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Random Classical Fidelity

C. Liverani ∗, Ph. Marie †, S.Vaienti ‡.

March 16, 2009

Abstract

We introduce a random perturbed version of the classical �delity and we show
that it converges with the same rate of decay of correlations, but not uniformly in
the noise. This makes the classical �delity unstable in the zero-noise limit.

1 Introduction

A recent series of papers [4, 5, 9], addresses the question of computing the classical
�delity for chaotic systems. They presented qualitative arguments and numerical
evidences in favor of the fact that, for some dynamical systems, classical �delity
decays exponentially with the same rate as for correlations functions. The purpose
of this note is to provide a rigorous mathematical proof of such a conjecture for a
random perturbed version of the classical �delity.

We �rst remind that classical �delity is the classical counterpart of quantum
�delity which is, roughly speaking, a measure of the stability of quantum motion.
Let us suppose that |ψ〉 is an initial quantum state which evolves forward up to
time t under the Hamiltonian H0 and then backward for the same time t under
the perturbed Hamiltonian Hε = H0 + εV where V is a potential. The overlap of
the initial state with its image eiHεte−iH0t |ψ〉 is quanti�ed by the quantum �delity
de�ned as:

fq(t) =
∣∣〈ψ ∣∣eiHεte−iH0t

∣∣ψ〉∣∣2 (1)

The accuracy to which the initial quantum state is recovered is also called the
Loschmidt echo [5, 11, 17].

A huge physical literature has been devoted to compute the quantum �delity; in
particular it has been shown that, under some restrictions, fq(t) decays exponentially
with a rate given by the classical Lyapunov exponent ([5] and refs. therein). The
classical analogue of (1) is simply de�ned by replacing the Hamiltonian with the
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evolution (Koopmann) operator of maps which preserve some invariant measures
(see next section). It would be interesting to understand if the asymptotic decay of
the classical �delity takes place with the same exponent or, alternatively, at what
time scale the quantum decay shares the same behavior of the classical one. These
are among the major motivations to study the classical �delity.

As we said above, there are numerical evidences that the decay of classical �delity
is ruled by the usual decay of correlations for smooth observables and that this decay
takes place after a time t which is of order log(ε−1), where ε is the strength of the
perturbation. Notice that after this transient time, the rate of decay turns out to be
independent of ε. The numerical computations have been performed on invertible
maps, possibly with singularities, preserving Lebesgue measure. In order to prove
rigorously the preceding results for a wide class of dynamical systems, it will be
useful to consider, instead of a single perturbed map, a random perturbation of the
original system. In fact, in the case of a single perturbed map, the classical �delity
will not generally converge when time goes to in�nity, as we will show on a very
simple example in the Appendix.1 The evolution operator will be therefore replaced
by a random evolution operator. The advantage of this de�nition is twofold. First
we can prove that the random �delity has a limit when t→ +∞ and the limit value
is correctly identi�ed. Second, the rate of decay towards this limit value is the same
as for correlations but it is modulated by a factor of type ε−α (so far it was simply
ε−1), where α depends on the class of observable under consideration. Under the
additional assumption that the random dynamical system is stochastically stable, we
will show an additional result, namely that the limit value of the �delity performed
by �rst taking t → +∞ followed by ε → 0 is not the same if we interchange the
order of the limits. We call this e�ect stochastic instability of classical �delity, since
it shows that the irreversibility which is present for ε > 0 (echo e�ect), still persist in
the zero-noise limit. We �nally point out that the computation of classical �delity in
presence of noise has been studied (notably in [5]) and it shares the same properties
as for a single perturbed map. We will present in this paper two di�erent ways to
perturb a dynamical system: the �rst consists in perturbing the evolution operator
by replacing the dynamics with a suitable Markov chain, while in the other method
the orbit of a point is replaced by the random composition of maps close to the
unperturbed one. We will show in the last section how to establish the equivalence
of the two approaches in a few settings.

2 Random �delity

In order to mimic the physical situations where the classical �delity has been stud-
ied, even in connection with its quantum counterpart, we will restrict ourselves to
dynamical systems de�ned on compact Riemannian manifolds X equipped with the
Riemannian volume (Lebesgue measure) m. We consider then a measurable (with
respect to the Borel σ-algebra β) map T : X → X. For the moment we do not
quote in detail the regularity properties of T ; instead we list the requirements the

1Our counterexample concerns the algebraic automorphism of the torus, perturbed with an additive
noise. Still for the same map, but perturbed in a di�erent manner, the limit de�ning the classical �delity
seems to exist, at least numerically [5]; see also our examples 4 in Sect. 3
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system should verify for our results to hold. Later on we will provide several explicit
examples satisfying our assumptions.

The classical version of (1) is stated in [5, 14], as:

fc(n) =
∫

X
Un

0 ρ(x) U
n
ε ρ(x) dm(x) (2)

where U0 and Uε denote respectively the evolution (Koopmann) operator associated
to T and to Tε, where Tε is close to T (in some topology):

U0ρ(x) = ρ(Tx) ; Uερ(x) = ρ(Tεx). (3)

Indeed, suppose at �rst that the map T is invertible. Then the classical analogue
of (1) would be:

∫
X ρ(x)(U−n

0 Un
ε )ρ(x) dm(x), that is one �rst evolves ρ for a time n

by the dynamics Tε and then backward by the dynamics T . If m is T invariant, the
preceding integral reduces immediately to (2). In general the Lebesgue measure is
not invariant, but it converges to some invariant measure in the limit n → ∞, see
assumption (H1), thus the two de�nition coincide asymptotically. Of course, U−1

0

does not have much sense in the non invertible case, yet formula (2) makes perfect
sense so it is natural to use it a de�nition of classical �delity.

We will choose the density ρ as a C1 function on X; moreover we will take m
normalized on X: m(X) = 1. As mentioned in the introduction, instead of a single
perturbed map Tε, we will consider a random perturbation of T , that is a family
(X ε

n)n≥0 of Markov chains whose transition probabilities {P ε(·|x), x ∈ X} converge
uniformly to δT (x) as ε→ 0. We now state carefully our assumptions:

(H1) The map T admits an invariant measure µ which is the weak∗-limit of the
Lebesgue measure m, which means,∫

X
ϕ dµ = lim

n→+∞

∫
X
ϕ(Tnx)dm for all ϕ ∈ C0(X)

We assume that the measure µ is ergodic and exponentially mixing on the space of
C1 function on X and with respect to two norms which for the moment we simply
denote with ‖ · ‖1 and ‖ · ‖2∣∣∣∣∫

X
ψ1(Tnx)ψ2(x) dm(x)−

∫
X
ψ1 dµ

∫
X
ψ2 dm

∣∣∣∣ ≤ Cλ−n ‖ψ1‖1 ‖ψ2‖2 (4)

where C > 0 and λ > 1 are determined only by the map T . We stress the fact that
the 1-norm ‖ · ‖1 refers to the function ψ1 which is composed with T , while the 2-
norm is computed on ψ2. One could choose stronger equal norms, of course, but this
would yield weaker estimates, with respect to the noise parameter ε, of the 2-norm
of the function (of z) qε(Ty, z) and of the 2-norm of the function (of x) qε(Tx, y),
qε(x, y) being de�ned in the next assumption. We will see in the proof of Theorem
1 that the upper bounds of the 2-norms of qε will give the dependence over ε which
modulates the exponential decay of the �delity. This will lead us to use norms as
optimal as possible in the examples that we will present later on.

Let us consider on the measure space (X,β) a family of Markov chains (X ε
n)n≥0

with transition probabilities:

P (X ε
n+1 ∈ A|X ε

n = z) =
∫

A
qε(Tz, y) dm(y) (5)
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where A ∈ β, X ε
0 can have any probability distribution and the measurable function

qε : X ×X → R+, ε ∈ (0, 1] is chosen in such a way that:

qε(x, y) = 0 if d(x, y) > ε (6)∫
X
qε(x, y) dm(y) = 1 for all x ∈ X (7)

A typical example of such a kernel [7], which we will adopt in the following, is

qε(x, y) = ε−dq̄(ε−1(y − x)) (8)

where q̄ is nonnegative and continuously di�erentiable, supp(q̄) ⊂ {ξ ∈ Rd : |ξ| ≤
1},

∫
q̄(ξ) dξ = 1, inf{q̄(ξ) : |ξ| ≤ 1

2} > 0 and �nally d is the dimension of the
manifold X.

(H2) There exists a norm (identi�ed with ‖ · ‖2), a constant c (depending even-
tually on the function q) and a real positive exponent α (depending only on the map
T ) such that:

sup
y∈X

‖qε(Ty, ·)‖2 ≤ cε−α ; sup
z∈X

‖qε(T (·), z)‖2 ≤ cε−α. (9)

Let us now choose T continuous; then by the compactness of X and the choice (6)
of the transition probabilities, our Markov chain admits an absolutely continuous
stationary measure µε namely a probability measure over (X,β) which veri�es for
all g ∈ C0(X);2 ∫

X
g(x)dµε(x) =

∫
X

∫
X
qε(Tx, y)g(y) dµε(x)dm(y) (10)

Notice that (11) can be equivalently written as:

µε(A) =
∫

X
(Tε1A)(x)dµε(x) (11)

where A ∈ β, 1A is the indicator function of the set A and Tε is the operator de�ned
on L∞(X) by:

(Tεg)(x) =
∫

X
qε(Tx, y)g(y)dm(y) (12)

This operator will play an important role in the following: it is the random version
of the Koopmann operator (Ug)(x) = g(Tx). It simply replaces the deterministic
value g(Tx) with the averaged value of g on a small ball of radius ε around Tx. We
are now ready to state our third assumption:

(H3) The map T admits a kernel family qε for which µε is the only absolutely
continuous stationary measure (eventually for ε small) and we have the following
rate of decay of correlations for the Markov process (X ε

n, µε):∣∣∣∣∫
X
Tn

ε ψ1(x)ψ2(x) dm(x)−
∫

X
ψ1 dµε

∫
X
ψ2 dm

∣∣∣∣ ≤ Cλ−n ‖ψ1‖1 ‖ψ2‖2 (13)

2We would like to point out that in the examples 3 and 4 of Section 3, the map T is not anymore
continuous; nevertheless the existence of an absolutely continuous stationary measure can be proved with
other arguments [3, 10]
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where C, λ and the norms 1 and 2 are the same as in (5).
We also consider another stronger property of the process (X ε

n, µε) namely its weak
convergence towards (T, µ).
(H4) We suppose that the system (T, µ) is stochastically stable, in the sense that
µε tends to µ weakly as ε→ 0.

We �nally introduce our de�nition of the classical �delity which replaces (2) and
is given in terms of the prescriptions (H1) to (H3).

De�nition 1 (Random classical �delity). Let us suppose T is a Borel measurable
map from the compact Riemannian manifold X into itself, and letm be the probability
Riemannian measure on X. Let Tε be the random evolution operator de�ned in (13)
and ρ ∈ C1(X). We de�ne the classical �delity as:

F ε
c (n) =

∫
X
ρ(Tnx)(Tn

ε ρ)(x) dm(x) (14)

We will say that a system enjoy classical �delity if F ε
n(n)−

∫
ρdµ

∫
ρdµε tend to zero

as n tends to in�nity.

We now state our main result:

Theorem 1. Let us suppose that the map T introduced in the preceding de�nition
veri�es the assumptions (H1) to (H3). Then there exists C > 0:∣∣∣∣F ε

c (n)−
∫

X
ρ dµ

∫
X
ρ dµε

∣∣∣∣ ≤ Cε−αλ−n ‖ρ‖1 ‖ρ‖C0 . (15)

Remark 1. 1. The theorem shows that the limit value of the classical �delity
involves the stationary measure µε. Moreover the error term is not uniform in
ε and this error begins to be negligible after a time n of order log ε−α/ log λ.
This e�ect has been e�ectively observed in [5], see also the appendix.3

2. The presence of ε in the limit value of F ε
c (n) when n→∞, or equivalently, the

non-uniformity in ε of the error term, have an interesting consequence if we
assume (H4), namely the stochastic stability of (T, µ). We �rst observe that in
the absence of noise the correlation integral F 0

c (n) converges towards
∫
X ρ2 dµ:

lim
n→∞

lim
ε→0

F ε
c (n) =

∫
X
ρ2 dµ (16)

Instead:

lim
ε→0

lim
n→∞

F ε
c (n) =

(∫
X
ρ dµ

)2

(17)

and the two limits (16) and (17) in general will di�er. We could interpret this
fact by saying that the classical �delity is not stochastically stable. The zero-
noise situation: limn→∞ F 0

c (n) is not recovered if we �rst play the dynamics
for n → ∞ and then we send the perturbation to zero. The memory is not
destroyed when the noise is turned o� after the evolution of the system and this
is a sort of irreversibility of our random version of the classical �delity.

3Of course that above estimate is relevant only for times longer than log ε−α/ log λ, since for shorter
time it gives a rather large bound while the quantity under consideration is trivially bounded by 2‖ρ‖2

∞.
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Proof of the theorem. Let us de�ne gε,y(x) = qε(Tx, y) and φε,y(z) = qε(Ty, z) and
notice that (we will equivalently denote the Lebesgue measure with dm(x) and dx):∫

X
(ρ ◦ Tn(x))Tn

ε ρ(x) dx =
∫

X
ρ ◦ Tn(x)(Tε ◦ Tε ◦ Tn−2

ε )ρ(x) dm(x)

=
∫

X3

ρ ◦ Tn(x)qε(Tx, y)qε(Ty, z)Tn−2
ε ρ(z) dxdydz

=
∫

X
dy

[∫
X
ρ ◦ Tn(x)gε,y(x) dx

] [∫
X
φε,y(z)Tn−2

ε ρ(z) dz
]

Let's then de�ne for n ≥ 1:

∆n =
∥∥∥∥∫

X
ρ ◦ Tn(x)gε,y(x) dx−

∫
X
gε,y(x) dx

∫
X
ρ dµ

∥∥∥∥
C0

∆ε,n =
∥∥∥∥∫

X
φε,y(z)Tn−2

ε ρ(z) dz −
∫

X
φε,y(x) dx

∫
X
ρ dµε

∥∥∥∥
C0

The mixing properties of µ with respect to T and of µε with respect to Tε as we
stated in assumptions (H1) and (H3), imply the following decay of correlations
functions:

∆n ≤ Cλ−n ‖ρ‖1 ‖gε,y‖2 ≤ Cλ−n ‖ρ‖1 ε−α

∆ε,n ≤ Cλ−n ‖ρ‖1 ‖φε,y‖2 ≤ Cλ−n ‖ρ‖1 ε−α

where we use the same symbol C to denote possibly di�erent constants depending
solely on the map T . Moreover (using

∫
M φε,y(z)dz = 1), we can compute:∣∣∣∣∫

X
ρ ◦ Tn(x) Tn

ε ρ(x) dx−
∫

X
ρ dµ

∫
X
ρ dµε

∣∣∣∣
≤

∫
X
dy∆n

∣∣∣∣∫
X
φε,y(z)Tn−2

ε ρ(z) dz
∣∣∣∣ +

∫
X
dy∆ε,n−2

∣∣∣∣∫
X
ρ dµ

∫
X
gε,y(z) dz

∣∣∣∣
≤ Cλ−n+2ε−α ‖ρ‖1 ‖ρ‖C0 + Cλ−n+2ε−α ‖ρ‖1 ‖ρ‖C0

since
∫
X gε,y(z) dz ≤ C,

∫
X φε,y(z) dz ≤ C and ‖Tn

ε ρ‖C0 ≤ C ‖ρ‖C0 for all n.

3 Examples

In this section we quote some dynamical systems of physical interest which �t our
assumptions and to which we can apply our theorem on the decay of classical �-
delity. We remark that the measure µ which we consider as the weak∗-limit of the
Lebesgue measure, is usually called the SRB or physical measure. For di�eomor-
phisms, eventually with singularities, it has also two additional properties: �rst, it
has absolutely continuous conditional measures along the unstable foliations; second
it can be reconstructed by Birkho� sums starting from initial points chosen in a
basin of positive Lebesgue measure.

For locally (eventually non-uniformly) expanding maps, µ is absolutely continu-
ous with respect to the Lebesgue measure.
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1. Anosov di�eomorphisms

The exponential decay of correlations for the SRB measure is a classical result;
see for instance [8]. Yet, the optimal choice of the norms is a subtle matter.
For simplicity we adopt the choice made in [7] where one can also �nd the
decay of correlations for the stationary measure µε constructed with the kernel
family qε. With such a choice, a direct computation from formula (2.1.7) of [7]
yields

‖h‖2 ≤ ‖h‖L1 + ‖Duh‖L1

‖h‖1 ≤ ‖h‖C1 ,

where Du is the di�erential restricted to the unstable directions. Accordingly,
‖gε‖2 + ‖φε‖2 ≤ Cε−1. Hence, in this case, α = 1.

2. Uniformly hyperbolic attractors

In this case we can refer to the work of Viana [18] although the norms are
probably not the optimal ones. Better estimates could probably be obtained
by using the recent work of [2] in conjunction with the perturbation theory of
[12]. Here we content ourselves with the bound ‖h‖1 + ‖h‖2 ≤ C‖h‖C1 which
follows from formula (4.29) of [18]. Accordingly we have the (unsatisfactory
and almost certainly non optimal) bound α ≤ d+ 1.

3. Piecewise expanding maps of the interval

For continuous piecewise C2 expanding maps of the interval without periodic
turning points, Baladi and Young [3] have proved the exponential decay of
correlations and the stochastic stability of absolutely continuous stationary
measures constructed with the convolution kernel:

qε(x, y) = θε(y − Tx) θε ≥ 0 ; supp θε ⊂ [−ε; +ε] and

∫
θεdm = 1

In this case ‖h‖2 = ‖h‖BV , ‖h‖1 = ‖h‖L1 , thus α = 1.
Similar results can be obtained for piecewise expanding C2 maps with derivative
uniformly larger than 2, see [16].

4. Uniformly hyperbolic maps with singularities (in two dimensions)

This is an interesting situation since it covers the numerical simulation pro-
duced by Casati and al. [5]. In fact the latter authors perturbed the linear
automorphism of the torus by keeping the Lebesgue measure invariant. In this
way the perturbations become singular in the sense that the perturbed maps
are discontinuous.

This case has been rigorously investigated by [10]. Unfortunately, the norms
are a bit unusual, here we will just state the minimum and refer to [10] for
more details.

The basic object is a collection Σ of smooth curves close to the stable direction.
Given such curves we have (see [10] equations (2.3), (2.4)):

‖h‖2 ≤ sup
W∈Σ

∫
W
|Dh|+

∫
W
|h|.
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Thus we have4

‖gε‖2 + ‖φε‖2 ≤ Cε−2.

That is α ≤ 2. Note that the numerically predicted bound is α = 1. In view of
the smooth multidimensional case and of the one dimensional piecewise smooth
case above we conjecture that α = 1 is indeed the correct value and the present
one (α = 2) is a byproduct of our method of proof.

4 Perturbation with random maps

The random process that we used in Sect. 2 could be realized, in contrast to (6),
as the composition of random maps (see [1, 15, 13] for more details). In this section
we will brie�y comment on the relation between this two di�erent ways to realize a
random perturbation. We start the discussion by a precise description of the random
maps alternative.

Let (ωk)k∈N be a sequence of i.i.d. random variables with values in the interval
Ωε = (−ε, ε) and with distribution θε. We then associate continuously to each
ω ∈ Ωε a map Tω with T0 = T and we de�ne the transition probabilities (6) P (·|z)
on the σ-algebra β in such a way that :

P (A|z) = θε(ω;Tωz ∈ A) (18)

for A ∈ β. The closeness of the Tω to T will be made explicit in the concrete
examples that we are giving below. In this setting the random evolution operator is
replaced by the following one:

(Uεg)(x) =
∫

Ωε

g(Tωx)dθε(ω) (19)

for any g ∈ L∞(X), and the stationary measure µε should verify for each h ∈ C0(X)∫
hdµε =

∫
X

∫
Ωε

(h ◦ Tω)(x)dθε(ω)dµε(x) =
∫

X
(Uεh)(x)dµε(x) (20)

The iterations of the unperturbed map, Tn(x), x ∈ X, are thus replaced by the
composition of random maps Tωn ◦ · · · ◦ Tω1 , ωi ∈ Ωε;x ∈ X. One is therefore
tempted to de�ne a random version of the �delity by setting (compare with (2)):∫

ρ(Tnx)ρ(Tωn ◦ · · · ◦ Tω1)(x)dm(x)

4Let us compute, for example, ‖gε‖2. For W ∈ Σ∫
W

|gε| =
∫

W

qε(Tx, y)dx =
∫

T−1W

|qε(x, y)|JxTdx ≤ Cε−1

where JT is the Jacobian of the change of coordinates and the last inequality follows from the fact that
we integrate along a curve instead than on all the space. Analogously,∫

W

|Dgε| = ε−1

∫
W

|DT∇qε(Tx, y)|dx = ε−1

∫
T−1W

|DT∇qε(x, y)|JxTdx ≤ Cε−2.

From which the estimate in example 4 follows.
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for a given realization ω = (ω1, ω2, · · · ) ∈ ΩN
ε . Instead of doing that, we will take the

average over all realizations, which produces the annealed version of the preceding
correlation integral and we set the new version of the classical �delity as:

F̃ ε
c (n) =

∫
X

∫
Ωε

ρ(Tnx)ρ(Tωn ◦ · · · ◦ Tω1)(x)dθ
N
ε (ω)dm(x)

In terms of the random evolution operator Uε the above integral can be simply
written as

F̃ ε
c (n) =

∫
X
ρ(Tnx)(Un

ε ρ)(x)dm(x)

which is formally similar to the random classical �delity de�ned in (13). The ad-
vantage of this formula is that it is physically simpler to perturb the map T by
randomly composing sequence of maps close to T . A very established theory exists
for this kind of random perturbations and all the examples of Sect. 3 �t as well
with it. We now show that in many cases the random evolution operator Tε can
be obtained from Uε by a suitable choice of the probability measure θε and of the
random maps Tω. To make the argument as simple as possible, let us suppose that
X = Tm , the m-dimensional torus, and de�ne the additive noise: Tω = T (x) − ω
mod Tm, where ω ∈ Tm and then take θε absolutely continuous with respect to the
Lebesgue measure dω over Tm and with a continuously di�erentiable density hε with
support contained in the square [−ε, ε]m:

∫
dθε =

∫
hε(ω)dω = 1. A simple change

of variables on the m-dimensional torus immediately gives, for any g ∈ L∞(dω):

(Uεg)(x) =
∫
g(Tωx)hε(ω)dω =

∫
g(Tx− ω)hε(ω)dω =

∫
g(y)hε(Tx− y)dy

from which it follows that qε(Tx, y) = hε(Tx− y).

Appendix

A counterexample to classical �delity

Here is a simple example of a systems not having classical �delity (see De�nition 1).
We consider the algebraic automorphisms TL of the torus X = T2 de�ned by

TL(x1, x2) = (x1 + x2, x1 + 2x2) mod1

where x = (x1, x2) is a point on the torus, and its perturbed map Tω(x) = T (x) +
ω mod1 and we compute for all ρ ∈ C1(X):

ρω(n) =
∫

X
ρ(Tnx)ρ(Tn

ω x)dm(x)

where m denotes the normalized Lebesgue (Haar) measure over X. By using the
Fourier' transform technique, denoting with k an element of Z2 and �nally by posing
〈·, ·〉 the euclidean scalar product, we have: ρ(x) =

∑
k∈Z2 cke

2iπ〈k,x〉 where ck are
the Fourier coe�cients of ρ. It easily follows that:

ρ(Tnx) =
∑
k∈Z2

cke
2iπ〈k,Lnx〉 and ρ(Tn

ω x) =
∑
k∈Z2

cke
2iπ〈k,Lnx+

Pn−1
j=0 Ljω〉
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where L =
(

1 1
1 2

)
. Then:

ρω(n) =
∑
k∈Z2

|ck|2e2iπ〈k,
Pn−1

j=0 Ljω〉 =
∑
k∈Z2

|ck|2e2iπ〈k,(Id−Ln)(Id−L)−1ω〉

We notice that ρω(n) is the value at the point (Id−Tn
L )(Id−TL)−1ω mod1 of the

function with Fourier expansion:

g(x) =
∑
k∈Z2

|ck|2e2iπ〈k,x〉

But the operator (Id−TL)−1 has the matrix representation(
1 −1
−1 0

)
and therefore it appliesX onto itself. Moreover, by the ergodicity of TL, for Lebesgue
almost all ω ∈ Z2, the orbit (Id−Tn

L )ω, n ≥ 0, is dense in X. It follows that ρω(n)
cannot have any limit unless ρ is constant everywhere.

Sharpness of the bounds

We conclude by showing that the bound α = 1 is sharp: in general one cannot
expect any decay of the �delity before the time predicted by the α = 1 bound. We
consider again a toral automorphism and assume qε(x, y) = ε−2q̄(ε−1(x− y)),5 then
µ0 = µε = m and we can compute∫

qε(x, y)f(y)dy =
∑
k∈Z2

fk

∫
T2

qε(x, y)e2πi〈k,y〉dy =
∑
k∈Z2

fk

∫
R2

qε(x, y)e2πi〈k,y〉dy

=
∑
k∈Z2

fk

∫
R2

ε−2q(ε−1ξ)e2πi〈k,x−ξ〉dξ

=
∑
k∈Z2

fke
2πi〈k,x〉

∫
R2

q(ξ)e−2πi〈εk,ξ〉dξ =
∑
k∈Z2

fke
2πi〈k,x〉q̂(εk),

where q̂ is the Fourier transform of q : R2 → R+. That is (Tεf)k = fL−1kq̂(εL−1k).
Using these facts we can compute F ε

c (n) to be

F ε
c (n) =

∑
k∈Z2

n−1∏
i=0

|q̂(εLik)| · |ck|2.

Now we can chose, for example, ρ(x) = e2πi〈(1,1),x〉 and q(x) = 1
2πe

−‖x‖2/2, hence

ck = δk,(1,1) and q̂(k) = e−2π2‖k‖2 . This means the following lower bound on the
Fidelity

|F ε
c (n)− |c0|2| ≥ e−Cε2λ2n

.

5Where by x− y we means that x and y are lifted on the universal cover of T2, that is R2, then one
rescale the variables and then takes the mod 1 to bring it back to the torus.
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Since we have chosen an entire function the decay is super exponential, nevertheless
it takes place only after a time n such that ελn ≥ 1. This corresponds exactly to
the behavior in which α = 1. It is then clear that one cannot hope for an α better
than one in the estimates of Section 3.
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