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Asymptoti distribution of global errors in thenumerial omputations of dynamial systemsG. Turhetti ∗, S. Vaienti†, F. Zanlungo‡Marh 7, 2010AbstratWe propose an analysis of the e�ets introdued by �nite auray andround o� arithmeti on numerial omputations of disrete dynamial sys-tems. Our method, that uses the statistial tool of the deay of �delity,omputes the error omparing diretly the numerial orbit with the exatone (or, more preisely, with another numerial orbit omputed with amuh higher auray). Furthermore, as a model of the e�ets of roundo� arithmeti on the map, we also onsider a random perturbation of theexat orbit with an additive noise, for whih exat results an be obtainedfor some prototype maps. We investigate the deay laws of �delity andtheir relationship with the error probability distribution for regular andhaoti maps, both for additive and numerial noise. In partiular, forregular maps we �nd an exponential deay for additive noise, and a powerlaw deay for numerial noise. For haoti maps numerial noise is equiv-alent to additive noise, and our method is suitable to identify a thresholdfor the reliability of numerial results, i.e. a number of iterations belowwhih global errors an be ignored. This threshold grows linearly withthe number of bits used to represent real numbers.1 IntrodutionThe reliability of numerial omputations in dynamial systems is a relevantlong standing question. For ontinuous systems the global error on the orbit isthe result of the aumulation of two types of errors: the �rst one is the loalerror due to the disretization algorithms, the seond one is due to the �nitepreision representation of reals in any omputational devie and to the roundo� arithmeti. In this paper we propose a statistial analysis of the global er-rors due to �nite auray and round o� in disrete dynamial systems. Even
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though our results on numerial maps are based on numerial omputations,the omparison with randomly perturbed maps, for whih analytial results areavailable, allows to understand the key features. For maps with hyperboli at-trators the existene of true orbits lose to pseudo-orbits is of great theoretialimportane but does not provide any statistial information on the disrepaniesbetween a pseudo-orbit and a true orbit with the same initial ondition. Weshow that for haoti maps there is a sharp transition between two regions, onein whih the error is negligible and one in whih its variane is omparable withthe size of the attrator, both for the numerial and the randomly perturbedmap. For regular or quasi regular anisohronous maps the transition is smoothand the auray deay follows a power law for the numerial map and expo-nential law for the randomly perturbed map.In a previous work [1℄, we ompared the value of an observable omputed alongthe orbit of a given map and the orbit of the same map with a random pertur-bation for the same initial ondition. The di�erene is a random proess and,for large iteration times, its probability density funtion (pdf) onverges towarda widespread distribution, whih depends on the hoie of the observable. Forhaoti maps, the relaxation is sharp, in the sense that there exists a thresholdtime below whih the width of the pdf is very small approximating a δ funtionand above whih it has already reahed its asymptoti value. These results wereobtained analytially and numerially by omputing the inverse Fourier trans-form of a suitable orrelation integral between the two observables, alled �-delity. For haoti systems the �delity deays at least exponentially fast and thisallows to reover the average of the observables with respet to the invariant andthe stationary measures. For the Bernoulli maps the deay is super-exponentialand there is numerial evidene for this type of deay for most haoti mapsnumerially investigated. For regular maps suh as the translations on the torusthe deay is smoother and follows an exponential law. Numerial evidene wasfound that the same exponential deay persists for quasi integrable maps.In the subsequent letter [2℄ we applied the previous theoretial framework toompare the exat orbit of a map with its numerial omputation (on a ma-hine). The latter ould be onsidered as a pseudo-random orbit where thenoise is given by the round o� errors.In the present paper we develop with more details and formal onsiderationsthe results announed in [2℄ and provide some new results.The di�erene between the values of an observable omputed along the exatand the numerial orbits shows again the existene of an abrupt transition time
n∗ for the orresponding pdf, whih has an interpretation of pratial interest.We ould in fat argue that below the transition time the numerial orbits isfaithful to the exat orbit. By the way, this approah requires the knowledge ofthe exat map whih is not aessible. This di�ulty is overame by omparingthe numerial map omputed for a given auray (simple �oating point prei-sion) with the same map evaluated numerially with a higher auray (doubleor higher �oating point preision), that we onsider as the referene map. Weshow that the results of the single-higher preision omparison are equivalent, atleast below a signi�ant time sale, to the results we would obtain by omparing2



a single preision and the exat map. We show that the threshold n∗ grows like
− ln ε, where ε is the auray spei�ed by the least signi�ant bit used to rep-resent a real number. As a onsequene the �delity threshold n∗grows linearlywith the length of the string of bits used to represent real numbers. Beyondthis threshold the error distribution spreads quikly over its aessible range.The behavior just desribed is typial of haoti systems. For regular maps thesituation is slightly di�erent: for isohronous maps the �delity error does notdeay, whereas for anisohronous maps the deay follows a power law. For thesesystems it is not possible to identify a sharp transition from the delta funtionto the asymptoti one; the transition is a gradual proess whose length dependson ε, i.e. gets longer with the number of bits used to represent real numbers.A similar deay ours for the orrelations where it is due to the loal mixingproperties, a property typial of anisohronous maps.2 Additive noiseWe begin by realling the main results obtained applying the �delity to randomperturbations of dynamial systems. We onsider a map T de�ned on a phasespae X whih is a subset of R

d, endowed with an invariant physial measure µde�ned by
lim

n→∞

∫

X

Ψ(T n(x))dm(x) =

∫

X

Ψ(x)dµ(x) (1)where m denotes the Lebesgue measure and Ψ a ontinuous observable. Letus then onsider a sequene of independent and identially distributed randomvariables ξi with values in the probability spae Ξ and with probability densitydistribution η(ξ) suh that Tx+ε ξ still maps X into itself. The iteration of themap T is therefore replaed by a omposition of maps hosen randomly lose toit (note that T itself is reovered when ε = 0): T n
ε (x) = (T +εξn)◦ (T +εξn−1)◦

. . . ◦ (T + εξ1) (x) and the stationary measure µε of the proess is de�ned by [3℄
lim

n→∞

∫

X,Ξ

dm(x)
∏

i

η(ξi)dξiΨ(T n
ε (x)) =

∫

X

Ψ(x)dµε(x) (2)We want to study the statistial properties of the error at the n-th iteration,de�ned as ∆n
ε (x) = f(T nx) − f(T n

ε x), where f is a smooth observable; in thefollowing we take f(x) = x for one dimensional maps and f(x) = xi, i =
1, · · · , d, x ≡ (x1, · · · , xd), for multidimensional maps. We are in partiularinterested in studying ρn

ε , the probability distribution funtion of ∆n
ε (x). Thisprobability distribution an be studied diretly, through a Monte Carlo samplingover initial onditions x and random perturbations ξ, or indiretly, using the�delity.Fidelity is de�ned through the following integral:

Fn
ε =

∫

X,Ξ

dm(x)
∏

i

η(ξi)dξiΨ(T n(x))Φ(T n
ε (x)) (3)3



For a large lass of maps whih mix exponentially fast, it an be shown thatthe �delity onverges to ∫

X Ψ(x)dµ(x)
∫

X Φ(x)dµε(x), and the absolute valueof the di�erene between the integral (3) and its limiting value in terms of theinvariant and stationary measure will be alled the �delity error and denotedwith δFn
ε . Note that by the asymptoti haraterization of the invariant andstationary measures, the �delity error ould be equivalently de�ned as:
δFn

ε = Fn
ε −

∫

X

Ψ(T n(x))dm(x)

∫

X,Ξ

∏

i

η(ξi)dξidm(x)Φ(T n
ε (x)) (4)whih emphasizes the role of the Lebesgue measure in the numerial ompu-tations. This quantity is relevant beause the inverse Fourier transform of the�delity Fn

ε (u), omputed by hoosing Ψ(x) = eiuf(x), Φ(x) = e−iuf(x) is theprobability error distribution ρn
ε (x). If the �delity error onverges to zero, thenthe �delity onverges to the produt of the Fourier transforms of the measures

∫

X eiux dµ(x)
∫

X e−iux dµε(x) and its inverse Fourier transform is just ρ∞ε . Theinitial error distribution is the Dira distribution ρ0(s) = δ(s), whereas it anbe shown that if the invariant and stationary measures are Lebesgue the asymp-toti distribution is the triangular funtion ρ∞(s) = (1 − |s|)ϑ(1 − |s|). Sinethe deay time sales of the �delity error depend very weakly on the hoie ofthe observables Ψ and Φ, the study of δFn
ε using Ψ(x) = Φ(x) = x is usuallythe most e�ient tool to investigate the onvergene to the asymptoti errordistribution ρ∞ε .For a ouple of systems, translations on the torus (a regular system) and theBernoulli map (a haoti system), analytial results are available also for thetransient. Choosing the probability distribution η(ξ) = 1

2χ[−1,1](ξ) we foundthat the �delity for translations is given by [1℄
Fn

ε =
∑

k∈Z

ΨkΦ−kSn(kε) S(x) =
sin(2πx)

2πx
(5)where Ψk and Φk are the Fourier omponents of funtions Ψ and Φ, while forthe Bernoulli map Tx = qx mod 1, with integer q ≥ 2 we have

Fn
ε =

∑

k∈Z

ΨkΦ−kSn,q(kε) Sn,q(x) =

n−1
∏

j=0

S(qjx) (6)In the �rst ase the deay of �delity is exponential, with time sale ε−2, while inthe seond ase we have a plateau of length n∗ ∝ − ln ε, below whih �delity isalmost onstant, followed by an ε independent super-exponential deay. Belowthe threshold n∗ the error probability distribution an be approximated by a δfuntion, and the perturbed system onsidered as equivalent to the unperturbedone. The asymptoti error distribution is the same for the two systems (sinethe physial and stationary measure oinide with Lebesgue), and results to bethe triangular funtion (�gures 1 and 2). The transition between the δ and thetriangular funtions is sharp and ε independent for the Bernuolli system, while4
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Figure 1: Comparison between analytial results and Monte Carlo integrals forthe deay of �delity. Left: translations, ε = 0.1 (analytial result: blue dashedline; Monte Carlo: irles). Right: 3x mod 1. ε = 10−4 in blak and ε = 10−8in green (analytial result: dashed line and rosses; Monte Carlo: irles). Weused N = 107 integration points in the Monte Carlo method. The test funtions
Ψ = Φ∗ were de�ned in Fourier spae as Ψk = k−1, trunated at k = 30.
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Figure 2: ρn
ε for 3x mod 1, ε = 10−8. Left: n = 13; enter: n = 15, right:

n = 19. Compare the transition times with �gure 1, right.
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it is gradual and ε dependent for the translations (see [1℄).Our numerial study of maps for whih analytial results are not available(Hénon, Baker's, Intermittent, Logisti and Standard maps) [1℄ shows that thebehavior of translations and of Bernoulli maps an be onsidered as a proto-type of, respetively, regular and haoti maps. In partiular for all the studiedhaoti maps is possible to identify a threshold n∗ ∝ − ln ε below whih the per-turbed system an be onsidered as faithful to the unperturbed one; a thresholdfollowed by an ε independent, super-exponential deay. To this threshold orre-sponds a sharp transition of the error probability distribution from a δ funtionto the asymptoti distribution (that in general is not a triangular funtion butdepends on the invariant and stationary measures).3 Numerial noiseSine real numbers have to be represented as strings of bits on a omputer,to eah disrete map T orresponds a numerial map T∗. The ation of thenumerial map depends on the length of bit strings used to represent real num-bers and on the details of round o� algebra, whih are hardware dependent [4℄,nevertheless some general results an be stated. In our omputational devieany real number x ∈ R is represented by a �oating point number x∗p, that is abinary string with p signi�ant bits
x∗p = f 2e f = ±0.f1f2 . . . fp =

p
∑

k=1

fk2−k e = ±
q

∑

k=1

ek2kwhere fk, ek are 0 or 1. The su�x p will be negleted whenever there is no am-biguity. The result of any arithmeti operation suh as x∗p ⊕ y∗p orrespondingto x + y is a �oating point number z∗p ∈ Fp and sum ⊕ implies a round o�.The relative error rp is de�ned by
x∗p = x(1 + rp) |rp| ≤ ǫ = 2−pFor instane in �oating point simple preision we have ǫ = 2−25. We an write,using the notation introdued for additive noise, T∗x = Tεx = Tx+εξ(x) where

ξ is now determined in a deterministi way by the initial ondition and ε isa onstant whose magnitude is of the order of the last signi�ant bit used torepresent x. The iterated map T n
∗ an be written as T n

ε using the previouslyintrodued notation, but in this ase the single step errors ξi will be n di�erentfuntions of the initial ondition x. Notie that T∗ is de�ned by the round o�rules of the omputer, and the notation T n
∗ orrespond to apply n times themap as de�ned by those round o� rules; while

εξn = x∗
n − T (x∗

n−1) = T n
∗ (x) − T

(

T n−1
∗ (x)

) (7)is introdued to ompare the round o� results with the previous results foradditive noise. We introdue also the global error ∆n
∗ whih an be written as

∆n
∗ = x∗

n − xn = T n
∗ (x) − T n(x)6



The error ∆n
∗ is the umulative result of the loal error for n iterations of themap. It is interesting to ompare these de�nitions with the loal and globalerrors when the perturbation to the map T (x) is given by the additive noise.In this ase the map T∗(x) is replaed by Tǫ = T (x) + ǫ ξ so that letting xn

∗ =
T n

ǫ (x) = (T (x) + ǫ ξn) ◦ . . . (T (x) + ǫ ξ1) we have
ǫξn = Tǫ(x

n−1
∗ ) − T (xn−1

∗ ) = T n
ǫ (x) − T

(

T n−1
ǫ (x)

)In this ase we an write an expliit expression for the global error, whih at�rst order in ǫ reads
∆n

ε = ǫ

n
∑

k=1

DT n−k(x1) ξk + O(ǫ2) (8)where DT (x) is the jaobian matrix of the map T , the ξk are random vetorsand the hain rule applies to ompute DT n. For the translations on the torus
DT = 1 and we an write (8) as

∆n
ε = ǫ(nξ + wn) (9)where ξ ≡ 〈ξ〉 is the average of the stohasti proess and wn are the �utuationswhose absolute value is of order 1. As a onsequene in this ase we have

limn→∞ ∆n
ε /n = ǫξ. The random perturbations we onsider have usually zeromean so that ξ = 0; this may not be the ase of round o� errors whose averagean be nonzero. In the ase of the Bernoulli maps DT is a onstant and if theproess ξ has zero mean again ξ = 0 unlike the ase of round errors disussedbelow. We also outline that when dealing with round o� errors, the summationin eq. 8 starts with k = 0 beause also the initial error x0 − x0

∗ is present.Here x0
∗ stands for the �nite auray representation of the initial ondition x0,whih is in general di�erent from x0. As we will see, this may have relevantonsequenes.4 Generalizations of FidelityThis observable is used to haraterize statistially the spread between the orbitand its stohasti perturbation. As previously introdued (3) �delity was de�nedby an integral over all the possible single step error realizations ξi. Nevertheless,from a numerial point of view, integrals were performed with a Monte Carlomethod, i.e. hoosing N representative random vetors (x, ξi), a proedure thatled to a relative error of order N−1/2 (see �gure 1).We suppose that if the deterministi ξi(x) funtional dependene of single steperrors on the initial ondition is omplex enough, the vetor (x, ξi(x)) an beonsidered as equivalent to a random sequene, i.e. the Monte Carlo integralover initial onditions and noise an be substituted for round o� by an integralover the only initial onditions. 7



Corresponding to this ansatz, whose validity we are going to verify, we anompute the �delity error for a system perturbed with numerial noise as
Fn
∗ =

∫

X

Ψ(T nx)Φ(T n
∗ x)dm(x) (10)

δFn
∗ = Fn

∗ −
(

∫

X

Ψ(T nx)dm(x)

) (
∫

X

Φ(T n
∗ x)dm(x)

) (11)This de�nition requires the knowledge of the exat map T , whih is in generalnot available. This problem an be solved by omparing the round o� map T∗,realized with a given preision, i.e. as a string of bits of a given length, with amap realized at an higher preision, T†, that we all the �referene� map. Forexample T∗ ould be a single preision (8 digits) map, and T† a double preision(16 digits) map. The numerially omputed �delity will thus be
Fn
∗ =

∫

X

Ψ(T n
† x)Φ(T n

∗ x)dm(x) (12)To hek the relevane of these results we an ompare them with those obtainedsubstituting T† with T‡ (for example a map realized using 24 or 32 signi�antdigits). If the results do not depend on the preision of the referene map,we an assume that they are equivalent to those that ould be obtained if wehad aess to the exat map. We have applied this proedure to the resultsshown in this paper. Typially, the results obtained using as referene map adouble preision T† or a 24 (32) digit map T‡ are equivalent below a given timesale. This time sale, that orresponds to the time sale under whih T† anbe onsidered equivalent to T‡, as an be heked through a diret omparisonbetween T† and T‡, is onsiderably longer than the time sale at whih the errorprobability distribution of T∗ has reahed its asymptoti form and thus theresults of the single-double preision omparison an be onsidered equivalentto those that would be obtained by a omparison between a single preision andan exat map.Another way to avoid the problems related to the inaessibility of the exatmap would be to rely, for invertible maps, on a di�erent de�nition of �delity as
F̃n
∗ =

∫

X

Ψ(x)Φ(T n
∗ T−n

∗ x)dm(x) (13)where T−1
∗ is the numerial realization of the inverse map, whih is in generaldi�erent from the inverse of T∗. Note that in the deterministi setting and withinvertible maps T∗ preserving the measure m, eq. (13) is equivalent to (3) [5℄.We generalize it by integrating on given di�erent realizations respetively of

T−n
∗ and T n

∗ , and by supposing that this integral onverges to ∫

Ψdm
∫

Φdmwith the same rate as the �delity error (11). For the numerial realization of aninvertible map as the standard map, the equivalene between the two de�nitionshas been heked with good results, at least in the haoti regime (�gure 3).We have performed our study using three di�erent arhitetures: a proessor8
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Figure 3: Deay of �delity for the standard map with K = 10, ε = 10−8, MonteCarlo integrals using N = 106; red and rosses: omparison between single anddouble preision, blak and irles: single preision using inversion.2GHz Intel Core Duo on a Ma OSX v10.5 (Darwin 9) operating system, aproessor Intel Pentium 4 3.00 GHz on a Linux Fedora 4 OS, and a proessor1 500 MHZ IP35 on a IRIX 6.5 OS (when not spei�ed, the results shown in�gures are obtained on the Darwin arhiteture). The details of the round o�proess depend on the arhiteture, nevertheless our studies show that somegeneral rules about the error distribution an be stated.5 Regular mapsFor regular maps the behavior is signi�antly di�erent from additive noise, show-ing that the integral over the only initial onditions is not equivalent for thesesystems to an integral also on the noise. For translations on the torus, Tx = x+ωmod 1, whih are the prototypes for integrable maps, we have found that is pos-sible to write the global error ∆n
∗ (x, ω) = T nx − T n

∗ x as in (9)
∆n

∗ (x, ω) = ε(ξ(ω)φ(n) + wn(x)), φ(n) = n + φ0 + φ1n
−1 + ... (14)Here ε is a onstant that represents the last signi�ant bit auray, ξ is aonstant that depends in a non trivial (and mahine dependent) way on ω,whih as we will see is equivalent to an average of the single step errors ξi, while

wn is a bounded, periodi funtion whih depends on the initial ondition x andhas zero average with respet to the initial onditions. Notie that in this ase
ξ is not zero in ontrast with the ase of random noise. We thus have

lim
n→∞

∆n
∗ (x, ω)

n
= εξ(ω) (15)9
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Figure 4: ∆n
∗ (x, ω) in translations on the Torus for two di�erent, randomlyhosen, initial onditions x (red and blak), ompared with an average over 104values of x (green). ω =

√
2/10. The two �gures show the same results ondi�erent time sales.Figure 4 shows the global error ∆n

∗ (x, ω) for two di�erent initial onditions xand the same ω, on two di�erent time sales, showing that the ontributionsof wn goes to zero in the limit. The periodi nature of the single step errors
ξi (and thus of wn) is shown by �gure 5 (periodiity emerges after some nonperiodi iterations). The �asymptoti average error� ξ(ω) is learly orrelated tothe round o� error δω = ω−ω∗ of the translation parameter as shown by �gure6. This �gure shows at left the distribution of ξ(δω) and at right the ξ and δωdistributions obtained using a Monte Carlo sampling of the parameter ω. Fromthe �gure at left we an see that ξ(δω) is given by a distribution law entredaround ξ = δω. The distribution law for the round o� error on the translationparameter

η(δω) = 2p−1
∞
∑

k=p

χ[−2−k,2−k](δω)where χI(x) denotes the harateristi funtion of the interval I, is stepwise asa onsequene of the exponent in the �nite preision representations of reals,with auray ǫ = 2−p The stepwise shape of η(δω) is learly re�eted alsoin the distribution law for ξ, as shown in �gure 6. These results suggest thatan uniform integration over ω implies an integration over ξ. This integrationover ξ should orrespond more or less to a random or pseudo-random proess,sine is related to a trunation of the less signi�ative digits. The probabilitydistribution for ξ following an uniform integration for ω is not uniform as shownin �gure 6, but in the following disussions we will often approximate it with auniform one.The presene of a non zero average ontribution of noise (15) leads to a quitedi�erent situation with respet to that obtained with random white noise, inwhih this ontribution is not present.Even if these results do not show a qualitative dependene on the hardwarearhiteture used to implement the algorithm (while a quantitative dependene10
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√
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104 di�erent initial onditions, map realized as a 2D rotation. Blak and dashedorresponds to the results obtained on the Darwin arhiteture, while red andontinuous to those obtained on the IRIX arhiteture.an be found see the right frame of �gure 7), they an depend strongly on thealgorithm. The results just shown, for whih the period of wn is of order 100and its magnitude of order 10, where obtained by implementing the map as atranslation on the torus x′ = x + ω mod 1. From an analytial point of view,this is equivalent to a 2D rotation on a irle, but from a numerial point of viewthe latter leads to a sequene wn whih has initially, for a number of iterationsof order 105, properties similar to a random sequene (i.e. its variane growsapproximately with a linear law), see �gure 7. For the translation on the torus
ξ(ω) is given by 〈∆n

∗ (x, ω)〉x/n with a nie auray even for low values of n.Conerning the deay of �delity, for regular maps we distinguish betweenisohronous maps, for whih the frequeny is �xed, and anisohronous maps,suh as the skew map on the ylinder x′ = x + ω(y), y′ = y, for whih thefrequeny depends on the initial onditions. In the former ase �delity does notdeay, while in the latter it has a power law deay. For the isohronous mapsthe system is basially equivalent to a deterministi rotation with a frequeny
ω + εξ, and it an be easily shown that in this ase �delity does not deay,but osillates with onstant amplitude. Indeed, ignoring the ontribution ofthe term wn, we an write the ation of n iterations of the numerial map as
xn
∗ = x0 + n(ω + εξ). Substituting in the Fourier analysis of appendix B in [1℄and keeping ξ �xed (i.e., not performing the integral in the noise), this leads toan osillating phase term but not to a deay term (atually the presene of theosillating term wn an ause a deay of �delity for the highest Fourier modes,those orresponding to distanes of the order of the magnitude of wn).For the anisohronous map with ω(y) = y (to whih any map with monotoni

ω(y) an be redued), a power law deay for Fn−F0 is atually observed. Indeedthe map in this ase is T (x, y) de�ned on the ylinder T × [a, b] or the torus T
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aording to
Tx = x + y mod 1 Ty = yand the �delity with respet to perturbed map is omputed by integrating over

x, y. If T∗ denotes the map with numerial noise, the map beomes T∗(x, y)whose iterate an be written
xn
∗ = x0 + ǫξx(x0) + n(y0 + ǫξy(y0)) yn

∗ = y0 + ǫξy(y0)In writing this equation we use the previous results for translations on the Torus,were the role of ξ is now played by ξy and that of ω by y0. We have alreadyingnored the bounded term wn but we have espliitely wrote the round o� errorof x0 for simmetry with respet to y0. Let us onsider Φ and Phi to be funtionsof the only variable x, and use the usual Fourier analysis approah. The integralsan be omputed if we replae, following again the previous disussion, ξx(x0)and ξy(y0) with ξx and ξy assuming that they are random variables rangingin [−1, 1] so that the integration over x0, y0 is replaed by an integration over
x0, y0 and ξx, ξy. The �delity Fn is given by

Fn
∗ =

∑

k∈Z

ΨkΦ−k
sin(2πnkε)

2πnkε

sin(2πkε)

2πkε
(16)This rather strong assumption provides a result whih is in good agreement withthe numerial omputations see �gure 8. A map where at any step both x and

y where a�eted by a random error
Tǫ x = x + y + ǫξx Tǫ y = y + ǫξywould give a ompletely di�erent result. Indeed taking into aount that theiterate of order n is

xn = x0 + ny0 + ε
(

n
∑

j=1

ξj
x +

n−1
∑

j=1

(n − j)ξj
y

)

yn = y0 + ǫ

n
∑

j=1

ξj
ythe following result for the �delity is found

Fn
∗ =

∑

k∈Z

ΨkΦ−k

( sin(2πkε)

2πkε

)n n
∏

j=1

sin(2πjkε)

2πjkε
(17)Figure 8 shows that this result agrees with the �delity omputed numeriallyfor a randomly perturbed map and di�ers drastially from the �delity of themap with round o� noise.6 Chaoti mapsFidelity deay an be easily studied for haoti numerial maps (for exampleBernoulli, Hènon, Logisti, Intermittent, Baker's map and the Standard map13
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Figure 8: Left: Deay of �delity for the skew map. Blak: additive noise, om-pared with its analytial predition eq 17 (red); green round o� noise omparedwith its analytial predition eq 16 (blue). Right: omparison of round o� noiseand analytial predition on a longer time sale. N = 104with K ≫ 1) and shows always a good qualitative agreement with the resultsobtained for additive noise, i.e. the presene of a threshold below whih �delityis onstant and the error funtion is qualitatively a δ funtion (its support ismany order of magnitude smaller than the size of the phase spae, as it hap-pened in �gure 2). Beyond this threshold, that we an all n∗ and that growsas − ln ε, i.e. linearly in the number of bits used to represent real numbers(�gure 9), the error distribution spreads quikly over its aessible range, as anbe heked using also a Monte Carlo sampling of the error distribution. Theresults for haoti maps do not show a signi�ant dependene on the hoie ofthe arhiteture.Stating that the deay law of �delity is qualitatively similar to the one ob-served for additive noise is not enough to prove that the sequene of single steperrors ξi (see equation 7) an be onsidered equivalent to a random one, as welaimed in our ansatz. In order to better understand the nature of this sequenewe are going to use two approahes. The �rst approah would be to study thedistribution of ξi for di�erent i values. In the ase of additive noise we wouldhave a ontinuous uniform distribution idential for eah i, and thus the moredi�erent is the atual ξi distribution from a ontinuous uniform one, the lessvalid is our assumption. The seond approah onsists in studying in greaterdetail the deay law, omparing it with the one for additive noise, to see if somedi�erene emerges. In order to do that, an be useful to study the deay of�delity for quenhed noise. By quenhed noise we mean a perturbation thatuses the same sequene ξi for eah initial ondition (the sequene is obtainedrandomly hoosing the values ξi but without integrating on them). If our as-sumption is valid, the �delity for round o� noise should be more similar to thatobtained using additive noise than to the one obtained using quenhed noise.Let us start with the map 3x mod 1. From a detailed observation of �gure 9 ispossible to see, in partiular for single preision, that some di�erene between14
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Figure 9: Deay of �delity for 3x mod 1 represented in single preision (blak,irles) and double preision (red, diamonds) ompared to a referene map T†using 32 digits; the results are ompared to the deay of �delity for random(additive) noise with ε = 2−25 (blue, rosses) and ε = 2−53 (green, squares), thevalue of single and double preision last signi�ant bits for reals on the torus.Monte Carlo integrals with N = 107round o� and additive noise is present. For this map, we have found that theglobal error an be desribed as
∆n

∗ (x) =

n
∑

i=0

3n−iεξi(x) (18)(this equation, as eq. (14), does not take in aount boundary e�ets) wherethe initial ondition round o� ξ0 has a step-wise ontinuum spetrum η(εξ) =
2p−1

∑∞
k=p χ[−2−k,2−k](εξ) distribution one sampled over the spae of initialon�gurations (due to the exponent in the �oating point representation, 2−p isthe value of the least signi�ant bit, that we an also onsider as equivalent tothe onstant ε), while the ξi with i ≥ 1 have a disrete spetrum, whih resultsto be almost ompletely redued to zero for i ≥ 2 (i.e. no relevant errors aremade after the �rst iteration). (�gure 10). Due to this e�et, whih is ausedby the extremely simple algorithmi nature of the map, the sequene of singlestep errors annot be used as a representative sequene for an integral over thenoise.It is than evident that only the initial round o� has a ontinuous (even if notuniform) distribution, and an be in some way onsidered as equivalent to theadditive noise. In the disussion of the skew map, we have seen that the initialround o� determined the deay law of �delity, and this is true also for the map3x mod 1. Let us assume for simpliity's sake, as we have previously done for15
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δFn

ε =
∑

k 6=0

ΨkΦ−k
sin(2πεkqn)

2πεkqn
(19)(this result is trivially obtained following the Fourier analysis proedure in ap-pendix B of [1℄ and performing only the �rst integral over noise). The deaylaw (19) desribes better the deay law for �delity due to round o� noise thanto (6), showing that the main ontribution to deay �delity is due to the initial,ontinuous spetrum perturbation (�gure 11). To analyse the ontribution of

ξi with i ≤ 1 let us remove the initial round o� (hoosing rational initial on-ditions that an be represented exatly with the presribed preision). In thisase �delity presents a threshold, but does not deay to zero (after the thresholdthe error distribution expands to the whole phase spae but does not onvergeto an asymptoti distribution, �gure 12). In this ase, i.e. when only initialondition points that an be represented exatly using the numerial preisionunder examination and thus the initial round o� is removed, the �delity osil-lates after the threshold without going to zero (�gure 13). Is not surprising thatthis behaviour is quite similar to that obtained studying the quenhed noiseperturbation of this map. Indeed it an be shown, (generalizing a result in [6℄),that the �delity for quenhed noise osillates but does not deay to zero. Wehave found that this result is partiularly di�ult to verify using Monte Carlonumerial integration. As it is shown in �gure 13, a the map 3x mod 1 studiedwith numerial preision ε1 and perturbed with numerial noise ε2, starts os-illating in orrespondene with the �delity threshold for ε2 (in agreement withthe analytial result) but then drops to zero in orrespondene with the �delitythreshold for ε1 (see �gure 13, omparing with �gure 9 to know the single anddouble preision thresholds). Aording to us this result supports our onlusion16
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Figure 11: Deay of �delity for 3x mod 1. Blak, irles: analytial result (6),using ε = 2−25. Red, squares: analytial result (19). Green, diamonds: roundo� noise (single preision ompared to double preision), N = 107
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Figure 12: Error distribution ρn obtained omparing a single preision 3x mod 1map with a double preision map, using initial onditions in single preision (noinitial round o�). Blak, n = 30; red, n = 31; green n = 32; ompared to thetriangular funtion (blue) obtained using initial ondition in double preision(initial round o�). Monte Carlo samplings using N = 107 initial onditions.17
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Figure 13: Deay of �delity for 3x mod 1. Blak, diamonds: quenhed noiseomputed with 32 digits (ε = 2−25). Red, squares: quenhed noise omputedwith double preision (ε = 2−25). Green, irles: deay of �delity obtainedomparing a single preision map with a double preision one (round o� noise)using initial onditions that an be exatly represented in single preision, i.e.removing the initial round o�. Monte Carlo integrals, N = 106that the �delity deay threshold is a good measure for the maximum number ofiterations under whih the numerial omputations are ompletely reliable.For the other, (slightly) more algorithmially omplex maps, the sequene oferror ξi has a ontinuous spetrum for eah value of i, and onverges quiklyto an asymptoti distribution (�gure 14). For all these systems the asymptotierror distribution results to be almost indistinguishable from that obtained us-ing additive noise (�gure 15), suggesting that for these maps the assumption ofequivalene between round o� and additive noise ould be valid (for these mapsthe initial round o� error plays no speial role).In order to better verify this assumption, we have studied the deay of �delityfor maps perturbed with quenhed noise, i.e. without performing the integralover noise. Nevertheless, for all the tested haoti maps (with the exeption ofthe Baker's map) the deay laws for quenhed and additive noise were not dis-tinguishable, at least using the omputational preision allowed by our MonteCarlo method. For the Baker's map, is possible to see that the �delity deayis more irregular for quenhed noise (due to the absene of the smoothing inte-gral). In this ase the deay using round o� noise is more similar to the additiveone, suggesting the validity of our assumption for this map (�gure 16).
18
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Figure 16: Deay of �delity for the Baker's map. Blak, irles:the sequeneerrors of order 2−25 is the same for eah initial ondition (quenhed noise),showing an irregular deay law; green, squares: single preision round o� noise,showing the same smooth deay of additive noise with ε = 2−25 (red, rosses).Monte Carlo integrals with N = 1077 ConlusionsWe have used the results of a previous work on additive noise to study the e�etsof round o� noise on disrete systems. For regular maps the behavior dependson the algorithmi realization and on its harater: for isohronous maps the�delity error does not deay, for anisohronous maps it has a power law deay,whereas in presene of an additive noise the deay is always exponential. Forhaoti systems round o� and noise are almost equivalent. We also showed thatthe �delity is an e�ient tool for the study of the time sales for the onvergeneto the asymptoti error distribution, sine, at least for haoti maps, it allows usto �nd a threshold value below whih the numerial system an be onsideredas equivalent to the exat one. This threshold linearly grows as the number ofbits used to represent real numbers.
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