the (possibly) non-zero terms are in bidegrees (−1,−2) and (0,−2), and the differential
is the opposite of the natural map. Consider the following sheaves of dg-algebras:

TY := Sym(X ), TX := Sym(π∗X ) ∼= π∗TY ,

RY := Sym(Y), RX := Sym(π∗Y) ∼= π∗RY ,

SY := Sym(Y[−2]), SX := Sym(π∗Y[−2]) ∼= π∗SY .

As in [MR, 4.3] we define

Dc
G×Gm

(F1
R
∩E F2) := Dc

G×Gm

(Y, TY ),

Dc
G×Gm

(FX
1

R
∩EX FX

2 ) := Dc
G×Gm

(X, TX),

Dc
G×Gm

(F⊥
1

R
∩E∗ F⊥

2 ) := Dc
G×Gm

(Y, RY ),

Dc
G×Gm

((FX
1 )⊥

R
∩(EX)∗ (F

X
2 )⊥) := Dc

G×Gm

(X, RX).
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Then there are equivalences of categories

κX : Dc
G×Gm

(FX
1

R
∩EX FX

2 )
∼
−→ Dc

G×Gm

((FX
1 )⊥

R
∩(EX)∗ (F

X
2 )⊥),

κY : Dc
G×Gm

(F1
R
∩E F2)

∼
−→ Dc

G×Gm

(F⊥
1

R
∩E∗ F⊥

2 )

(see [MR, Theorem 4.3.1]). We also denote by

ξX : CG×Gm
(X, SX)

∼
−→ CG×Gm

(X, RX)

ξY : CG×Gm
(Y, SY )

∼
−→ CG×Gm

(Y, RY )

the “regrading” equivalences defined in [MR, 3.5]; we denote similarly the induced equivalences
between the various derived categories.

The morphism of schemes π induces a morphism of dg-schemes

π̂ : FX
1

R
∩EX FX

2 → F1
R
∩E F2.

Via the equivalences above, it is represented by the natural morphism of dg-ringed spaces
(X, TX) → (Y, TY ).

Lemma 3.1.1. (i) The functor

Lπ̂∗ : Dc
G×Gm

(F1
R
∩E F2) → DG×Gm

(X, TX)

takes values in Dc
G×Gm

(FX
1

R
∩EX FX

2 ).

(ii) Assume π is proper. Then the functor

Rπ̂∗ : D
c
G×Gm

(FX
1

R
∩EX FX

2 ) → Dc
G×Gm

(Y, TY ),

takes values in Dc
G×Gm

(F1
R
∩E F2).

Proof. (ii) follows from Lemma 1.4.2. Let us consider (i). As TX ∼= π∗TY and TY is K-flat over
T 0
Y
∼= S(F∨

2 ), the following diagram commutes:

Dc
G×Gm

(F1
R
∩E F2)

Lπ̂∗

//

For
��

DG×Gm
(X, TX)

For

��
Dc

G×Gm

(Y, S(F∨
2 ))

Lπ∗

// DG×Gm
(X, S(π∗F∨

2 )).

On the bottom line, π is the morphism of dg-schemes (X, S(π∗F∨
2 )) → (Y, S(F∨

2 )) induced

by π. But Dc
G×Gm

(Y, S(F∨
2 )) is equivalent to DbCohG×Gm(F2), and DG×Gm

(X, S(π∗F∨
2 )) to

DQCohG×Gm(FX
2 ). Moreover, via these indentifications, Lπ∗ is the inverse image functor for

the morphism FX
2 → F2 induced by π. Hence Lπ∗ takes values in Dc

G×Gm

(X, S(π∗F∨
2 )). Our

result follows. �

Similarly, π induces a morphism of dg-schemes

π̃ : (FX
1 )⊥

R
∩(EX)∗ (F

X
2 )⊥ → F⊥

1
R
∩E∗ F⊥

2 ,

hence a functor

Lπ̃∗ : Dc
G×Gm

(F⊥
1

R
∩E∗ F⊥

2 ) → Dc
G×Gm

((FX
1 )⊥

R
∩(EX)∗ (F

X
2 )⊥),
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and, if π is proper, also a functor

Rπ̃∗ : D
c
G×Gm

((FX
1 )⊥

R
∩(EX)∗ (F

X
2 )⊥) → Dc

G×Gm

(F⊥
1

R
∩E∗ F⊥

2 ).

3.2. Compatibility. We denote by dX and dY the dimensions of X and Y , respectively, and by

ωX and ωY the canonical line bundles on X and Y . If M is an object of Dc
G×Gm

(FX
1

R
∩EX FX

2 ),

then M⊗OX
ω−1
X is also naturally an object of Dc

G×Gm

(FX
1

R
∩EX FX

2 ) (with dg-module structure
induced by that of M). The same is true for other derived intersections.

Proposition 3.2.1. Consider the diagram

Dc
G×Gm

(FX
1

R
∩EX FX

2 )
κX

∼
//

Rπ̂∗

��

Dc
G×Gm

((FX
1 )⊥

R
∩(EX)∗ (F

X
2 )⊥)

Rπ̃∗

��

Dc
G×Gm

(F1
R
∩E F2)

κY

∼
//

Lπ̂∗

OO

Dc
G×Gm

(F⊥
1

R
∩E∗ F⊥

2 ).

Lπ̃∗

OO

(i) There is a natural isomorphism of functors

Lπ̃∗ ◦ κY ∼= κX ◦ Lπ̂∗.

(ii) Assume π is proper. Then there is a natural isomorphism of functors

κY ◦Rπ̂∗ ∼=
(
Rπ̃∗ ◦ κX(−⊗OX

ω−1
X )

)
⊗OY

ω−1
Y [dX − dY ].

The first isomorphism is easy to prove (see below). The second one is not very difficult either,
but to give a rigorous proof we need to take some care. We prove it in Subsection 3.3 below.

Proof of (i). It is sufficient to consider a sufficiently large family of well-behaved objects of

Dc
G×Gm

(F1
R
∩E F2). More precisely, any object of Dc

G×Gm

(F1
R
∩E F2) is isomorphic to the image in

the derived category of a TY -dg-module which is K-flat over TY and which satisfies the conditions
of [MR, Proposition 3.1.1] (see loc. cit . and its proof). For such an object M, Lπ̃∗ ◦ κY (M) is
the image in the derived category of the dg-module

π∗ ◦ ξY
(
SY ⊗OY

HomOY
(M,OY )

)
,

endowed with a certain differential. Now we have natural isomorphisms of dg-modules

π∗ ◦ ξY
(
SY ⊗OY

HomOY
(M,OY )

)
∼= ξX ◦ π∗

(
SY ⊗OY

HomOY
(M,OY )

)

∼= ξX
(
SX ⊗OX

π∗(HomOY
(M,OY ))

)

∼= ξX
(
SX ⊗OX

HomOX
(π∗M,OX)

)
.

(On each line, the differential is the natural one, defined as in [MR].) The image in the derived
category of the latter dg-module is κX ◦Lπ̂∗(M); hence these isomorphisms prove statement (i)
in Proposition 3.2.1. �
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3.3. Proof of (ii) in Proposition 3.2.1. From now on we assume that π is proper. Recall the
notation of [MR, 2.4, 3.2]. We also denote by C+

gr(Y, TY ) the category of G×Gm-equivariant TY -

dg-modules, bounded below for the cohomological grading, and by D+
gr(Y, TY ) the corresponding

derived category. We use similar notation for the other dg-algebras.

By definition, the category Dc
G×Gm

(F⊥
1

R
∩E∗ F⊥

2 ) is a full subcategory of DG×Gm
(Y, RY ). Hence

we can consider κY as a functor from Dc
G×Gm

(F1
R
∩E F2) to DG×Gm

(Y, RY ). Then κY is built

from the functor BY : Cտ
G×Gm

(Y, TY ) → C+
G×Gm

(Y, SY ) (see [MR, 2.4]), which is a composition

of two functors. The first one, which we denote by B
1
Y here, takes M in Cտ

G×Gm

(Y, TY ), and

sends it to M∨ = HomOY
(M,OY ), which we consider as an object of C+

gr(Y, TY ). The second

one, denoted B
2
Y , takes an object N of C+

G×Gm

(Y, TY ) and sends it to SY ⊗OY
N (with the

differential defined in loc. cit .), an object of C+
G×Gm

(Y, SY ).

By the arguments of the end of the proof of [MR, Corollary 3.2.1], the functor B
2
Y is exact, i.e.

it sends quasi-isomorphisms to quasi-isomorphisms. Hence the derived functor BY of BY is the
composition of the derived functor

B1
Y : Dտ

G×Gm

(Y, TY ) → D+
gr(Y, TY )

of B
1
Y (which exists by the arguments of the proof of [MR, Corollary 3.2.1]), and the functor

induced by B
2
Y between the derived categories (which we denote similarly). (Beware that the

notation “B” in [MR] does not exactly refer to the same functor as here.)

The same remarks apply to the functor κX , and we use the same notation (simply replacing Y
by X).

Now, let M in Dc
G×Gm

(FX
1

R
∩EX FX

2 ). Then κY ◦Rπ̂∗M is isomorphic to ξY ◦B
2
Y ◦B1

Y (Rπ̂∗M).

By duality (see [Ha]), there is an isomorphism in D+
gr(Y, TY ):

B1
Y (Rπ̂∗M) ∼= Rπ̃∗

(
B1

X(M)⊗OX
π∗ω−1

Y ⊗OX
ωX [dX − dY ]

)
.

Statement (ii) in Proposition 3.2.1 easily follows, using the projection formula.

4. Convolution

4.1. First definition. Let X be a smooth projective variety over an algebraically closed field
k, endowed with an action of a k-algebraic group G. Let V be a finite dimensional G-module,
and F ⊂ E := V × X a G-equivariant subbundle of the trivial vector bundle with fiber V on
X. Consider the diagonal ∆V ⊂ V × V . As in Sections 3 and 2 we consider X, E, F , ∆V as
G×Gm-varieties. We denote by F , E the sheaves of sections of F,E.

We want to define a convolution product on the category

Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

)
.

Let S(V ∗)⊗k S(V
∗) ⊗k Λ(V

∗) be the Koszul resolution of the diagonal ∆V ⊂ V × V . Here V ∗

is identified naturally with the orthogonal of ∆V in V × V , i.e. with the anti-diagonal copy of
V ∗ in V ∗ × V ∗. Consider the inverse image of this dg-algebra under the morphism

F × F →֒ E × E → V × V.
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This inverse image is a representative for the structure sheaf of the derived intersection (∆V ×

X ×X)
R
∩E×E (F × F ). Finally, taking the direct image of this dg-algebra to X ×X, we obtain

the description

Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

)
∼= Dc

G×Gm

(X ×X, SOX×X
(F∨

⊞ F∨)⊗k Λk(V
∗))

(see [MR, Lemma 4.1.1]).

For (i, j) = (1, 2), (2, 3) or (1, 3) we have the projection pi,j : X3 → X2 on the i-th and j-th
factors. There are associated morphisms of dg-schemes

p̂1,2 : (∆V ×X3)
R
∩E×E×X (F × F ×X) → (∆V ×X2)

R
∩E×E (F × F ),

p̂2,3, p̂1,3, and functors L(p̂1,2)
∗, L(p̂2,3)

∗, R(p̂1,3)∗ (see Section 3). For i = 1, 2, 3 we also denote
by pi : X

3 → X the projection on the i-th factor.

Next we consider a bifunctor

(4.1.1)

CG×Gm

(
X3, SOX3 (p

∗
1,2(F

∨
⊞ F∨))⊗k Λ(V

∗)
)
× CG×Gm

(
X3, SOX3 (p

∗
2,3(F

∨
⊞ F∨))⊗k Λ(V

∗)
)

→ CG×Gm
(X3, SOX3 (p

∗
1,3(F

∨
⊞ F∨))⊗k Λ(V

∗)).

Here, in the first category the morphism V ∗⊗kOX3 → p∗1,2(F
∨
⊞F∨) involved in the differential

is the composition of the anti-diagonal embedding V ∗ → V ∗ × V ∗ with the morphism induced
by F × F × X →֒ V × V × X3 → V × V , so that SOX3 (p

∗
1,2(F

∨
⊞ F∨)) ⊗k Λ(V ∗) is the

structure sheaf of (∆V ×X3)
R
∩E×E×X (F ×F ×X). Similarly, the second category corresponds

to the dg-scheme (∆V ×X3)
R
∩X×E×E (X ×F ×F ), and the third one to the dg-scheme (∆V ×

X3)
R
∩E×X×E (F × X × F ). The bifunctor (4.1.1) takes the dg-modules M1 and M2 to the

dg-module M1 ⊗SO
X3

(p∗2F
∨) M2, where the action of SOX3 (p

∗
1,3(F

∨
⊞ F∨)) is the natural one

(i.e. we forget the action of the middle copy of SOX
(F∨)). To define the action of Λ(V ∗), we

remark that M1⊗SO
X3

(p∗2F
∨)M2 has a natural action of the dg-algebra Λ(V ∗)⊗k Λ(V

∗), which

restricts to an action of Λ(V ∗) via the morphism of dg-algebras Λ(V ∗) → Λ(V ∗)⊗kΛ(V
∗) which

sends an element x ∈ V ∗ to x⊗ 1 + 1⊗ x.

The bifunctor (4.1.1) has a derived bifunctor (which can be computed by means of K-flat reso-

lutions), which induces a bifunctor (−
L

⊗F 3 −):

Dc
G×Gm

(
X3, SOX3 (p

∗
1,2(F

∨
⊞F∨))⊗k Λ(V

∗)
)
×Dc

G×Gm

(
X3, SOX3 (p

∗
2,3(F

∨
⊞F∨))⊗k Λ(V

∗)
)

→ Dc
G×Gm

(
X3, SOX3 (p

∗
1,3(F

∨
⊞ F∨))⊗k Λ(V

∗)
)
.

(This follows from the fact that the projection π1,3 : F ×V F ×V F → F ×V F is proper).

Finally, we obtain a convolution product

(− ∗ −) : Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

)
×Dc

G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

)

→ Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

)

defined by the formula

M1 ∗M2 := R(p̂1,3)∗
(
L(p̂1,2)

∗M2
L

⊗F 3 L(p̂2,3)
∗M1

)
.
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This convolution is associative.

There is a natural G×Gm-equivariant projection

p : (∆V ×X ×X)
R
∩E×E (F × F ) → F × F

corresponding to the morphism of OX2-dg-algebras

SOX2 (F
∨
⊞ F∨) → SOX2 (F

∨
⊞ F∨)⊗k Λk(V

∗),

and an associated direct image functor Rp∗. The image of Rp∗ lies in the full subcategory
Db

propCoh(F ×F ) of DbCoh(F ×F ) whose objects are the complexes whose support is contained
in a subvariety Z ⊂ F × F such that both projections Z → F are proper. This category
Db

propCoh(F × F ) has a natural convolution product (see [R1]), and

Rp∗ : D
c
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

)
→ Db

propCoh(F × F )

is compatible with the two convolution products.

4.2. Alternative definition. Before studying the compatibility of convolution with linear
Koszul duality we give an alternative (and equivalent) definition of the convolution bifunctor.
Consider the morphism

i :

{
X3 →֒ X4

(x, y, z) 7→ (x, y, y, z)
,

and the vector bundle E4 over X4. In Section 3 we have defined a “base change” functor

Lî∗ : Dc
G×Gm

(
(∆V ×∆V ×X4)

R
∩E4 F 4

)

→ Dc
G×Gm

(
(∆V ×∆V ×X3)

R
∩E×(E×XE)×E (F × (F ×X F )× F )

)
.

Next, consider the inclusion of vector subbundles of E × (E ×X E)× E

F × F diag × F →֒ F × (F ×X F )× F,

where F diag ⊂ F ×X F is the diagonal copy of F . In Subsection 2.3 we have defined a functor

Lf∗ : Dc
G×Gm

(
(∆V ×∆V ×X3)

R
∩E×(E×XE)×E (F × (F ×X F )× F )

)

→ Dc
G×Gm

(
(∆V ×∆V ×X3)

R
∩E×(E×XE)×E (F × F diag × F )

)
.

Finally, consider the morphism of vector bundles over X3

φ : E × (E ×X E)× E ∼= V 4 ×X3 → E ×X ×E ∼= V 2 ×X3

induced by {
V 4 → V 2

(a, b, c, d) 7→ (a− b+ c, d)
.

We have φ(∆V ×∆V ×X3) = ∆V ×X3, and φ(F × F diag × F ) = F ×X × F . In Section 2 we
have defined a functor

RΦ∗ : D
c
G×Gm

(
(∆V ×∆V ×X3)

R
∩E×(E×XE)×E (F × F diag × F )

)

→ Dc
G×Gm

(
(∆V ×X3)

R
∩E×X×E (F ×X × F )

)
.
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Consider two objects M1, M2 of Dc
G×Gm

(
(∆V × X2)

R
∩E×E (F × F )

)
. The external tensor

product M2 ⊠ M1 is naturally an object of the category Dc
G×Gm

(
(∆V × ∆V × X4)

R
∩E4 F 4

)
.

Then, with the definitions as above, we clearly have a (bifunctorial) isomorphism

(4.2.1) M1 ∗M2
∼= R(p̂1,3)∗ ◦RΦ∗ ◦ Lf

∗ ◦ Lî∗(M2 ⊠M1)

in Dc
G×Gm

(
(∆V ×X2)

R
∩E×E (F × F )

)
.

4.3. Compatibility with Koszul duality. Consider the same situation as in Subsections 4.1
and 4.2, and assume in addition that the line bundle ωX has a G-equivariant square root, i.e.

there exists a G-equivariant line bundle ω
1/2
X on X such that (ω

1/2
X )⊗2 ∼= ωX . We denote by dX

the dimension of X.

The orthogonal of F ×F in E ×E is F⊥ ×F⊥. On the other hand, the orthogonal of ∆V ×X2

in E×E is the anti-diagonal ∆V ∗×X2 ⊂ E∗×E∗. There is an automorphism of E×E sending
∆V ∗ ×X2 to ∆V ∗ ×X2, and preserving F⊥ × F⊥ (namely multiplication by −1 on the second
copy of V ∗). Hence composing linear Koszul duality

κ : Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

) ∼
−→ Dc

G×Gm

(
(∆V ∗ ×X ×X)

R
∩E∗×E∗ (F⊥ × F⊥)

)

with the natural equivalence

Ξ : Dc
G×Gm

(
(∆V ∗ ×X ×X)

R
∩E∗×E∗ (F⊥ × F⊥)

)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×X ×X)

R
∩E∗×E∗ (F⊥ × F⊥)

)

provides an equivalence

κ̃ : Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

) ∼
−→ Dc

G×Gm

(
(∆V ∗ ×X ×X)

R
∩E∗×E∗ (F⊥ × F⊥)

)
.

The two categories related by κ̃ are endowed with a convolution product (see Subsection 4.1).
We denote by K the following composition:

Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

)

−⊗O
X2

(ω
−1/2
X ⊠ω

−1/2
X )[−dX ]

��

K

((

Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

) κ̃
∼

// Dc
G×Gm

(
(∆V ∗ ×X ×X)

R
∩E∗×E∗ (F⊥ × F⊥)

)
.

The main result of this section is the following proposition. Its proof uses all the results proved
so far.

Proposition 4.3.1. The equivalence K is compatible with convolution, i.e. for any objects M1,

M2 of Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

)
there is a bifunctorial isomorphism

K(M1 ∗M2) ∼= K(M1) ∗ K(M2)

in Dc
G×Gm

(
(∆V ∗ ×X ×X)

R
∩E∗×E∗ (F⊥ × F⊥)

)
.
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Proof. On the left hand side we use isomorphism (4.2.1). First, consider the natural projection
p1,3 : X

3 → X2. In Section 3 we have defined functors

Rp̂1,3∗ : D
c
G×Gm

(
(∆V ×X3)

R
∩E×X×E (F ×X × F )

)
→ Dc

G×Gm

(
(∆V ×X2)

R
∩E×E (F × F )

)
,

Rp̃1,3∗ : D
c
G×Gm

(
(∆V ∗ ×X3)

R
∩E∗×X×E∗ (F⊥ ×X × F⊥)

)

→ Dc
G×Gm

(
(∆V ∗ ×X2)

R
∩E∗×E∗ (F⊥ × F⊥)

)
.

We denote by

κ1,3 : D
c
G×Gm

(
(∆V ×X3)

R
∩E×X×E (F ×X × F )

)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×X3)

R
∩E∗×X×E∗ (F⊥ ×X × F⊥)

)

the linear Koszul duality functor. By Proposition 3.2.1 we have an isomorphism of functors

κ ◦Rp̂1,3∗
∼=

(
Rp̃1,3∗ ◦ κ1,3(−⊗OX3 (ω

−1
X )⊠3)

)
⊗OX2 (ω

−1
X )⊠2[dX ],

i.e. an isomorphism

(4.3.2) κ ◦Rp̂1,3∗
∼= Rp̃1,3∗

(
κ1,3(−)⊗OX3 (OX ⊠ ωX ⊠OX)

)
[dX ].

Next consider, as in Subsection 4.2, the inclusion i : X3 →֒ X4. In addition to the functor Lî∗,
consider also

Lĩ∗ : Dc
G×Gm

(
(∆V ∗ ×∆V ∗ ×X4)

R
∩(E∗)4 (F

⊥)4
)

→ Dc
G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R
∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F⊥ ×X F⊥)× F⊥)

)
.

We denote by

κ4 : D
c
G×Gm

(
(∆V ×∆V ×X4)

R
∩E4 F 4

) ∼
−→ Dc

G×Gm

(
(∆V ∗ ×∆V ∗ ×X4)

R
∩(E∗)4 (F

⊥)4
)
,

κ3 : D
c
G×Gm

(
(∆V ×∆V ×X3)

R
∩E×(E×XE)×E (F × (F ×X F )× F )

)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R
∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F⊥ ×X F⊥)× F⊥)

)

the linear Koszul duality functors. By Proposition 3.2.1 we have an isomorphism of functors

(4.3.3) Lĩ∗ ◦ κ4 ∼= κ3 ◦ Lî
∗.

As in Subsection 4.2 again, consider now the inclusion F ×F diag ×F →֒ F × (F ×X F )×F , and
the induced morphisms of dg-schemes

f : (∆V ×∆V ×X3)
R
∩E×(E×XE)×E (F × F diag × F ) →

(∆V ×∆V ×X3)
R
∩E×(E×XE)×E (F × (F ×X F )× F ),

g : (∆V ∗ ×∆V ∗ ×X3)
R
∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F⊥ ×X F⊥)× F⊥) →

(∆V ∗ ×∆V ∗ ×X3)
R
∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F diag)⊥ × F⊥).
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In addition to the functor Lf∗, consider the functor

Rg∗ : D
c
G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R
∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F⊥ ×X F⊥)× F⊥)

)

→ Dc
G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R
∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F diag)⊥ × F⊥)

)
.

We denote by

κ′3 : D
c
G×Gm

(
(∆V ×∆V ×X3)

R
∩E×(E×XE)×E (F × F diag × F )

)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R
∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F diag)⊥ × F⊥)

)

the linear Koszul duality functor. Then by Proposition 2.3.1 we have an isomorphism of functors

(4.3.4) κ′3 ◦ Lf
∗ ∼= Rg∗ ◦ κ3.

Finally, consider the morphism of vector bundles

φ : E × (E ×X E)× E → E ×X × E

defined in Subsection 4.2. By Proposition 2.2.1, the dual morphism φ∨ induces a functor

L(Φ∨)∗ : Dc
G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R
∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F diag)⊥ × F⊥)

)

→ Dc
G×Gm

(
(∆V ∗ ×X3)

R
∩E∗×X×E∗ (F⊥ ×X × F⊥)

)
,

and we have an isomorphism of functors

(4.3.5) κ1,3 ◦RΦ∗
∼= L(Φ∨)∗ ◦ κ′3.

Combining isomorphisms (4.2.1), (4.3.2), (4.3.3), (4.3.4) and (4.3.5) we obtain, for M1 and M2

in Dc
G×Gm

(
(∆V ×X2)

R
∩E×E (F × F )

)
,

κ(M1 ∗M2) ∼= κ ◦R(p̂1,3)∗ ◦RΦ∗ ◦ Lf
∗ ◦ Lî∗(M2 ⊠M1)

∼= R(p̃1,3)∗
((
L(Φ∨)∗ ◦Rg∗ ◦ Lĩ

∗ ◦ κ4(M2 ⊠M1)
)
⊗OX3 (OX ⊠ ωX ⊠OX)

)
[dX ].

It is clear by definition that κ4(M2 ⊠ M1) ∼= κ(M2) ⊠ κ(M1) in Dc
G×Gm

(
(∆V ∗ × ∆V ∗ ×

X4)
R
∩(E∗)4 (F

⊥)4
)
. Hence, to finish the proof we only have to check that for N1, N2 in

Dc
G×Gm

(
(∆V ∗ ×X2)

R
∩E∗×E∗ (F⊥ × F⊥)

)
there is a bifunctorial isomorphism

(4.3.6) Ξ′ ◦ L(Φ∨)∗ ◦Rg∗ ◦ Lĩ
∗(N1 ⊠N2) ∼= (ΞN1)

L

⊗(F⊥)3 (ΞN2),

where Ξ′ is defined similarly as Ξ in the beginning of this subsection, and (−
L

⊗(F⊥)3 −) is defined
as in Subsection 4.1.

The functor L(Φ∨)∗ is induced by the morphism of dg-algebras

Sym
(
F ⊞ Fdiag

⊞ F → (V 4/∆V ×∆V )⊗k OX3

)
−→ Sym

(
p∗1,3(F ⊞ F) → (V 2/∆V )⊗k OX3

)

induced by φ. There is a natural exact sequence of 2-term complexes of OX3 -modules



p∗2F
↓

V ⊗k OX3


 →֒




F ⊞ Fdiag
⊞ F

↓
(V 4/∆V ×∆V )⊗k OX3


 ։




p∗1,3(F ⊞F)
↓

(V 2/∆V )⊗k OX3


 ,



LINEAR KOSZUL DUALITY AND AFFINE HECKE ALGEBRAS 17

where the surjection is induced by φ, and the bottom arrow of the inclusion is induced by the
morphism {

V → V 4

v 7→ (0, v, v, 0)
.

On the other hand, the functor Rg∗ is induced by the morphism of dg-algebras

Sym
(
F ⊞Fdiag

⊞ F → (V 4/∆V ×∆V )⊗k OX3

)

−→ Sym
(
F ⊞ (F ⊕ F)⊞ F → (V 4/∆V ×∆V )⊗k OX3

)
,

which makes the second dg-algebra a K-flat dg-module over the first one. The isomorphism
(4.3.6) follows from these two facts. �

5. Linear Koszul duality and the diagonal

5.1. Image of the diagonal. As in Subsection 4.3 we consider the duality

κ̃ : Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

) ∼
−→ Dc

G×Gm

(
(∆V ∗ ×X ×X)

R
∩E∗×E∗ (F⊥ × F⊥)

)

and the functor K. Let us denote by q : E2 → X2 the projection. Consider the structure sheaf
of the diagonal copy of F in E2, denoted O∆F . Then q∗O∆F is an object of the category

Dc
G×Gm

(
(∆V ×X ×X)

R
∩E×E (F × F )

)
,

where the structure of SOX2 (F
∨
⊞ F∨) ⊗k Λ(V ∗)-dg-module is given by the composition of

SOX2 (F
∨
⊞F∨)⊗kΛ(V

∗) → q∗OF×V F (projection to the 0-cohomology) and q∗OF×V F → q∗O∆F

(restriction). For simplicity, in the rest of this subsection we write O∆F for q∗O∆F . Similarly

we have an object O∆F⊥ in Dc
G×Gm

(
(∆V ∗ ×X ×X)

R
∩E∗×E∗ (F⊥ × F⊥)

)
.

The main result of this section is the following proposition. The idea of its proof is, using
isomorphisms of functors proved in Propositions 2.3.1 and 3.2.1, to reduce to an explicit and
very easy computation.

Proposition 5.1.1. We have K(O∆F ) ∼= O∆F⊥.

Proof. Consider the morphism ∆ : X →֒ X ×X (inclusion of the diagonal). We denote by

κ∆ : Dc
G×Gm

(
(∆V ×X)

R
∩E×XE (F ×X F )

) ∼
−→ Dc

G×Gm

(
(∆V ∗ ×X)

R
∩E∗×XE∗ (F⊥ ×X F⊥)

)

the linear Koszul duality obtained by base change by ∆ (see Section 3). By Proposition 3.2.1,
there is an isomorphism of functors

(5.1.2) κ ◦R∆̂∗
∼=

(
R∆̃∗ ◦ κ∆(−⊗OX

ω−1
X )

)
⊗OX×X

ω−1
X×X [−dX ],

where the functors R∆̂∗ and R∆̃∗ are defined as in Subsection 3.1.

Consider the object SOX
(F∨) of the category

Dc
G×Gm

(
(∆V ×X)

R
∩E×XE (F ×X F )

)
∼= Dc

G×Gm

(
X, Sym((∆V ∗)⊗k OX → F∨ ⊕F∨)

)
,

where the dg-module structure corresponds to the diagonal inclusion F →֒ F ⊕ F . Then by
definition O∆F

∼= R∆̂∗ SOX
(F∨). Hence, using isomorphism (5.1.2),

(5.1.3) K(O∆F ) ∼= Ξ ◦ κ(O∆F ⊗OX2 (ω
−1/2
X ⊠ ω

−1/2
X )[−dX ]) ∼= Ξ ◦R∆̃∗ ◦ κ∆(SOX

(F∨)),
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where Ξ is defined as in Subsection 4.1.

Now consider the diagonal embedding F →֒ F ×X F . This inclusion makes F a subbundle of
F ×X F . Taking the derived intersection with ∆V ×X inside E ×X E, we are in the situation
of Subsection 2.3. We consider the morphisms of dg-schemes1

f : (∆V ×X)
R
∩E×XE F → (∆V ×X)

R
∩E×XE (F ×X F ),

g : (∆V ∗ ×X)
R
∩E∗×XE∗ (F⊥ ×X F⊥) → (∆V ∗ ×X)

R
∩E∗×XE∗ F⊥,E×XE,

and the diagram:

Dc
G×Gm

((∆V ×X)
R
∩E×XE F )

κF

∼
//

Rf∗
��

Dc
G×Gm

((∆V ∗ ×X)
R
∩E∗×XE∗ F⊥,E×XE)

Lg∗

��

Dc
G×Gm

((∆V ×X)
R
∩E×XE (F ×X F ))

κ∆

∼
//

Lf∗

OO

Dc
G×Gm

((∆V ∗ ×X)
R
∩E∗×XE∗ (F⊥ ×X F⊥)).

Rg∗

OO

(Here, F⊥,E×XE is the orthogonal of F as a diagonal subbundle of E ×X E.) The structure

(dg-)sheaf of (∆V ×X)
R
∩E×XE F is Λ(V ∗) ⊗k SOX

(F∨), with trivial differential (because F ⊂
∆V ×X). In particular, SOX

(F∨) is also an object of the top left category in the diagram, which
we denote by OF . Then, by definition, Rf∗OF is the object SOX

(F∨) of (5.1.3). By Proposition
2.3.1, there is an isomorphism of functors

κ∆ ◦Rf∗ ∼= Lg∗ ◦ κF .

In particular we have κ∆(SOX
(F∨)) ∼= Lg∗ ◦ κF (OF ).

Now direct computation shows that Lg∗ ◦ κF (OF ) identifies with the structure sheaf of the
anti-diagonal copy ∆F⊥ ⊂ F⊥ ×X F⊥. (The latter is naturally an object of the category

Dc
G×Gm

((∆V ∗×X)
R
∩E∗×XE∗ (F⊥×X F⊥)), for the same reasons as above.) One easily deduces,

using isomorphism (5.1.3), that K(O∆F ) ∼= O∆F⊥ . �

5.2. Image of line bundles on the diagonal. From Proposition 5.1.1 one immediately de-
duces the following result.

Corollary 5.2.1. Let L be a G-equivariant line bundle on X. Then O∆F ⊗OX
L is naturally

an object of Dc
G×Gm

(
(∆V ×X×X)

R
∩E×E (F ×F )

)
. We have K(O∆F ⊗OX

L) ∼= O∆F⊥ ⊗OX
L∨.

6. Linear Koszul duality and Iwahori-Matsumoto involution

6.1. Reminder on affine Hecke algebras. Let G be a connected, simply-connected, complex
semi-simple algebraic group. Let T ⊂ B ⊂ G be a torus and a Borel subgroup of G. Let also
t ⊂ b ⊂ g be their Lie algebras. Let U be the unipotent radical of B, and let n be its Lie algebra.

Let B := G/B be the flag variety of G. Consider the Springer variety Ñ and the Grothendieck
resolution g̃ defined as follows:

Ñ := {(X, gB) ∈ g∗ × B | X|g·b = 0}, g̃ := {(X, gB) ∈ g∗ × B | X|g·n = 0}.

1Beware that f and g do not exactly denote the same morphisms as in Subsection 4.2.
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(The variety Ñ is naturally isomorphic to the cotangent bundle of B.) The varieties Ñ and g̃

are subbundles of the trivial vector bundle g∗ ×B over B. In particular, there are natural maps

Ñ → g∗ and g̃ → g∗. Let us consider the varieties

Z := Ñ ×g∗ Ñ , Z := g̃×g∗ g̃.

There is a natural action of G×Gm on g∗ × B, where (g, t) acts via:

(g, t) · (X,hB) := (t−2(g ·X), ghB).

The subbundles Ñ and g̃ are G×Gm-stable.

Let R be the root system of G, R+ the positive roots (chosen as the weights of g/b), Φ the
associated set of simple roots, X the weights of R (which naturally identify with the group of
characters of T ). Let also W be the Weyl group of R (or of (G,T )). For α ∈ Φ we denote by
sα ∈ W the corresponding simple reflection. For α, β ∈ Φ, we let nα,β be the order of sαsβ in W .
Then the (extended) affine Hecke algebra Haff associated to these data is the Z[v, v−1]-algebra
generated by elements {Tα, α ∈ Φ} ∪ {θx, x ∈ X}, with defining relations

(i) TαTβ · · · = TβTα · · · (nα,β elements on each side)

(ii) θ0 = 1

(iii) θxθy = θx+y

(iv) Tαθx = θxTα if sα(x) = x

(v) θx = Tαθx−αTα if sα(x) = x− α

(vi) (Tα + v−1)(Tα − v) = 0

for α, β ∈ Φ and x, y ∈ X (see e.g. [CG], [Lu]).

We will be interested in the Iwahori-Matsumoto involution IM of Haff . This is the involution of
Z[v, v−1]-algebra of Haff defined on the generators by

{
IM(Tα) = −T−1

α ,
IM(θx) = θ−x.

For α ∈ Φ we also consider tα := v · Tα. Then we have IM(tα) = −q(tα)
−1, with q = v2.

Let α ∈ Φ. Let Pα ⊃ B be the minimal standard parabolic subgroup associated to α, let pα
be its Lie algebra, and let Pα := G/Pα be the associated partial flag variety. We define the
following G×Gm-subvariety of Z:

Yα := {(X, g1B, g2B) ∈ g∗ × (B ×Pα B) | X|g·pα = 0}.

For any variety X → B over B and for x ∈ X, we denote by OX(x) the inverse image to X of
the line bundle on B associated to x. We use a similar notation for varieties over B × B.

There is a natural isomorphism of Z[v, v−1]-algebras

(6.1.1) Haff
∼
−→ KG×Gm(Z),

where KG×Gm(Z) is endowed with the convolution product associated to the embedding Z ⊂

Ñ × Ñ (see [CG], [Lu]). It is defined by
{

Tα 7→ −v−1[OYα(−ρ, ρ− α)] − v−1[∆∗OÑ ]

θx 7→ [∆∗OÑ (x)]
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for α ∈ Φ and x ∈ X. Here, ∆ is the diagonal embedding, and for F in CohG×Gm(Z) we
denote by [F ] its class in K-theory. Moreover, the action of v is induced by the functor 〈1〉 :

CohG×Gm(Z) → CohG×Gm(Z) of tensoring with the one-dimensional Gm-module given by IdGm
.

For α ∈ Φ, let

g̃α := {(X, gPα) ∈ g∗ × Pα | X|g·pnα
= 0},

where pnα is the nilpotent radical of pα. There is a natural morphism g̃ → g̃α.

Consider the embedding of smooth varieties i : Ñ × g̃ →֒ g̃ × g̃. Associated to this morphism,
there a morphism of “restriction with supports” in K-theory

η : KG×Gm(Z) → KG×Gm(Z)

(see [CG, p. 246]). As above for KG×Gm(Z), convolution endows KG×Gm(Z) with the structure
of a Z[v, v−1]-algebra. (Here we use the embedding Z ⊂ g̃ × g̃ to define the product.) The
following result is well-known. As we could not find a reference, we include a proof. Recall that
if X is a scheme and Y ⊂ X a closed subscheme, CohY (X) denotes the category of OX -coherent
sheaves supported set-theoretically on Y .

Lemma 6.1.2. The morphism η is an isomorphism of Z[v, v−1]-algebras.

Proof. Let us denote by j : Ñ × Ñ →֒ Ñ × g̃ and k : Ñ →֒ g̃ the embeddings. Let also Γk be
the graph of k. Then η is the composition of the morphism in K-theory induced by the functor

Lj∗ : DbCohZ(g̃ × g̃) → DbCohZ(Ñ × g̃)

and by the inverse of the morphism induced by

i∗ : D
bCohZ(Ñ × Ñ ) → DbCohZ(Ñ × g̃).

(It is well known that i∗ induces an isomorphism in K-theory.) By [R1, Lemma 1.2.3], i∗ is
the product on the left (for convolution) by the kernel OΓk

. By similar arguments, Lj∗ is the
product on the right by the kernel OΓk

. It follows from these observations that η is a morphism
of Z[v, v−1]-algebras.

Then we observe that Z and Z have compatible cellular fibrations (in the sense of [CG, 5.5]),
defined using the partition of B×B in G-orbits. The stratas in Z are the transverse intersections

of those of Z with Ñ × g̃ ⊂ g̃ × g̃. It follows, using the arguments of [CG, 6.2], that η is an
isomorphism of Z[v, v−1]-modules, completing the proof. �

It follows in particular from this lemma that there is also an isomorphism

Haff
∼
−→ KG×Gm(Z),

which satisfies {
Tα 7→ −v−1[Og̃×g̃α g̃] + v[∆∗Og̃]

θx 7→ [∆∗Og̃(x)]

(see e.g. [R1] for details).

Finally, we define N := #(R+) = dim(B).
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6.2. Main result. From now on we consider a very special case of linear Koszul duality, namely

the situation of Sections 4 and 5 with X = B, V = g∗ and F = Ñ . We identify V ∗ = g with g∗

using the Killing form. Then F⊥ identifies with g̃. We obtain an equivalence

κ̃ : Dc
G×Gm

(
(∆g∗ × B × B)

R
∩(g∗×B)2 (Ñ × Ñ )

) ∼
−→ Dc

G×Gm

(
(∆g∗ × B × B)

R
∩(g∗×B)2 (g̃× g̃)

)
,

and its shift K. Here the actions of Gm on g∗ are not the same on the two sides. (They are
“inverse”, i.e. each one is the composition of the other one with t 7→ t−1.) We denote by κIM

the composition of K with the auto-equivalence of Dc
G×Gm

(
(∆g∗×B×B)

R
∩(g∗×B)2 (g̃× g̃)

)
which

inverts the Gm-action. (In the realization as Gm-equivariant dg-modules on B×B, this amounts
to inverting the internal grading.)

By Lemma 1.1.1, the Grothendieck group of the triangulated category Dc
G×Gm

(
(∆g∗ × B ×

B)
R
∩(g∗×B)2 (Ñ × Ñ )

)
is naturally isomorphic to KG×Gm(Z), hence to the affine Hecke algebra

Haff (see (6.1.1)). Similarly2, the Grothendieck group of the category Dc
G×Gm

(
(∆g∗ × B ×

B)
R
∩(g∗×B)2 (g̃ × g̃)

)
is isomorphic to KG×Gm(Z), hence also to Haff (see Lemma 6.1.2). Let us

consider the automorphism [κIM] : Haff → Haff induced by κIM.

In the presentation of Haff using the generators tα and θx, the scalars appearing in the relations
are polynomials in q = v2. Hence we can define the involution ι of Haff (as an algebra) that
fixes the tα’s and θx’s, and sends v to −v. Our main result is the following.

Theorem 6.2.1. The automorphism [κIM] of Haff is the composition of the Iwahori-Matsumoto

involution IM and the involution ι:

[κIM] = ι ◦ IM.

We will prove this theorem in Subsection 6.3. Before that, we need one more preliminary result.

Let α be a simple root. The coherent sheaf OYα(ρ − α,−ρ) on Z has a natural structure of
G× Gm-equivariant dg-module over Sym

(
∆g⊗k OB×B → TB ⊞ TB

)
, hence defines an object in

the category Dc
G×Gm

(
(∆g∗×B×B)

R
∩(g∗×B)2 (Ñ × Ñ )

)
. Similarly, Og̃×g̃α g̃ is naturally an object

of Dc
G×Gm

(
(∆g∗ ×B ×B)

R
∩(g∗×B)2 (g̃× g̃)

)
. The strategy of the proof of the next proposition is

the same as that of Proposition 5.1.1.

Proposition 6.2.2. We have K(OYα(ρ− α,−ρ)) ∼= Og̃×g̃α g̃[1].

Proof. Consider the inclusion i : Xα := B×Pα B →֒ B×B. Applying the constructions of Section
3, we obtain the diagram

Dc
G×Gm

((∆g∗ × Xα)
R
∩(g∗)2×Xα

Ñ ×Pα Ñ )
κα

∼
//

Rî∗
��

Dc
G×Gm

((∆g∗ × Xα)
R
∩(g∗)2×Xα

g̃×Pα g̃)

Rĩ∗
��

Dc
G×Gm

((∆g∗ × B2)
R
∩(g∗×B)2 Ñ × Ñ )

κ
∼

//

Lî∗

OO

Dc
G×Gm

((∆g∗ × B2)
R
∩(g∗×B)2 g̃× g̃).

Lĩ∗

OO

2In this case, a simple dimension counting shows that the derived intersection (∆g∗ ×B × B)
R

∩(g∗×B)2 (g̃× g̃)

is quasi-isomorphic, as a dg-scheme, to g̃×g∗ g̃. Hence we do not really need Lemma 1.1.1 here.
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By Proposition 3.2.1 there is an isomorphism of functors

κ ◦Rî∗ ∼=
(
Rĩ∗ ◦ κα(−⊗OXα

OXα(α, 2ρ))
)
⊗O

B2 OB2(2ρ, 2ρ)[1 −N ].

In particular we obtain an isomorphism

K(OYα(ρ− α,−ρ)) ∼= Ξ ◦Rĩ∗ ◦ κα(OYα)[1].

Here on the right hand sideOYα is considered as an object of Dc
G×Gm

((∆g∗×Xα)
R
∩(g∗)2×Xα

Ñ ×Pα

Ñ ), with its natural structure of dg-module, and Ξ is defined as in Subsection 4.1.

Now Yα is a subbundle of Ñ ×Pα Ñ . Taking the derived intersection with ∆g∗ × Xα, we can
apply the results of Subsection 2.3. Denoting by

f : (∆g∗ × Xα)
R
∩(g∗)2×Xα

Yα → (∆g∗ × Xα)
R
∩(g∗)2×Xα

Ñ ×Pα Ñ ,

g : (∆g∗ × Xα)
R
∩(g∗)2×Xα

g̃×Pα g̃ → (∆g∗ × Xα)
R
∩(g∗)2×Xα

Y ⊥
α

the morphisms of dg-schemes induced by inclusions, we obtain a diagram

Dc
G×Gm

((∆g∗ × Xα)
R
∩(g∗)2×Xα

Yα)
κY

∼
//

Rf∗
��

Dc
G×Gm

((∆g∗ × Xα)
R
∩(g∗)2×Xα

Y ⊥
α )

Lg∗

��

Dc
G×Gm

((∆g∗ × Xα)
R
∩(g∗)2×Xα

Ñ ×Pα Ñ )
κα

∼
//

Lf∗

OO

Dc
G×Gm

((∆g∗ × Xα)
R
∩(g∗)2×Xα

g̃×Pα g̃).

Rg∗

OO

(Here, in the top right corner, Y ⊥
α is the orthogonal of Yα as a subbundle of (g∗)2 × Xα.)

Let Yα denote the sheaf of sections of Yα. The structure sheaf of (∆g∗ × Xα)
R
∩(g∗)2×Xα

Yα is

Λ(g) ⊗k SOXα
(Y∨

α ), with trivial differential (because Yα ⊂ ∆g∗ × Xα). In particular, SOXα
(Y∨

α )
is naturally an object of the top left category, and Rf∗(SOXα

(Y∨
α )) is the object OYα considered

above. By Proposition 2.3.1 we have an isomorphism of functors

κα ◦Rf∗ ∼= Lg∗ ◦ κY .

In particular we obtain κα(OYα)
∼= Lg∗ ◦ κY (SOXα

(Y∨
α )).

Now the structure sheaf of (∆g∗×Xα)
R
∩(g∗)2×Xα

Y ⊥
α is ΛOXα

(Yα)⊗kSk(g), with trivial differential.

And direct computation shows that κY (SOXα
(Y∨

α )) is isomorphic to the dg-module OXα ⊗k S(g).

Then Lg∗(OXα ⊗kS(g)) is the structure sheaf of the derived intersection of ∆g∗×Xα and g̃×Pα g̃

inside Y ⊥
α . But (∆g∗ × Xα) ∩ (g̃ ×Pα g̃) ∼= g̃×g̃α g̃, and

dim(∆g∗ × Xα) + dim(g̃ ×Pα g̃)− dim(Y ⊥
α ) = dim(g̃ ×g̃α g̃) (= dim(g)).

Hence the derived intersection is quasi-isomorphic to (∆g∗ × Xα) ∩ (g̃ ×Pα g̃). This completes
the proof of the proposition. �

6.3. Proof of Theorem 6.2.1. By construction we have κ(M〈m〉) ∼= κ(M)[m]〈−m〉, hence

κIM(M〈m〉) ∼= κIM(M)[m]〈m〉.

In particular, for a ∈ Haff and f(v) ∈ Z[v, v−1] we have [κIM](f(v) · a) = f(−v) · [κIM](a).

By Proposition 4.3.1, the equivalence κIM is compatible with convolution, hence also the induced
isomorphism [κIM]. Also, by Proposition 5.1.1 it sends the unit to the unit. It follows that to
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prove Theorem 6.2.1 we only have to check that [κIM] and ι ◦ IM coincide on the generators tα
and θx.

First, Corollary 5.2.1 implies that [κIM](θx) = θ−x.

Similarly, Proposition 6.2.2 implies that [κIM]([OYα(ρ− α,−ρ)]) = −[Og̃×g̃α g̃]. Hence

[κIM](Tα) = −v−1[Og̃×g̃α g̃] + v−1

= Tα − v + v−1.

Hence [κIM](tα) = −tα + v2 − 1 = −q(tα)
−1. This finishes the proof of the theorem.
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Équipe d’Analyse Algébrique, 175, rue du Chevaleret, 75013 Paris, France.

E-mail address: riche@math.jussieu.fr


