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ON THE ZEROS OF THE RIEMANN ZETA FUNCTION

LAZHAR FEKIH-AHMED

Abstract. This paper is divided into two independent parts. The first part
presents a new integral and series representation of the Riemaan zeta function.
An equivalent formulation of the Riemann hypothesis is given and few results
on this formulation are briefly outlined. The second part exposes a totally
different approach. Using the new series representation of the zeta function of
the first part, exact information on its zeros is provided based on Tauberian-
like results.

PART I

1. Introduction

It is well-known that the Riemaan zeta function defined by the Dirichlet series:

(1.1) ζ(s) =
1

1s
+

1

2s
+ · · ·+ 1

ks
+ · · · =

∞
∑

n=1

n−s

converges for ℜ(s) > 1, and can be analytically continued to the whole complex
plane with one singularity, a simple pole with residue 1 at s = 1. It is also well
known that ζ(s) satisfies the functional equation:

(1.2) χ(s)ζ(s) = ζ(1 − s)χ(1− s) with χ(s) = π− s

2Γ(
s

2
),

and that the zeros of ζ(s) come into two types. The trivial zeros which occur at
all negative even integers s = −2,−4, · · · , and the nontrivial zeros which occur at
certain values of s ∈ C, 0 < ℜ(s) < 1.

The Riemann hypothesis states that the nontrivial zeros of ζ(s) all have real
part ℜ(s) = 1

2 . From the functional equation (1.2), the Riemann hypothesis is

equivalent to ζ(s) not having any zeros in the half plane ℜ(s) > 1
2 .

2. An Analytic Continuation of ζ(s)

Let

(2.1) Sn(s) = 1−
(

n− 1

1

)

2−s +

(

n− 1

2

)

3−s − · · ·+ (−1)n−1(n)−s, n ≥ 2

with S1(s) = 1.
Using the well-known identity, valid for ℜ(s) > 0:
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(2.2) n−s =
1

Γ(s)

∫ ∞

0

e−ntts−1 dt,

we can rewrite Sn(s) in (2.1) as:

Sn(s) =

n−1
∑

k=0

(−1)k
(

n− 1

k

)

(k + 1)−s

=
1

Γ(s)

∫ ∞

0

n−1
∑

k=0

(−1)k
(

n− 1

k

)

e−(k+1)tts−1 dt

=
1

Γ(s)

∫ ∞

0

(1− e−t)n−1e−tts−1 dt,

(2.3)

since
n−1
∑

k=0

(−1)k
(

n− 1

k

)

e−(k+1)t = e−t(1− e−t)n−1.

We have

∞
∑

n=1

Sn(s)

n+ 1
=

1

Γ(s)

∞
∑

n=1

∫ ∞

0

(1− e−t)n−1

n+ 1
e−tts−1 dt(2.4)

=
1

Γ(s)

∫ ∞

0

∞
∑

n=1

(1− e−t)n−1

n+ 1
e−tts−1 dt(2.5)

=
1

Γ(s)

∫ ∞

0

(

t

(1− e−t)2
− 1

1− e−t

)

e−tts−1 dt.(2.6)

Before we proceed further, some remarks are in order:

Remark 2.1. The interchange of the summation and integration in equation (2.5)

is valid because the series
∑∞

n=1

∫∞
0

(1−e−t)n−1

n+1 e−tts−1 dt converges absolutely and
uniformly for 0 < t < ∞. To see this, we show uniform convergence for the

dominating series
∑∞

n=1

∫∞
0

(1−e−t)n−1

n+1 e−ttσ−1 dt, σ = ℜ(s). Indeed, let K =

max((1 − e−t)n−1e−t/2), 0 < t < ∞. A straightforward calculation of the de-
rivative shows that K = (1 − 1

2n−1 )
n−1 1√

2n−1
and is attained when e−t = 1

2n−1 .

Now, for n ≥ 2, we have

1

n+ 1

∫ ∞

0

(1 − e−t)n−1e−ttσ−1 dt =
1

n+ 1

∫ ∞

0

(1− e−t)n−1e−t/2(e−t/2tσ−1) dt

≤ K

n+ 1

∫ ∞

0

e−t/2tσ−1 dt

=
1

n+ 1
(1− 1

2n− 1
)n−1 2σΓ(σ)√

2n− 1
(2.7)

≤ 2σΓ(σ)

(n+ 1)
√
2n− 1

.

The last inequality implies that the dominating series converges by the compar-
ison test.
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Remark 2.2. To get equation (2.6) we used the identity:

(2.8)

∞
∑

n=1

(1 − e−t)n−1

n+ 1
=

t

(1− e−t)2
− 1

1− e−t
,

which can be obtained by putting X = 1−e−t into − log(1−X)

X2
− 1

X
=

∞
∑

n=1

Xn−1

n+ 1
.

Now, since

(2.9)
d

dt

−te−t

1− e−t
=

te−t

(1 − e−t)2
− e−t

1− e−t
,

an integration by parts in (2.6) yields

(2.10)
∞
∑

n=1

Sn(s)

n+ 1
=
s− 1

Γ(s)

∫ ∞

0

e−tts−1

1− e−t
dt = (s− 1)ζ(s),

which is valid when ℜ(s) > 1. And since the integral (2.6) is valid for ℜ(s) > 0,
then we have proved

Theorem 2.3. Let φ(t) = t
(1−e−t)2 − 1

1−e−t , then for ℜ(s) > 0,

(2.11) (s− 1)ζ(s) =
1

Γ(s)

∫ ∞

0

φ(t)e−tts−1 dt.

Remark 2.4. Although we will not need it in the rest of the paper, we can also
obtain an analytic continuation of (s − 1)ζ(s) when ℜ(s) ≤ 0. We simply rewrite
(2.11) as a contour integral

(2.12)
Γ(1− s)

2πi

∫

C
φ(t)e−tts−1 dt,

where C is the Hankel contour consisting of the three parts C = C−∪Cǫ∪C+: a
path which extends from (−∞,−ǫ), around the origin counter clockwise on a circle
of center the origin and of radius ǫ and back to (−ǫ,−∞), where ǫ is an arbitrarily
small positive number. The integral (2.12) now defines (s− 1)ζ(s) for all s ∈ C.

Remark 2.5. In particular, when s = k is a positive integer, we have yet another
formula for ζ(k):

(2.13) (k − 1)ζ(k) =
1

(k − 1)!

∫ ∞

0

φ(t)e−ttk−1 dt.

Remark 2.6. The above integral formula for (s − 1)ζ(s), although obtained by
elementary means, does not seem to be found in the literature. As for the series
formula, it has been obtained by a different method in [10]. A series formula that
is different but similar in form and always mentioned in the literature is that of
Hasse [7].

3. A Series Expansion of (s− 1)ζ(s)Γ(s)

The analytic function (s−1)ζ(s)Γ(s) can be represented by a Taylor series around
any point s0 = 1+ iy on the vertical line σ = 1. In particular, for s0 = 1 we obtain
the well-known power series [1]:
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(3.1) (s− 1)ζ(s)Γ(s) = a0 + a1(s− 1) + a2(s− 1)2 + a3(s− 1)3 + · · ·
where the coefficients a0 = 1 and an are defined by

an = lim
s→1

dn

dsn

{
∫ ∞

0

φ(t)e−tts−1 dt

}

(3.2)

=

∫ ∞

0

φ(t)e−t lim
s→1

dn

dsn
{

ts−1
}

dt(3.3)

=
1

n!

∫ ∞

0

φ(t)e−t(log t)n dt,(3.4)

with φ(t) being the function defined in Theorem 2.3.
The coefficients an are very important in the evaluation of ζ(k)(0) as given by

Apostol in [1]. Up to now the an are regarded as unknowns and as difficult to
approximate as ζ(k)(0) itself as pointed out by Lehmer [9]. The formula above
solves the exact evaluation problem of the ζ(k)(0) and many other variant formulae.
The following proposition provides more information on the sequence {an}.
Proposition 3.1. For n large enough, the coefficients an are given by

an = (−1)n
(

1

2
− 1

6

1

2n+1

)

+O(
1

4n
).

Proof. The expression of an can be split into the sum

an =
1

n!

∫ 1

0

φ(t)e−t(log t)n dt+
1

n!

∫ ∞

1

φ(t)e−t(log t)n dt

=
(−1)n

2
+

(−1)n

n!

∫ 1

0

[

φ(t)e−t − 1

2

]

log

(

1

t

)n

dt+
1

n!

∫ ∞

1

φ(t)e−t(log t)n dt.(3.5)

To obtain an estimate the first integral in (3.5), we use equation (2.9). A differ-
entiation with respect to t of the following expansion which defines the Bernoulli
numbers1

(3.6)
te−t

1− e−t
=

∞
∑

n=0

Bn

n!
tn

gives

(3.7) φ(t)e−t − 1

2
=

∞
∑

n=2

−Bn

(n− 1)!
tn−1 = −1

6
t+

1

180
t3 − 1

5040
t5 + · · ·

Now, since

(3.8)
1

n!

∫ 1

0

tm log

(

1

t

)n

dt =
1

(m+ 1)n+1

1B0 = 1 B1 = 1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, B7 = 0, B8 = −1/30
etc.
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for all n,m positive, the first integral in (3.5) without the factor (−1)n has an
expansion

1

n!

∫ 1

0

[

φ(t)e−t − 1

2

]

log

(

1

t

)n

dt =

∞
∑

n=2

−Bn

(n− 1)!(n+ 1)n+1

= −1

6

1

2n+1
+

1

180

1

4n+1
− 1

5040

1

6n+1
+ · · ·

(3.9)

To estimate the second integral in (3.5), we use the bound

(3.10) (log t)n < eǫt

which is valid for all t ≥ n1+ǫ and for n large enough and where ǫ is any positive
small number. We split the integral into two parts

1

n!

∫ ∞

1

φ(t)e−t(log t)n dt ≤ 1

n!

∫ n1+ǫ

1

φ(t)e−t(log t)n dt+

1

n!

∫ ∞

n1+ǫ

φ(t)e−t(log t)n dt(3.11)

≤ C0

n!
(1 + ǫ)n log(n)n +

1

2n!

e−(1−ǫ)n1+ǫ

1− ǫ
,(3.12)

where C0 =
∫∞
1
φ(t)e−t dt = 0.58.

Clearly, the term 1
2n!

e−(1−ǫ)n1+ǫ

1−ǫ is extremely small for n large enough. In par-

ticular, for n ≥ 2, it is less than C
an where C is a positive constant and a is any

positive constant greater than 2.
Using Stirling formula n! ∼

√
2πn

(

n
e

)n
, we can verify that the term C0

n! (1 +

ǫ)n log(n)n can also be made less than C
an for n large enough. Taking a = 4 for

example, we obtain

(3.13)
1

n!

∫ ∞

1

φ(t)e−t(log t)n dt ≤ C

4n
.

By combining the above estimates, we obtain

(3.14) an = (−1)n
(

1

2
− 1

6

1

2n+1

)

+O(
1

4n
).

�

For any s0 of the form s0 = 1+ iy the corresponding Taylor series is

(3.15) (s− 1)ζ(s)Γ(s) = b0 + b1(s− s0) + b2(s− s0)
2 + b3(s− s0)

3 + · · ·
where the bn is expressed as

(3.16) bn =
1

n!

∫ ∞

0

φ(t)e−t(log t)ntiy dt.
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An asymptotic estimate of the coefficients bn is given by the following proposition
whose proof is the same as the proof of Proposition 3.1.

Proposition 3.2. The radius of convergence of the series (3.15) is
√

1 + y2 and
for n large enough, the coefficients bn are given by

bn =
1

2

(−1)n

(1 + iy)n+1
− 1

6

(−1)n

(2 + iy)n+1
+O(

1

(
√

16 + y2)n
).

4. The zeros of ζ(s)

The Taylor series expansion (s− 1)ζ(s)Γ(s) provides us with a tool to study the
zeros of ζ(s) is a neighborhood of s0 = 1+ iy. We have

(4.1) (s− 1)ζ(s)Γ(s) = b0 + b1(s− s0) + b2(s− s0)
2 + b3(s− s0)

3 + · · ·
with

(4.2) b0 = iyζ(1 + iy)Γ(1 + iy),

(4.3) bn =
1

n!

∫ ∞

0

φ(t)e−t(log t)neiy dt.

It is a well-know fact [6] that ζ(1 + iy) 6= 0 for all y. Therefore b0 6= 0 for all y
and the inverse of (s− 1)ζ(s)Γ(s) is well-defined and can be expanded into a power
series of the form

(4.4)
1

(s− 1)ζ(s)Γ(s)
= c0 + c1(s− s0) + c2(s− s0)

2 + c3(s− s0)
3 + · · · ,

where the coefficients cn are given by

(4.5) cn = (−1)n
∆n

bn+1
0

,

with

(4.6) ∆n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 b0 · · · · · · 0
b2 b1 b0 · · · 0
...

...
...

...
...

bn−1 bn−2 bn−3 · · · b0
bn bn−1 bn−2 · · · b1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let D(s0,
1
2 ) be the open disk of center s0 and radius 1

2 . The zeros of ζ(s) are
the same as those of (s − 1)ζ(s)Γ(s) in the right half plane; therefore, ζ(s) 6= 0 in
D(s0,

1
2 ) for any y is equivalent to the fact that the radius of convergence of the

series (4.4) is at least 1
2 for any y.

Now, the union of the strips S1 = {s ∈ C : 1
2 < σ < 1} and S2 = {s ∈ C : 0 <

σ < 1
2} form the critical strip minus the critical line σ = 1

2 . Moreover, the strip

S = {s ∈ C : 1
2 < σ < 3

2} can be written as
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(4.7) S =
⋃

y

D(1 + iy,
1

2
)

We conclude from the above, that if ζ(s) doest not have a zero inside the strip S
and a fortiori does not have a zero in the strip S1, then by the functional equation
ζ(s) cannot have a zero inside S2 neither. We thus have proved

Theorem 4.1. The Riemann hypothesis is equivalent to either

(1) the series (4.1) does not have any zero in the disk D(s0,
1
2 ) for any y.

(2) the radius of convergence of the series (4.4) is at least 1
2 for any y.

Remark 4.2. We have been able to prove that the series (4.1) does not have any
zero in the disk D(1, 12 ) (i.e y = 0). The proof is trivial and uses the criterion of
Petrovitch [8] for power series. We also have been able to prove the well-known
result that D(1, 1) is a zero-free region. We have been unable to generalize the proof
for any y because as y gets large the values of |b0| become very small compared to
that of |b1|. The typical power series and polynomial non-zero regions criteria are
inapplicable. More knowledge on the ratios |bn|/|b0| is needed.

Remark 4.3. Another criterion of the Riemann hypothesis can be formulated using
the conformal mapping s = 1

1−z which maps the plane ℜ(s) > 1
2 onto the unit disk

|z| < 1. We wan write

(
z

1− z
)ζ(

1

1 − z
)Γ(

1

1 − z
) , f(z) =

∫ ∞

0

φ(t)e−tt
z

1−z dt

=

∞
∑

n=0

ãnz
n,(4.8)

where the coefficients ãn are given by

(4.9) ãn =

∫ ∞

0

φ(t)e−tLn(− ln t) dt,

Ln(x) = L0
n(x) being the Laguerre polynomial of order 0.

The Riemann hypothesis is equivalent to the function f(z) having no zeros in
the unit disk.

Although the above formulations of the Riemann hypothesis seem to be promis-
ing since exact information on the coefficients is known, we will not pursue this
approach. The new approach that we will adopt is presented next.

PART II

In this part we will pursue a completely different approach from the one presented
in PART I. Using the new series representation of the zeta function of the first part,
exact information on its zeros is provided based on Tauberian-like results.
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5. The Series representation of (s− 1)ζ(s)

In PART I, we showed that (s − 1)ζ(s) process both an integral and a series
representation valid for ℜ(s) > 0. In the remaining of the paper we will only
consider the series representation. We recall the series representation valid when
ℜ(s) > 1:

(5.1)
∞
∑

n=1

Sn(s)

n+ 1
=
s− 1

Γ(s)

∫ ∞

0

e−tts−1

1− e−t
dt = (s− 1)ζ(s),

where Sn(s) is given by

(5.2) Sn(s) =

n−1
∑

k=0

(−1)k
(

n− 1

k

)

(k + 1)−s.

First, we will provide another proof on the validity of the series representation for
ℜ(s) > 0. To prove the analytic continuation when ℜ(s) > 0, we need to evaluate
the sum when ℜ(s) > 0. The next lemma, which will also be needed in the rest
of the paper, provides such an estimation. It provides an estimate of the exact

asymptotic order of growth of Sn(s)
n+1 when n is large.

Lemma 5.1.
Sn(s)

n+ 1
∼

1

n(n+ 1)(logn)1−sΓ(s)
for n large enough and for all s =

σ + it, ℜ(s) > 0, s /∈ {1, 2, · · · }.
Proof. By putting k = m− 1 in (5.2), we have by definition

Sn(s) =
n
∑

m=1

(

n− 1

m− 1

)

(−1)m−1m−s =
n
∑

m=1

m

n

(

n

m

)

(−1)m−1m−s

=
−1

n

n
∑

m=1

(

n

m

)

(−1)mm1−s =
−1

n
∆n(s− 1),

(5.3)

where ∆n(λ) ,

n
∑

m=1

(

n

m

)

(−1)mm−λ.

The asymptotic expansion of sums of the form ∆n(λ), with λ ∈ C being nonin-
tegral has been given in Theorem 3 of Flajolet et al. [4]. With a slight modification
of notation, the authors in [4] have shown that ∆n(λ) has an asymptotic expansion
in descending powers of logn of the form

(5.4) −∆n(λ) ∼ (log n)λ
∞
∑

j=0

(−1)j
Γ(j)(1)

j!Γ(1 + λ− j)

1

(logn)j

We apply the theorem to ∆n(λ) with λ = s− 1 to get

(5.5) ∆n(s− 1) ∼
−(logn)s−1

Γ(s)
,

which leads to the result

(5.6) Sn(s) ∼
1

n(logn)1−sΓ(s)
.
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The Lemma follows from dividing equation (5.6) by n+ 1. �

Now to obtain an analytic continuation when ℜ(s) > 0, we simply observe that
the logarithmic test of series in combination with the asymptotic value of Sn(s)
provided by Lemma 5.1 imply that the absolute value of the series on the left hand
side of (5.1) is dominated by a uniformly convergent series for all finite s whose real
part is greater than 0.

Remark 5.2. ByWeierstrass theorem, we can see that the function (s−1)ζ(s) can be
extended outside of the domain ℜ(s) > 1 and that it does not have any singularity
when ℜ(s) > 0. Moreover, by repeating the same process for ℜ(s) > −k, k ∈ N, it
is clear that the series defines an analytic continuation of ζ(s) valid for all s ∈ C.

6. Preparation Lemmas

Throughout this section, we suppose that 0 < ℜ(s) < 1. For a fixed s = σ + it,
we associate with ζ(s), the following power series:

(6.1) (s− 1)ζ(s, x) ,
S1(s)

2
x+

S2(s)

3
x2 + · · ·+ Sn−1(s)

n
xn−1 +

Sn(s)

n+ 1
xn + · · ·

x ∈ R.
Let’s also further define the “comparison” power series by

(6.2) Φ(x) , (1− x)

(

log(1− x)

−x

)s

= φ0 + φ1x+ φ2x
2 + · · ·+ φnx

n + · · ·

It is easy to verify that for σ > 0

(6.3) lim
x→1

(1 − x)

(

log(1− x)

−x

)s

= 0.

Furthermore, direct calculation of Φ′(x) yields the expression

(6.4) Φ′(x) =

(

log(1− x)

−x

)s
(

− 1 + s− s

log(1− x)
− s

x

)

.

Clearly, Φ′(x) is well-defined for all x ∈ [0, 1) and satisfies

(6.5) lim
x→1

|Φ′(x)| = ∞.

In other words the power series Φ′(x) is a continuous well defined function of x,
converges for all values of x ∈ [0, 1) and diverges when x → 1. Moreover, because
Φ(x) is analytic at x = 0, Φ′(x) must possess the following power series expansion
around x = 0:

(6.6) Φ′(x) = φ1 + 2φ2x+ · · ·+ nφnx
n−1 + · · ·

Finally, we associate to the series (6.6) the following positive coefficients power
series:

(6.7) Φ̃(x) , |φ1|+ 2|φ2|x+ · · ·+ n|φn|xn−1 + · · ·
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The proofs in the remaining of this section will be based on two theorems. The
first theorem, which is due to Nörlund and generalized by Flajolet et al., estimates
the asymptotic behavior of the coefficients of certain powers series:

Theorem 6.1 ([5]). Let α be a positive integer and β be a real or complex number,
β /∈ {0, 1, 2, · · · }. Define the function f(z) by

(6.8) f(z) = (1− z)α(
1

z

(

log
1

1− z

)β
.

Then, the Taylor coefficients fn of f(z) satisfy

(6.9) fn ∼ n−α−1(logn)β
(e1
1!

−(β)

(log n)
+
e2
2!

β(β − 1)

(logn)2
+ · · ·

)

,

with

(6.10) ek =
dk

dsk

(

1

Γ(s)

)
∣

∣

∣

∣

s=α

.

The second theorem, due to Appell, is the counterpart of l’Hospital’s rule for
divergent positive coefficients power series:

Theorem 6.2 ([2] p. 66). Let f(x), g(x) be two real power series of the form

(6.11) f(x) =

∞
∑

n=1

anx
n, g(x) =

∞
∑

n=1

bnx
n, an, bn > 0 for all n > N, 0 < x < 1.

We further suppose that

• the series
∑∞

n=1 an,
∑∞

n=1 bn are both divergent so that x = 1 is a singular
point of both f(x) and g(x).

• lim
n→∞

an
bn

= l,

then,

(6.12) lim
x→1

f(x)

g(x)
= l.

Our first result establishes an important property on the behavior of the deriv-
ative of the function Φ(x) when x is close to 1:

Lemma 6.3. There exists an x0 ∈ (0, 1) and a constant C independent of x such

that for all x ∈ (x0, 1) we have
|Φ′(x)|
Φ̃(x)

> C > 0.

Proof. From (6.4),

(6.13) |Φ′(x)| =
(

log(1− x)

−x

)σ
∣

∣− 1 + s− s

log(1− x)
− s

x

∣

∣.

Let’s suppose that the power series expansion of

(

log(1− x)

−x

)σ

, Ψ(x) is given

by

(6.14) Ψ(x) = ψ0 + ψ1x+ ψ2x
2 + · · ·+ ψnx

n + · · · ,
then applying Theorem 6.1 with α = 0 and β = σ, implies that for large values of
n, the coefficients ψn satisfy the following asymptotic value:
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(6.15) ψn ∼
σ

n(logn)1−σ
.

Similarly, for Φ′(x) = φ1 +2φ2x+ · · ·+nφnx
n−1 + · · · , Theorem 6.1 with α = 1

and β = s, implies that for large values of n, the coefficients φn satisfy the following
asymptotic estimates:

(6.16) φn ∼
−sγ

n2(logn)1−s
,

where γ is Euler’s constant.
The asymptotic value of n|φn| imply by Abel’s Theorem and the logarithmic test

of series that, like Ψ(x), the series Φ̃(x) goes to infinity as x approaches 1.
We thus have

(6.17)
|Φ′(x)|
Φ̃(x)

=
Ψ(x)x

∑∞
n=1 n|φn|xn

∣

∣− 1 + s− s

log(1− x)
− s

x

∣

∣.

Now as x approaches 1,
∣

∣− 1 + s− s
log(1−x) − s

x

∣

∣ approaches 1 so that given any

small ǫ > 0 we can find x1 such that for x ∈ (x1, 1),
∣

∣−1+s− s
log(1−x) − s

x

∣

∣ > 1− ǫ.
Moreover, since Ψ(x)x =

∑∞
n=1 ψn−1x

n and
∑∞

n=1 n|φn|xn both go to infinity
as x approches 1, and since the asymptotic estimates (6.15)-(6.16) of ψn−1 and φn
verify

(6.18) lim
n→∞

ψn−1

n|φn|
=

σ

γ|s| ,

then Theorem 6.2 gives

(6.19) lim
x→1

∑∞
n=1 ψn−1x

n

∑∞
n=1 n|φn|xn

=
σ

γ|s| .

In other words, given any small ǫ > 0 we can find x2 such that for x ∈ (x2, 1),
Ψ(x)x∑

∞

n=1 n|φn|xn > σ
γ|s| − ǫ.

To complete the proof take for example C = σ
4γ|s| and x0 = max{x1, x2}.

�

The second lemma that we need establishes a relationship between the derivative
of ζ(s, x) and that of Φ(x):

Lemma 6.4. Let Φ be defined as above and let ζ′(s, x) be d
dxζ(s, x), then

(6.20) lim
x→1

(s− 1)ζ′(s, x)

Φ′(x)
=

−1

γsΓ(s)
,

where the limit is taken from below.

Proof. We have
(6.21)

(s− 1)ζ′(s, x) =
S1(s)

2
+

2S2(s)

3
x+ · · ·+ (n− 1)Sn−1(s)

n
xn−2 +

nSn(s)

n+ 1
xn−1 + · · ·

x ∈ R.
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Lemma 5.1 gives
Sn(s)

n+ 1
∼

1

n(n+ 1)(logn)1−sΓ(s)
for n large enough and for all

s = σ + it, 0 < ℜ(s) < 1. Combining with the estimate (6.16) yields

(6.22) lim
n→∞

nSn(s)
n+1

nφn
=

−1

γsΓ(s)
.

The limit (6.22) is equivalent to saying that there exists a complex sequence ǫn
with lim

n→∞
ǫn = 0 such that

(6.23) n
Sn(s)

n+ 1
=

−1

γsΓ(s)
nφn + ǫnnφn

or equivalently

(6.24) n
Sn(s)

n+ 1
xn−1 =

−1

γsΓ(s)
nφnx

n−1 + ǫnnφnx
n−1,

and finally adding the equalities for n = 1, 2, · · · , yields

(6.25) (s− 1)ζ′(s, x) =
−1

γsΓ(s)
Φ′(x) +

∞
∑

n=1

ǫnnφnx
n−1.

Now by dividing all sides of (6.25) by Φ′(x), 0 < x < 1, and taking the limit as
x→ 1, we get

(6.26) lim
x→1

(s− 1)ζ′(s, x)

Φ′(x)
=

−1

γsΓ(s)
+ lim

x→1

∑∞
n=1 ǫnnφnx

n−1

Φ′(x)
.

To prove the lemma it suffices to show that

(6.27) lim
x→1

∣

∣

∣

∣

∑∞
n=1 ǫnnφnx

n−1

Φ′(x)

∣

∣

∣

∣

= 0.

Indeed, using our first preparation Lemma 6.3, simple calculations yield

lim
x→1

|∑∞
n=1 ǫnnφnx

n−1|
|Φ′(x)| ≤ lim

x→1

∑∞
n=1 n|ǫn||φn|xn−1

|Φ′(x)|

≤ 1

C
lim
x→1

∑∞
n=1 n|ǫn||φn|xn−1

Φ̃(x)
,(6.28)

where Φ̃(x) is defined in (6.7).
If the series in the numerator is convergent, the result is obvious. If not, the

two series in the right hand side of the last inequality are both divergent positive
coefficients power series. An application of Theorem 6.2 shows that the limit in
(6.28) is equal to the limit of

(6.29) lim
n→∞

n|ǫn||φn|
n|φn|

= 0,

and the lemma is proved.
�
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Now let s be a nontrivial zero of ζ(s). By Abel’s theorem limx→1(s− 1)ζ(s, x) =
(s − 1)ζ(s, 1) = 0. In addition, limx→1Φ(x) = 0. The next and last preparation
lemma shows that because of the particular function Φ(x), l’Hospital’s rule which
usually does not apply to vector valued or complex valued function, does apply for
this particular case:

(6.30) lim
x→1

(s− 1)ζ(s, x)

Φ(x)
= lim

x→1

(s− 1)ζ′(s, x)

Φ′(x)
=

−1

γsΓ(s)
.

Lemma 6.5. Let Φ be defined as above and let s be a nontrivial zero of ζ(s), then

(6.31) lim
x→1

(s− 1)ζ(s, x)

Φ(x)
=

−1

γsΓ(s)

where the limit is taken from below.

Proof. From Lemma 6.4, we have

(6.32) lim
x→1

(s− 1)ζ′(s, x)

Φ′(x)
=

−1

γsΓ(s)
.

Define δ(x) by

(6.33) δ(x) ,
(s− 1)ζ′(s, x)

Φ′(x)
+

1

γsΓ(s)

so that (6.32) can be written as

(6.34) lim
x→1

δ(x) = 0.

Multiplying equation (6.33) by Φ′(x), and integrating2 from x to 1, we obtain

(6.35) (s−1)
(

lim
ǫ→0

ζ(s, 1−ǫ)−ζ(s, x)
)

+
limǫ→0 Φ(1− ǫ)− Φ(x)

γsΓ(s)
=

∫ 1

x

δ(y)Φ′(y) dy.

Now recalling that limǫ→0 Φ(1 − ǫ) = 0, and that s is a zero of ζ(s) so that
limǫ→0 ζ(s, 1− ǫ) = 0, and dividing both sides of (6.35) by Φ(x), we finally get

(6.36)
(s− 1)ζ(s, x)

Φ(x)
+

1

γsΓ(s)
= −

∫ 1

x
δ(y)Φ′(y) dy

Φ(x)
,

by which we obtain:

lim
x→1

∣

∣

∣

∣

(s− 1)ζ(s, x)

Φ(x)
+

1

γsΓ(s)

∣

∣

∣

∣

≤ lim
x→1

∣

∣

∫ 1

x δ(y)Φ
′(y)dy

∣

∣

|Φ(x)|

≤ lim
x→1

∫ 1

x

∣

∣δ(y)
∣

∣

∣

∣Φ′(y)
∣

∣ dy

|Φ(x)|(6.37)

By observing that the ratio

(6.38)

∣

∣Φ′(y)
∣

∣

∣

∣Φ(y)
∣

∣

′ =

∣

∣− 1 + s− s
log(1−y) − s

y

∣

∣

∣

∣− 1 + σ − σ
log(1−y) − σ

y

∣

∣

,

2The integral is an improper integral, i.e. it is defined as limǫ→0

∫ 1−ǫ

x
f(y) dy
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where
∣

∣Φ(y)
∣

∣

′
=

d

dy

∣

∣Φ(y)
∣

∣ is always bounded by a suitable constant, say K, for

y ∈ (x0, 1), x0 close to 1, the limit in (6.37) is less than or equal to

(6.39) K lim
x→1

∫ 1

x

∣

∣δ(y)
∣

∣

∣

∣Φ(y)
∣

∣

′
dy

|Φ(x)| .

The last limit in (6.39) consists of a limit of the ratio of two real functions that
satisfy the hypothesis of l’Hospital’s rule. That is

(6.40) K lim
x→1

∫ 1

x

∣

∣δ(y)
∣

∣

∣

∣Φ(y)
∣

∣

′
dy

|Φ(x)| = K lim
x→1

∣

∣δ(x)
∣

∣

∣

∣Φ(x)
∣

∣

′

|Φ(x)|′ = K lim
x→1

∣

∣δ(x)
∣

∣ = 0.

Consequently,

(6.41) lim
x→1

∣

∣

∣

∣

(s− 1)ζ(s, x)

Φ(x)
+

1

γsΓ(s)

∣

∣

∣

∣

= 0,

and the lemma is proved. �

Equation (6.31) in Lemma 6.5 is quite a remarquable identity. It is in fact the
key formula for proving the Riemann hypothesis. It says that if s is a zero of
ζ(s) and even though for this particular value of s, limx→1(s − 1)ζ(s, x) = 0 and

limx→1 Φ(x) = 0, the limit lim
x→1

(s− 1)ζ(s, x)

Φ(x)
is well defined and is equal to

−1

γsΓ(s)
.

Using this identity, we are now ready to prove the Riemann hypothesis.

7. Proof of Riemann Hypothesis

We proceed by contradiction. Suppose that s = σ + it is a zero of ζ(s) with

0 < σ <
1

2
. From the functional equation (1.2), 1− s must also be a zero of ζ(s).

We have from the previous analysis:

lim
x→1

(s− 1)ζ(s, x)

Φ(x)
=

−1

γsΓ(s)
, where

Φ(x) , (1− x)

(

log(1 − x)

−x

)s

.

(7.1)

Similarly, for 1 − s, we define the comparison function Φ̂(x) which is analogous
to Φ(x) but with 1− s in place of s to get

lim
x→1

−sζ(1 − s, x)

Φ̂(x)
=

−1

γ(1− s)Γ(1− s)
, where

Φ̂(x) , (1− x)
( log(1− x)

−x
)1−s

.

(7.2)

Taking absolute values and dividing equation (7.1) by (7.2) 3, we must then have

3We could have evaluated the quotient directly without taking absolute values, but then the

limit of the quotient exists under the condition that limx→1
Φ̂(x)
Φ(x)

exists; and this is not always
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(7.3) lim
x→1

∣

∣

∣

∣

(1− s)ζ(s, x)

sζ(1− s, x)

Φ̂(x)

Φ(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

(1− s)ζ(s)

sζ(1 − s)

∣

∣

∣

∣

lim
x→1

∣

∣

∣

∣

Φ̂(x)

Φ(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

Γ(1 − s)

Γ(s)

1− s

s

∣

∣

∣

∣

;

consequently,

(7.4) lim
x→1

∣

∣

∣

∣

Φ̂(x)

Φ(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

ζ(1 − s)

ζ(s)

Γ(1− s)

Γ(s)

∣

∣

∣

∣

.

The right hand side of (7.4) has a finite value for any zero of ζ(s) since the
functional equation (1.2) implies that:

(7.5)
ζ(1 − s)

ζ(s)
=

π− s

2Γ( s2 )

π− 1−s

2 Γ(1−s
2 )

so that ζ(1−s)
ζ(s) has a finite value for any zero of ζ(s). But exact calculation of the

left hand side of (7.4) gives:

(7.6) lim
x→1

∣

∣

∣

∣

Φ̂(x)

Φ(x)

∣

∣

∣

∣

= lim
x→1

(

log(1− x)

−x

)1−2σ

= ∞.

This contradicts equation (7.4) unless σ = 1
2 in which case the limit in (7.4) is

equal to 1. So there cannot be a zero such that 0 < σ < 1
2 and therefore all the

zeros must lie on the line σ = 1
2 . The proof is complete.
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true for complex-valued functions (e.g. for s = 0.5+ it, t 6= 0, the limit does not exist). By taking
the absolute values, the quotients are real-valued and we circumvent such cases.


