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Abstract

We propose an analysis of the effects introduced by finite accuracy and
round off arithmetic on numerical computations of discrete dynamical sys-
tems. Our method, that uses the statistical tool of the decay of fidelity,
computes the error comparing directly the numerical orbit with the exact
one (or, more precisely, with another numerical orbit computed with a
much higher accuracy). Furthermore, as a model of the effects of round
off arithmetic on the map, we also consider a random perturbation of the
exact orbit with an additive noise, for which exact results can be obtained
for some prototype maps. We investigate the decay laws of fidelity and
their relationship with the error probability distribution for regular and
chaotic maps, both for additive and numerical noise. In particular, for
regular maps we find an exponential decay for additive noise, and a power
law decay for numerical noise. For chaotic maps numerical noise is equiv-
alent to additive noise, and our method is suitable to identify a threshold
for the reliability of numerical results, i.e. a number of iterations below
which global errors can be ignored. This threshold grows linearly with
the number of bits used to represent real numbers.

1 Introduction

The reliability of numerical computations in dynamical systems is a relevant
long standing question. For continuous systems the global error on the orbit is
the result of the accumulation of two types of errors: the first one is the local
error due to the discretization algorithms, the second one is due to the finite
precision representation of reals in any computational device and to the round
off arithmetic. In this paper we propose a statistical analysis of the global er-
rors due to finite accuracy and round off in discrete dynamical systems. Even
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though our results on numerical maps are based on numerical computations,
the comparison with randomly perturbed maps, for which analytical results are
available, allows to understand the key features. For maps with hyperbolic at-
tractors the existence of true orbits close to pseudo-orbits is of great theoretical
importance but does not provide any statistical information on the discrepancies
between a pseudo-orbit and a true orbit with the same initial condition. We
show that for chaotic maps there is a sharp transition between two regions, one
in which the error is negligible and one in which its variance is comparable with
the size of the attractor, both for the numerical and the randomly perturbed
map. For regular or quasi regular anisochronous maps the transition is smooth
and the accuracy decay follows a power law for the numerical map and expo-
nential law for the randomly perturbed map.

In a previous work [1], we compared the value of an observable computed along
the orbit of a given map and the orbit of the same map with a random pertur-
bation for the same initial condition. The difference is a random process and,
for large iteration times, its probability density function (pdf) converges toward
a widespread distribution, which depends on the choice of the observable. For
chaotic maps, the relaxation is sharp, in the sense that there exists a threshold
time below which the width of the pdf is very small approximating a § function
and above which it has already reached its asymptotic value. These results were
obtained analytically and numerically by computing the inverse Fourier trans-
form of a suitable correlation integral between the two observables, called fi-
delity. For chaotic systems the fidelity decays at least exponentially fast and this
allows to recover the average of the observables with respect to the invariant and
the stationary measures. For the Bernoulli maps the decay is super-exponential
and there is numerical evidence for this type of decay for most chaotic maps
numerically investigated. For regular maps such as the translations on the torus
the decay is smoother and follows an exponential law. Numerical evidence was
found that the same exponential decay persists for quasi integrable maps.

In the subsequent letter [2] we applied the previous theoretical framework to
compare the exact orbit of a map with its numerical computation (on a ma-
chine). The latter could be considered as a pseudo-random orbit where the
noise is given by the round off errors.

In the present paper we develop with more details and formal considerations
the results announced in [2] and provide some new results.

The difference between the values of an observable computed along the exact
and the numerical orbits shows again the existence of an abrupt transition time
n* for the corresponding pdf, which has an interpretation of practical interest.
We could in fact argue that below the transition time the numerical orbits is
faithful to the exact orbit. By the way, this approach requires the knowledge of
the exact map which is not accessible. This difficulty is overcame by comparing
the numerical map computed for a given accuracy (simple floating point preci-
sion) with the same map evaluated numerically with a higher accuracy (double
or higher floating point precision), that we consider as the reference map. We
show that the results of the single-higher precision comparison are equivalent, at
least below a significant time scale, to the results we would obtain by comparing



a single precision and the exact map. We show that the threshold n* grows like
—Ine, where ¢ is the accuracy specified by the least significant bit used to rep-
resent a real number. As a consequence the fidelity threshold n*grows linearly
with the length of the string of bits used to represent real numbers. Beyond
this threshold the error distribution spreads quickly over its accessible range.
The behavior just described is typical of chaotic systems. For regular maps the
situation is slightly different: for isochronous maps the fidelity error does not
decay, whereas for anisochronous maps the decay follows a power law. For these
systems it is not possible to identify a sharp transition from the delta function
to the asymptotic one; the transition is a gradual process whose length depends
on g, i.e. gets longer with the number of bits used to represent real numbers.
A similar decay occurs for the correlations where it is due to the local mixing
properties, a property typical of anisochronous maps.

2 Additive noise

We begin by recalling the main results obtained applying the fidelity to random
perturbations of dynamical systems. We consider a map T defined on a phase
space X which is a subset of R?, endowed with an invariant physical measure
defined by

lim U (T"(z))dm(z) = / U (z)du(zx) (1)
where m denotes the Lebesgue measure and ¥ a continuous observable. Let
us then consider a sequence of independent and identically distributed random
variables &; with values in the probability space = and with probability density
distribution n(¢£) such that Tz + ¢ £ still maps X into itself. The iteration of the
map 7T is therefore replaced by a composition of maps chosen randomly close to
it (note that T itself is recovered when e = 0): T2 (x) = (T'+¢€&y) o (T +e&p—1)0
...o(T+ €& ) (z) and the stationary measure p. of the process is defined by [3]

Jim [ dmio) [[ndev @) = [ v@de@ @
We want to study the statistical properties of the error at the n-th iteration,
defined as AZ(z) = f(T"x) — f(T1x), where f is a smooth observable; in the
following we take f(x) = x for one dimensional maps and f(x) = z;, i =
1,---,d, x = (x1, - ,z4), for multidimensional maps. We are in particular
interested in studying p”, the probability distribution function of A”(x). This
probability distribution can be studied directly, through a Monte Carlo sampling
over initial conditions z and random perturbations £, or indirectly, using the
fidelity.

Fidelity is defined through the following integral:

r = [ dm(o) [T n(e)dew(r (@) #(72 2) 3)

= '3



For a large class of maps which mix exponentially fast, it can be shown that
the fidelity converges to [, W(x)du(z) [ ®(x)dpe(x), and the absolute value
of the difference between the integral (3) and its limiting value in terms of the
invariant and stationary measure will be called the fidelity error and denoted
with 6F['. Note that by the asymptotic characterization of the invariant and
stationary measures, the fidelity error could be equivalently defined as:

o /X W (T"(2))dm(z) / n@dsdm@err @) @

which emphasizes the role of the Lebesgue measure in the numerical compu-
tations. This quantity is relevant because the inverse Fourier transform of the
fidelity F(u), computed by choosing ¥(z) = ¢"/(*) &(x) = e~/ (*) is the
probability error distribution pZ(z). If the fidelity error converges to zero, then
the fidelity converges to the product of the Fourier transforms of the measures
Ix et du(x) Ix e~ dyu. (z) and its inverse Fourier transform is just p°. The
initial error distribution is the Dirac distribution p%(s) = 6(s), whereas it can
be shown that if the invariant and stationary measures are Lebesgue the asymp-
totic distribution is the triangular function peo(s) = (1 — |s|)d(1 — |s|). Since
the decay time scales of the fidelity error depend very weakly on the choice of
the observables U and ®, the study of 6F using ¥(z) = ®(z) = x is usually
the most efficient tool to investigate the convergence to the asymptotic error
distribution pg°.

For a couple of systems, translations on the torus (a regular system) and the
Bernoulli map (a chaotic system), analytical results are available also for the
transient. Choosing the probability distribution n(§) = %X[fl,ll (&) we found
that the fidelity for translations is given by [1]

Fr =S Wb gsn(ke)  S(r) = S2TT) (5)

2rx
kez

where ¥, and &, are the Fourier components of functions ¥ and ®, while for
the Bernoulli map Tx = gr mod 1, with integer ¢ > 2 we have

n—1
FI' = Wid S, qlke)  Spg(z) =[] S(d’2) (6)
kez J=0

In the first case the decay of fidelity is exponential, with time scale e =2, while in
the second case we have a plateau of length n, o< —Ine, below which fidelity is
almost constant, followed by an ¢ independent super-exponential decay. Below
the threshold n, the error probability distribution can be approximated by a §
function, and the perturbed system considered as equivalent to the unperturbed
one. The asymptotic error distribution is the same for the two systems (since
the physical and stationary measure coincide with Lebesgue), and results to be
the triangular function (figures 1 and 2). The transition between the § and the
triangular functions is sharp and ¢ independent for the Bernuolli system, while
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Figure 1: Comparison between analytical results and Monte Carlo integrals for
the decay of fidelity. Left: translations, e = 0.1 (analytical result: blue dashed
line; Monte Carlo: circles). Right: 3z mod 1. ¢ = 10~ in black and &€ = 1078
in green (analytical result: dashed line and crosses; Monte Carlo: circles). We
used N = 107 integration points in the Monte Carlo method. The test functions
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¥ = &* were defined in Fourier space as ¥, = k~!, truncated at k = 30.

100 1
10+
75
p p
50+ 05}
5,
25
0 Il L G Il L Il O Il L
105 50 05 105 50 05 T 05 05
Figure 2: p? for 3z mod 1, ¢ = 1078, Left: n = 13; center: n = 15, right:

n = 19. Compare the transition times with figure 1, right.




it is gradual and e dependent for the translations (see [1]).

Our numerical study of maps for which analytical results are not available
(Hénon, Baker’s, Intermittent, Logistic and Standard maps) [1] shows that the
behavior of translations and of Bernoulli maps can be considered as a proto-
type of, respectively, regular and chaotic maps. In particular for all the studied
chaotic maps is possible to identify a threshold n, o< —Ine below which the per-
turbed system can be considered as faithful to the unperturbed one; a threshold
followed by an ¢ independent, super-exponential decay. To this threshold corre-
sponds a sharp transition of the error probability distribution from a § function
to the asymptotic distribution (that in general is not a triangular function but
depends on the invariant and stationary measures).

3 Numerical noise

Since real numbers have to be represented as strings of bits on a computer,
to each discrete map 7' corresponds a numerical map T,. The action of the
numerical map depends on the length of bit strings used to represent real num-
bers and on the details of round off algebra, which are hardware dependent [4],
nevertheless some general results can be stated. In our computational device
any real number = € R is represented by a floating point number x*P, that is a
binary string with p significant bits

p q
P = f2° f=20fifs . fp=>_ f2™" e=x> e2"
k=1 k=1

where fi, ey are 0 or 1. The suffix p will be neglected whenever there is no am-
biguity. The result of any arithmetic operation such as z*P @ y*P corresponding
to  + y is a floating point number z*P € F, and sum & implies a round off.
The relative error r,, is defined by

P =z(1+rp) lrp| <e=27P

For instance in floating point simple precision we have € = 2725, We can write,
using the notation introduced for additive noise, Twx = T.x = Tz +e&(x) where
¢ is now determined in a deterministic way by the initial condition and ¢ is
a constant whose magnitude is of the order of the last significant bit used to
represent z. The iterated map 7' can be written as 7" using the previously
introduced notation, but in this case the single step errors &; will be n different
functions of the initial condition xz. Notice that T is defined by the round off
rules of the computer, and the notation 7" correspond to apply n times the
map as defined by those round off rules; while

ebn =y, = T(2}_y) =TI (z) = T(TI ' (2)) (7)

is introduced to compare the round off results with the previous results for
additive noise. We introduce also the global error A7 which can be written as

A =x) —x, =T (x) —T"(x)

*



The error A7 is the cumulative result of the local error for n iterations of the
map. It is interesting to compare these definitions with the local and global
errors when the perturbation to the map T'(z) is given by the additive noise.
In this case the map T.(z) is replaced by T, = T'(x) + €& so that letting «” =
TMz)=(T(x)+€&)o...(T(x) + €&) we have

6 = Tl ™)~ T() = T0a) — T(T7(a)

In this case we can write an explicit expression for the global error, which at
first order in € reads

Al =€) DT" 1) & +O() (8)
k=1

where DT (z) is the jacobian matrix of the map T, the & are random vectors
and the chain rule applies to compute DT™. For the translations on the torus
DT =1 and we can write (8) as

AT = e(nE + wy,) (9)

where £ = (¢) is the average of the stochastic process and w,, are the fluctuations
whose absolute value is of order 1. As a consequence in this case we have
lim,, o, A”/n = €£. The random perturbations we consider have usually zero
mean so that £ = 0; this may not be the case of round off errors whose average
can be nonzero. In the case of the Bernoulli maps DT is a constant and if the
process £ has zero mean again & = 0 unlike the case of round errors discussed
below. We also outline that when dealing with round off errors, the summation

in eq. 8 starts with & = 0 because also the initial error 2° — 2¥ is present.

Here 20 stands for the finite accuracy representation of the initial condition z°,
which is in general different from z°. As we will see, this may have relevant

consequences.

4 Generalizations of Fidelity

This observable is used to characterize statistically the spread between the orbit
and its stochastic perturbation. As previously introduced (3) fidelity was defined
by an integral over all the possible single step error realizations &;. Nevertheless,
from a numerical point of view, integrals were performed with a Monte Carlo
method, i.e. choosing N representative random vectors (z,&;), a procedure that
led to a relative error of order N~1/2 (see figure 1).

We suppose that if the deterministic & (z) functional dependence of single step
errors on the initial condition is complex enough, the vector (z,&;(x)) can be
considered as equivalent to a random sequence, i.e. the Monte Carlo integral
over initial conditions and noise can be substituted for round off by an integral
over the only initial conditions.



Corresponding to this ansatz, whose validity we are going to verify, we can
compute the fidelity error for a system perturbed with numerical noise as

Ff:/ U(T"2)® (T x)dm(x) (10)
X

SFM = Fr — (/X \II(T";v)dm(x)) (/X @(T:x)dm(:c)> (11)

This definition requires the knowledge of the exact map 7', which is in general
not available. This problem can be solved by comparing the round off map Ty,
realized with a given precision, i.e. as a string of bits of a given length, with a
map realized at an higher precision, 7%, that we call the “reference” map. For
example T, could be a single precision (8 digits) map, and T} a double precision
(16 digits) map. The numerically computed fidelity will thus be

Ff:/ V(T 2)@(T) ) dm(x) (12)
X

To check the relevance of these results we can compare them with those obtained
substituting T3 with T} (for example a map realized using 24 or 32 significant
digits). If the results do not depend on the precision of the reference map,
we can assume that they are equivalent to those that could be obtained if we
had access to the exact map. We have applied this procedure to the results
shown in this paper. Typically, the results obtained using as reference map a
double precision T} or a 24 (32) digit map T} are equivalent below a given time
scale. This time scale, that corresponds to the time scale under which T4 can
be considered equivalent to T}, as can be checked through a direct comparison
between T} and Tt, is considerably longer than the time scale at which the error
probability distribution of T, has reached its asymptotic form and thus the
results of the single-double precision comparison can be considered equivalent
to those that would be obtained by a comparison between a single precision and
an exact map.

Another way to avoid the problems related to the inaccessibility of the exact
map would be to rely, for invertible maps, on a different definition of fidelity as

= / U () B (T T ") dm(x) (13)
X

where T! is the numerical realization of the inverse map, which is in general
different from the inverse of T,. Note that in the deterministic setting and with
invertible maps T preserving the measure m, eq. (13) is equivalent to (3) [5].
We generalize it by integrating on given different realizations respectively of
T, ™ and T, and by supposing that this integral converges to [ ¥dm [ ®dm
with the same rate as the fidelity error (11). For the numerical realization of an
invertible map as the standard map, the equivalence between the two definitions
has been checked with good results, at least in the chaotic regime (figure 3).
We have performed our study using three different architectures: a processor
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Figure 3: Decay of fidelity for the standard map with K = 10, ¢ = 10~%, Monte
Carlo integrals using N = 10°%; red and crosses: comparison between single and
double precision, black and circles: single precision using inversion.

2GHz Intel Core Duo on a Mac OSX v10.5 (Darwin 9) operating system, a
processor Intel Pentium 4 3.00 GHz on a Linux Fedora 4 OS, and a processor
1 500 MHZ IP35 on a IRIX 6.5 OS (when not specified, the results shown in
figures are obtained on the Darwin architecture). The details of the round off
process depend on the architecture, nevertheless our studies show that some
general rules about the error distribution can be stated.

5 Regular maps

For regular maps the behavior is significantly different from additive noise, show-
ing that the integral over the only initial conditions is not equivalent for these
systems to an integral also on the noise. For translations on the torus, Tz = 4w
mod 1, which are the prototypes for integrable maps, we have found that is pos-
sible to write the global error A”(z,w) = T"z — Tz as in (9)

Al(z,w) = e(f(w)e(n) + wa (@), $(n) =n+do+¢n~ +...  (14)

Here ¢ is a constant that represents the last significant bit accuracy, € is a
constant that depends in a non trivial (and machine dependent) way on w,
which as we will see is equivalent to an average of the single step errors §;, while
wy, is a bounded, periodic function which depends on the initial condition x and
has zero average with respect to the initial conditions. Notice that in this case
£ is not zero in contrast with the case of random noise. We thus have

lim Ai@w)

n— o0 n

= e€(w) (15)
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Figure 4: A”(z,w) in translations on the Torus for two different, randomly
chosen, initial conditions x (red and black), compared with an average over 10*
values of x (green). w = v/2/10. The two figures show the same results on
different time scales.

Figure 4 shows the global error A”?(z,w) for two different initial conditions x
and the same w, on two different time scales, showing that the contributions
of w, goes to zero in the limit. The periodic nature of the single step errors
& (and thus of w,) is shown by figure 5 (periodicity emerges after some non
periodic iterations). The “asymptotic average error” &(w) is clearly correlated to
the round off error w = w — w, of the translation parameter as shown by figure
6. This figure shows at left the distribution of £(dw) and at right the £ and dw
distributions obtained using a Monte Carlo sampling of the parameter w. From
the figure at left we can see that £(dw) is given by a distribution law centred
around & = éw. The distribution law for the round off error on the translation
parameter

n(dw) = 2P~1 Z X[—2-*,2-*](0w)

k=p

where x7(z) denotes the characteristic function of the interval I, is stepwise as
a consequence of the exponent in the finite precision representations of reals,
with accuracy e = 272 The stepwise shape of n(dw) is clearly reflected also
in the distribution law for &, as shown in figure 6. These results suggest that
an uniform integration over w implies an integration over &. This integration
over ¢ should correspond more or less to a random or pseudo-random process,
since is related to a truncation of the less significative digits. The probability
distribution for ¢ following an uniform integration for w is not uniform as shown
in figure 6, but in the following discussions we will often approximate it with a
uniform one.

The presence of a non zero average contribution of noise (15) leads to a quite
different situation with respect to that obtained with random white noise, in
which this contribution is not present.

Even if these results do not show a qualitative dependence on the hardware
architecture used to implement the algorithm (while a quantitative dependence

10
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Figure 5: Single step errors §;, for two different, randomly chosen, initial con-
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Figure 6: Left: £(0w) distribution (translation on the Torus). Right: comparison
between the £ (red) and dw (black) distributions. Both figures are obtained with
a Monte Carlo sampling over w (10° values for the first figure, 107 for the second
one)
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Figure 7: Left: A?(z,w) for two different, randomly chosen, x values (black and
red), compared with an average over 10* values of  (green). w = v/2/5. Map
realized as a 2D rotation. Right: variance of w, for w = v/2/10, average over
10* different initial conditions, map realized as a 2D rotation. Black and dashed
corresponds to the results obtained on the Darwin architecture, while red and
continuous to those obtained on the IRIX architecture.

can be found see the right frame of figure 7), they can depend strongly on the
algorithm. The results just shown, for which the period of w,, is of order 100
and its magnitude of order 10, where obtained by implementing the map as a
translation on the torus ' = z + w mod 1. From an analytical point of view,
this is equivalent to a 2D rotation on a circle, but from a numerical point of view
the latter leads to a sequence w,, which has initially, for a number of iterations
of order 10°, properties similar to a random sequence (i.e. its variance grows
approximately with a linear law), see figure 7. For the translation on the torus
&(w) is given by (A7 (x,w)),/n with a nice accuracy even for low values of n.
Concerning the decay of fidelity, for regular maps we distinguish between
isochronous maps, for which the frequency is fixed, and anisochronous maps,
such as the skew map on the cylinder ' = z + w(y), ¥’ = y, for which the
frequency depends on the initial conditions. In the former case fidelity does not
decay, while in the latter it has a power law decay. For the isochronous maps
the system is basically equivalent to a deterministic rotation with a frequency
w + &€, and it can be easily shown that in this case fidelity does not decay,
but oscillates with constant amplitude. Indeed, ignoring the contribution of
the term w,,, we can write the action of n iterations of the numerical map as
2" = 20 + n(w + &£). Substituting in the Fourier analysis of appendix B in [1]
and keeping ¢ fixed (i.e., not performing the integral in the noise), this leads to
an oscillating phase term but not to a decay term (actually the presence of the
oscillating term w,, can cause a decay of fidelity for the highest Fourier modes,
those corresponding to distances of the order of the magnitude of wy,).
For the anisochronous map with w(y) = y (to which any map with monotonic
w(y) can be reduced), a power law decay for F,, — Fj is actually observed. Indeed
the map in this case is T'(z,y) defined on the cylinder T x [a, b] or the torus T?

12



according to
T, =x+ymodl T, =y

and the fidelity with respect to perturbed map is computed by integrating over
x,y. If T, denotes the map with numerical noise, the map becomes Ty (x,y)
whose iterate can be written

ol =2 + e (2%) +n(y’ + e, (°) vl =y + €& (y°)

In writing this equation we use the previous results for translations on the Torus,
were the role of £ is now played by &, and that of w by y°. We have already
ingnored the bounded term w,, but we have esplicitely wrote the round off error
of 29 for simmetry with respect to y°. Let us consider ® and Phi to be functions
of the only variable z, and use the usual Fourier analysis approach. The integrals
can be computed if we replace, following again the previous discussion, &, (x°)
and &,(y°) with £, and ¢, assuming that they are random variables ranging
n [—1,1] so that the integration over xg,yo is replaced by an integration over
0, yo and &, &,. The fidelity F, is given by

sin(2mnke) sin(27ke)
k% Vi 2mnke 2rke (16)

This rather strong assumption provides a result which is in good agreement with
the numerical computations see figure 8. A map where at any step both x and
y where affected by a random error

Tem:x+y+6§m Tey:y+6§y

would give a completely different result. Indeed taking into account that the
iterate of order n is

n n—1 n
":x°+ny°+6(Z§i+Z(n—j)§i) v =10 te) &
j=1 j=1 j=1

the following result for the fidelity is found

sin(27ke) sin(2mjke)
S wa, (T 17
I;Z Rk 2mke 1;[ 2mjke (17)

Figure 8 shows that this result agrees with the fidelity computed numerically
for a randomly perturbed map and differs drastically from the fidelity of the
map with round off noise.

6 Chaotic maps

Fidelity decay can be easily studied for chaotic numerical maps (for example
Bernoulli, Hénon, Logistic, Intermittent, Baker’s map and the Standard map

13
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Figure 8: Left: Decay of fidelity for the skew map. Black: additive noise, com-
pared with its analytical prediction eq 17 (red); green round off noise compared
with its analytical prediction eq 16 (blue). Right: comparison of round off noise
and analytical prediction on a longer time scale. N = 10*

with K > 1) and shows always a good qualitative agreement with the results
obtained for additive noise, i.e. the presence of a threshold below which fidelity
is constant and the error function is qualitatively a ¢ function (its support is
many order of magnitude smaller than the size of the phase space, as it hap-
pened in figure 2). Beyond this threshold, that we can call n. and that grows
as —Ineg, i.e. linearly in the number of bits used to represent real numbers
(figure 9), the error distribution spreads quickly over its accessible range, as can
be checked using also a Monte Carlo sampling of the error distribution. The
results for chaotic maps do not show a significant dependence on the choice of
the architecture.

Stating that the decay law of fidelity is qualitatively similar to the one ob-
served for additive noise is not enough to prove that the sequence of single step
errors &; (see equation 7) can be considered equivalent to a random one, as we
claimed in our ansatz. In order to better understand the nature of this sequence
we are going to use two approaches. The first approach would be to study the
distribution of &; for different i values. In the case of additive noise we would
have a continuous uniform distribution identical for each ¢, and thus the more
different is the actual &; distribution from a continuous uniform one, the less
valid is our assumption. The second approach counsists in studying in greater
detail the decay law, comparing it with the one for additive noise, to see if some
difference emerges. In order to do that, can be useful to study the decay of
fidelity for quenched noise. By quenched noise we mean a perturbation that
uses the same sequence &; for each initial condition (the sequence is obtained
randomly choosing the values &; but without integrating on them). If our as-
sumption is valid, the fidelity for round off noise should be more similar to that
obtained using additive noise than to the one obtained using quenched noise.
Let us start with the map 3z mod 1. From a detailed observation of figure 9 is
possible to see, in particular for single precision, that some difference between
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Figure 9: Decay of fidelity for 3z mod 1 represented in single precision (black,
circles) and double precision (red, diamonds) compared to a reference map T
using 32 digits; the results are compared to the decay of fidelity for random
(additive) noise with ¢ = 2725 (blue, crosses) and ¢ = 2% (green, squares), the
value of single and double precision last significant bits for reals on the torus.
Monte Carlo integrals with N = 107

round off and additive noise is present. For this map, we have found that the
global error can be described as

Al(z) = 33" ict(a) (18)
1=0

(this equation, as eq. (14), does not take in account boundary effects) where
the initial condition round off &y has a step-wise continuum spectrum 7(cf) =
2Py X(—2-#,2-#(€€) distribution once sampled over the space of initial
configurations (due to the exponent in the floating point representation, 277 is
the value of the least significant bit, that we can also consider as equivalent to
the constant ), while the & with ¢ > 1 have a discrete spectrum, which results
to be almost completely reduced to zero for i > 2 (i.e. no relevant errors are
made after the first iteration). (figure 10). Due to this effect, which is caused
by the extremely simple algorithmic nature of the map, the sequence of single
step errors cannot be used as a representative sequence for an integral over the
noise.

It is than evident that only the initial round off has a continuous (even if not
uniform) distribution, and can be in some way considered as equivalent to the
additive noise. In the discussion of the skew map, we have seen that the initial
round off determined the decay law of fidelity, and this is true also for the map
3z mod 1. Let us assume for simplicity’s sake, as we have previously done for
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Figure 10: Single step error distribution for the map 3z mod 1 in single precision.
Left: &o; center &;; right &. Monte Carlo sampling with N = 107

the skew map, that the integral on the initial condition 2° is equivalent to an

uniform integral on the initial round off error, and let us ignore the contribution
of the rest of the single step error sequence, & with ¢ < 1. . It is possible to
show using Fourier analysis that the decay law for the fidelity of a gr mod 1
map perturbed at the only initial step, with an uniform integral over noise is

sin(2wekq™)
OF! = U d_ 1
];O MR kg ckqn (19)

(this result is trivially obtained following the Fourier analysis procedure in ap-
pendix B of [1] and performing only the first integral over noise). The decay
law (19) describes better the decay law for fidelity due to round off noise than
to (6), showing that the main contribution to decay fidelity is due to the initial,
continuous spectrum perturbation (figure 11). To analyse the contribution of
& with ¢ < 1 let us remove the initial round off (choosing rational initial con-
ditions that can be represented exactly with the prescribed precision). In this
case fidelity presents a threshold, but does not decay to zero (after the threshold
the error distribution expands to the whole phase space but does not converge
to an asymptotic distribution, figure 12). In this case, i.e. when only initial
condition points that can be represented exactly using the numerical precision
under examination and thus the initial round off is removed, the fidelity oscil-
lates after the threshold without going to zero (figure 13). Is not surprising that
this behaviour is quite similar to that obtained studying the quenched noise
perturbation of this map. Indeed it can be shown, (generalizing a result in [6]),
that the fidelity for quenched noise oscillates but does not decay to zero. We
have found that this result is particularly difficult to verify using Monte Carlo
numerical integration. As it is shown in figure 13, a the map 3z mod 1 studied
with numerical precision €; and perturbed with numerical noise 5, starts os-
cillating in correspondence with the fidelity threshold for €5 (in agreement with
the analytical result) but then drops to zero in correspondence with the fidelity
threshold for &1 (see figure 13, comparing with figure 9 to know the single and
double precision thresholds). According to us this result supports our conclusion
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Figure 11: Decay of fidelity for 3z mod 1. Black, circles: analytical result (6),
using € = 272°. Red, squares: analytical result (19). Green, diamonds: round
off noise (single precision compared to double precision), N = 107
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Figure 12: Error distribution p™ obtained comparing a single precision 3z mod 1
map with a double precision map, using initial conditions in single precision (no
initial round off). Black, n = 30; red, n = 31; green n = 32; compared to the
triangular function (blue) obtained using initial condition in double precision
(initial round off). Monte Carlo samplings using N = 107 initial conditions.
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Figure 13: Decay of fidelity for 3x mod 1. Black, diamonds: quenched noise
computed with 32 digits (¢ = 272%). Red, squares: quenched noise computed
with double precision (¢ = 272%). Green, circles: decay of fidelity obtained
comparing a single precision map with a double precision one (round off noise)
using initial conditions that can be exactly represented in single precision, i.e.
removing the initial round off. Monte Carlo integrals, N = 10°

that the fidelity decay threshold is a good measure for the maximum number of
iterations under which the numerical computations are completely reliable.

For the other, (slightly) more algorithmically complex maps, the sequence of
error &; has a continuous spectrum for each value of i, and converges quickly
to an asymptotic distribution (figure 14). For all these systems the asymptotic
error distribution results to be almost indistinguishable from that obtained us-
ing additive noise (figure 15), suggesting that for these maps the assumption of
equivalence between round off and additive noise could be valid (for these maps
the initial round off error plays no special role).

In order to better verify this assumption, we have studied the decay of fidelity
for maps perturbed with quenched noise, i.e. without performing the integral
over noise. Nevertheless, for all the tested chaotic maps (with the exception of
the Baker’s map) the decay laws for quenched and additive noise were not dis-
tinguishable, at least using the computational precision allowed by our Monte
Carlo method. For the Baker’s map, is possible to see that the fidelity decay
is more irregular for quenched noise (due to the absence of the smoothing inte-
gral). In this case the decay using round off noise is more similar to the additive
one, suggesting the validity of our assumption for this map (figure 16).
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Figure 14: Distribution of single step errors ¢; for the Hénon map, = observable,
N =107. Black, i = 0. Red, i = 1. Green, i = 20. Blue i = 50 (green and blue
are very difficult to distinguish)
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Figure 15: Asymptotic error distribution for the Hénon map, x observable.
Black, additive noise (¢ = 107%), red comparison between single and double

precision (the two functions are almost identical). Monte Carlo samplings using
N = 107 initial conditions.
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Figure 16: Decay of fidelity for the Baker’s map. Black, circles:the sequence
errors of order 2725 is the same for each initial condition (quenched noise),
showing an irregular decay law; green, squares: single precision round off noise,
showing the same smooth decay of additive noise with ¢ = 272° (red, crosses).
Monte Carlo integrals with N = 107

7 Conclusions

We have used the results of a previous work on additive noise to study the effects
of round off noise on discrete systems. For regular maps the behavior depends
on the algorithmic realization and on its character: for isochronous maps the
fidelity error does not decay, for anisochronous maps it has a power law decay,
whereas in presence of an additive noise the decay is always exponential. For
chaotic systems round off and noise are almost equivalent. We also showed that
the fidelity is an efficient tool for the study of the time scales for the convergence
to the asymptotic error distribution, since, at least for chaotic maps, it allows us
to find a threshold value below which the numerical system can be considered
as equivalent to the exact one. This threshold linearly grows as the number of
bits used to represent real numbers.
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