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Asymptoti
 distribution of global errors in thenumeri
al 
omputations of dynami
al systemsG. Tur
hetti ∗, S. Vaienti†, F. Zanlungo‡Mar
h 7, 2010Abstra
tWe propose an analysis of the e�e
ts introdu
ed by �nite a

ura
y andround o� arithmeti
 on numeri
al 
omputations of dis
rete dynami
al sys-tems. Our method, that uses the statisti
al tool of the de
ay of �delity,
omputes the error 
omparing dire
tly the numeri
al orbit with the exa
tone (or, more pre
isely, with another numeri
al orbit 
omputed with amu
h higher a

ura
y). Furthermore, as a model of the e�e
ts of roundo� arithmeti
 on the map, we also 
onsider a random perturbation of theexa
t orbit with an additive noise, for whi
h exa
t results 
an be obtainedfor some prototype maps. We investigate the de
ay laws of �delity andtheir relationship with the error probability distribution for regular and
haoti
 maps, both for additive and numeri
al noise. In parti
ular, forregular maps we �nd an exponential de
ay for additive noise, and a powerlaw de
ay for numeri
al noise. For 
haoti
 maps numeri
al noise is equiv-alent to additive noise, and our method is suitable to identify a thresholdfor the reliability of numeri
al results, i.e. a number of iterations belowwhi
h global errors 
an be ignored. This threshold grows linearly withthe number of bits used to represent real numbers.1 Introdu
tionThe reliability of numeri
al 
omputations in dynami
al systems is a relevantlong standing question. For 
ontinuous systems the global error on the orbit isthe result of the a

umulation of two types of errors: the �rst one is the lo
alerror due to the dis
retization algorithms, the se
ond one is due to the �nitepre
ision representation of reals in any 
omputational devi
e and to the roundo� arithmeti
. In this paper we propose a statisti
al analysis of the global er-rors due to �nite a

ura
y and round o� in dis
rete dynami
al systems. Even
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though our results on numeri
al maps are based on numeri
al 
omputations,the 
omparison with randomly perturbed maps, for whi
h analyti
al results areavailable, allows to understand the key features. For maps with hyperboli
 at-tra
tors the existen
e of true orbits 
lose to pseudo-orbits is of great theoreti
alimportan
e but does not provide any statisti
al information on the dis
repan
iesbetween a pseudo-orbit and a true orbit with the same initial 
ondition. Weshow that for 
haoti
 maps there is a sharp transition between two regions, onein whi
h the error is negligible and one in whi
h its varian
e is 
omparable withthe size of the attra
tor, both for the numeri
al and the randomly perturbedmap. For regular or quasi regular aniso
hronous maps the transition is smoothand the a

ura
y de
ay follows a power law for the numeri
al map and expo-nential law for the randomly perturbed map.In a previous work [1℄, we 
ompared the value of an observable 
omputed alongthe orbit of a given map and the orbit of the same map with a random pertur-bation for the same initial 
ondition. The di�eren
e is a random pro
ess and,for large iteration times, its probability density fun
tion (pdf) 
onverges towarda widespread distribution, whi
h depends on the 
hoi
e of the observable. For
haoti
 maps, the relaxation is sharp, in the sense that there exists a thresholdtime below whi
h the width of the pdf is very small approximating a δ fun
tionand above whi
h it has already rea
hed its asymptoti
 value. These results wereobtained analyti
ally and numeri
ally by 
omputing the inverse Fourier trans-form of a suitable 
orrelation integral between the two observables, 
alled �-delity. For 
haoti
 systems the �delity de
ays at least exponentially fast and thisallows to re
over the average of the observables with respe
t to the invariant andthe stationary measures. For the Bernoulli maps the de
ay is super-exponentialand there is numeri
al eviden
e for this type of de
ay for most 
haoti
 mapsnumeri
ally investigated. For regular maps su
h as the translations on the torusthe de
ay is smoother and follows an exponential law. Numeri
al eviden
e wasfound that the same exponential de
ay persists for quasi integrable maps.In the subsequent letter [2℄ we applied the previous theoreti
al framework to
ompare the exa
t orbit of a map with its numeri
al 
omputation (on a ma-
hine). The latter 
ould be 
onsidered as a pseudo-random orbit where thenoise is given by the round o� errors.In the present paper we develop with more details and formal 
onsiderationsthe results announ
ed in [2℄ and provide some new results.The di�eren
e between the values of an observable 
omputed along the exa
tand the numeri
al orbits shows again the existen
e of an abrupt transition time
n∗ for the 
orresponding pdf, whi
h has an interpretation of pra
ti
al interest.We 
ould in fa
t argue that below the transition time the numeri
al orbits isfaithful to the exa
t orbit. By the way, this approa
h requires the knowledge ofthe exa
t map whi
h is not a

essible. This di�
ulty is over
ame by 
omparingthe numeri
al map 
omputed for a given a

ura
y (simple �oating point pre
i-sion) with the same map evaluated numeri
ally with a higher a

ura
y (doubleor higher �oating point pre
ision), that we 
onsider as the referen
e map. Weshow that the results of the single-higher pre
ision 
omparison are equivalent, atleast below a signi�
ant time s
ale, to the results we would obtain by 
omparing2



a single pre
ision and the exa
t map. We show that the threshold n∗ grows like
− ln ε, where ε is the a

ura
y spe
i�ed by the least signi�
ant bit used to rep-resent a real number. As a 
onsequen
e the �delity threshold n∗grows linearlywith the length of the string of bits used to represent real numbers. Beyondthis threshold the error distribution spreads qui
kly over its a

essible range.The behavior just des
ribed is typi
al of 
haoti
 systems. For regular maps thesituation is slightly di�erent: for iso
hronous maps the �delity error does notde
ay, whereas for aniso
hronous maps the de
ay follows a power law. For thesesystems it is not possible to identify a sharp transition from the delta fun
tionto the asymptoti
 one; the transition is a gradual pro
ess whose length dependson ε, i.e. gets longer with the number of bits used to represent real numbers.A similar de
ay o

urs for the 
orrelations where it is due to the lo
al mixingproperties, a property typi
al of aniso
hronous maps.2 Additive noiseWe begin by re
alling the main results obtained applying the �delity to randomperturbations of dynami
al systems. We 
onsider a map T de�ned on a phasespa
e X whi
h is a subset of R

d, endowed with an invariant physi
al measure µde�ned by
lim

n→∞

∫

X

Ψ(T n(x))dm(x) =

∫

X

Ψ(x)dµ(x) (1)where m denotes the Lebesgue measure and Ψ a 
ontinuous observable. Letus then 
onsider a sequen
e of independent and identi
ally distributed randomvariables ξi with values in the probability spa
e Ξ and with probability densitydistribution η(ξ) su
h that Tx+ε ξ still maps X into itself. The iteration of themap T is therefore repla
ed by a 
omposition of maps 
hosen randomly 
lose toit (note that T itself is re
overed when ε = 0): T n
ε (x) = (T +εξn)◦ (T +εξn−1)◦

. . . ◦ (T + εξ1) (x) and the stationary measure µε of the pro
ess is de�ned by [3℄
lim

n→∞

∫

X,Ξ

dm(x)
∏

i

η(ξi)dξiΨ(T n
ε (x)) =

∫

X

Ψ(x)dµε(x) (2)We want to study the statisti
al properties of the error at the n-th iteration,de�ned as ∆n
ε (x) = f(T nx) − f(T n

ε x), where f is a smooth observable; in thefollowing we take f(x) = x for one dimensional maps and f(x) = xi, i =
1, · · · , d, x ≡ (x1, · · · , xd), for multidimensional maps. We are in parti
ularinterested in studying ρn

ε , the probability distribution fun
tion of ∆n
ε (x). Thisprobability distribution 
an be studied dire
tly, through a Monte Carlo samplingover initial 
onditions x and random perturbations ξ, or indire
tly, using the�delity.Fidelity is de�ned through the following integral:

Fn
ε =

∫

X,Ξ

dm(x)
∏

i

η(ξi)dξiΨ(T n(x))Φ(T n
ε (x)) (3)3



For a large 
lass of maps whi
h mix exponentially fast, it 
an be shown thatthe �delity 
onverges to ∫

X Ψ(x)dµ(x)
∫

X Φ(x)dµε(x), and the absolute valueof the di�eren
e between the integral (3) and its limiting value in terms of theinvariant and stationary measure will be 
alled the �delity error and denotedwith δFn
ε . Note that by the asymptoti
 
hara
terization of the invariant andstationary measures, the �delity error 
ould be equivalently de�ned as:
δFn

ε = Fn
ε −

∫

X

Ψ(T n(x))dm(x)

∫

X,Ξ

∏

i

η(ξi)dξidm(x)Φ(T n
ε (x)) (4)whi
h emphasizes the role of the Lebesgue measure in the numeri
al 
ompu-tations. This quantity is relevant be
ause the inverse Fourier transform of the�delity Fn

ε (u), 
omputed by 
hoosing Ψ(x) = eiuf(x), Φ(x) = e−iuf(x) is theprobability error distribution ρn
ε (x). If the �delity error 
onverges to zero, thenthe �delity 
onverges to the produ
t of the Fourier transforms of the measures

∫

X eiux dµ(x)
∫

X e−iux dµε(x) and its inverse Fourier transform is just ρ∞ε . Theinitial error distribution is the Dira
 distribution ρ0(s) = δ(s), whereas it 
anbe shown that if the invariant and stationary measures are Lebesgue the asymp-toti
 distribution is the triangular fun
tion ρ∞(s) = (1 − |s|)ϑ(1 − |s|). Sin
ethe de
ay time s
ales of the �delity error depend very weakly on the 
hoi
e ofthe observables Ψ and Φ, the study of δFn
ε using Ψ(x) = Φ(x) = x is usuallythe most e�
ient tool to investigate the 
onvergen
e to the asymptoti
 errordistribution ρ∞ε .For a 
ouple of systems, translations on the torus (a regular system) and theBernoulli map (a 
haoti
 system), analyti
al results are available also for thetransient. Choosing the probability distribution η(ξ) = 1

2χ[−1,1](ξ) we foundthat the �delity for translations is given by [1℄
Fn

ε =
∑

k∈Z

ΨkΦ−kSn(kε) S(x) =
sin(2πx)

2πx
(5)where Ψk and Φk are the Fourier 
omponents of fun
tions Ψ and Φ, while forthe Bernoulli map Tx = qx mod 1, with integer q ≥ 2 we have

Fn
ε =

∑

k∈Z

ΨkΦ−kSn,q(kε) Sn,q(x) =

n−1
∏

j=0

S(qjx) (6)In the �rst 
ase the de
ay of �delity is exponential, with time s
ale ε−2, while inthe se
ond 
ase we have a plateau of length n∗ ∝ − ln ε, below whi
h �delity isalmost 
onstant, followed by an ε independent super-exponential de
ay. Belowthe threshold n∗ the error probability distribution 
an be approximated by a δfun
tion, and the perturbed system 
onsidered as equivalent to the unperturbedone. The asymptoti
 error distribution is the same for the two systems (sin
ethe physi
al and stationary measure 
oin
ide with Lebesgue), and results to bethe triangular fun
tion (�gures 1 and 2). The transition between the δ and thetriangular fun
tions is sharp and ε independent for the Bernuolli system, while4
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Figure 1: Comparison between analyti
al results and Monte Carlo integrals forthe de
ay of �delity. Left: translations, ε = 0.1 (analyti
al result: blue dashedline; Monte Carlo: 
ir
les). Right: 3x mod 1. ε = 10−4 in bla
k and ε = 10−8in green (analyti
al result: dashed line and 
rosses; Monte Carlo: 
ir
les). Weused N = 107 integration points in the Monte Carlo method. The test fun
tions
Ψ = Φ∗ were de�ned in Fourier spa
e as Ψk = k−1, trun
ated at k = 30.
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Figure 2: ρn
ε for 3x mod 1, ε = 10−8. Left: n = 13; 
enter: n = 15, right:

n = 19. Compare the transition times with �gure 1, right.
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it is gradual and ε dependent for the translations (see [1℄).Our numeri
al study of maps for whi
h analyti
al results are not available(Hénon, Baker's, Intermittent, Logisti
 and Standard maps) [1℄ shows that thebehavior of translations and of Bernoulli maps 
an be 
onsidered as a proto-type of, respe
tively, regular and 
haoti
 maps. In parti
ular for all the studied
haoti
 maps is possible to identify a threshold n∗ ∝ − ln ε below whi
h the per-turbed system 
an be 
onsidered as faithful to the unperturbed one; a thresholdfollowed by an ε independent, super-exponential de
ay. To this threshold 
orre-sponds a sharp transition of the error probability distribution from a δ fun
tionto the asymptoti
 distribution (that in general is not a triangular fun
tion butdepends on the invariant and stationary measures).3 Numeri
al noiseSin
e real numbers have to be represented as strings of bits on a 
omputer,to ea
h dis
rete map T 
orresponds a numeri
al map T∗. The a
tion of thenumeri
al map depends on the length of bit strings used to represent real num-bers and on the details of round o� algebra, whi
h are hardware dependent [4℄,nevertheless some general results 
an be stated. In our 
omputational devi
eany real number x ∈ R is represented by a �oating point number x∗p, that is abinary string with p signi�
ant bits
x∗p = f 2e f = ±0.f1f2 . . . fp =

p
∑

k=1

fk2−k e = ±
q

∑

k=1

ek2kwhere fk, ek are 0 or 1. The su�x p will be negle
ted whenever there is no am-biguity. The result of any arithmeti
 operation su
h as x∗p ⊕ y∗p 
orrespondingto x + y is a �oating point number z∗p ∈ Fp and sum ⊕ implies a round o�.The relative error rp is de�ned by
x∗p = x(1 + rp) |rp| ≤ ǫ = 2−pFor instan
e in �oating point simple pre
ision we have ǫ = 2−25. We 
an write,using the notation introdu
ed for additive noise, T∗x = Tεx = Tx+εξ(x) where

ξ is now determined in a deterministi
 way by the initial 
ondition and ε isa 
onstant whose magnitude is of the order of the last signi�
ant bit used torepresent x. The iterated map T n
∗ 
an be written as T n

ε using the previouslyintrodu
ed notation, but in this 
ase the single step errors ξi will be n di�erentfun
tions of the initial 
ondition x. Noti
e that T∗ is de�ned by the round o�rules of the 
omputer, and the notation T n
∗ 
orrespond to apply n times themap as de�ned by those round o� rules; while

εξn = x∗
n − T (x∗

n−1) = T n
∗ (x) − T

(

T n−1
∗ (x)

) (7)is introdu
ed to 
ompare the round o� results with the previous results foradditive noise. We introdu
e also the global error ∆n
∗ whi
h 
an be written as

∆n
∗ = x∗

n − xn = T n
∗ (x) − T n(x)6



The error ∆n
∗ is the 
umulative result of the lo
al error for n iterations of themap. It is interesting to 
ompare these de�nitions with the lo
al and globalerrors when the perturbation to the map T (x) is given by the additive noise.In this 
ase the map T∗(x) is repla
ed by Tǫ = T (x) + ǫ ξ so that letting xn

∗ =
T n

ǫ (x) = (T (x) + ǫ ξn) ◦ . . . (T (x) + ǫ ξ1) we have
ǫξn = Tǫ(x

n−1
∗ ) − T (xn−1

∗ ) = T n
ǫ (x) − T

(

T n−1
ǫ (x)

)In this 
ase we 
an write an expli
it expression for the global error, whi
h at�rst order in ǫ reads
∆n

ε = ǫ

n
∑

k=1

DT n−k(x1) ξk + O(ǫ2) (8)where DT (x) is the ja
obian matrix of the map T , the ξk are random ve
torsand the 
hain rule applies to 
ompute DT n. For the translations on the torus
DT = 1 and we 
an write (8) as

∆n
ε = ǫ(nξ + wn) (9)where ξ ≡ 〈ξ〉 is the average of the sto
hasti
 pro
ess and wn are the �u
tuationswhose absolute value is of order 1. As a 
onsequen
e in this 
ase we have

limn→∞ ∆n
ε /n = ǫξ. The random perturbations we 
onsider have usually zeromean so that ξ = 0; this may not be the 
ase of round o� errors whose average
an be nonzero. In the 
ase of the Bernoulli maps DT is a 
onstant and if thepro
ess ξ has zero mean again ξ = 0 unlike the 
ase of round errors dis
ussedbelow. We also outline that when dealing with round o� errors, the summationin eq. 8 starts with k = 0 be
ause also the initial error x0 − x0

∗ is present.Here x0
∗ stands for the �nite a

ura
y representation of the initial 
ondition x0,whi
h is in general di�erent from x0. As we will see, this may have relevant
onsequen
es.4 Generalizations of FidelityThis observable is used to 
hara
terize statisti
ally the spread between the orbitand its sto
hasti
 perturbation. As previously introdu
ed (3) �delity was de�nedby an integral over all the possible single step error realizations ξi. Nevertheless,from a numeri
al point of view, integrals were performed with a Monte Carlomethod, i.e. 
hoosing N representative random ve
tors (x, ξi), a pro
edure thatled to a relative error of order N−1/2 (see �gure 1).We suppose that if the deterministi
 ξi(x) fun
tional dependen
e of single steperrors on the initial 
ondition is 
omplex enough, the ve
tor (x, ξi(x)) 
an be
onsidered as equivalent to a random sequen
e, i.e. the Monte Carlo integralover initial 
onditions and noise 
an be substituted for round o� by an integralover the only initial 
onditions. 7



Corresponding to this ansatz, whose validity we are going to verify, we 
an
ompute the �delity error for a system perturbed with numeri
al noise as
Fn
∗ =

∫

X

Ψ(T nx)Φ(T n
∗ x)dm(x) (10)

δFn
∗ = Fn

∗ −
(

∫

X

Ψ(T nx)dm(x)

) (
∫

X

Φ(T n
∗ x)dm(x)

) (11)This de�nition requires the knowledge of the exa
t map T , whi
h is in generalnot available. This problem 
an be solved by 
omparing the round o� map T∗,realized with a given pre
ision, i.e. as a string of bits of a given length, with amap realized at an higher pre
ision, T†, that we 
all the �referen
e� map. Forexample T∗ 
ould be a single pre
ision (8 digits) map, and T† a double pre
ision(16 digits) map. The numeri
ally 
omputed �delity will thus be
Fn
∗ =

∫

X

Ψ(T n
† x)Φ(T n

∗ x)dm(x) (12)To 
he
k the relevan
e of these results we 
an 
ompare them with those obtainedsubstituting T† with T‡ (for example a map realized using 24 or 32 signi�
antdigits). If the results do not depend on the pre
ision of the referen
e map,we 
an assume that they are equivalent to those that 
ould be obtained if wehad a

ess to the exa
t map. We have applied this pro
edure to the resultsshown in this paper. Typi
ally, the results obtained using as referen
e map adouble pre
ision T† or a 24 (32) digit map T‡ are equivalent below a given times
ale. This time s
ale, that 
orresponds to the time s
ale under whi
h T† 
anbe 
onsidered equivalent to T‡, as 
an be 
he
ked through a dire
t 
omparisonbetween T† and T‡, is 
onsiderably longer than the time s
ale at whi
h the errorprobability distribution of T∗ has rea
hed its asymptoti
 form and thus theresults of the single-double pre
ision 
omparison 
an be 
onsidered equivalentto those that would be obtained by a 
omparison between a single pre
ision andan exa
t map.Another way to avoid the problems related to the ina

essibility of the exa
tmap would be to rely, for invertible maps, on a di�erent de�nition of �delity as
F̃n
∗ =

∫

X

Ψ(x)Φ(T n
∗ T−n

∗ x)dm(x) (13)where T−1
∗ is the numeri
al realization of the inverse map, whi
h is in generaldi�erent from the inverse of T∗. Note that in the deterministi
 setting and withinvertible maps T∗ preserving the measure m, eq. (13) is equivalent to (3) [5℄.We generalize it by integrating on given di�erent realizations respe
tively of

T−n
∗ and T n

∗ , and by supposing that this integral 
onverges to ∫

Ψdm
∫

Φdmwith the same rate as the �delity error (11). For the numeri
al realization of aninvertible map as the standard map, the equivalen
e between the two de�nitionshas been 
he
ked with good results, at least in the 
haoti
 regime (�gure 3).We have performed our study using three di�erent ar
hite
tures: a pro
essor8
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Figure 3: De
ay of �delity for the standard map with K = 10, ε = 10−8, MonteCarlo integrals using N = 106; red and 
rosses: 
omparison between single anddouble pre
ision, bla
k and 
ir
les: single pre
ision using inversion.2GHz Intel Core Duo on a Ma
 OSX v10.5 (Darwin 9) operating system, apro
essor Intel Pentium 4 3.00 GHz on a Linux Fedora 4 OS, and a pro
essor1 500 MHZ IP35 on a IRIX 6.5 OS (when not spe
i�ed, the results shown in�gures are obtained on the Darwin ar
hite
ture). The details of the round o�pro
ess depend on the ar
hite
ture, nevertheless our studies show that somegeneral rules about the error distribution 
an be stated.5 Regular mapsFor regular maps the behavior is signi�
antly di�erent from additive noise, show-ing that the integral over the only initial 
onditions is not equivalent for thesesystems to an integral also on the noise. For translations on the torus, Tx = x+ωmod 1, whi
h are the prototypes for integrable maps, we have found that is pos-sible to write the global error ∆n
∗ (x, ω) = T nx − T n

∗ x as in (9)
∆n

∗ (x, ω) = ε(ξ(ω)φ(n) + wn(x)), φ(n) = n + φ0 + φ1n
−1 + ... (14)Here ε is a 
onstant that represents the last signi�
ant bit a

ura
y, ξ is a
onstant that depends in a non trivial (and ma
hine dependent) way on ω,whi
h as we will see is equivalent to an average of the single step errors ξi, while

wn is a bounded, periodi
 fun
tion whi
h depends on the initial 
ondition x andhas zero average with respe
t to the initial 
onditions. Noti
e that in this 
ase
ξ is not zero in 
ontrast with the 
ase of random noise. We thus have

lim
n→∞

∆n
∗ (x, ω)

n
= εξ(ω) (15)9
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Figure 4: ∆n
∗ (x, ω) in translations on the Torus for two di�erent, randomly
hosen, initial 
onditions x (red and bla
k), 
ompared with an average over 104values of x (green). ω =

√
2/10. The two �gures show the same results ondi�erent time s
ales.Figure 4 shows the global error ∆n

∗ (x, ω) for two di�erent initial 
onditions xand the same ω, on two di�erent time s
ales, showing that the 
ontributionsof wn goes to zero in the limit. The periodi
 nature of the single step errors
ξi (and thus of wn) is shown by �gure 5 (periodi
ity emerges after some nonperiodi
 iterations). The �asymptoti
 average error� ξ(ω) is 
learly 
orrelated tothe round o� error δω = ω−ω∗ of the translation parameter as shown by �gure6. This �gure shows at left the distribution of ξ(δω) and at right the ξ and δωdistributions obtained using a Monte Carlo sampling of the parameter ω. Fromthe �gure at left we 
an see that ξ(δω) is given by a distribution law 
entredaround ξ = δω. The distribution law for the round o� error on the translationparameter

η(δω) = 2p−1
∞
∑

k=p

χ[−2−k,2−k](δω)where χI(x) denotes the 
hara
teristi
 fun
tion of the interval I, is stepwise asa 
onsequen
e of the exponent in the �nite pre
ision representations of reals,with a

ura
y ǫ = 2−p The stepwise shape of η(δω) is 
learly re�e
ted alsoin the distribution law for ξ, as shown in �gure 6. These results suggest thatan uniform integration over ω implies an integration over ξ. This integrationover ξ should 
orrespond more or less to a random or pseudo-random pro
ess,sin
e is related to a trun
ation of the less signi�
ative digits. The probabilitydistribution for ξ following an uniform integration for ω is not uniform as shownin �gure 6, but in the following dis
ussions we will often approximate it with auniform one.The presen
e of a non zero average 
ontribution of noise (15) leads to a quitedi�erent situation with respe
t to that obtained with random white noise, inwhi
h this 
ontribution is not present.Even if these results do not show a qualitative dependen
e on the hardwarear
hite
ture used to implement the algorithm (while a quantitative dependen
e10
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k andred), 
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√
2/5. Maprealized as a 2D rotation. Right: varian
e of wn for ω =

√
2/10, average over

104 di�erent initial 
onditions, map realized as a 2D rotation. Bla
k and dashed
orresponds to the results obtained on the Darwin ar
hite
ture, while red and
ontinuous to those obtained on the IRIX ar
hite
ture.
an be found see the right frame of �gure 7), they 
an depend strongly on thealgorithm. The results just shown, for whi
h the period of wn is of order 100and its magnitude of order 10, where obtained by implementing the map as atranslation on the torus x′ = x + ω mod 1. From an analyti
al point of view,this is equivalent to a 2D rotation on a 
ir
le, but from a numeri
al point of viewthe latter leads to a sequen
e wn whi
h has initially, for a number of iterationsof order 105, properties similar to a random sequen
e (i.e. its varian
e growsapproximately with a linear law), see �gure 7. For the translation on the torus
ξ(ω) is given by 〈∆n

∗ (x, ω)〉x/n with a ni
e a

ura
y even for low values of n.Con
erning the de
ay of �delity, for regular maps we distinguish betweeniso
hronous maps, for whi
h the frequen
y is �xed, and aniso
hronous maps,su
h as the skew map on the 
ylinder x′ = x + ω(y), y′ = y, for whi
h thefrequen
y depends on the initial 
onditions. In the former 
ase �delity does notde
ay, while in the latter it has a power law de
ay. For the iso
hronous mapsthe system is basi
ally equivalent to a deterministi
 rotation with a frequen
y
ω + εξ, and it 
an be easily shown that in this 
ase �delity does not de
ay,but os
illates with 
onstant amplitude. Indeed, ignoring the 
ontribution ofthe term wn, we 
an write the a
tion of n iterations of the numeri
al map as
xn
∗ = x0 + n(ω + εξ). Substituting in the Fourier analysis of appendix B in [1℄and keeping ξ �xed (i.e., not performing the integral in the noise), this leads toan os
illating phase term but not to a de
ay term (a
tually the presen
e of theos
illating term wn 
an 
ause a de
ay of �delity for the highest Fourier modes,those 
orresponding to distan
es of the order of the magnitude of wn).For the aniso
hronous map with ω(y) = y (to whi
h any map with monotoni


ω(y) 
an be redu
ed), a power law de
ay for Fn−F0 is a
tually observed. Indeedthe map in this 
ase is T (x, y) de�ned on the 
ylinder T × [a, b] or the torus T
212



a

ording to
Tx = x + y mod 1 Ty = yand the �delity with respe
t to perturbed map is 
omputed by integrating over

x, y. If T∗ denotes the map with numeri
al noise, the map be
omes T∗(x, y)whose iterate 
an be written
xn
∗ = x0 + ǫξx(x0) + n(y0 + ǫξy(y0)) yn

∗ = y0 + ǫξy(y0)In writing this equation we use the previous results for translations on the Torus,were the role of ξ is now played by ξy and that of ω by y0. We have alreadyingnored the bounded term wn but we have espli
itely wrote the round o� errorof x0 for simmetry with respe
t to y0. Let us 
onsider Φ and Phi to be fun
tionsof the only variable x, and use the usual Fourier analysis approa
h. The integrals
an be 
omputed if we repla
e, following again the previous dis
ussion, ξx(x0)and ξy(y0) with ξx and ξy assuming that they are random variables rangingin [−1, 1] so that the integration over x0, y0 is repla
ed by an integration over
x0, y0 and ξx, ξy. The �delity Fn is given by

Fn
∗ =

∑

k∈Z

ΨkΦ−k
sin(2πnkε)

2πnkε

sin(2πkε)

2πkε
(16)This rather strong assumption provides a result whi
h is in good agreement withthe numeri
al 
omputations see �gure 8. A map where at any step both x and

y where a�e
ted by a random error
Tǫ x = x + y + ǫξx Tǫ y = y + ǫξywould give a 
ompletely di�erent result. Indeed taking into a

ount that theiterate of order n is

xn = x0 + ny0 + ε
(

n
∑

j=1

ξj
x +

n−1
∑

j=1

(n − j)ξj
y

)

yn = y0 + ǫ

n
∑

j=1

ξj
ythe following result for the �delity is found

Fn
∗ =

∑

k∈Z

ΨkΦ−k

( sin(2πkε)

2πkε

)n n
∏

j=1

sin(2πjkε)

2πjkε
(17)Figure 8 shows that this result agrees with the �delity 
omputed numeri
allyfor a randomly perturbed map and di�ers drasti
ally from the �delity of themap with round o� noise.6 Chaoti
 mapsFidelity de
ay 
an be easily studied for 
haoti
 numeri
al maps (for exampleBernoulli, Hènon, Logisti
, Intermittent, Baker's map and the Standard map13
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Figure 8: Left: De
ay of �delity for the skew map. Bla
k: additive noise, 
om-pared with its analyti
al predi
tion eq 17 (red); green round o� noise 
omparedwith its analyti
al predi
tion eq 16 (blue). Right: 
omparison of round o� noiseand analyti
al predi
tion on a longer time s
ale. N = 104with K ≫ 1) and shows always a good qualitative agreement with the resultsobtained for additive noise, i.e. the presen
e of a threshold below whi
h �delityis 
onstant and the error fun
tion is qualitatively a δ fun
tion (its support ismany order of magnitude smaller than the size of the phase spa
e, as it hap-pened in �gure 2). Beyond this threshold, that we 
an 
all n∗ and that growsas − ln ε, i.e. linearly in the number of bits used to represent real numbers(�gure 9), the error distribution spreads qui
kly over its a

essible range, as 
anbe 
he
ked using also a Monte Carlo sampling of the error distribution. Theresults for 
haoti
 maps do not show a signi�
ant dependen
e on the 
hoi
e ofthe ar
hite
ture.Stating that the de
ay law of �delity is qualitatively similar to the one ob-served for additive noise is not enough to prove that the sequen
e of single steperrors ξi (see equation 7) 
an be 
onsidered equivalent to a random one, as we
laimed in our ansatz. In order to better understand the nature of this sequen
ewe are going to use two approa
hes. The �rst approa
h would be to study thedistribution of ξi for di�erent i values. In the 
ase of additive noise we wouldhave a 
ontinuous uniform distribution identi
al for ea
h i, and thus the moredi�erent is the a
tual ξi distribution from a 
ontinuous uniform one, the lessvalid is our assumption. The se
ond approa
h 
onsists in studying in greaterdetail the de
ay law, 
omparing it with the one for additive noise, to see if somedi�eren
e emerges. In order to do that, 
an be useful to study the de
ay of�delity for quen
hed noise. By quen
hed noise we mean a perturbation thatuses the same sequen
e ξi for ea
h initial 
ondition (the sequen
e is obtainedrandomly 
hoosing the values ξi but without integrating on them). If our as-sumption is valid, the �delity for round o� noise should be more similar to thatobtained using additive noise than to the one obtained using quen
hed noise.Let us start with the map 3x mod 1. From a detailed observation of �gure 9 ispossible to see, in parti
ular for single pre
ision, that some di�eren
e between14
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Figure 9: De
ay of �delity for 3x mod 1 represented in single pre
ision (bla
k,
ir
les) and double pre
ision (red, diamonds) 
ompared to a referen
e map T†using 32 digits; the results are 
ompared to the de
ay of �delity for random(additive) noise with ε = 2−25 (blue, 
rosses) and ε = 2−53 (green, squares), thevalue of single and double pre
ision last signi�
ant bits for reals on the torus.Monte Carlo integrals with N = 107round o� and additive noise is present. For this map, we have found that theglobal error 
an be des
ribed as
∆n

∗ (x) =

n
∑

i=0

3n−iεξi(x) (18)(this equation, as eq. (14), does not take in a

ount boundary e�e
ts) wherethe initial 
ondition round o� ξ0 has a step-wise 
ontinuum spe
trum η(εξ) =
2p−1

∑∞
k=p χ[−2−k,2−k](εξ) distribution on
e sampled over the spa
e of initial
on�gurations (due to the exponent in the �oating point representation, 2−p isthe value of the least signi�
ant bit, that we 
an also 
onsider as equivalent tothe 
onstant ε), while the ξi with i ≥ 1 have a dis
rete spe
trum, whi
h resultsto be almost 
ompletely redu
ed to zero for i ≥ 2 (i.e. no relevant errors aremade after the �rst iteration). (�gure 10). Due to this e�e
t, whi
h is 
ausedby the extremely simple algorithmi
 nature of the map, the sequen
e of singlestep errors 
annot be used as a representative sequen
e for an integral over thenoise.It is than evident that only the initial round o� has a 
ontinuous (even if notuniform) distribution, and 
an be in some way 
onsidered as equivalent to theadditive noise. In the dis
ussion of the skew map, we have seen that the initialround o� determined the de
ay law of �delity, and this is true also for the map3x mod 1. Let us assume for simpli
ity's sake, as we have previously done for15
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ision.Left: ξ0; 
enter ξ1; right ξ2. Monte Carlo sampling with N = 107the skew map, that the integral on the initial 
ondition x0 is equivalent to anuniform integral on the initial round o� error, and let us ignore the 
ontributionof the rest of the single step error sequen
e, ξi with i ≤ 1. . It is possible toshow using Fourier analysis that the de
ay law for the �delity of a qx mod 1map perturbed at the only initial step, with an uniform integral over noise is
δFn

ε =
∑

k 6=0

ΨkΦ−k
sin(2πεkqn)

2πεkqn
(19)(this result is trivially obtained following the Fourier analysis pro
edure in ap-pendix B of [1℄ and performing only the �rst integral over noise). The de
aylaw (19) des
ribes better the de
ay law for �delity due to round o� noise thanto (6), showing that the main 
ontribution to de
ay �delity is due to the initial,
ontinuous spe
trum perturbation (�gure 11). To analyse the 
ontribution of

ξi with i ≤ 1 let us remove the initial round o� (
hoosing rational initial 
on-ditions that 
an be represented exa
tly with the pres
ribed pre
ision). In this
ase �delity presents a threshold, but does not de
ay to zero (after the thresholdthe error distribution expands to the whole phase spa
e but does not 
onvergeto an asymptoti
 distribution, �gure 12). In this 
ase, i.e. when only initial
ondition points that 
an be represented exa
tly using the numeri
al pre
isionunder examination and thus the initial round o� is removed, the �delity os
il-lates after the threshold without going to zero (�gure 13). Is not surprising thatthis behaviour is quite similar to that obtained studying the quen
hed noiseperturbation of this map. Indeed it 
an be shown, (generalizing a result in [6℄),that the �delity for quen
hed noise os
illates but does not de
ay to zero. Wehave found that this result is parti
ularly di�
ult to verify using Monte Carlonumeri
al integration. As it is shown in �gure 13, a the map 3x mod 1 studiedwith numeri
al pre
ision ε1 and perturbed with numeri
al noise ε2, starts os-
illating in 
orresponden
e with the �delity threshold for ε2 (in agreement withthe analyti
al result) but then drops to zero in 
orresponden
e with the �delitythreshold for ε1 (see �gure 13, 
omparing with �gure 9 to know the single anddouble pre
ision thresholds). A

ording to us this result supports our 
on
lusion16
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Figure 11: De
ay of �delity for 3x mod 1. Bla
k, 
ir
les: analyti
al result (6),using ε = 2−25. Red, squares: analyti
al result (19). Green, diamonds: roundo� noise (single pre
ision 
ompared to double pre
ision), N = 107
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Figure 12: Error distribution ρn obtained 
omparing a single pre
ision 3x mod 1map with a double pre
ision map, using initial 
onditions in single pre
ision (noinitial round o�). Bla
k, n = 30; red, n = 31; green n = 32; 
ompared to thetriangular fun
tion (blue) obtained using initial 
ondition in double pre
ision(initial round o�). Monte Carlo samplings using N = 107 initial 
onditions.17
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Figure 13: De
ay of �delity for 3x mod 1. Bla
k, diamonds: quen
hed noise
omputed with 32 digits (ε = 2−25). Red, squares: quen
hed noise 
omputedwith double pre
ision (ε = 2−25). Green, 
ir
les: de
ay of �delity obtained
omparing a single pre
ision map with a double pre
ision one (round o� noise)using initial 
onditions that 
an be exa
tly represented in single pre
ision, i.e.removing the initial round o�. Monte Carlo integrals, N = 106that the �delity de
ay threshold is a good measure for the maximum number ofiterations under whi
h the numeri
al 
omputations are 
ompletely reliable.For the other, (slightly) more algorithmi
ally 
omplex maps, the sequen
e oferror ξi has a 
ontinuous spe
trum for ea
h value of i, and 
onverges qui
klyto an asymptoti
 distribution (�gure 14). For all these systems the asymptoti
error distribution results to be almost indistinguishable from that obtained us-ing additive noise (�gure 15), suggesting that for these maps the assumption ofequivalen
e between round o� and additive noise 
ould be valid (for these mapsthe initial round o� error plays no spe
ial role).In order to better verify this assumption, we have studied the de
ay of �delityfor maps perturbed with quen
hed noise, i.e. without performing the integralover noise. Nevertheless, for all the tested 
haoti
 maps (with the ex
eption ofthe Baker's map) the de
ay laws for quen
hed and additive noise were not dis-tinguishable, at least using the 
omputational pre
ision allowed by our MonteCarlo method. For the Baker's map, is possible to see that the �delity de
ayis more irregular for quen
hed noise (due to the absen
e of the smoothing inte-gral). In this 
ase the de
ay using round o� noise is more similar to the additiveone, suggesting the validity of our assumption for this map (�gure 16).
18
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Figure 16: De
ay of �delity for the Baker's map. Bla
k, 
ir
les:the sequen
eerrors of order 2−25 is the same for ea
h initial 
ondition (quen
hed noise),showing an irregular de
ay law; green, squares: single pre
ision round o� noise,showing the same smooth de
ay of additive noise with ε = 2−25 (red, 
rosses).Monte Carlo integrals with N = 1077 Con
lusionsWe have used the results of a previous work on additive noise to study the e�e
tsof round o� noise on dis
rete systems. For regular maps the behavior dependson the algorithmi
 realization and on its 
hara
ter: for iso
hronous maps the�delity error does not de
ay, for aniso
hronous maps it has a power law de
ay,whereas in presen
e of an additive noise the de
ay is always exponential. For
haoti
 systems round o� and noise are almost equivalent. We also showed thatthe �delity is an e�
ient tool for the study of the time s
ales for the 
onvergen
eto the asymptoti
 error distribution, sin
e, at least for 
haoti
 maps, it allows usto �nd a threshold value below whi
h the numeri
al system 
an be 
onsideredas equivalent to the exa
t one. This threshold linearly grows as the number ofbits used to represent real numbers.
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