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GEOMETRIC BRAID GROUP ACTION
ON DERIVED CATEGORIES OF COHERENT SHEAVES

SIMON RICHE
WITH A JOINT APPENDIX WITH ROMAN BEZRUKAVNIKOV

ABSTRACT. In this paper we give, for semi-simple groups without factors of
type G2, a geometric construction of a braid group action on ’DbCoh(ﬁ) ex-
tending the action constructed by Bezrukavnikov, Mirkovi¢ and Rumynin in
[] It follows that this action extends to characteristic zero, where it also
has some nice representation-theoretic interpretations. The argument uses a
presentation of the affine braid group analogous to the “Bernstein presenta-
tion” of the corresponding Hecke algebra (this presentation was suggested by
Lusztig; it is worked out in the appendix, joint with Roman Bezrukavnikov).
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INTRODUCTION

0.1. Let G be a connected, semi-simple, simply-connected algebraic group over
an algebraically closed field k, and let g = Lie(G). In [BMRZ], Bezrukavnikov,
Mirkovi¢ and Rumynin have constructed an action of the extended affine braid
group associated to G on the category DbCohBS) (@), when char(k) is greater than

the Coxeter number h of G (here x € g* is nilpotent, and B, is the corresponding
Springer fiber). Their construction relies on deep results relating the modules over
Ug (the enveloping algebra of g), D-modules on the flag variety of G, and coherent
sheaves on gV, In this paper we show that, when G has no factor of type Go, this
action can be defined geometrically, without any reference to representation theory.
In particular, we obtain that the action can also be defined when char(k) < h
(except for char(k) = 2 in the non simply-laced case), including characteristic 0.
We also obtain that similar actions can be defined on various other categories, such

2000 Mathematics Subject Classification. Primary 14M15; Secondary 20F55, 18E30.
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2 SIMON RICHE

as DPCoh(g), P*Coh(N), PPCoh®(g) or D*Coh®(N). For k = C, this action is
related to Ginzburg’s interpretation of the equivariant K-theory of the Steinberg
variety, and to Springer representations of the finite Weyl group on the homology
of Springer fibers.

0.2. More precisely, let G be a connected, semi-simple, simply-connected algebraic
group over k, let 7" be a maximal torus of G, X the character group of 7', R the
root system of (G, T), W its Weyl group, and ® a basis of R. The extended affine
Weyl group Wz := W x X has a natural “length function” ¢, although it is not
a Coxeter group in general (see @) The extended affine braid group Blg is by
definition the group with presentation:

Generators: T, (w € W/g);
Relations: T, Ty = Ty if £(vw) = £(v) + £(w).

This definition is similar to the “Iwahori-Matsumoto presentation” of the corre-
sponding Hecke algebra H. If x € X, write x = 1 — 29 with z;, o dominant
weights. Then 6, := Ty, (Ty,)"' depends only on x. If o, 3 € ®, we denote by
Nq,g the order of s4s5 in W. Our first step, obtained as a joint work with Roman
Bezrukavnikovﬂ (see the appendix), is a second presentation of Blg, which is an
analogue of the “Bernstein presentation” of H. The idea of this presentation is due
to Lusztig (see e.g. [LJ)). It is given by:

Generators: Ts, (o € ®), 0,
Relations: (1) T, Ts, -+ =
(2) 0oy = Ozty;
(3) Ts, 0, = 0T, if (x,a¥) =0;
(4) 0y =Ts,0,_oTs, if (z,0¥) =

Let g = Lie(G). Let B be the Borel subgroup of G containing 7' such that the

roots of g/b are the positive ones, where b is the Lie algebra of B. Let n be the

nilpotent radical of b. Let N := T*(G/B) be the cotangent bundle of G/B, and g
be the “extended” cotangent bundle

9:={(X,9B) € ¢" x G/B | Xjgn = 0}.

(x € X);
T.

Ty, T, -+ (na,p elements on each side);

1.

Our main result is the construction of a weakf] action of Bls on the category
DbCoh(g), by convolution. Using the preceding presentation, to construct this
action it is sufficient to define kernels associated to the generators T, and 6., and
to verify relations (1) to (4) for these kernels. The kernel associated with T is Og,,
for some closed subvariety S, C g X g (see paragraph @ for a precise definition),
and the kernel associated with 6, is A,Og(z) where A : g — g x g is the diagonal
embedding. Relations (2), (3) and (4) for these kernels are easy to prove.

The most difficult relations to prove are the “finite braid relations”, i.e. relations
(1). For this proof we have to assume that G has no factor of type G, and to
perform a case-by-case analysis, depending on whether o and 3 generate a root
system of type A; X A1, A or By (see sections E and E) Our proof involves the

LAfter this paper was submitted, Valerio_Toledano Laredo pointed out to us that this presen-
tation is also proved in Macdonald’s book [M]]. Our proof is different.
25ee paragraph E
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study of Demazure-like “resolutions”ﬁ 2(511521___ ,sn) — Sw. Here w is the element
of W corresponding to the finite braid relation under consideration, S, is a vector
fibration over the G-orbit closure X,, C (G/B) x (G/B) associated with w, and
2(51,32,“‘ ,sn) 18 a vector fibration over the Demazure resolution of X, associated
with the reduced decomposition w = 5182 - - s5,.

Finally, we obtain (see theorem ) that if G has no factor of type G, and
char(k) # 2 if R is not simply-laced, there exists an action of B4 on D*Coh(g)
such that

(i) The action of 6, is given by the convolution with kernel A,Og(x);
(ii) The action of T is given by the convolution with kernel Og_ .

We expect this result to hold also when G has a factor of type Gs. We plan
to come back to this question in a future publication, possibly following a less
computational approach.

The proof of this result occupies sections D to E In the remaining three sections
we study the compatibility of this action with the inclusion AN/ — g, and with some
representation-theoretic constructions.

First, in section E we show that one can similarly define an action of Blg on

the category D’Coh(N), such that the following diagram is commutative for any
b€ By, where i : N — g denotes the natural embedding:

DPCoh(N) ——> DCoh(g)

| |
DbCoh(A) ——> DPCoh(g).

In section | we show that the action of B/g on D’Coh(g), or rather the simi-
lar action on D’Coh(g!)) (the supscript (V) denotes the Frobenius twist), extends
the action on DbCoth (g™") considered in [BMRJ]. Hence, as a consequence of

our results in section [l, the action by intertwining functors on DbModax) (Ug) of

[BMRJ factors through an action on DbModig((U 9)*) (see B.1 for notations).
Finally, in section ﬂ we explain the relation between our results for k = C
and some classical constructions. In particular, the action on D’Coh(N) gives
a categorical framework for Ginzburg’s isomorphism between the equivariant K-
theory of the Steinberg variety and the extended affine Hecke algebra H, and for
Lusztig’s construction of irreducible H-modules over C. Also, the action induced
on the Grothendieck group of DbCohBS) (N (M) gives Springer’s representations of

W on the homology of B, .

0.3. To finish this introduction, let us say a few words on the importance of
this braid group action. First, its importance was emphasized in Bezrukavnikov’s
talk at ICM 2006: this action “encodes” the erotic t-structure on D’Coh(g) and
DbCoh(/\N/ ). In positive characteristic, this t-structure comes from the equivalence
with representations of Ug. It also has an interesting interpretation in character-
istic zero (see [BJ for details). In fact, our construction will be a step in the

3These are not really resolutions of singularities, as the variety Z~( 51, ,sn) is singular. But

5o,
we show that they share some properties with resolutions of singularities.
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proof, by Bezrukavnikov and Mirkovié¢, of Lusztig’s conjecture relating irreducible
Ug-modules to elements of the canonical basis in the Borel-Moore homology of a
Springer fiber ([L3], [L4]). Similar actions also appear in Gukov and Witten’s work
on gauge theory and geometric Langlands program (see [[GW]), and in Bridgeland’s
study of stability conditions on triangulated categories (see [@] for details on this
point). Finally, we will use this construction in a forthcoming paper to study a
certain Koszul duality for modular representations of g (see []) For this applica-
tion, which was our main motivation, we have to assume that the extended Dynkin
diagram of each simple factor of G has at least two special points; this excludes
factors of type Eg, F4 and Gy. Hence, with this application in view, the case of
type Go is not needed.

0.4. Acknowledgements. This work is part of the author’s PhD thesis, under
the joint supervision of Roman Bezrukavnikov and Patrick Polo. The research on
this project was started during a visit to MIT, supported by the Ecole Normale
Supérieure de Paris. The author thanks both institutions for their support and
hospitality. He deeply thanks Roman Bezrukavnikov for his patience and generosity
in explaining his beautiful work and for his useful remarks, and Patrick Polo for
his help and encouragements.

0.5. Notations. Let k be an algebraically closed field. Let R be a root system, W
its Weyl group, and G the corresponding connected, semi-simple, simply-connected
algebraic group over k. Let B be a Borel subgroup, T C B a maximal torus, U the
unipotent radical of B, BT the Borel subgroup opposite to B, and U™ its unipotent
radical. Let g, b, t, n, b™, n™ be their respective Lie algebras. Let R™ C R be the
roots in n™, and ® the corresponding set of simple roots. If « is a root, we denote
by U, C G the corresponding one-parameter subgroup. Let B := G/B be the flag
variety of G, and N :=T*B its cotangent bundle. Geometrically, we have

N ={(X,gB) € g* x B| X|y.6 = 0}.
We also introduce the “extended” cotangent bundle
g:={(X,¢9B) €g" x B| X|g.n = 0}.

For each positive root o, we choose isomorphisms of algebraic groups 1, : k — Uy,
and u_q : k 5 U_, such that for all t € T we have

toug(r) t7 =ugla(t)z) and  t-u_o(z) 7 =u_o(a(t) ),

and such that these morphisms extend to a morphism of algebraic groups v, :
SL(2,k) — G such that

%(é f>ua(z), %(i (1)>ua(:c).

na::wa(ol (1))

This is an element of Ng(T') representing the reflection s, € W. We also define
eq = d(ua)o(l), e—o = d(u_q)o(1) and hy := [en, e—a]. Let s1(2, @) be the image
of sl(2,k) under di,, i.e. the subalgebra with basis {eqs,€_q, o} One has the

Then we define
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following well-known formulae for the adjoint action of G on g, that can be checked
in s[(2,k):

ua(x) ‘e g =€ o+ Thy — $26a§
(0.5.1) Nala(T) - e_oq = 2%e_o — The — €4;
Ua () - ho = ho — 2xe,.

1. ACTION OF THE BRAID GROUP BY CONVOLUTION

1.1. A Bernstein-type presentation of the braid group. Let us introduce
some notations concerning Weyl groups and braid groups. We denote by Y :=ZR
the root lattice of R, and by X its weight lattice. Let Wog := W X Y be the affine
Weyl group, and W/; := W x X the extended affine Weyl group. We denote by
ty € W/g the translation corresponding to € X. Let S := {sq, o € ®} be the
usual generators of W. Let also Sag C Wag be the usual set of generators of Wg;
that is, S,g contains S together with additional reflections corresponding to the
highest coroot of each irreducible component of R. Then (W, S) and (Wag, Sag)
are Coxeter systems. We denote by ¢ their length function.

Let A4 = {N € X®@zR | Va € R",0 < (\,a") < 1} be the fundamental
alcove. If Q C W4 is the stabilizer of Ay for the standard action on X ®z R, we
have W/ = Wag x Q. We can use this isomorphism to extend ¢ to Wg, setting
{(w) = 0 for w € Q. Then, for w € W and z € X ([IM, prop. 1.23]):

(1.1.1) lw-ts)= > [, o)+ Y |1+ (z,0").

aeRt, a€RT,
wa€RT waER™

Now, let us recall the definition of the braid group associated with a Coxeter
group H, with length /. By definition, the braid group By is the group with
generators the {T,,, v € H} and relations T, = T, Ty if £y (uv) = £y (u) + £y (v).
In particular we have the braid group By associated with W, and the affine braid
group Bag associated with Wog. The group W/; is not a Coxeter group, but we
have defined a length function ¢ on it. Hence we can use the same recipe to define
the extended affine braid group Blg. There are natural inclusions

By C Bagg C Blg-

Moreover, there is a natural isomorphism Blg = Bag x .

There is a canonical section C' : W/ — Blg (which sends Wag into Bag and W
into By) of the canonical morphism B.gz — W/, defined by C(w) := T, (this is
not a group morphism). From now on we will not use the notation T3, anymore,
except when w = s, € S; moreover, in this case, we will simplify T5_ in T,. We
denote by n4,g the order of sos3 in W, for o, 8 € ®.

If X and p are dominant weights, £(txt,) = £(tx) + €(t,), see ([L1.1). Hence

(1.1.2) C(tat,) = C(tr)C(t,).

Let z € X. We write £ = 1 — 9 with 21 and x2 dominant weights. Then we set
0, = C(ts,)C(ty,)~ 1. This does not depend on the chosen decomposition, due to
formula () In the appendix, joint with Roman Bezrukavnikov, we prove:

Theorem 1.1.3. Bl admits a presentation with generators {T,, a € ®}U{0,, = €
X} and relations:

(1) TyTg---=TgTy -+ (na,p elements on each side);

(2) 020y = 0p1y;
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(3) Toby = 0, Ty if (x,aV) =0, i.e. so(x)=1;
(4) 0, =Tobp—oTy if (x,a¥) =1, d.e. so(x) =2 —a.

This theorem is an analogue of the well known result of J. Bernstein concerning
the corresponding Hecke algebra. Relations (1) are called “finite braid relations”
in the sequel.

1.2. Convolution. By a wvariety we mean a reduced, separated scheme of finite
type over k (in particular, we do not assume it is irreducible). If X is a variety, we
identify the derived category D°Coh(X) with the full subcategory of D*QCoh(X)
whose objects have coherent cohomology sheaves (, 11.2.2.2.1]; see also [@,
VI.2.11] for a sketch of a more elementary proof, following P. Deligne).

If X is a scheme and i : Z < X a closed subscheme, for simplicity we sometimes
write O for i,Oz. We will also sometimes write simply (— ®x —) for (— ®o, —),
and similarly for the derived tensor product.

Let X,Y be varieties. We denote by px : X XY — X and py : X XY — Y the
projections. We define the full subcategory

DY Coh(X xY) C D’Coh(X xY)

prop
as follows: an object of D’Coh(X xY) belongs to D%, Coh(X xY') if its cohomology
sheaves are supported on a closed subscheme Z C X x Y such that the restrictions

to Z of px and py are proper. Any F € ngpCoh(X x Y') gives rise to a functor
FE - { D'Coh(X) — DbCLoh(Y)
M —  R(py)«(F @xxy pxM)
(use [@, 11.2.2, I1.4.3]). The assignment F ~ F¥ . is functorial.
Let now X, Y and Z be varieties. We define the convolution product

x: Db Coh(Y x Z) x D, .Coh(X xY) — Db Coh(X x Z)

prop prop prop
by the formula
GxF = R(px.z)«((pxy) F Sxxvxz (py,z)*9),

where px,z, px.v, Py,z are the natural projections from X x Y x Z. The following
easy result is classical. It can be proved using flat base change ([HI|, 11.5.12]) and
the projection formula ([H1), I1.5.6]).

Lemma 1.2.1. Let F € D%, Coh(X xY), G € D4 Coh(Y x Z). Then

prop prop
F o~ F
Fl?—)ZOFX—ﬂ’ ZF)g<*—>Z'
In particular, if X = Y, the product x endows ngpCoh(X x X) with the

structure of a monoid, with identity A,Ox (where A : X — X x X is the diagonal
embedding). Moreover, F)((;) x is a morphism of monoids from this monoid to the
monoid of triangulated functors from D*Coh(X) to itself.

Assume now that X and Y are non-singular varieties (so that every coherent
sheaf has a finite resolution by locally free sheaves of finite type, see for instance
@, ex. II1.6.9]), and let f : X — Y be a proper morphism. Let I'y C X x Y be
the graph of f (a closed subscheme), and let F’f C Y x X be the image of I'y under
the “swap” morphism X x Y — Y x X. Then there exist natural isomorphisms of
functors

Or % ~o OF’
Rf.=Fy !y, and Lf*=F, /..



GEOMETRIC BRAID GROUP ACTION 7

O *Orf
Hence we have Lf* o Rf, =2 Fy !/, with

L
Or, % Or; = R(px x)+(Or;xx @xxvxx Oxxr,)-

We also have Id & Fﬁigg‘.

We denote by §X C X xY x X the closed subscheme which is the image of X
under = — (x, f(z),z). The following result follows from classical results in the
theory of Fourier-Mukai transforms (see [@, 5.1], [@, 4.2]):

Lemma 1.2.2. The adjunction morphism Lf* o Rf. — Id is induced by the fol-

lowing morphism in Db, Coh(X x X):

R(px,x)«(Or, xx ®xxvxx Oxxr,) = R(px,x)« (O xx)n(xxr)))
=% R(px.x)«(0sx) = AOx
where the second morphism is induced by restriction, and the first one by the natural
morphism OI‘foé)XxYxXOXxF’f = Orxx @xxyxx Oxxr -
We will also need the following lemma:

Lemma 1.2.3. Let F € Db, Coh(X x X). Then Op, * F = R(Id X f).(F).

prop
Proof. We denote by p; ; the natural projections from X x X x Y to X x X or
X xY,and by A : X — X x X the diagonal embedding. Then we have
Or, # F = R(p13)+(pf2F @xxxxy P3aOr,);
p530r, = R(dxIdx f).(Id x A).Oxxx.
Now, by the projection formula, Or, * F is isomorphic to
R(p1,3)+«R(Id x Id x f).(Id x A),(L(Id x A)*L(Id x Id x f)*(p1,2)*F).

The result follows, since (p13) o (Id x Id x f)o (Id x A) = (Id x f) and (p1,2) o (Id x
Id x f)o (Id x A) =Idxxx. O

2

1.3. Action of a group on a category. By an action of a group A on a category
C we mean a weak action, i.e. a group morphism from A to the isomorphism classes
of auto-equivalences of the category C (see [BMRZ], [KT]). We will not consider
the problem of the compatibility of the isomorphisms of functors corresponding to
products of elements of A. If C = D’Coh(X) for a variety X, to define such an
action it is sufficient to construct a morphism of monoids from A to the monoid of
isomorphism classes in Db, Coh(X x X), endowed with the product .

We will be interested in the case A = B!y and X = g or N. Using the pre-
sentation of Blg that we have given in , to construct the action we only have
to define the kernels corresponding to the generators T, and 6., and to show that

they satisfy relations (1) to (4) in D,,,Coh(X x X), up to isomorphism.

1.4. Construction of kernels. In this paragraph we construct the kernel for the
action of T,. First, let us introduce some notations. If X % B is a scheme over
B (resp. if Y % B x Bis a scheme over B x B), and z,y € X, we denote by
Ox(x) (resp. Oy(z,y)) the line bundle p*Op(z) (resp. ¢*(Op(z) K Op(y))). If
F € D*Coh(X) (resp. D*Coh(Y)), we denote by F(z) (resp. F(x,y)) the tensor
product F ®o, Ox(z) (resp. F ®o, Oy(x,y)). We use similar notations for
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schemes over B x B x B. If X % Y is a scheme over Y, and if Z C Y is a locally
closed subscheme, we write X|z for the inverse image a~1(Z). Similarly, if F is a
sheaf on X, we write F|z for the restriction of F to X|z.

Let us fix a € ®. We denote by P, the standard (i.e. containing B) parabolic
subgroup of G of type {a} (see e.g. @, 8.4]), po its Lie algebra, p2 the nilpotent
radical of p,, and P, := G/P,, the corresponding flag variety. We define

0o = {(X,9Pu) € ¢" X Pa | Xjg.pu = 0}.

The projection 7, : B — P, induces a morphism 74 : § — ga-
Let us consider the scheme g x5, g. It is reduced, and it can be described as a
variety induced from B to G. More precisely, define

Ko = {(X,9B) € " x (Pa/B) | Xjnygn = 0}.
We have a natural isomorphism
G xP %, 2§ x5, 0.
To study the variety %, we introduce some coordinates. On g* we use the
coordinates {e,,y € R} U {hg,B € @}, see @ Consider the open covering
P./B = (UyB/B) U (n,U,B/B). The morphism u, induces isomorphisms k =

Uy = UyB/B and k = n,U, = n,UsB/B. We will use the coordinate ¢ on
k. Then Zao|w.B/B) is the set of (X,t) € g* x k such that X vanishes on e, for

y€R™ and on ug(t)-e_o = e_o+the —t2e, (see (0.5.1)). Similarly, Ro|(naU.B/B)
is the set of (X,t) € g* x k such that X vanishes on e, for v € R~ and on
Nala(t) - e—oq = —eq — the + t?e_,. These are affine varieties, with respective
coordinate rings

k[%oz|UaB/B] = k[hﬂaewtaﬁ € (I),’)/ € R+]/(t(ha - tea))
k[‘%a|naUaB/B] = k[hﬁ,e—y,t,ﬂ S q),")/ c R+]/(€a + th,a)
In particular, Z, has two irreducible components: one is
Do = (g/n)" x (B/B) C g* x (P,/B),

and the other one is .%,, the closure of the complement of 2, in Z,. We have the
geometric description

Jo ={(X,9B) € g" X (Pa/B) | Xjnygn =0 and X(h,) =0if gB = B}.

Hence g x5, ¢ has two irreducible components: Az := G x? %,, which is the
diagonal embedding of g, and S, := G x?.7,. Geometrically,

SQZ{(X,gBﬁB)Eg x (B xp, B) arlgn;g&;.ha):()ifg]g:h]g }

This second component is a vector bundle over B xp_ B, of rank dim(g/n) — 1.
Finally, let us define the closed subscheme S, of N x N by setting
8! = Sa N (N x N).
We will see in section E that this intersection is a reduced scheme, hence a variety.

S’ is affine over B xp_ B, and it is the induced variety of the subvariety .7, of
g* X (Py/B) defined by

o ={(X,9B) € g" X (Pa/B) | Xjpg.6 = 0}

The main result of this paper is the following:
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Theorem 1.4.1. Assume G has no factor of type Ga, and char(k) # 2 if R is not

simply-laced. There ezists an action of Blg on D°Coh(g) (resp. DbCoh(/\N/)) for
which

(i) The action of 0, is given by the convolution with kernel A,(Oz(x)) (resp.
AL (Of(x))) for x € X, where A is the diagonal embedding.

(ii) The action of T, is given by the convolution with kernel Os, (resp. Og: )
fora e ®.

Moreover, the action of (T,)~! is the convolution with kernel Os, (—p,p — )
(respectively Ogs: (—p, p — )).

These actions correspond under the functor i, : D*Coh(N) — DPCoh(g), where
it N < § is the closed embedding.

The proof of this result occupies most of the rest of the paper. It is clear that
the kernels A, (Oz(z)) (respectively A, (O (r))) are invertible, and satisfy relation
(2) of theorem . In paragraph [.] we show that the kernels Og for a € ® are
also invertible, with inverse Og_(—p, p — «). Then, in paragraph E and sections [
and ] we show that these kernels satisfy relations (1), (3) and (4) of theorem [L.1.3|
This will prove the assertions concerning the action on D*Coh(g). In section fi| we

explain how one can deduce the assertions concerning the action on D*Coh(N).

1.5. Action of the inverse of the generators. In this paragraph we fix a simple
root o € ®. The following lemma is very easy, but useful. This result also appears

in [L3, 7.19].

Lemma 1.5.1. Let A € X, such that (\,a") = 0. The line bundle Opyx,,_5(\, —\)
s trivial.

Proof. We have Opx,_ 5(\, —A) = Opxp, 5(A,0) @ Opxyp, 5(0,—A). Moreover, if
p: B xp, B— P, denotes the natural morphism, Opx,_5(A,0) = p*Op, () and
OBxp,5(0,=A) = p*Op, (=) The result follows. O

Let us remark in particular that if (X\,a¥) = (u,a") then Opy, (A p) =
OBxp, (1, ). We deduce that Opx,_5(—p, p—a) = Opx,. 5(p—a,—p), and that
Oso(=p;p =) = Os,(p = @, =p), Os;,(=p;p — @) = Og; (p — @, =p).

We will use several times the following result: any finite collection of points of
B is contained in a B-translate of Ut B/B. This follows easily from the fact that
if g; € G (i =1,...,n) then the intersection (., ;BUT) N (BU") is not empty,
as an intersection of dense open sets.

Proposition 1.5.2. There exist isomorphisms in D5, Coh(g x g):

Os, * (0s.(=p,p— a)) 2 A0 = (Os,(~—p,p — a)) * Os,,.
Proof. We have (p1,2)*Os, = Og,_ x5 and (p2,3)*Os, = Ogxg, - First, let us show
that the tensor product
L
(1.5.3) OSQXE ®z3Ogx 5.,

is concentrated is degree 0. As each of these varieties over B2 is the induced variety
(from B to Q) of its restriction to (B/B) x B2, we only have to consider the situation
over (B/B) x B2. By B-equivariance, we can even restrict to (B/B) x (Ut B/B)? =
(UT)? (see the remark above).
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Let us choose some coordinates on §3|(B/B)X(U+B/B)2. We have isomorphisms
dlu+s/B = (b7)* x (U*B/B) (induced by restriction), and gl = (b7)*. Hence
on the fibers, isomorphic to ((67)*)3, we choose coordinates egj), hg) (y € RT,
B € ®, j €{1,2,3}) which are copies of the elements of the basis of g defined in
@. The multiplication induces an isomorphism U(Z ) X Uy, = U™, where U(J; ) is the
product of the U, for v € R* — {a} (this is the unipotent radical of the parabolic
subgroup opposite to P,). Hence, u, and multiplication induce an isomorphism
U(J;) x k = U*. Using this, we choose coordinates (u(9),t0)) on U™, considered as
the base of the j-th copy of g (j = 2, 3).

Then (S, xa)|(B/B)X(U+B/B)2 is defined in (§)3|(B/B)><(U+B/B)2 by the equations
u® =1, hg) = hg) (B e @), e(yl) = e(f) (y € R") and h — 1@ = (see [L.4).
It is clear that these equations form a regular sequence in k[g%| 5, p)x v+ B/B)2]-

Similarly, (g x Sa)l(s/B)x(U+B/B)? is defined by the equations u® = u®), hg) =

hg’) (B € D), eSYQ) = 6%3) (y € RT) and u® . (hﬁf’) - (t? 4 t(B))eS’)) = 0. Now
the union of these two sequences is again a regular sequence, and defines a reduced
scheme. Hence the derived tensor product ([1.5.3) is concentrated in degree 0, and
equals the sheaf of functions on the subvariety V,, := (So X §) N (g x Sa) of g>. Now
we compute

(1'5'4) R(pl,?))*(OVa (P -, —=p, 0)) and R(p1,3)*(OVa (Oa =P P a))

The following result will be proved later:

Lemma 1.5.5. The variety V,, has two irreducible components: V.1, which is the
restriction of Vy, to the partial diagonal Ags C B3, and V2, which has the following
geometric description:

VO‘2 - {(X’ ng’QQB’g3B) €g" x (B Xp, BXp, B) | X|91'(n+5[(2,a)) = 0}'
Moreover, there exist exact sequences of sheaves

OVC} - OVa (p - &, =P, O) - OV(E (p -, =p, 0)7

OV& = Ova (0’ —PsP— Oé) - OV(E (05 —PsP— Oé).

It follows that to compute the direct images ([.5.4) we only have to compute
R(p1,3)«(Ov1), R(p1,3)«(Ovz(p — a,—p,0)) and R(p1,3)«(Oy2(0,—p,p — ). But
R(p1,3)+(Ovz(p — a,=p,0)) = R(p1,3)+(Ovz2(0,—p,p — a)) = 0 because py 3 is a
locally trivial fibration of fiber P{ on V2, and the sheaf on this fiber is Opi(—1).
To conclude, we only have to show that R(p1,3).(Oy1) = A.O5.

By local triviality we only have to consider the morphism

01,3 : ValB/Byx(Pa/B)x(B/B) = (8/0)".

Then define M := (sl(2, ) /(ke_4))*, and choose a vector subspace M’ C g/n such
that g/n = M*@M'. Let E = {(D,z) € P(M)xM | x € D} be the tautological line
bundle on P(M). Then the morphism ¢ 3 identifies with the product of Id s
and the canonical projection f : E — M. Hence we only have to show that
Rf,Op = O)p. As M is affine we only have to consider the global sections; but the
direct image of Op under the canonical projection to P(M) is €B,,,~¢ Or(ar)(m),
whose global sections are S(M*). B

This completes the proof of proposition , assuming lemma . (I
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Proof of lemma [1.5.. Consider the subvariety %, of g* x (Pa/B) x (Pa/B):

Yo = {(X,9B,hB) € g" x (Pa/B) x (Pa/B) | Xjntgnthn =0,
X(ho)=0if gB= B and X(g-hy) =0 if gB = hB}.

We have an isomorphism V, = G xZ ¥#,. On (P,/B)? we use the open covering
(P,/B)? = (UsB/B)?*U(nqUaB/B)?U[(UyB/B) % (naUaB/B)|U[(noUsB/B) x
(UoB/B)]. Each of these open sets is isomorphic to k2, via u,. We use the
coordinates t(!) and t?) on (P,/B)?, and {e,,y € R, hg, 3 € ®} on g*. The change
of coordinates on the intersection (UaB/B) N (noUaB/B) is given by t — —+ (this
can be checked in SL(2,k)).

The restriction 74|, /)2 is defined in g* x k? by the equations e, = 0 (y €
R7), hg —tMe, = 0 and hy — (t1) +13))e, = 0 (see the preceding proof). This
last equation can be replaced by e, = 0. Similarly, Yal(nav.B/B)? is defined
in g* x k? by the equations e, = 0 (y € R7), eq +tMh, = 0 and h, = 0. Over
(UoaB/B) x (naUsB/B), the equations are e, = 0 (y € R7), hq —tWMe, = 0
and e, = 0. Finally, %4|m.v.B/B)xW.B/B) is defined by e, = 0 (v € R7),
ea +tWhe =0 and tPh, = 0. These equations show that ¥, has two irreducible
components: !, which is the restriction of ¥, to (P,/B) x (B/B) C (P./B)?,

and 7,2, which has the following geometric description:
V2 ={(X,9B,hB) € g* x (Pa/B)* | Xjntsi(2.0) = 0}.

The varieties ¥, ¥, and 7,2 are affine over (U, B/B)?, with respective rings of
functions kle,, hg, t D]/ (ha — tWeq, tPey), kley, b, t D]/ (he — tWeq, t?)) and
ke, hg, tD]/(he — tWe,, e,). Hence the multiplication by e, and the natural
quotient induce an exact sequence of sheaves

Oyilwas/B)2 = Ov\w.B/B)2 = Ov2l(w,B/B)2-
Multiplication by h, induces a similar sequence on (n,UaB/B) x (UsB/B).

The element e, € k[¥4|w,.B/B)>] is sent to 0 when restricted to the open
sets (naUaB/B)? or (UyB/B) x (naUaB/B), and to —t(Mh,, when restricted to
(noUoB/B)x (Uy,B/B). Hence the preceding exact sequences glue to give an exact
sequence of (non B-equivariant) sheaves

Oy1 ®o Op./B)2(1,0) = Oy, — Oy>

(Pa/B)2
where we have used the isomorphism P, /B = P.. Now consider the B-equivariant
structures. The second morphism in this sequence is obviously equivariant. We have
O(p,/By>(1,0) = O(p, /By>(p,0), and the first arrow of the exact sequence comes by
definition from a B-equivariant morphism kp(a — p) ®@x Oy1(p,0) < Oy, . Hence
we obtain the exact sequence of B-equivariant sheaves
kp(a —p) @ Oy (p,0) = Oy, - Oyz.
Inducing from B to G, this gives the first exact sequence of the lemma. To prove
the second one, we observe that we also have an exact sequence
OV& (CY —p,0,p— a) — OVa (Oa PP — Oé) - OVg(Oa PP Oé).
As V! is supported on Ag® C B3, the first sheaf equals Oyi. O

Remark 1.5.6. In these two results, one can replace p by any A € X such that
(X\,a¥) = 1. This follows either from the proofs, or from lemma [L.5.1].
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1.6. First relations. In this paragraph we show that the kernels of theorem
for the action on D*Coh(g) satisfy relations (3) and (4) of the presentation of B4
given by theorem .

Let us consider relation (3). Let o € ® and z € X be such that (z,a¥) = 0. We
have to show that Og, commutes with A,Oz(z). But

OSQ * (A*Oﬁ(x)) = OSa (:C, O)a (A*Oﬁ(z)) * OSQ = OSQ (va)v

and Opx,_5(2,0) = Opxp, 5(0,2) by lemma [L5.]. Taking the inverse image to
Sa, we obtain the result.

Now, consider relation (4). Let o € ® and = € X be such that (z,a¥) = 1. We
have to prove that A.Oz(z) = Og, * (A«Oz(z — a)) * Os,,. Due to proposition
, this is equivalent to proving

(A.O05(2)) * (05, (=p; p — ) = (Os,,) * (AO(z — a)).

We have Oy, 5(—p, 2+ p — a) = Opxp, s(r — a,0) by lemma again. The
result follows, since

(A.05(2)) * (Os, (—p,p — @) 2 Os,, (—p,z+ p — ),
(0s,) * (AOg(x — a)) = Os,, (x — ,0).

1.7. More notations. In this paragraph we introduce notations concerning Schu-
bert varieties and Demazure resolutions (following [BK]).

If w € W, we denote by X,, the corresponding Schubert variety. This is the
closure of BwB/B in B. Similarly, we denote by X, the closure of the G-orbit
of (B/B,wB/B) in B x B, called G-Schubert variety. Its points are the couples
of Borel subgroups of G in relative position at most w in the Bruhat order. It
identifies with G x® X, under the isomorphism G x? B = B x B.

For w = s1---s, a reduced expression in W, let Z, .. ;. ) be the associated
Demazure resolution of the Schubert variety X,, (as defined in [BH]]). Let also
Z(sy, - ,sn) De the induction from B to G of this resolution, which is a resolution
of Xy, and let @, ... 5.) 25y, .. .s,) —> Xw be the associated morphism. If s;
is the reflection associated with the simple root a; € ® for any j = 1,...,n, and
P; = G/P; for P; the standard parabolic subgroup of G of type {«;}, then we
have an isomorphism Z, ... s,) = Bxp, Bxp, - Xp, B, and ®(,, . ) identifies
with the restriction of the projection py .1 : B"™t — B2, Let Z~(Sh ... sn) De the
intersection

(Sal X En_l) n (ﬁ X SDQ X En_Q) n---nN (En_l X San)a
a subscheme of gnt!.

In the next two sections we prove the finite braid relations, first in the case when
the simple roots a and [ generate a root system of type Ao, and then in the case
when they generate a system of type Bs. The much easier case of a root system of
type A1 X Aj is left to the reader.

2. FINITE BRAID RELATIONS FOR TYPE A,

Let « and § be simple roots generating a root system of type A, i.e. such that
(a,8Y) = (B,0Y) = —1. Tt is well-known (see e.g. [Bf, 8.2.3]) that there exists
¢ € k* such that

Ve,y ek,  (ua(x),us(y)) = uats(cay).
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The following formulae for the adjoint action of G on g follow easily:

Ua(7) - €5 = €5 + cTeatp,  Uatp(®) hp=hg — veatp,
ua () - hg = hg + zeq, Uatp(T) - e_g =e_g + (z/c)eq.
We also have [eq, €3] = ceqtp. The corresponding formulae with « and f inter-
changed are obtained by replacing ¢ by —c. Note finally that hais = hs, (5) =
Sa(hg) = hg + hﬁ.
In this section we prove that

L L
Os, * Os, * Os, = R(p1,4)+(Os,, x5z ®51O05x5,x5 ¥51052x5.,)

is invariant under the exchange of o and 3 (where p; 4 : g* — g2 is the natural
projection). In fact we calculate this complex of sheaves explicitly.

2.1. Derived tensor product.

Lemma 2.1.1. There exist isomorphisms

L L
Osaxg ©51Ogxsyxg O3 Oxsa =0z, .5

L L
~. ~ - ~ ~ . ~ ~
Ossxg2 @54 Ogxsaxg @50 Og2xsy = Oz(sﬁ,sa,sﬂ)'
Moreover, the schemes Zs, s5.5.) aNd 2555, 55) are integral, i.e. reduced and
trreducible.

Proof. We write the proof in the first case only, the second one being similar (replace
¢ by —c¢). As in the proof of proposition , we only have to study the situation
over (B/B) x (UTB/B)3. Let us choose an order on R such that the last three
roots are o + 3, B, & (in this order). Let P,, Pg, P, g be the standard parabolic
subgroups of G associated to {a}, {8} and {«a, }. We denote by U(‘;), U(‘E), U(J;,,@)
the product of the U, for v € R —{a}, v € Rt —{8},v € R —{a, 8,a+} (these
are the unipotent radicals of the parabolic subgroups opposite to P, P3, Pa,g). We
have an isomorphism Ut = [] JER+ U,. Via this isomorphism, the restriction to
U*B/B of the projections G/B — G /P, and G/B — G/P, s become the natural
projections U(Z) XUy — U(J;) and U(j;ﬁ) XUq4pxUgxUy — U(Jgéﬂ). The restriction
of the projection G/B — G/Ps becomes

{ Ul gy X Uasp xUg xUa = Ul 2 UL gy X Untp x Ua
(s vy (), s () 0a(2)) > (ot (o €2 10 (2))
As in [L.5.9, as coordinates on §|(p/p)yxw+n5/p)s We use uld) € U(J;’ﬁ), @), 0,

2U) € k on the base, and h((;j) (6 € @) and e(yj) (v € RT) on the fiber of the j-th
copy of g (we do not use the coordinates u("), (), (1) and 2() because in the first
copy of g we only consider the fiber over B/B).

In these coordinates, (Sa X 52)|(B/B)><(U+B/B)3 - (64)|(B/B)><(U+B/B)3 is defined
by the equations

() uP =120 =0, y@ =0, i) =1, ) =@ (5 € &,y € RY)

(2.1.2) and A — 2Pl =0
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Similarly, (g x Sp x E)l(B/B)x(U*B/B)S C (54)|(B/B)><(U+B/B)3 is defined by the
equations

()
and u® - uqys(z® — cy@z2) ug(z2) - (hff) — (y® + y(3)>e(ﬁ2>) =0, ie.

(2.1.3) u® . (hg) + 2(2)62?) _ (y(2) + y(s))eg) _ (x(2) + Cy(S)Z(Q))eSJ)Fﬂ) —0.

{ u® =@, 2@ _ @52 = 4(3) _ 3,0,

2(2) = 2(3), h((f) = hgs), eSYQ) = 6%3)

And finally (g2 x Sa)|(B/B)><(U+B/B)3 - (54)|(B/B)><(U+B/B)3 is defined by
(+) u® = u(4)7 23 = x(4), y(3) = y(4)7 h((;3) = h((;l), e,(yg) = 6&4)

and u® - uyy5(2®)) - ug(y®) - (hE?’ — (2@ 4 2(4))69)) =0, ie.
(2.1.4) u® . (h&g) —(z® 4 21)ed® 4 y(g)e(;)
+ (—2® + P (P 4 2(4)))622[3) =0.

In each case, the given equations form a regular sequence in k[g?| (B/B)x (U+B/B)3].
Let us prove that the union of these equations again forms a regular sequence. First,
equations (x), (*') and (x”) allow us to identify all the coordinates in the fibers (we
will thus remove the superscript on them), and to eliminate the coordinates u(/),
2@, y@ 23 2@ 2@ y®) Then equations (R.1.9), (R.1.3) allow to eliminate
he and hg, while (R.1.4) becomes —2We, +yWeg + cy®2We, 5 = 0, a non-zero
equation in the remaining variables. Hence the equations indeed form a regular
sequence, and thus the derived tensor product is concentrated in degree 0.

Moreover, the polynomial —z®e, + y(4)eg + cy(4)z(4)ea+g is irreducible (it is
of degree 1 in e,, and not divisible by z(%). Hence it defines an integral scheme.
Thus the restriction of (S, x %) N (g x S5 x §) N (g% x Sa) to (B/B) x (UTB/B)
is integral. It follows that the restriction of this scheme to any B-translate of
(B/B) x (UTB/B) is also integral. Hence (S, % g%) N (g x Sg x §) N (g% x S,) is
the union of some integral open sets, each one intersecting each other one. Hence
it is integral. (|
2.2. Determination of the image. Now we have to show that

R(p1,4)+(O(5., x3)n@x Ssx )N (@ xSa)) = R(plv‘*)*(ois&,%,s&))
is invariant under the exchange of o and S. First, as the intersection we consider
is reduced, we can work with varieties instead of schemes. In this paragraph we
compute the image of Z~(sms 5,5,) under p1 4, and observe that it is invariant under

the exchange of o and  (though the variety Z(5a,55,54) 18 of course not). Then we
show (in R.4) that R(p1,4)*((9§( )) is the sheaf of functions on this image.
sarsgrsa

So, let us consider p1,4(Z(sa,55,sa))- It is a closed subvariety of g2. Indeed, we
have the following diagram, where all the injections are closed immersions:
Z~(smsﬂ7sa)(_i> g x 34(_3> (g*)4 % B4 <"_)a4
lw l P1,4l/

g* % BQ( T (g*)Q X B2 . 3 )“9’2.
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One has ji(Z(s, s55.)) S 0(8"), and €p14(Z(s, 5p,50)) = TTH(Z (50 55,50))- The
morphism 7 being proper, hence closed, the result follows.

Now we compute explicitly p114(Z~(smsB s,)) as a subset of g* x B2, using the
geometric description of S, and Sz (see @) By G-equivariance, we only have
to calculate this image over the points (B/B,wB/B) for w in the subgroup of
W generated by s, and sg. Recall that the Demazure resolution @, s, s,) is
an isomorphism over the complement of X, . Hence if w = s4'sgs2? with a; €
{0,1} then for X € g* the point (X, B/B,wB/B) is in the image if and only if
(X,B/B,s%B/B,s%s3B/B,s%s3s®B/B) is in z;,’v(smsﬁﬁsa). Using the geometric
description of S, one obtains the condition on X in cases (i) to (iv):

(i) Fiber over (B/B, sa5550B/B): X|ngke,akesakeasrs = 0-

(ii) Fiber over (B/B,sss5aB/B): X|ngkh.ekesdkenr s = 0-

(iii) Fiber over (B/B,sa55B/B): X|ngkhsokeodkeass = 0 (Observe that susp -
ha = hgys5a) = hp)-

(iv) Fiber over (B/B,ssB/B): X|ngkh.ekhsekes; = 0-

(v) Fiber over (B/B,s,B/B): here the fiber of ®(,_ , . is isomorphic to Py,
with points the (B/B,gB/B,gB/B, soB/B) for g € P,. Firstly, if g € s,B, the
condition on X for the point (X,B/B,gB/B,gB/B,s,B/B) to be in the inter-
section is X\néBkeaéBk(sa‘ha)EBk(Sa‘hg) = 0, ie. X\n@keaeakha@]khg = 0. Secondly, if
g ¢ saB, we can assume g = uq(€) for some € € k. Then the corresponding
condition on X is to vanish on n and on

ha —€eq, uq(€)-hg=hg+ee, and e,.

Hence the condition is the same in the two cases. And finally the condition on X
for (X, B/B,sgB/B) to be in P1,4(Z(sa,55,sa)) is

X\ n@kho@khs@ke, = 0-

(vi) Fiber over (B/B, B/B): the fiber of ®(,_ ., ., over (B/B, B/B) is again
Pl, with points the (B/B,gB/B,gB/B,B/B) for g € P,. Firstly, if g € so,B/B,
the corresponding condition on X is X|ngke, akh,,; = 0. Secondly, if g ¢ s4 B, then
we can assume g = uq(€) for some € € k. The condition on X is then to vanish
on n, on h, — €eq and on uy(€) - hg = hg + €e,. This is equivalent to vanishing
on n, hg — eeq and hq + hg = hoyp. Finally, the condition on X for the point
(X,B/B, B/B) to be in the image of Z~(sa,3g,sa) under p 4 is that X|ngin,,, =0,
and that either X (ey) = 0, or X (h, — €e,) = 0 for some € € k. But if X(e,) # 0
then X (hq — €e) = 0 for € = X (hqo)/X(eq). So the condition on X is only

X‘ﬂ@kha+g == 0

These considerations show that p174(Z~(Smsﬂ,sa)) is a closed subvariety of g* x
B x B, invariant under the exchange of «, 8 (the computations with a and
interchanged are the same, replacing ¢ by —c). We denote it by Sy, ;-

2.3. Normality of Sy, 3.
Proposition 2.3.1. The variety S, gy is integral, normal and Cohen-Macaulay.

Proof.ﬁ First, Sfq ) is integral because it is the image of g(smsﬁ_rsa), which is
integral by lemma .

4This proof is due to Patrick Polo.
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For the other properties, as usual, we only have to consider the situation over
(B/B) x (Ut B/B). We keep the notations of the proof of lemma P.1.1], and define
~ := a + 3. Recall the isomorphism Ut = U(J;ﬁ) x Uy x Ug x Uy (see the proof
of lemma ) As Syq,py is supported over B xg/p, , B, in fact we only have to
consider the situation over (B/B) x (UyUgUyB/B) = U, x Ug x U,.

Consider a point

U = Uy (Ty)us(Tp)ta(Ta) € UyUpUa,
with z,zgzs # 0 and x, — cxqzg # 0. It can also by written
ua(@)up (y)ua(z)

with z, = czy, 23 = y, 2o = x + z (here zyz # 0). If X € (g/n)*, and
(X,B/B,uB/B)isin Si, gy, then X must vanish on uq(z)-e_o = e_o+rhe—23eq,,
hence on

(2.3.2) ha — €0 .
It must also vanish on uq(x)ug(y) - e—p, hence on
(2.3.3) hg + xeq — yeg — crye,.
Finally, it must vanish on us (z)ug(y)ua(2) - e—q, hence on
(x4 2)ha — (x + 2)%eq +yzes + cyz(z + 2)ear s

Substracting (z + z) times equation (R.3.9), and dividing by z, we obtain that X
must vanish on

(2.3.4) (x + 2)ea — yeg — cy(z + 2)e,.
The sum of equations (£.3.9) and (.3.3) becomes

(2.3.5) ha +hg — xgeg — T€,.

Multiplying (R.3.9) by czg = cy gives

(2.3.6) cxgha — Tyeq.

Equation () can be rewritten

(2.3.7) Ta€o — TRER — CTATRE.

Finally, adding cz, times (R-3.9) and cz times (P-3.4) gives

(2.3.8) Toha — xy€8 — CTATEy.

Let us denote by M the closed subscheme of A4™(8/M)+3 defined by equations ()
to () Equation () allows to eliminate hg; that is, setting e = x4, f = 23,
g =Ty, h =chqa, i = e, j = eg and k = ce,, we obtain that the coordinate ring of
M is a polynomial ring over A :=Kle, f, g, h, 1, j,k]/(F,G, H), where

G = ei—fj—efk,
H = eh—gj—egk.

Lemma 2.3.9. A is integral, of dimension 5, Cohen-Macaulay and normal. Its
singular locus is defined bye =f=g=h=1=75=0.
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Proof. Let us consider j' := j + ek. A is isomorphic to A’ ® k[k], where
AI = k[@, faga halaj/]/(fh - gl) €l — fjla eh — gj/)

This ring is the algebra of functions on the variety of matrices

(o5 7)
g f e

of rank at most 1, which is the cone of the Segre embedding of P! x P2. This variety
is well known to be integral, Cohen-Macaulay and normal, the vertex of the cone
(defined by e = f = g = h =i = j/ = 0) being its unique singularity (see e.g. [@,
2.8, 2.11]). The lemma follows. O

In particular, M is integral. It contains S{, s1|(B/Byx(w+B/B) (the equations
are satisfied on a dense open subset of St s}|(B/B)x(W+B/B), hence everywhere),

which has the same dimension. Hence the two varieties coincide.
We deduce that S¢, gy is normal and Cohen-Macaulay. This finishes the proof

of proposition . (Il

2.4. End of the proof. We denote by W(s, s,.s.) : Z~(sa,3ﬂ,sa) — S{a,s) the mor-
phism constructed above (it is the restriction of p174), and similarly with « and
interchanged..

Proposition 2.4.1. We have
R(\P(SQ,SB,SQ))*(O

and similarly with o and B interchanged.

g(sa,sfg,sa)) = Os{a,ﬂ}’

Proof. First we prove that Ri(\I](Smsﬂvsa))*(Oisa,sﬂ,sa)) = 0 for ¢ > 1. The ar-
gument for this is adapted from [@, 3.2.1]. Since the fibers of VUis, s5,50) ar€
of dimension at most 1, by [@, II1.11.2] we have Ri(\Il(smsﬂ,sa))* =0 for i > 2.
Hence we only have to prove the equality Rl(\p(smsﬂasa))*(O§<sa,sﬂ,s(,)) = 0. The
following diagram commutes:

Z(sa,sla,sa)(% g* X Z(SQ,Sg,sa)

‘1’<3a,3g,3a>l lldx‘l’wa,sﬁ‘,s&)
J
Sta,py > 0" X Xs 5554

where i and j are closed embeddings. Hence we only have to show that R!(Id x

‘I)(sa,sﬁ,sa))*(i*(')g( )) = 0. We have a surjection
sasagsta

Og*xz(sa,sﬂ,sa) - Z*Oé(sa,slg,sa).

As R%*(1d x D@5, ,55,50))x = 0 (for the same reason as above), we obtain a surjection

Rl(Id X (P(SQ,SB,SQ))*(OQ*XZ(SQ,SB,SQ)) - Rl(ld x (I)(sa,SB,SQ))*(i*OE(SQ,Sﬂ,SQ))'
By the classical results on Demazure resolutions, the object on the left hand side
is zero. Hence R!(Id x ‘I)(sa,s;a,sa))*(i*OZ@a,sB,SQ)) =0, as claimed.

Since W(,, s5,5,) 15 proper and birational (because ®(,, q,.s,) 13), and Sis 5}
is normal (by proposition .2.3."), one has (¥, s 5.))+(O ) = Os(,.4 by

Z(Sawsﬂwsa)
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Zariski’s Main Theorem. This proves the result. The assertion with a and
interchanged is obtained similarly. O

With this proposition the proof of the finite braid relation for the action on
DPCoh(g) (see theorem [L.4.1]) when a and 3 generate a root system of type Ay is
complete.

3. FINITE BRAID RELATIONS FOR TYPE Bs

Now we assume that o and 8 generate a root system of type Bo. To fix notations,
we assume that « is short and 8 is long. Then (a, 8V) = —1, (8,a") = —2. There
exist structure constants ¢, d € k* such that

Yo,y €k, (ua(®),us(y)) = tatp(cry)uzats(de’y)
(again, see [Bg, 8.2.3]). Then, also,
Ve,y ek, (up(),ua(y)) = vars(—cry)usats(—dry?).

Easy calculations yield the following formulae for the adjoint action of G on g:

ua () - e = eg + creatp + dresn s, Ua(x) - hg = hg + xeq,

Ua(Z) - €atp = €atp + 2%1‘62a+5, ug(z) - ha = ha + 2zeg,

ug(z) - eq = €q — CTea43, Ua+8(T) - ho = ha,

UaJrﬁ(x) "€a = €a — 2g62a+ﬁv Ua+(7) - hg = hg — Teats,
Ua+(T) - 6o =€_q — %:Eeg, U2a+8() - ho = ho — 2z€204 3,

Uatp(x)-e_g=e_g+ %xea - c”é r2€201 4,
U2a+8(T) - —q =€_q — %xemrg.
We also have hotg = ha + 2hg, haa+g = ha + hg.
In this section we prove the finite braid relation for the simple roots « and 5.

The proof is very similar to the one in the previous section. We assume throughout
the section that char(k) # 2.

3.1. Derived tensor product.

Lemma 3.1.1. There exist isomorphisms

L L L
Osaxge @55 Oxsyxgz O3 Oexsaxy @9 Oxs, O3, 0

L L L
33 75Uy it 75 Uy 7 Qg5 U5e =0z .
OSBXQ& ®BGOBXS“X92 ®g OQZXSBXB ®g Ogdea Oz(sﬂ,m,sﬂ,m)

Moreover, the varieties 2, and Z(s, s, .s5,5.) are integral.

S$8,5a,58)
Proof. As for lemma , we prove the result in the first case only, by computation
of equations (the second case can be treated similarly). Let us choose an ordering
of R such that the last four roots are 2a + 3, o + 3, 3, « (in this order). Let
U(‘;), U(‘E), U(J;ﬂ) be the product of the U, for v € Rt — {a}, v € RT — {5},
v € Rt —{a,8,a + B,2a + B}. Under the isomorphism UT = [T, cr+ Uy, the
restriction to U™ of the projections 7o : B — P, m3 : B — Ps become the
morphisms U(J; ) X Uy — U(J; ) and

U5y X Uzarp X Uars X Ug x Ua = U5 X Uza4p X Uasp X Ua
(uy U204 B (,CE), Ua+B (y)7 ug (Z)7 Ua (t)) — (U, U204 8 (l’ - dt2z)7 ua+/3(y - CZt)7 Ua (t))
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As coordinates we will use the u(j), x(j), y(j), 29 and t19) on the base (j=2,...,5),
and ) (y € R*), b (5 € ®) in the fibers (j = 1,...,5).

In these coordinates, (So X 8°)|(5/B)x(U+B/B)* C (8°)(B/B)x(U+B/B)* is defined
by the equations

(%) u® = 1, z? = 0, y(2) =0, 2 = 0, e(vl) = e(f), hgl) = h((;Q)
for § € ®, vy € RT, and
(3.1.2) R — @D = 0.

Similarly, (g x Sg x 52)|(B/B)><(U+B/B)4 C (55)|(B/B)><(U+B/B)4 is defined by the
equations
{ u® =y, 2@ — d(t(Q))QZ(Q) =3 _ d(t(3))2z(3)’ t(2) = (3,

Y@ — 2@ = yB) _ ;@) D = B @ )

(+)

and u(2) . u’20¢+ﬂ(x(2) — d(t(Q))2Z(2)) . ua+ﬁ(y(2) — 02(2)t(2)) . ua(t(2)) . (h(ﬂQ) — (2(2) —+
2(3))6,%2)) =0, i.e.

(3.1.3) u® - (hG +1@e® — (2 4+ )l + (—y® — ct@2)el)

F (228D L gD - 06 ) =0,
&

(03

Next, (E‘Q X Sa X §)|(B/B)X(U+B/B)4 C (55)|(B/B)x(U+B/B)4 is defined by the
equations
() { u® = u® 23 = 21 43 = 4@

23) = (@), 6(73) _ 6(74), h((Ss) _ h((s4)’
and u® - uzai5(2®) U0t s(y®) - up(z3) - (hg’) — (t® + t(4))e((13)) =0, i.e.

(3.1.4) u® - (hQ) — (#® +1@W)e® 4 2:0ef) 4 2@ (B 4 1D)el?)

d
+ (=22 42550 1 10)es15)) =0,

Finally, (Eg X SB)|(B/B)><(U+B/B)4 C (55)|(B/B)><(U+B/B)4 is defined by the equa-
tions
() { u® =) @) — d(t(4))22(4) = (5 _ d(t(5))2z(5)’ t®) = )

y(4) — 02(4)t(4) = y(5) — CZ(S)t(5)7 e,(y4) = 635)7 h((;l) = h((55)’

2(5))6,534)) =0, i.e.

(3.1.5) u® - (hG) +tWeld — (2 4 2)el) 4 (—y® — t@®)ell) |

(225D a2 e, ) =0,
C

(o3

As in the proof of lemma , we have to show that the union of these equations
forms a regular sequence. The equations (x) to (*”’) allow us to eliminate the
coordinates ul?), 2@ y@ 2@ G 4B 4B @) @) @) L6) 4 (B) 5)
and to identify the coordinates in the fibers, which we will denote by e, and hs.
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Then, equations (B.1.9) and (B.1.3) allow to eliminate h, and hg. With these
simplifications, equations ) and (B.1.5) become

(3.1.6) —tWey +2:%eg 4+ 2D 4 tWey 5+ 2d2t Pt Wey, 5 =0,

(3.1.7) (W —tP)e, — 20es — ctW2O)e, 4
+ d(z(3)(t(2) _ t(4))2 _ (t(4)>2z(5))62a+ﬂ =0.

Let us denote by P the polynomial of (), and by @ the polynomial of ()
Then P and @ are irreducible and distinct. Hence they form a regular sequence

in k[z(®), 205 ¢(2) ¢4 ey,7 € RT,hs,0 € ® — {a, }]. This proves that the tensor
product we are considering is indeed concentrated in degree 0, and that the ring
k[z®), 200 1@ ™) e hs]/(P,Q) is Cohen-Macaulay (see [BH, 2.1.3]). We prove
in the next lemma that this ring is an integral domain. We deduce, as in the case
of Ag, that Z(s, s, s..s5) is an integral scheme. O

Lemma 3.1.8. k[z(®), 20 ¢ &) e hs]/(P,Q) is an integral domain.

Proof. First, let us prove that the closed subvariety N of k4m(8/M+2 defined by
P and @ is irreducible. The restriction of this subvariety to the open set defined
by t® #£ 0 is irreducible (indeed, on this open set P gives e, as a polynomial in
the other coordinates and (t(4))_1, and replacing in @) we still obtain an irreducible
polynomial). Similarly for the intersections with the open set defined by 2B3) £ 0,
and with the open set defined by z(®) # 0. Now N is isomorphic to the closure of
its intersection with the open set {t*) # 0} U {2 # 0} U {2(® # 0} (indeed, if
t® = 203 =0, P is zero, and Q = —tPe, — z(5)eﬂ is an irreducible polynomial,
whose variety of zeros intersect the open set {z(®) # 0}). This intersection is
irreducible (it is the union of three irreducible open sets, each one intersecting each
other one). Hence N is irreducible.

Now we have to show that the ring k[z(3), 2 +(2) () e hs]/(P, Q) is reduced,
i.e. that it satisfies properties (Rg) and (S;) (see [Md, p. 125]). As we have seen
that it is Cohen-Macaulay, and that the corresponding scheme is irreducible, we
only have to prove that it is regular at some point. But it is clearly regular at the
point defined by ¢ = t® =1, 20 =0, 20) =1, e, = e = €ats = €2045 =0
(consider the partial differentials of P and @ with respect to e, and eg). O

3.2. Determination of the image. As in @, we have to identify the images of
g(sa,sg,sa,sg) and Z~(Sﬂ,smsﬂ,sa) under p; 5 : g° — g2 (these are closed subvarieties of
§?), and observe that they coincide. We only indicate the computations for the first
case, the second one being similar. By G-equivariance we only have to compute
the fibers of this image over the points (B/B,wB/B) for w in the subgroup of W
generated by s, and sg. In this case the Demazure resolution @, s s,,55) 15 an
isomorphism over the complement of Xs,s,. This gives the condition on X € g*
for the point (X, B/B,wB/B) to be in p15(Z(s. s,.5.,54)) i cases (i) to (iv).

(i) Fiber over (B/B, 50555458 B/B): X|ngke,okes@kens sPkeonss = 0-

(ii) Fiber over (B/B, 545508/ B): X|nakea@kea  s@kesass@khy = 0-

(iii) Fiber over (B/B, ss058B/B): X|ngkes®keas sBkesassdkha = 0-

(iv) Fiber over (B/B,sgsaB/B): X|ngkes@kea s s®khadkhs = 0-

(v) Fiber over (B/B,sas5B/B): the fiber of ®(,_ s, s. ;) is isomorphic to two

copies of P! with one common point. Its elements are, on the one hand, the
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(B/B,saB/B,sagB/B,sa9B/B,sassgB/B) for ¢ € Pg and, on the other hand,
the (B/B,gB/B,gB/B,soB/B,s.s3B/B) for g € P,. One verifies that the con-
ditions on X corresponding to each of these points are the same, namely

X n@keo Dkesa s Gkho®khy = 0-

(vi) Fiber over (B/B, s,B/B): the fiber of the Demazure resolution is formed
by the points (B/B,gB/B,gB/B,saB/B,s,B/B) for ¢ € P, and the points
(B/B,sqB/B,sa9B/B,sagB/B,saB/B) for g € Ps. Let us compute the con-
ditions on X corresponding to the each of these points. We begin with the points
(B/B,gB/B,gB/B,saB/B,soB/B) for g € P,. If g € soB, the condition is to
vanish on n, eq, so -hg = ha + hg and sq - ha = —ha, i.e. Xjngke, akh,okn, = 0. If
g = uq(€) for some € € k, then the condition is to vanish on hy — €eq, ua(€) - hg =
hg + €eq, €q and s, - hg = ho + hg, i.e. the same condition. Now, let us consider
the points (B/B, sqaB/B,sagB/B,sagB/B,sqaB/B) for g € Ps. If g € sgB, then
the condition is to vanish on e, e2atp and sqasg - ha = hays. If g = ug(e), the
condition is to vanish on eq, so - (hg —€eg) and squg(€) - ha = Sa - (ha + 2e€ep), i.e.
on €y, Sq - (hg —€eg) and sq - (ha + 2hg) = S - ha+p = ha+p. Asin @ (vi), the
condition on X for the point (X, B/B, sqB/B) to be in the image of p; 5 is finally

X|nekeo®khoys = 0-
(vii) Fiber over (B/B, sgB/B): Similarly, the condition is
X|n@kesBlhoays = 0-

(viii) Fiber over (B/B, B/B): the fiber of the Demazure resolution is given on
the one hand by the (B/B,¢B/B,gB/B,B/B,B/B) for g € P, and on the other
hand by the (B/B,B/B,gB/B,g9B/B,B/B) for g € Ps. In the first case, if g € B
then the corresponding condition of X is to vanish on n, hy and hg. If g ¢ B,

then the condition is to vanish on n, es, hy and hg. The situation is similar in the
second case. Hence the condition on X for (X, B/B, B/B) to be in the image is

X\nakhaakhy = 0.
It follows from these computations and the similar ones with o and § inter-
changed (computing p1 5(Z (s, s,,55,5.)) instead of p15(2(s, s5,50,55)) amounts to
replacing « by 8, 8 by «, a+ 8 by 8+ 2«, and 8 + 2a by a + ) that the images

under py 5 of 2, y and Z(s, ., ) coincide. We let S¢, gy be this image.

S$B,Sa,SB SBySa

3.3. Normality of Sy, 3.

Proposition 3.3.1. The variety S, py is integral and normal.

Proof.ﬂ Let us define v := a+ B, § := 2a + B. As for type Aq, we already know

that Sg, gy is integral, and we only have to consider the situation over (B/B) x

(UsU,UgUqsB/B). In this proof we consider Sy, gy as the image of 2y, s,
Let

156,80

u = us(x5)Uy (2y)up(28)ua(ta) € UsUyUpUa,

with zozsT 25 # 0, TyT8 — %x% # 0 and z42, — Gws # 0. We have

u = ug(t)ua(2)us(y)ua(z)

5This proof is a simplification of an earlier one due to Patrick Polo.
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with z, = @ + 2, 23 = y +t, z, = cyz, 5 = dyz? (here zyzt # 0). Then if
(X,B/B,uB/B) is in S{, g}, X must vanish on

(3.3.2) hg —teg.

It also vanishes on ug(t)uq(2) - €—_q, hence on hq + 2teg — zeq + czte,. Adding two
times (B.3.9), one obtains

(3.3.3) hy — zeq + czte,,.

Further, X must vanish on ug(t)ua (2)ug(y) - e—g, hence on ug(t)us(z) - (hg —yeg).
Substracting (B.3.9), one obtains
(3.3.4) zeq — (y+t)eg — cz(y +t)e, — dyz’es.
Finally, X vanishes on ug(t)ua(2)ug(y)ua(z)-e—q, hence on ug(t)ua (2)us(y) - (ha —
xeq). Substracting ug(t) - (ha — z€q), one obtains
(3.3.5) — (x4 2)eq +2yeg + c((y + t)(z + 2) + yz)ey + 2dyz(x + 2)es.

Let us transform our equations () to (B.3.5) to obtain equations in z,, 73,
., x5. Substracting (B.3.9) from two times (8.3.9), one obtains

2d
(3.3.6) 2hg + Toea — 2288 — (CTaTB + Ty)ey — —TaTyEs.
c

Similarly, adding (8.3.3) and (B.3.4)), one obtains
(3.3.7) hy —xges — xyey — x5€5.

Then, one verifies that (z+z) times (B.3.4) plus z times (B.3.5), and 2y times (B.3.4)
plus v times () give respectively

2
(3.3.8) (E:c,y — TaTg)eg + gzge.y + zoz5€8,
2 2d 1
(3.3.9) (E:c,y — Talg)ea +23(cTats — Ty)ey + ?zry(zaxg - Ezv)e(;.

Finally, ., times (B-34) gives

2
(3.3.10) 2:05(5& — TgTye8 — %:cg:c(;e,y — TyTs5es.

Equations (B.3.6) and (B.3.7) express hg, h, in terms of the other variables. We
denote by E, F and G the polynomials of (B.3.8), (B.3.9) and (3.3.10).

Now we can finish the proof exactly as in the case of As. In the next lemma we
show that the scheme defined by E, F' and G is normal and integral. Moreover it
contains S{,,5}|(B/Byx(U+B/B) as a closed subvariety, and has the same dimension.
Hence the two varieties coincide. ([

Lemma 3.3.11. The ring
A =Kk[za, 28,2, %5, €q,€8, €y, 65|/ (E, F,G)
is a normal domain.

Proof. Let us forget about the previous notations x, y, z and t. Now we define

2 2 2
T=1Ta, Y= —Tp, 2= Ty — Talp, t = —Ts, f= E(gea — Srge, —xy€5), g = €g,
h = Se, 4+ xaes, i = es. Then we have A = A'[i], where

A/ = k[‘r)yazata fagah]/(zg - th,Zf - (Z - xy)hay(z - ny)g - tf)
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Let us first show that the closed subvariety of k” corresponding to A’, denoted
by M, is irreducible. The restriction of M to the open set {t # 0} is defined by the
equations h = zg/t and f = y(z — xzy)g/t. Hence it is irreducible. Similarly for the
open sets {z # 0} and {f # 0}. These open sets intersect each other in M. Hence
the restriction of M to {t # 0} U{z # 0} U {f # 0} is also irreducible. As M is the
closure of this restriction (indeed, if z = ¢t = 0, the condition (z,y, z,t, f,g,h) € V
does not depend on f), it is irreducible.

Now we show that A is normal (hence also reduced). We will use the following
lemma (see [BV], 16.24]):

Lemma 3.3.12. Let S be a noetherian ring, and y € S which is not a zero divisor.
Assume that S/(y) is reduced and S[y~1] is normal. Then S is normal.

Let us apply the lemma to S = A’ and our element y. It is clear that y is not
nilpotent (it is not zero on M). Since M is irreducible, y is not a zero-divisor. Now
A'/(y) is isomorphic to

k[z,z,t, f,g,h]/I
where I = (zg — th, zf, ft). This ideal is the intersection of the prime ideals (z,t)
and (f,zg — th) of k[z, 2, t, f, g, h], hence it is reduced.

Consider the ring A’[y~!]. Using the change of coordinates f’ = f/(y?) and
' = —x + (z/y), it isomorphic to

(k['r/v tha flvgv h’]/(zg - th’a ZL'/g - f/ta Zf/ - hSC/))[y, yil]'

As in the proof of lemma , this ring is normal. This concludes the proof of
lemma B.3.11. O

Remark 3.3.13. As in type A, one can show that Si, s is Cohen-Macaulay. As
our proof is long and not needed here, we omit it.

3.4. End of the proof. Now, exactly as in lemma , one proves that
R(\I](SC“SB,SO“SB))*(O ) = OS{Q,B})

and similarly with o and § interchanged. This finishes the proof of the finite braid
relations in type Bs, hence also of the assertions of theorem concerning the
action of B4 on D’Coh(g).

Z(Sa,sfg,sa,sg)

4. RESTRICTION TO N

Now we will derive the assertions of theorem concerning the action of Bl

on D*Coh(N). We keep the notations and assumptions as before.

Let i : N < g denote the closed embedding. For a@ € @, we recall that S/, :=
Sa N (J\~f x N ), and that T'; denotes the graph of i, a closed subvariety of N x 3.
First, relations (2), to (4) of theorem for the action on D*Coh(N) can be

proved exactly as for the action on D?Coh(g) (see [.§). Now we prove relations (1).

Lemma 4.1. The tensor product OﬁxaéEXEOSa s concentrated in degree 0, and
is isomorphic to (i x i).Og; .

Proof. As in the proof of proposition , we only have to consider the situation

over (B/B) x (UTB/B) =2 U*". We use the isomorphism U* 2 U(*(;) x Uy, and
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choose coordinates u on U( ) t on U,. On the fiber we use coordinates e(]) h(])

(U =12).
Then (./\7 X 9)|(B/B)x(U+B/B) is defined by the equations hgl) =0 (6 € ®), and

Sa by e(yl) = egf), h(l) h((f), u =1 and h(l) te&l). The union of these equations
forms a regular sequence, which proves the result. (I

Remark 4.2. These computations show that S/, is reduced. It is not irreducible
(see B.1 for details).

propCoh(/\/ X g):
Or, * OS& =~ QOg, *Or,;
Or, * OS(’X (p -G, _p) Os., (P —a,—p) *Or,.

Corollary 4.3. There exist isomorphisms in D

1%

Proof. We only prove the first isomorphism; the second one can be obtained simi-
larly. It follows from lemma that Or, * Og: = (Id 7 X i)*OSA. Hence we only
have to prove that Og, * Or, = (Id g x 1).Os;, .

Let pay denote the projections from NxgxgtoNxgorgxg, and A :
N = N x N denote the diagonal embedding. Then by definition Og_ * Or, =
R(p1,3)*(p11201“i ® ngosa). But pl,QOF'L = (Idﬁ X1 X Idﬁ)*(A X Ida)*OK/XE The
result follows, using the projection formula and the preceding lemma, which implies
that L(i X Idﬁ)*OSa = (Id/v X Z‘)*Osg. O

Corollary 4.4. The finite braid relations (i.e. relations (1) of theorem ) are
satisfied by the kernels Og: (a € ®).

Proof. First, let us prove an analogue of proposition for the kernels Og: , i.e
that we have
(1) Os;, * (Os,(p = a,—p)) = MOz = (Osy,(p — @, —p)) * Osy,.
Multiplying the equality Os, * (Os, (p — @, —p)) = A.Of with Or, on the right,
and using lemma and corollary §.3, one obtains

(Idﬁ X i)*(OSg * (05& (p — a, 7[)))) = (Idﬁ X 1)x (A Oﬁ)
It follows that the complex of sheaves Og; * (Os: (p — o, —p)) has its cohomology

concentrated in degree 0, i.e. is isomorphic to a coherent sheaf on NxN. T hen,
as (Idg x i), : Coh(N x N) = Coh(N x §) has a left inverse (Id g x i)*, we deduce
the first isomorphism in (f). The second one can be proved similarly.

Now, let us prove that the braid relations are satisfied. To fix notations, assume
that o and § are simple roots generating a root system of type As (the other cases
can be treated similarly). We have to prove that Og/, >f<(9523 *QOgr = OSZ% *Ogr. *(9523.

By (1), this is equivalent to

Osy(p— B, =p) % Os;, (p — o, =p) % Og1 (p — B, —p) x Osy, x Ogy % Og, = A O
But we know (see section []) that

Oss(p = B, =p) * Os,(p — @, =p) * Os,(p = B, —p) x Os,, * Os,, ¥ Os, = A, 0.
Hence we can use the same argument as in the first part of this proof. (]

Remark 4.5. The restriction of this action to B,g, for R of type A, was also
considered in [@] There, it was proved to have some nice properties.
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5. RELATION TO LOCALIZATION IN POSITIVE CHARACTERISTIC

In this section we show that the action of B4 on D’Coh(g) we have constructed
above, or rather the similar action on D*Coh(g(") (for g(") the Frobenius twist of
4, see [BMR], 1.1.1]), extends the action on DbCohBu) (@) constructed in
using representation theory of Lie algebras and D-modules in positive characteristic

(see below or , for the notations).

and we assume char(k) > h for h the Coxeter number of G. In [.3
and k is an arbitrary algebraically closed field. We use the same notations as
above. In particular, G has no component of type Ggﬂ.

If X is ascheme and Y C X is a closed subscheme, one says that a quasi-coherent
sheaf F on X is supported on YV if F, = 0 for x ¢ Y (see [BMR], 3.1.7]). If F is
coherent, and if Zy- C Ox is the ideal defining Y, this is equivalent to requiring that
the action of Zy on F be locally nilpotent. We let Cohy (X) denote the subcategory
of Coh(X) whose objets are supported on Y .

5.1. Review of the resultsrofgm and [BMRZ. In this paragraph we recall
1

some results of [mn and [BMRJ] that relate representation theory of Lie algebras

with coherent sheaves on N and g (or parabolic analogs).

Let 3 be the center of Ug, the enveloping algebra of g. The subalgebra of G-
invariants, 3gc := (Ug)® is central in Ug. This is the “Harish-Chandra part” of
3, which is isomorphic to S(t)(":*) the algebra of W-invariants in the symmetric
algebra of t, for the dot-action. This is an analog of the center of the enveloping
algebra in characteristic 0. The center 3 also has another part, the “Frobenius
part” 3. which is generated, as an algebra, by the elements X? — X[P! for X € g.
It is isomorphic to S(g!), the functions on the Frobenius twist of g*. Under our
assumption p > h, there is an isomorphism (see e.g. [@])

SHC ®3p:N3H0 3Fr 5 3

Hence, a character of 3 is given by a compatible pair (), x) € t* x g*(. Here we
will only consider the case when x is nilpotent, and A € t* is integral, i.e. in the
image of the natural map X — t*. If A € X we still denote by A its image in t*.
We denote the corresponding specializations by

Ug) = (Ug) B30 kn, UG)y := Ug) @3, ky, Ug)} = UG) @3 k()
Recall the variety g, defined in @ For x € g* nilpotent we define B, , respectively
Pa.y, as the inverse image of x under g — g*, respectively go — g*. The variety
B, is isomorphic to the Springer fiber associated to x.

Let MOd%\,X) (Ug) denote the abelian category of finitely generated Ug-modules

on which 3 acts with generalized character (), x), and similarly for Mod;g((u 9)*),
Modig((Ug)X), Modfg((Ug)f‘(). We have (see [BMR|, 5.3.1] for (i), [BMRJ, 1.5.1.c,
1.5.2.b] for (ii)):

Theorem 5.1.1. (i) Let x € g* be nilpotent, and X € X regular. There exist
equivalences

~

~ f
T : DbCohBS)(g(l)) = DbModf(gj\X)(Z/lg),
vBA DbCohBS)(N(l)) = D'ModE((Ug)*).

6This assumption is used only in E
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(i) Let again x € g* be nilpotent. Fizx o € ® and let p € X be on the reflection
hyperplane of s, for the dot-action, but not on any other reflection hyperplane.
There exists an equivalence

e . ~(1 ~ f;
Wy + DPCobya (80)) = D'Modf, |\ (U).

Remark 5.1.2. (i) The categories of coherent sheaves we are using here are not
exactly the same as the ones used in [BMR|]. More precisely, we have taken

CohB;U (@) instead of CohB)((l)X{/\}(fj(l) X (1 t*). But, as remarked in [BMRZ,
1.5.3.(c)], the projection g x .y t* — g1 induces an isomorphism between the
formal neighborhoods of BS) x {A} and BS).

(ii) These equivalences depend on choices of splitting bundles. We follow the
conventions of [, 1.3.5], and denote by Mé\ ) the vector bundle on the

formal neighborhood of Bg) in g which intervenes in the definition of 'y([);\ " Our
notations for equivalences are consistent with [, 2.2.5].

The translation functors T} : Modig);\ oUg) — Modii o(Ug) are defined in
[BMR], 6.1]. Recall the natural morphism 7, : § — go (see @) Then ([BMR2,
2.2.5)):

Proposition 5.1.3. Let A\, u, a be as in theorem . Assume that p lies in the
closure of the facet of \. There exist isomorphisms of functors

~ ~Pa = Pa o~ = *
Tyo 7(Kioc) = Tux) © R(WS))* and le\ °ux) = 7(B/‘\»c) © L(ﬂ-&l)) )

5.2. The reflection functors. Let us fix a simple root a € ®. In this paragraph
we study the functor L(%&l))* o R(%&l))*. To simplify notations, we forget about
the Frobenius twists; the “twisted versions” of our results can be proved similarly.
In this paragraph and the next one, char(k) is arbitrary.

We are in the situation of lemma ﬁ, with f being the morphism 7,. So
L(70)* o R(Ty )« is the convolution functor with kernel

L
R(p13)+(Ogx;, 5o xG PG x5 O5xFax5,5)-

The situation is particularly simple here, due to the following result:

Lemma 5.2.1. The derived tensor product OEXEQEQXE QL@EXE@XE OEXEaX%E 18
concentrated in degree 0. It equals the sheaf of functions on the intersection (g x3,,
Ga X §) N (@ X ga X5, §). Moreover, this intersection is reduced.

Proof. This proof is again similar to the proof of proposition . For simplicity,
in this proof we write P for P,. We can restrict to the situation over (B/B) x
(UTP/P)x (UTB/B) = U(‘;) x U*t. We use the isomorphisms g|y+ /5 = (b1)* x
Ut and galp+p/p = (b1 D ke_o)* U(J;) induced by restriction, and choose as

usual coordinates eg), hgi) (yeERT,6€®,i€e{1,2,3}) and e(fi in the fibers, u(®
and ©® on Ut,, and t on U,,.

(a)
The equations of the first subvariety are egyl) = 6;2), h((;l) = hg2), e(_% =0 and

u® = 1. And the equations of the second variety are eg2) = e(f’), h((f) = hgg),
u® =43 and u® -, (t) - e(fi =0,ie u® - (6(723‘ +th — th(o?)) = 0.

It is clear that these equations form a regular sequence, and define a reduced
scheme. This proves the lemma. (I
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The morphism p1 3 restricts to an isomorphism from the intersection (g X G o X
9) N (g X ga X35, 9) to g x5, 9. Hence we obtain, using lemma 2.2

Proposition 5.2.2. There exists an isomorphism of functors
~ % ~ Ofx;
L(7a)" o R(Ta)x = F‘g”—@ga
for the closed subvariety g x5, g C g x g.
Moreover, under this isomorphism, the adjunction morphism L(7o)* o R(Ta)« —
Id is induced by the restriction map Oﬁxgaﬁ — A,O5.

5.3. Intertwining functors. We have seen in [L.4 that § X5, 8= G xB R, and
that the B-variety Z, has two irreducible components, &, and .%,.

Lemma 5.3.1. There exist exact sequences of B-equivariant quasi-coherent sheaves
on g* x P,/B, where the surjections are restriction maps:

O@a — O%a —» Oy@;
Oz, (—p) @ckp(p—a) = Oz, - Og,.
Proof. : We use the same notations as in . In particular, recall the equations of
Ry Loy Do On U, B/B, we have an exact sequence
klhs, eq,t]/(t) = k[hs, ey, t]/(t(ha — tea)) = klhs, e4,t]/(ha — tea)
where the first map is multiplication by (h, —te,). Under the change of coordinates

on (U,B/B)N(n,Uy,B/B) (given by t — f%), ho — teq 18 sent to hq + %ea, which

is 0 in k[Zal(nav.B/B)—{naB/B}) = klhs, ey, t51]/(ea + the). Hence we can glue
the preceding exact sequence with the trivial exact sequence 0 < k[hs, e4,t]/(eq +
tha) — klhs, e4,t]/(eq + tha) to obtain an exact sequence of sheaves

Og, — Oz, - Ox,.

This sequence is obviously B-equivariant (the first map is non zero only over B/ B,
and h,, is B-invariant in our coordinate ring). This gives the first exact sequence
of the lemma.

Similarly we have an exact sequence

klhs, ey, t]/(ha — tea) = K[hs, ey, t]/(t(ha — tea)) — Klhs, €4, 1]/ (1)
where the first map is multiplication by ¢. To glue this exact sequence with the
trivial one on n,U,B/B:
klhs, e, t]/(ea + tha) — Kk[hs, ey, t]/(ea +tha) - 0
we have to tensor Oy, with the inverse image of Op_ /p(—p) = Op1(—1) on P, /B =
PL. We obtain the exact sequence of quasi-coherent sheaves

To understand the B-equivariant structure of the first morphism, we observe that
to define a morphism Op_/g(—p) — Op,/p is equivalent to choosing a vector in
I'(P./B,0p,/5(p)). This P,-module has dimension two, with weights p and p— .
The line of weight p — « is B-stable: choosing a non-zero vector in this line thus
defines a morphism of B-equivariant sheaves

Oz,(=p) @ kp(p—a) = Oz,,

which yields the second exact sequence of the lemma. (I



28 SIMON RICHE

Inducing these exact sequences from B to GG, we obtain

Corollary 5.3.2. There exist exact sequences of quasi-coherent sheaves on g* X
(B xp, B), where the surjections are restriction maps:

Oag = Ogx;.5 ™ Osas
Osa (p —Q, *p) — Oﬁxﬁaﬁ —» OAE'
Remark 5.3.3. As in[L.5., p can be replaced by any A € X with (\,a") = 1.

5.4. The two actions of the braid group coincide. Assume again that p =
char(k) > h. Let us fix some A € X in the alcove 65 = {r e X@R | VB € RT,0 <
(v + p,BY) < p}, and some y € g* nilpotent. In this paragraph we finally prove
that the “Frobenius twisted version” of the action of B.g on D’Coh(g) considered
in theorem extends the action of B on ’DbCohBS) (™)) coming from [BMR2,

2.1.6, 2.3.2], via 7&)(). More precisely, for b € B4 we denote by
Jb . DPCoh(g™M)) — DPCoh(g")), respectively

i i
I\ ) : D"Modf | (Ug) — D"Mod 5 ,,(Ug)

the action of b coming from theorem , respectively the action constructed in
[BMRJ, 2.1.4][]. The functor J® restricts to an auto-equivalence of DbCOhB(l) (@),
X

denoted similarly. The main result of this paragraph is the following:

Theorem 5.4.1. For any b € Blg there exists an isomorphism of functors from
DbCoh 40) (M) to itself:

Jb =~ (’7(6/‘\%))_1 ° Il()A,x) o 'yg\ﬂx).

Proof. Tt is enough to consider the generators T,, (denoted by s, in [BMRZ]) and
0, for a € ® and x € X. First, fix some z € X. It is proven in [B 2, 2.3.3]
that 0, for € X dominant acts (in the action of [BMRJ]) by convolution with
kernel A,Ogza) (x). It follows, by construction, that this result is true for any x € X.
Hence the two actions coincide for b = 6,.

The case of T, is more delicate, and will occupy the rest of the proof. We fix
a € ®. We will construct an isomorphism of functors

O _ 1y (=psp—a)

(5.4.2) I0) ™ 0700 =000 © Faorsgo
This is equivalent to the theorem for b = T,,, due to proposition . Let us choose
some i, € X, on the a-wall of €, (and on no other wall). We define the functor
Ry =T oT{ (sec [BMRZ 2.2.7)).

First, let us consider a single object F € D°Cohga) (fj(l)). Now we prove that
the images of F under the two functors in (.4.9) are isomorphic. Later we will
prove that this isomorphism comes from an isomorphism of functors.

Lemma 5.4.3. There exists an isomorphism in DbCOhB(l) (ﬁ(l)).'
X

O 1) (=p:p—a)
« — B ~ B e
I 0) ™" 200 F) =G © Faar g

"This action depends on the choice of an isomorphism between the “local” extended affine braid
group and B’;. We take the isomorphism associated to the choice of the element A € W/, e A,
as in [B 2, 2.1.6].
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Proof of lemma . By definition (see , 2.2.4, 2.3.1]), there is an exact

triangle

(5.4.4) ( ?/\X))_l © 7(‘gux) (F) = Rao 7(‘gux) (F) = V(Ki\,x)(]:)’

where the second arrow is induced by adjunction. By propositions and ,
ixs HD

there exists an isomorphism R, o 7(B>ux) (F) = V(BA,X) o Fﬁ(ff;’ﬁii) (F), and the

second arrow of triangle (p.4.4) identifies with the morphism

o,
B Exg,,0W B
000 ° Fgo sz (F) = 7000 F)
induced by the restriction map O(Ex;, o = OAE(l) (recall that the convolution

with kernel OAE(l) is the identity). Now the result follows from the second exact
sequence in corollary , using basic properties of triangulated categories. (I

Let q1,q9 : S&l) — g™ be the natural morphisms, induced by the projections
Osg)(—PvP—O‘)
F§<1>_>§<1>

F = Rg2)«(L(q1)" F @500 O (=p,p = a))

(by the projection formula). We denote by X the completion of g(!) along the

p1,p2 : g x g — gM). Then, is isomorphic to the functor

closed subscheme BS), and by Y the completion of Sél) along the closed subscheme
B;l) Xph, BS). Then ¢; and ¢ induce morphisms of formal schemes ¢1,¢3 : Y — X.
We denote by 1y : X — E(l) and 1y : Y — S&l) the inclusion morphisms (which
are flat). If F is in Coh(g(")), then (1x)*F is just the completion of F along BS)
(see [EGA 1| 10.8.8]), and similarly for Y. Recall the vector bundles M{"V’X) on X
(for v € X regular) introduced in remark p.1.9(ii). Then by definition, for F in
DbCohBQ) @"),
VB G(F) = RIME, ) @ (1x) F).

Let us also remark that by [BMRJ, 2.2.3(c)] and the choice of vector bundles we

have a functorial isomorphism
a — B ~ B
(5.4.5) (I0) ™" 2000 = Veaeron

Now let F € DbCohBS) (gM). For simplicity, we write (x) for the object fy(B)\,X) o

O _1)(=p,p—c)
F‘g(ls)g‘g(l) (F). By definition and [EGA IIIjf, 4.1.5], we have functorial isomor-
phisms

(%) RF(M(B/\X) ®x (tx)*R(q2)«(L(q1)*F ®Sf,1) OSS) (—p,p— a)))
R (M, ) @x R(@)+((19)*L(01)*F @y Oy(—p, p — a))).
Now, as ¢1 oty = tx o ¢1, we deduce that
() = RO(MB ) ®x R(@)«(L(@1)" () F @y Oy(=p,p — a))).

By the projection formula applied to ¢, we have then

(*) RT o R(3@2)+ ((@2)* M, ) @y L(@1)* (ta)* F @y Oy(—p,p — @)
RT 0 R(q1)«((@2)* MB, ) @y L(@1)* (ta)* F @y Oy(—p,p — a)).
Finally, the projection formula applied to ¢; gives

(546) () = RU((x) FOR@). (@) M) © Oy(—p.p — 0))).

1R

1R
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It follows from (f.4.5) and (F.4.6) that it is enough, to prove isomorphism (5.4.9),

to construct an isomorphism

R((ﬁ)* ((@)*M(B/\,X) Xy Oy(fpa p— a)) = M(Bsao)\,x)
in the derived category of coherent sheaves on X'. Let Z be the ideal of definition

of BS) in g, By [EGA 1, 10.11.3] and [EGA TIT;|, 3.4.3], it is enough to show that

for all n > 1 we have an isomorphism

(Ox/TMExR(@) (@) ME, ) @y Oy(—p.p— ) = (Ox /T )2 ME L, .

Using isomorphisms (H.4.5) and (p.4.4), and the fact that RT is an equivalence of
categories, this isomorphism follows easily from lemma applied to Oy /Z™. O

Remark 5.4.7. In [@], Bezrukavnikov explains the importance of this action of B4
in his plan of proof of Lusztig’s conjecture concerning the representation theory of g.
There, the definition of S, is different from ours, but of course they are equivalent
(i.e. they define the same subscheme of g x g). He also considers the action on

DPCoh(N) (see [BZ, theorem 2.1]), without giving a proof of its existence.

6. RELATION TO REPRESENTATION THEORY IN CHARACTERISTIC ZERO

In this section we establish a connection between our constructions in the case
k = C and Ginzburg’s description of the equivariant K-theory of the Steinberg
variety. We also relate them to Springer’s action of the Weyl group on the homology
of a Springer fiber.

As above, we assume G has no component of type Go, and we take k = C.

6.1. Equivariant K-theory of the Steinberg variety. First we need a result
which is analogous to corollary [.3., but for the action on DbCoh(/\N/ ). It is valid
over any algebraically closed field k. Consider the variety S/,. Geometrically, it can
be described as:

S, ={(X,91B,92B) € g* x Bx B | X|g,.649,6 = 0}.
It has two irreducible components. One is AN, the diagonal embedding of N, and
the other one is

Yo :={(X,91B,92B) € g" x (B xp, B) | Xigipa = 0},
which is a vector bundle on B xp, B, of rank dim(g/b) — 1.

Lemma 6.1.1. There exist exact sequences of quasi-coherent sheaves, where the
surjections are restriction maps:

Oxir = Osi(p—a,—p) > Oy, (p — a, —p);
Oy, (p—a,—p) = Os: — O, 5
Proof. The construction of the exact sequences is analogous to that in lemma .3.1]
Let us introduce the following subvarieties of g* x (P,/B):
75 = (8/0)" x (B/B)
o ={(X,9B) € g* x (Pa/B) | Xjp+46 =0}
Yo = {(X,9B) € g* x (Pa/B) | X|p, = 0}.

Then we have isomorphisms AN = G xB @/, 8! = G xB 7, Y, = G xB %,
Let us recall the equations of the varieties 2., .7, %,. We use the affine covering
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(Py/B) = (UyB/B) U (sqUaB/B), and the isomorphisms induced by u,, respec-
tively by ¢t — nqua(t): k =2 U,B/B, k & s,U,B/B. As coordinates on g* we use
the basis {e,,y € R,hg,3 € ®} of g. Then we can deduce from the computations
in section E the equations defining ., |v. B/B, Z,lv.B/B and % |u, B/B as closed
suvarieties of g* x k. Namely, these three varieties are defined by the equations e,
(v € R7), hg (B € @) and, respectively, teq, t, eo. Hence there are exact sequences

k[Z,|v.5/B] = kK[Z v, /8] = K[Zalu, B/B];
k% v, 5/8] = kK|S v, 5/8] > k[ Z4|u, B8],
where the first maps are respectively the multiplication by e, and ¢.

Over SaUaB/B we have ‘@&|SQU@B/B = 0, tSﬂaﬂsaUaB/B = %|SQUQB/B' Under
the change of coordinates ¢ is sent to f%, and e, to 0. Hence there are exact
sequences of quasi-coherent sheaves

Og:, — Og1 — Og,, Oz, @0, ,; Op,/B(—=p) = Oz — Ogy.

Concerning the B-equivariant structure, we remark that the second exact se-
quence was constructed just like in . Hence, as there we have an exact sequence
of B-equivariant sheaves

Og, (—p) Rk kp(p—a) = Oy{; —» 09&'

Inducing from B to G we obtain the second exact sequence of the lemma. Con-
cerning the first exact sequence, its first arrow is given by the multiplication by e,
which has weight « for the action of B. Hence the B-equivariant exact sequence
reads

O@(fl Ok ]kB(Oz) — Oy(; — Og,.
Inducing, we obtain O, (a,0) < Os: — Oy, . Now Opx,_s5(—p,p) is trivial on
the diagonal. Hence we also have

Ol =p,p) = Os;, = Oy,

Tensoring by the inverse image of Opx,, 5(p — @, —p), we obtain the first exact
sequence of the lemma. O

Let us define a C*-action on N, setting
t-(X,gB) := (t72X,gB).
This action commutes with the natural action of G on A/. We denote by
(1) : D*Coh“*C" (V) = DPCoh®*C™ (N)

the tensor product with the one-dimensional C*-module given by Id¢x, and sim-
ilarly for any variety with a C*-action. Then the exact sequences of lemma
have G x C*-equivariant versions

(6.1.2) Opir(2) = Osy (p — a, —p) = Oy, (p — o, —p);
(6.1.3) Oy, (p—a,—p) = Os — O, -

If H is an algebraic group (over C) acting on a variety X, we denote by K (X)
the H-equivariant K-theory of X. This is by definition the Grothendieck group of
the category Coh® (X) of H-equivariant coherent sheaves on X, or of its derived

category DPCoh™ (X). We refer to [L3, section 6] for generalities on equivariant
K-theory, and to [EI, section 2] and , 5.1] for the main properties of derived
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categories of equivariant coherent sheaves. If F is an object of D?Coh’ (X), we
denote by [F] its image in Ky (X).

Let A be the variety of nilpotent elements in g*. We have the Springer resolution
7: N = N. We will be interested in the Steinberg variety

Z=N XN /\7,
and more precisely to the group Kgyxcx(Z). First, let us describe the rin~g struc-
ture on this K-group. There is a natural closed embedding j : Z — N2, Let
Pab : N3 — N2 denote the projection to the a-th and b-th factors (1 < a < b < 3).
If F and G are in D?Coh®*C” (Z), then R(p1,3)«(p} 2(j«F) (§L§)A~/3 p5.3(j+G)) is only
in DbCthXCX(/\N/ 2), but its cohomology is supported on Z. Hence the class
[R(p1,3)«(PT 2(JxF) éﬁpgﬁ(j*g))] is a well defined element of Kgycx(Z) (see
[

[BI], 2. Lemma 3(b)], [L3, 6.2]). The ring structure on Kgycx(Z) is then given by
the product:

]+ [6) = [R(p1,3)+ (0} 2(5F) @70 P3,3(5-0))]-
Note that the unit for this product is [0, 57]-

Let v be an indeterminate, and A := Z[v,v~!]. Let H be the extended affine
Hecke algebra associated to R (over A). Using the Bernstein presentation (see e.g.
L3, 1.19]) one sees that # is the quotient of A[B.g], the group algebra of Blg over
A, by the ideal generated by the relations

(6.1.4) (To +v (T —v)=0

for « € ®. We let A act on Kgycx(Z) by setting v - [F] := [F(1)]. The varieties
Y, and S/, are G x C*-stable subvarieties of Z, hence define natural classes [Oy, ],
[Os:]in Kgyex(Z). If z and y are in X, the line bundle Oz(z,y) (see L4 for the

notation) is naturally an object of Coh@*¢” (Z) (with trivial C*-action).
As an easy consequence of our results we obtain:

Proposition 6.1.5. The assignment

{Ta >~ Oy, (=p,p— )] — vt = v~ 1[Og, :
0, — [OA/\7($)]

extends to a morphism of A-algebras H — Kgyxcx(Z).

Remark 6.1.6. This result is well known (see e.g. [L3, 7.25] or [CG, 7.6.9]), and
this morphism is in fact an isomorphism, as proved in [E, 8.6] or [@, 7.6.10].
The construction of this morphism is one of the main steps of the proof of the
isomorphism H = Kgyxcx(Z) (both for the proof by Ginzburg, see [@] or [@],
and for the alternate proof by Lusztig, see [LJ]). These previous constructions
are indirect, using an action on a module to prove the fact that the image of the
generators satisfy the relations of 7. Using our constructions, one can give a direct
proof of the relations in Kgycx(Z) (using no K-theoretic result). Moreover, this
proof gives a more concrete interpretation of the image of the generators T,,; namely,
this image is a multiple of the class of Og; .

Proof. First, the equality
(6.1.7) — v Oy, (=p,p— )] —v " = =7 [Og]
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follows from the exact sequence () We have to check that the elements
—v " Og, ] for a € ® and [0, ()] for = € X satisfy relations (1) to (4) of theorem
[.1.3, and the quadratic relations (.1.4).

Relation (2) is trivial, and relations (1) and (3) follow from the results of section
E. Now the exact sequences of lemma admit the following C*-equivariant
versions (where the action on g is the natural one, extending the action on N ):

OVQI <2> — OVQ (P -, =p, 0) - OVg (P -, —p, O)a

OVO} <2> = Oy, (07 PP a) - OVO? (07 PP Ot).
We deduce as in section [f that —v~1[Og ] is invertible, and
(6.18) (—o 05, ]) ! = —v~1(Os, (0 — @, —p)].

Then relation (4) is easy to prove (as in [.).
Finally, for the quadratic relations, consider the exact sequence () It yields

(6.1.9) — v Os;,(p — @, —p)] = =07 Oy, (p — @, —p)] — v.
Using relations (p.1.7) and (p.1.§), we deduce from (p.1.9) that
(~o 105 ) = (—u 1O, ]) + (o —v).
This is equivalent to relation (b.1.4). O

It follows from these considerations that the natural action of H on Kgycx (/\7 )
(see [CQ, 7.6.6]) can be lifted to an action of B/ on the category Db Coh*C” (/\7)

Remark 6.1.10. Let x € g* be nilpotent, and let By, be the corresponding Springer
fiber, i.e. the inverse image of x under g — g* (see @; note however that now we
work over C). Let M be a closed subgroup of the stabilizer of x in G x C*, for the
action defined by (g,2) - x = 27 2g - x. Then M stabilizes B, C N. Our construc-
tions yield an action of Blg on D?Coh™ (N), which stabilizes the full subcategory
DbCohgi (J\~f ) of complexes whose cohomology sheaves are supported on B,. The

Grothendieck group of the category DbCOh%X (N) identifies with K m(By). The
same considerations as above show that the action of B.g induces an action of H
on Ky (By). This is the action considered in [E, 3.4]. In [@], Lusztig explains the
importance of these modules in the construction of all the irreducible H-modules
over C.

6.2. Springer’s representations of W. Now we consider Springer’s representa-
tions of the finite Weyl group. More precisely we follow Ginzburg’s approach to
this question in [GJ] (see [CG, chapter 3] for the same arguments, in the framework
of homology rather than K-theory).

As in @, our constructions yield a Z-algebra morphism

Z(Bo] — K(2).
where K (Z) is the non-equivariant K-theory of the Steinberg variety Z, and By is
the finite braid group (see EI for the definition). The exact sequences of lemma
show that for @ € ® the image of (T,)? in K(Z) is 1. Hence the previous
morphism gives a morphism
ZIW] — K(Z).

Following Ginzburg, we consider K(Z) as the Grothendieck group of the category
Cohy (/\7 x N), and denote by L(Z) the quotient by the subgroup generated by the
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elements [F] for F in Cohz (N x A) such that dim(Supp(F)) < dim(Z). Compos-
ing the previous morphism with the natural quotient K(Z) — L(Z) we obtain a
morphism

(6.2.1) ZIW] — L(Z).

The following proposition follows directly from our constructions and the defini-
tion of specialization in K-theory as in [CQ, 5.3] (use the definition of S/, as the
intersection S, N (N x N)).

Proposition 6.2.2. The morphism () coincides with the isomorphism of [,
5.3]: ZW] = L(Z).

This isomorphism is the main step in Ginzburg’s approach to Springer’s construc-
tion of the representations of W on the top homology of Springer fibers (see [@,
3.5-6]). Choose a nilpotent y € g*, and consider the Springer fiber By (see b.1)). As
noted above, the B!g4-action on DPCoh(N) induces an action of By on K (By) (this
is the case M = 1 in remark - which factorizes through the finite Weyl group
W (for the same reason as above). This in turn induces an action of W on L(B, ),
the quotient of K (B,,) defined as above for L(Z). By Grothendieck-Riemann-Roch,
we have an isomorphism L(B,) ®z Q = H*P(B,,Q). Via this isomorphism, the
action of W gives Springer’s action on H*P(B,,Q) (by proposition and [CG|,
3.5-6)).

APPENDIX A. PRESENTATION OF BJg (JOINT WITH ROMAN BEZRUKAVNIKOV)

In this appendix we prove theorem . We understand that this theorem was
known to Lusztig, although he did not publish a proof.

The facts that the elements T, and 6, generate B!, and satisfy the relations
of the theorem, are proved in [@, 2.7, 2.8]. We denote by B the group with the
given presentation. There exists a (surjectiveﬂ ) morphism v : B — Bl 4. To prove
the theorem we construct an inverse qb to this morphism. To avoid confusion, in
this appendlx we denote by T and 0, the images of the generators in B. Hence

we have 1)( a) =T, (0 oc) =

Acknowledgement. We thank George Lusztig for suggesting theorem to
one of us.

A.1. A second “length function”. In this paragraph we introduce a second
“length function” on W/g, denoted L, with values in Z. Recall the notations of
. Let 4 by the set of reflection hyperplanes of Wag in X® R, and &7 be the
set of alcoves. Let Cy be the fundamental chamber, i.e. Ch = {z € XQ@R | Va €
@, (z,av) > 0}. If H € 5, we denote by Ej; the half space defined by H that
intersects all translates of Cy, and by E the other half space. Then, following
Jantzen and Lusztig (see [L]]]) we introduce the function d on /2, defined by

d(A,B)=#{H € # | AC E and B C E};}
— #{H € # | AC E{, and B C E}.

8We do not use this surjectivity in our proof, but rather re-prove it.
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It is clear from the definition that d(A4, B) = —d(B, A). Moreover, d satisfies the
following formula for three alcoves A, B and C (see [EI, 1.4.1)):

(A.1.1) d(A,B) +d(B,C)+d(C,A) =0.
Now we can define the function L on W) by setting
L(’LU) = d(Ao, ’LU_le)

(recall that Ag denotes the fundamental alcove). For w € W we have L(w) = —¢(w),
and for z € X antidominant we have L(t,) = {(t;). Similarly, if  is dominant we
have L(t;) = —{(t;). Moreover, |L(w)| < ¢(w) for any w € W/ (for all of this, use

[, 4.5)).

Lemma A.1.2. For any u,w € W, we have |L(wu) — L(u)| < £(w). Moreover,
for any w € W there exists u € Wl such that L(wu) — L(u) = —£(w).

Proof. Using formula (A.1.1) we have
L(wu) — L(u) = d(Ag,u'w™tAg) — d(Ag,u™ ' Ag) = d(u™Ag,u"w ™t Ag).

Hence |L(wu)— L(u)| is at most the number of hyperplanes in 5# separating u =1 Ay
and u~tw~! Ay, which equals the number of hyperplanes separating Ag and w='A.
This number is precisely £(w™1) = £(w).

Let us now consider the second assertion. Let & be a point in Ag. Let w € W be
such that v~ (w™(€) — ) is in weCo, where wy is the longest element of W. Then
it is clear that d(u='Ag,u"tw™tAg) = —f(w). O

A.2. Computations in W/;. In [L.1] we have defined a section C of the morphism

Blg — W/!s. Now, let us define another section S : W/ s — Blg by setting

S(wy-tg) := C(wy)ly for wy € W and = € X, where we have used the isomorphism
1 = W x X. We will show that one can recover C' from S.

Lemma A.2.1. Let u,w € W/ be such that L(wu) = L(u) — {(w). Then we have
S(wu) = C(w)S(u).

Proof. First, let us remark that the hypothesis and the conclusion are invariant by
replacing u by ut, for some z € X. Hence we can assume that v € W. We write
w = wyty for some A € X, wy € W. Then

L(wu) — L(u) = d(u™*Ag,u™'w™ Ag) = d(u™Ag,u (wy) "t Ag — u™t (V).

As wand wy are in W, and as every hyperplane H between u~*A4y and u™'w™ 4y is
crossed in the direction Ef; ~ E; we must have the inequality (—u=1()\),a¥) <1
for any a € RT, i.e. (u=t(N\),av) > —1. Moreover, for any a € R* such that
wru(a) € RT we have (u™'()\),a") > 0. Indeed, in this case u™'(wy) "4y is in
E;;a for H, the reflection hyperplane of s,. Hence if (u~1()\),a") were —1 then to
go from v~ Ay to u w1 Ag we would have to cross H := {z € X®@z R | (z,a) =
1} in the “wrong” direction (i.e. Ej; ~ Ej).

Let us write u_l()\) = 1 — pe with pq and po dominant weights. We have wu =
(wy)tau = wyut,-1(n). Hence wut,, = wyut,,. As pp is dominant and wyu € W,
E(watlh) = E(wfu) + ﬂ(tlll) (See ()) Hence C(watlh) = C(wfu)c(tm ) We
will now prove that, also, £(wut,,) = ¢(wu)+£(t,,). It will follow that C(wut,,) =
C(wu)C(ty,), and finally that S(wu) = C(wu).
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So, let us prove that ¢(wut,,) = {(wu) + £(t,,). Using formula ([..1.1)), we have

E(tuz) = ZaER+ <M2’av>’
lwu) =37 aent |(p1— M2,04V>| +>° sert, |14 {u1— Hz,av>|7

wyu(a)ERT wpu(a)ERT
Cwuty,) =37 aert, (p1,0Y) + 30 aent, (1+(u1,aY)).
wfu(a)5R+ wpu(a)ER™

We know (see above) that for any o € R, (u=t(\), ") > —1, and, for any o € RT
such that wyu(a) € RT, (u™'()\),a") > 0. The result easily follows.

Finally we have proved that S(wu) = C(wu). By hypothesis |L(wu)| = |L(u) —
L(w)| = £(u)+£(w) (because u is in W). On the other hand we have the inequalities
|L(wu)] < f(wu) < €(w)+£(u). We deduce that we must have £(wu) = £(w) +£(u).
Hence C(wu) = C(w)C(u) = C(w)S(u). This concludes the proof. O

A.3. Computations in B. The braid group By is well known to have a presen-
tation with generators the T, (o € ®) and relations (1) of theorem [.1.3. Hence
there exists a group morphism o : By — B, which sends T, to Tn. We define
C":=00oClw : W — B. Then we can define the lift

S W!e - B

by setting S (wst,) := C'(wy)f, for wy € W, x € X. The following diagram is
commutative:

The next proposition is the key step in our proof of theorem [L.1.4.

Proposition A.3.1. Let w,ui,us € Wlg such that L(wui) = L(u1) — ¢(w) and
L(wusz) = L(ug) — £(w). Then

S (wur) (S (ur)) ™" = ' (wuz) (" (uz)) ™.

Proof. We use induction on ¢(w). Assume we know the result for v and w, and
that £(vw) = £(v) + ¢(w). Let u; and ug be as in the proposition, for vw instead
of w. For i = 1,2 we have L(vwu;) > L(wu;) — £(v) > L(u;) — f(w) — £(v) (by
lemma ) As the two extreme terms are equal by assumption, we must have
L(vwu;) = L(wu;) — £(v) and L(wu;) = L(u;) — £(w). Applying the result for v,
wuy, wus and w, uy, us we obtain the result for vw, ui, us. Hence we only have
to prove the proposition for w of length 0 or 1. We also only have to prove it for
u; € W (use relation (2) and the definition of S”). Without loss of generality we
can assume R is irreducible (B is the product of the subgroups corresponding to
each irreducible component of R).

(i) First, consider the easiest case w = s € S. For i = 1,2 we have by
definition d(u; *Ag,u; 'sAg) = —1. Hence, if s = s,, u;'(a) € RT. Then
(su;) = L(u;) + 1 (use the criterion provided by [Hu, 1.6, 1.7]). Hence S’(su;) =
C'(su;) = C'(s)C"(u;) = S'(8)S’(u;). This proves the result in this case.
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(ii) Next, assume w is in Sag — S. Then w = ts, for v the highest short root of
R. We have to show that

S’ (wu) (S’ (u)) ™! 1= C"(85u)0_y—1(5)C" (u) "

doesn’t depend on the choice of u € W such that d(u='Ag, u™ s, Ag+u=t (7)) = —1.
This condition amounts to requiring u~!(y) € R~. In particular, wy fits (recall that
wp denotes the longest element of W). By descending induction on I(u), we will
show that C’(svu)é_ufl(v)C’(u)_l = C’(svwo)é,wU(v)C'(wo)_l for any u € W
such that u=1(vy) € R™.

Assume u # wg. Then choose 3 € ® such that £(usg) = (u)+1, i.e. u(B) € RT.
Then 8 # —u~1(y), hence sgu='(y) € R™, so that we can apply the induction
hypothesis to usg. Moreover,

C/(SVUSB)é,SBu—l(,Y)Cl(uslg)71 = C/(S,yuslg)é,sﬁu—l(,y)(Tg)ilc/(u)il.

As v is a short root and a dominant weight, and u(#) is a positive root, (v, u(8)") =
(u=t(v),BY) is 0 or 1. First, assume it is 0. Then sgu='(y) = u~'(y), and by
relation (3) we have é_u—l(,y)j\j(;l = Tlglé_uq(v). Moreover, syu(f) = u(3) € R,
hence £(syusg) = £(s,u) + 1, and then C’(syusg) = C’(s,u)Tp. This concludes the
proof in this case.

Now assume (v,u(3)") = 1. Then sgu='(y) = u=!(y) — 3, and by relation (4)
we have é,sﬁu—l(v) = Tﬁé,u—l(v)j\jﬁ. Moreover, syu(3) € R~ (as (u(8),7Y) > 0),
hence £(syusg) = £(syu) — 1. One concludes as before.

(ili) Finally, consider some w with ¢(w) = 0. Write w = wyty. Using formula
(L.1.1]) we have (A, a") = 0if wg(a) € RY, and (A, a") = —1if wg(a) € R™. There
is no condition on wu in this case. Hence we have to prove that S'(wu)(S'(u))~t =
S’ (w) for any u € W. We will prove it by (ascending) induction on £(u). If u # Id,
let 8 € ® and v € W be such that u = vsg, with [(v) = [(u) — 1. Then v(8) € R™.
We have S’ (wu) (S (u))~! = C/(’wf’US,(-})ésﬂv—l(A)(TB)_lcl(’U)_l.

First, assume ((wsvsg) = L(wsv) + 1, ie. C'(wsvsg) = C'(wpv)Ts. Then
wsv(B) € RT. Hence (\,v(3)Y) = 0 = (v71()),8Y). Hence spv=1(A) = v=1(N),
and relation (3) gives Tﬂév—l()\) = év—l()\)Tﬂ. Then the result for u follows from the
result for v.

Next, assume £(wsvsg) = L(wsv) — 1, ie. C'(wsvsg) = C'(wpv)(Ts)~ . Then
wsv(B) € R™. Hence (v71(A),8Y) = —1. And the result for u follows from the
result for v and relation (4) applied to sgv=1(\). O

A.4. End of the proof. We define a group morphism ¢ : Blg — B by setting, for
any w € Wz, ¢(C(w)) = S (wu)(S"(u))~! for some u € W/g such that L(wu) =
L(u)—£(w) (such a u exists by lemma [A.1.9, and this does not depend on the choice
of u, due to proposition ) We have already proved that these elements satisfy
the relations of the definition of B4 in the beginning of the proof of proposition

A

Recall that v : B B! & denotes the canonical morphism. It follows from lemma
and the diagram at the beginning of paragraph @ that Yoo =1d. If s€ S
then L(s) = —((s), hence one may take u = 1. Thus ¢ o (Ts) = ¢(Ts) = Ts.
Similarly, if z € X is dominant then L(t;) = —£(t,). Hence ¢ o 1h(0,) = ¢(6,) =
#(C(ty)) = 0. As these elements generate B (use relation (2)), we conclude that
¢ o1y = 1Id. This concludes the proof of theorem .
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