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Random Classical Fidelity

We introduce a random perturbed version of the classical delity and we show that it converges with the same rate of decay of correlations, but not uniformly in the noise. This makes the classical delity unstable in the zero-noise limit.

Introduction

A recent series of papers [START_REF] Benenti | Quantum-classical correspondence in perturbed chaotic dynamical systems[END_REF][START_REF] Benenti | Stability of classical motion under a system's perturbations[END_REF][START_REF] Casati | Universal Decay of the Classical Loschmidt Echo of Neutrally Stable Mixing Dynamics[END_REF], addresses the question of computing the classical delity for chaotic systems. They presented qualitative arguments and numerical evidences in favor of the fact that, for some dynamical systems, classical delity decays exponentially with the same rate as for correlations functions. The purpose of this note is to provide a rigorous mathematical proof of such a conjecture for a random perturbed version of the classical delity.

We rst remind that classical delity is the classical counterpart of quantum delity which is, roughly speaking, a measure of the stability of quantum motion.

Let us suppose that |ψ is an initial quantum state which evolves forward up to time t under the Hamiltonian H 0 and then backward for the same time t under the perturbed Hamiltonian H ε = H 0 + εV where V is a potential. The overlap of the initial state with its image e iHεt e -iH 0 t |ψ is quantied by the quantum delity dened as:

f q (t) = ψ e iHεt e -iH 0 t ψ 2 (1)
The accuracy to which the initial quantum state is recovered is also called the Loschmidt echo [START_REF] Benenti | Stability of classical motion under a system's perturbations[END_REF][START_REF] Eckhardt | Echoes in Classical Dynamical Systems[END_REF]17].

A huge physical literature has been devoted to compute the quantum delity; in particular it has been shown that, under some restrictions, f q (t) decays exponentially with a rate given by the classical Lyapunov exponent ( [START_REF] Benenti | Stability of classical motion under a system's perturbations[END_REF] and refs. therein). The classical analogue of [START_REF] Alves | Random perturbations of nonuniformly expanding maps[END_REF] is simply dened by replacing the Hamiltonian with the evolution (Koopmann) operator of maps which preserve some invariant measures (see next section). It would be interesting to understand if the asymptotic decay of the classical delity takes place with the same exponent or, alternatively, at what time scale the quantum decay shares the same behavior of the classical one. These are among the major motivations to study the classical delity.

As we said above, there are numerical evidences that the decay of classical delity is ruled by the usual decay of correlations for smooth observables and that this decay takes place after a time t which is of order log(ε -1 ), where ε is the strength of the perturbation. Notice that after this transient time, the rate of decay turns out to be independent of ε. The numerical computations have been performed on invertible maps, possibly with singularities, preserving Lebesgue measure. In order to prove rigorously the preceding results for a wide class of dynamical systems, it will be useful to consider, instead of a single perturbed map, a random perturbation of the original system. In fact, in the case of a single perturbed map, the classical delity will not generally converge when time goes to innity, as we will show on a very simple example in the Appendix. [START_REF] Alves | Random perturbations of nonuniformly expanding maps[END_REF] The evolution operator will be therefore replaced by a random evolution operator. The advantage of this denition is twofold. First we can prove that the random delity has a limit when t → +∞ and the limit value is correctly identied. Second, the rate of decay towards this limit value is the same as for correlations but it is modulated by a factor of type ε -α (so far it was simply ε -1 ), where α depends on the class of observable under consideration. Under the additional assumption that the random dynamical system is stochastically stable, we will show an additional result, namely that the limit value of the delity performed by rst taking t → +∞ followed by ε → 0 is not the same if we interchange the order of the limits. We call this eect stochastic instability of classical delity, since it shows that the irreversibility which is present for ε > 0 (echo eect), still persist in the zero-noise limit. We nally point out that the computation of classical delity in presence of noise has been studied (notably in [START_REF] Benenti | Stability of classical motion under a system's perturbations[END_REF]) and it shares the same properties as for a single perturbed map. We will present in this paper two dierent ways to perturb a dynamical system: the rst consists in perturbing the evolution operator by replacing the dynamics with a suitable Markov chain, while in the other method the orbit of a point is replaced by the random composition of maps close to the unperturbed one. We will show in the last section how to establish the equivalence of the two approaches in a few settings.

Random delity

In order to mimic the physical situations where the classical delity has been studied, even in connection with its quantum counterpart, we will restrict ourselves to dynamical systems dened on compact Riemannian manifolds X equipped with the Riemannian volume (Lebesgue measure) m. We consider then a measurable (with respect to the Borel σ-algebra β) map T : X → X. For the moment we do not quote in detail the regularity properties of T ; instead we list the requirements the system should verify for our results to hold. Later on we will provide several explicit examples satisfying our assumptions.

The classical version of (1) is stated in [START_REF] Benenti | Stability of classical motion under a system's perturbations[END_REF][START_REF] Karkuszewski | Quantum chaotic environments, the buttery eect and decoherence[END_REF], as:

f c (n) = X U n 0 ρ(x) U n ε ρ(x) dm(x) (2) 
where U 0 and U ε denote respectively the evolution (Koopmann) operator associated to T and to T ε , where T ε is close to T (in some topology):

U 0 ρ(x) = ρ(T x) ; U ε ρ(x) = ρ(T ε x). (3) 
Indeed, suppose at rst that the map T is invertible. Then the classical analogue of (1) would be:

X ρ(x)(U -n 0 U n ε )ρ(x) dm(x)
, that is one rst evolves ρ for a time n by the dynamics T ε and then backward by the dynamics T . If m is T invariant, the preceding integral reduces immediately to [START_REF] Baladi | Anisotropic hölder and sobolev spaces for hyperbolic dieomorphisms[END_REF]. In general the Lebesgue measure is not invariant, but it converges to some invariant measure in the limit n → ∞, see assumption (H1), thus the two denition coincide asymptotically. Of course, U -1 0 does not have much sense in the non invertible case, yet formula (2) makes perfect sense so it is natural to use it a denition of classical delity.

We will choose the density ρ as a C 1 function on X; moreover we will take m normalized on X: m(X) = 1. As mentioned in the introduction, instead of a single perturbed map T ε , we will consider a random perturbation of T , that is a family (X ε n ) n≥0 of Markov chains whose transition probabilities {P ε (•|x), x ∈ X} converge uniformly to δ T (x) as ε → 0. We now state carefully our assumptions:

(H1) The map T admits an invariant measure µ which is the weak * -limit of the Lebesgue measure m, which means,

X ϕ dµ = lim n→+∞ X ϕ(T n x)dm for all ϕ ∈ C 0 (X)
We assume that the measure µ is ergodic and exponentially mixing on the space of C 1 function on X and with respect to two norms which for the moment we simply denote with

• 1 and • 2 X ψ 1 (T n x)ψ 2 (x) dm(x) - X ψ 1 dµ X ψ 2 dm ≤ Cλ -n ψ 1 1 ψ 2 2 (4)
where C > 0 and λ > 1 are determined only by the map T . We stress the fact that the 1-norm

• 1 refers to the function ψ 1 which is composed with T , while the 2norm is computed on ψ 2 . One could choose stronger equal norms, of course, but this would yield weaker estimates, with respect to the noise parameter ε, of the 2-norm of the function (of z) q ε (T y, z) and of the 2-norm of the function (of x) q ε (T x, y), q ε (x, y) being dened in the next assumption. We will see in the proof of Theorem 1 that the upper bounds of the 2-norms of q ε will give the dependence over ε which modulates the exponential decay of the delity. This will lead us to use norms as optimal as possible in the examples that we will present later on.

Let us consider on the measure space (X, β) a family of Markov chains (X ε n ) n≥0

with transition probabilities:

P (X ε n+1 ∈ A|X ε n = z) = A q ε (T z, y) dm(y) (5) 
where A ∈ β, X ε 0 can have any probability distribution and the measurable function

q ε : X × X → R + , ε ∈ (0, 1]
is chosen in such a way that:

q ε (x, y) = 0 if d(x, y) > ε (6) X q ε (x, y) dm(y) = 1 for all x ∈ X (7) 
A typical example of such a kernel [START_REF] Blank | Ruelle-Perron-Frobenius Spectrum for Anosov Maps[END_REF], which we will adopt in the following, is

q ε (x, y) = ε -d q(ε -1 (y -x)) ( 8 
)
where q is nonnegative and continuously dierentiable, supp(q) ⊂ {ξ ∈ R d : |ξ| ≤ 1}, q(ξ) dξ = 1, inf{q(ξ) : |ξ| ≤ 1 2 } > 0 and nally d is the dimension of the manifold X.

(H2) There exists a norm (identied with • 2 ), a constant c (depending eventually on the function q) and a real positive exponent α (depending only on the map T ) such that:

sup y∈X q ε (T y, •) 2 ≤ cε -α ; sup z∈X q ε (T (•), z) 2 ≤ cε -α . ( 9 
)
Let us now choose T continuous; then by the compactness of X and the choice [START_REF] Blank | Random perturbations of chaotic dynamical systems: stability of the spectrum[END_REF] of the transition probabilities, our Markov chain admits an absolutely continuous stationary measure µ ε namely a probability measure over (X, β) which veries for all g ∈ C 0 (X);2 X g(x)dµ ε (x) = X X q ε (T x, y)g(y) dµ ε (x)dm(y) [START_REF] Demers | Stability of statistical properties in two-dimensional piecewise hyperbolic maps[END_REF] Notice that (11) can be equivalently written as:

µ ε (A) = X (T ε 1 A )(x)dµ ε (x) (11)
where A ∈ β, 1 A is the indicator function of the set A and T ε is the operator dened on L ∞ (X) by: (T ε g)(x) = X q ε (T x, y)g(y)dm(y) [START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF] This operator will play an important role in the following: it is the random version of the Koopmann operator (U g)(x) = g(T x). It simply replaces the deterministic value g(T x) with the averaged value of g on a small ball of radius ε around T x. We are now ready to state our third assumption:

(H3) The map T admits a kernel family q ε for which µ ε is the only absolutely continuous stationary measure (eventually for ε small) and we have the following rate of decay of correlations for the Markov process (X ε n , µ ε ):

X T n ε ψ 1 (x)ψ 2 (x) dm(x) - X ψ 1 dµ ε X ψ 2 dm ≤ Cλ -n ψ 1 1 ψ 2 2 (13) 
where C, λ and the norms 1 and 2 are the same as in [START_REF] Benenti | Stability of classical motion under a system's perturbations[END_REF]. We also consider another stronger property of the process (X ε n , µ ε ) namely its weak convergence towards (T, µ). (H4) We suppose that the system (T, µ) is stochastically stable, in the sense that µ ε tends to µ weakly as ε → 0.

We nally introduce our denition of the classical delity which replaces (2) and is given in terms of the prescriptions (H1) to (H3).

Denition 1 (Random classical delity). Let us suppose T is a Borel measurable map from the compact Riemannian manifold X into itself, and let m be the probability Riemannian measure on X. Let T ε be the random evolution operator dened in [START_REF] Liu | Smooth Ergodic Theory of Random Dynamical Systems[END_REF] and ρ ∈ C 1 (X). We dene the classical delity as:

F ε c (n) = X ρ(T n x)(T n ε ρ)(x) dm(x) (14) 
We will say that a system enjoy classical delity if F ε n (n) -ρdµ ρdµ ε tend to zero as n tends to innity.

We now state our main result: Theorem 1. Let us suppose that the map T introduced in the preceding denition veries the assumptions (H1) to (H3). Then there exists C > 0:

F ε c (n) - X ρ dµ X ρ dµ ε ≤ Cε -α λ -n ρ 1 ρ C 0 . (15) 
Remark 1. 1. The theorem shows that the limit value of the classical delity involves the stationary measure µ ε . Moreover the error term is not uniform in ε and this error begins to be negligible after a time n of order log ε -α / log λ. This eect has been eectively observed in [START_REF] Benenti | Stability of classical motion under a system's perturbations[END_REF], see also the appendix. 32. The presence of ε in the limit value of F ε c (n) when n → ∞, or equivalently, the non-uniformity in ε of the error term, have an interesting consequence if we assume (H4), namely the stochastic stability of (T, µ). We rst observe that in the absence of noise the correlation integral F 0 c (n) converges towards X ρ 2 dµ:

lim n→∞ lim ε→0 F ε c (n) = X ρ 2 dµ (16) 
Instead:

lim ε→0 lim n→∞ F ε c (n) = X ρ dµ 2 (17) 
and the two limits ( 16) and ( 17) in general will dier. We could interpret this fact by saying that the classical delity is not stochastically stable. The zeronoise situation: lim n→∞ F 0 c (n) is not recovered if we rst play the dynamics for n → ∞ and then we send the perturbation to zero. The memory is not destroyed when the noise is turned o after the evolution of the system and this is a sort of irreversibility of our random version of the classical delity.

Proof of the theorem. Let us dene g ε,y (x) = q ε (T x, y) and φ ε,y (z) = q ε (T y, z) and notice that (we will equivalently denote the Lebesgue measure with dm(x) and dx):

X (ρ • T n (x))T n ε ρ(x) dx = X ρ • T n (x)(T ε • T ε • T n-2 ε )ρ(x) dm(x) = X 3 ρ • T n (x)q ε (T x, y)q ε (T y, z)T n-2 ε ρ(z) dxdydz = X dy X ρ • T n (x)g ε,y (x) dx X φ ε,y (z)T n-2 ε ρ(z) dz
Let's then dene for n ≥ 1:

∆ n = X ρ • T n (x)g ε,y (x) dx - X g ε,y (x) dx X ρ dµ C 0 ∆ ε,n = X φ ε,y (z)T n-2 ε ρ(z) dz - X φ ε,y (x) dx X ρ dµ ε C 0
The mixing properties of µ with respect to T and of µ ε with respect to T ε as we stated in assumptions (H1) and (H3), imply the following decay of correlations functions:

∆ n ≤ Cλ -n ρ 1 g ε,y 2 ≤ Cλ -n ρ 1 ε -α ∆ ε,n ≤ Cλ -n ρ 1 φ ε,y 2 ≤ Cλ -n ρ 1 ε -α
where we use the same symbol C to denote possibly dierent constants depending solely on the map T . Moreover (using M φ ε,y (z)dz = 1), we can compute:

X ρ • T n (x) T n ε ρ(x) dx - X ρ dµ X ρ dµ ε ≤ X dy∆ n X φ ε,y (z)T n-2 ε ρ(z) dz + X dy∆ ε,n-2 X ρ dµ X g ε,y (z) dz ≤ Cλ -n+2 ε -α ρ 1 ρ C 0 + Cλ -n+2 ε -α ρ 1 ρ C 0 since X g ε,y (z) dz ≤ C, X φ ε,y (z) dz ≤ C and T n ε ρ C 0 ≤ C ρ C 0 for all n.

Examples

In this section we quote some dynamical systems of physical interest which t our assumptions and to which we can apply our theorem on the decay of classicaldelity. We remark that the measure µ which we consider as the weak * -limit of the Lebesgue measure, is usually called the SRB or physical measure. For dieomorphisms, eventually with singularities, it has also two additional properties: rst, it has absolutely continuous conditional measures along the unstable foliations; second it can be reconstructed by Birkho sums starting from initial points chosen in a basin of positive Lebesgue measure.

For locally (eventually non-uniformly) expanding maps, µ is absolutely continuous with respect to the Lebesgue measure.

Anosov dieomorphisms

The exponential decay of correlations for the SRB measure is a classical result; see for instance [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov dieomorphisms[END_REF]. Yet, the optimal choice of the norms is a subtle matter.

For simplicity we adopt the choice made in [START_REF] Blank | Ruelle-Perron-Frobenius Spectrum for Anosov Maps[END_REF] where one can also nd the decay of correlations for the stationary measure µ ε constructed with the kernel family q ε . With such a choice, a direct computation from formula (2.1.7) of [START_REF] Blank | Ruelle-Perron-Frobenius Spectrum for Anosov Maps[END_REF] yields

h 2 ≤ h L 1 + D u h L 1 h 1 ≤ h C 1 ,
where D u is the dierential restricted to the unstable directions. Accordingly,

g ε 2 + φ ε 2 ≤ Cε -1 .
Hence, in this case, α = 1.

Uniformly hyperbolic attractors

In this case we can refer to the work of Viana [START_REF] Viana | Stochastic Dynamics of Deterministic Systems[END_REF] although the norms are probably not the optimal ones. Better estimates could probably be obtained by using the recent work of [START_REF] Baladi | Anisotropic hölder and sobolev spaces for hyperbolic dieomorphisms[END_REF] in conjunction with the perturbation theory of [START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF]. Here we content ourselves with the bound

h 1 + h 2 ≤ C h C 1 which
follows from formula (4.29) of [START_REF] Viana | Stochastic Dynamics of Deterministic Systems[END_REF]. Accordingly we have the (unsatisfactory and almost certainly non optimal) bound α ≤ d + 1.

Piecewise expanding maps of the interval

For continuous piecewise C 2 expanding maps of the interval without periodic turning points, Baladi and Young [START_REF] Baladi | On the spectra of randomly perturbed expanding maps[END_REF] have proved the exponential decay of correlations and the stochastic stability of absolutely continuous stationary measures constructed with the convolution kernel:

q ε (x, y) = θ ε (y -T x) θ ε ≥ 0 ; supp θ ε ⊂ [-ε; +ε] and θ ε dm = 1 In this case h 2 = h BV , h 1 = h L 1 , thus α = 1.
Similar results can be obtained for piecewise expanding C 2 maps with derivative uniformly larger than 2, see [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF].

Uniformly hyperbolic maps with singularities (in two dimensions)

This is an interesting situation since it covers the numerical simulation produced by Casati and al. [START_REF] Benenti | Stability of classical motion under a system's perturbations[END_REF]. In fact the latter authors perturbed the linear automorphism of the torus by keeping the Lebesgue measure invariant. In this way the perturbations become singular in the sense that the perturbed maps are discontinuous.

This case has been rigorously investigated by [START_REF] Demers | Stability of statistical properties in two-dimensional piecewise hyperbolic maps[END_REF]. Unfortunately, the norms are a bit unusual, here we will just state the minimum and refer to [START_REF] Demers | Stability of statistical properties in two-dimensional piecewise hyperbolic maps[END_REF] for more details.

The basic object is a collection Σ of smooth curves close to the stable direction.

Given such curves we have (see [START_REF] Demers | Stability of statistical properties in two-dimensional piecewise hyperbolic maps[END_REF] equations (2.3), (2.4)):

h 2 ≤ sup W ∈Σ W |Dh| + W |h|.
Thus we have 4

g ε 2 + φ ε 2 ≤ Cε -2 .
That is α ≤ 2. Note that the numerically predicted bound is α = 1. In view of the smooth multidimensional case and of the one dimensional piecewise smooth case above we conjecture that α = 1 is indeed the correct value and the present one (α = 2) is a byproduct of our method of proof.

4 Perturbation with random maps

The random process that we used in Sect. 2 could be realized, in contrast to [START_REF] Blank | Random perturbations of chaotic dynamical systems: stability of the spectrum[END_REF], as the composition of random maps (see [START_REF] Alves | Random perturbations of nonuniformly expanding maps[END_REF][START_REF] Kifer | Ergodic theory of random transformations[END_REF][START_REF] Liu | Smooth Ergodic Theory of Random Dynamical Systems[END_REF] for more details). In this section we will briey comment on the relation between this two dierent ways to realize a random perturbation. We start the discussion by a precise description of the random maps alternative.

Let (ω k ) k∈N be a sequence of i.i.d. random variables with values in the interval Ω ε = (-ε, ε) and with distribution θ ε . We then associate continuously to each ω ∈ Ω ε a map T ω with T 0 = T and we dene the transition probabilities ( 6) P (•|z) on the σ-algebra β in such a way that :

P (A|z) = θ ε (ω; T ω z ∈ A) (18) 
for A ∈ β. The closeness of the T ω to T will be made explicit in the concrete examples that we are giving below. In this setting the random evolution operator is replaced by the following one:

(U ε g)(x) = Ωε g(T ω x)dθ ε (ω) (19)
for any g ∈ L ∞ (X), and the stationary measure µ ε should verify for each h ∈ C 0 (X)

hdµ ε = X Ωε (h • T ω )(x)dθ ε (ω)dµ ε (x) = X (U ε h)(x)dµ ε (x) (20)
The iterations of the unperturbed map, T n (x), x ∈ X, are thus replaced by the composition of random maps T ωn 

• • • • • T ω 1 , ω i ∈ Ω ε ; x ∈ X.
ρ(T n x)ρ(T ωn • • • • • T ω 1 )(x)dm(x) 4 Let us compute, for example, g ε 2 . For W ∈ Σ W |g ε | = W q ε (T x, y)dx = T -1 W |q ε (x, y)|J x T dx ≤ Cε -1
where JT is the Jacobian of the change of coordinates and the last inequality follows from the fact that we integrate along a curve instead than on all the space. Analogously,

W |Dg ε | = ε -1 W |DT ∇q ε (T x, y)|dx = ε -1 T -1 W |DT ∇q ε (x, y)|J x T dx ≤ Cε -2 .
From which the estimate in example 4 follows.

where L = 1 1 1 2

. Then:

ρ ω (n) = k∈Z 2 |c k | 2 e 2iπ k, P n-1 j=0 L j ω = k∈Z 2 |c k | 2 e 2iπ k,(Id -L n )(Id -L) -1 ω
We notice that ρ ω (n) is the value at the point (Id -T n L )(Id -T L ) -1 ω mod1 of the function with Fourier expansion:

g(x) = k∈Z 2 |c k | 2 e 2iπ k,x
But the operator (Id -T L ) -1 has the matrix representation 1 -1 -1 0 and therefore it applies X onto itself. Moreover, by the ergodicity of T L , for Lebesgue almost all ω ∈ Z 2 , the orbit (Id -T n L )ω, n ≥ 0, is dense in X. It follows that ρ ω (n) cannot have any limit unless ρ is constant everywhere.

Sharpness of the bounds

We conclude by showing that the bound α = 1 is sharp: in general one cannot expect any decay of the delity before the time predicted by the α = 1 bound. We consider again a toral automorphism and assume q ε (x, y) = ε -2 q(ε -1 (x -y)),5 then µ 0 = µ ε = m and we can compute q ε (x, y)f (y)dy = f k e 2πi k,x R 2 q(ξ)e -2πi εk,ξ dξ = k∈Z 2 f k e 2πi k,x q(εk), where q is the Fourier transform of q : R 2 → R + . That is (T ε f ) k = f L -1 k q(εL -1 k).

Using these facts we can compute F ε c (n) to be

F ε c (n) = k∈Z 2 n-1 i=0 |q(εL i k)| • |c k | 2 .
Now we can chose, for example, ρ(x) = e 2πi (1,1),x and q(x) = 1 2π e -x 2 /2 , hence c k = δ k,(1,1) and q(k) = e -2π 2 k 2 . This means the following lower bound on the Since we have chosen an entire function the decay is super exponential, nevertheless it takes place only after a time n such that ελ n ≥ 1. This corresponds exactly to the behavior in which α = 1. It is then clear that one cannot hope for an α better than one in the estimates of Section 3.

  One is therefore tempted to dene a random version of the delity by setting (compare with (2)):

2 q 2 f k R 2 q 2 f k R 2 ε

 22222 ε (x, y)e 2πi k,y dy = k∈Z ε (x, y)e 2πi k,y dy= k∈Z -2 q(ε -1 ξ)e 2πi k,x-ξ dξ = k∈Z 2

Fidelity

  |F ε c (n) -|c 0 | 2 | ≥ e -Cε 2 λ 2n .

Our counterexample concerns the algebraic automorphism of the torus, perturbed with an additive noise. Still for the same map, but perturbed in a dierent manner, the limit dening the classical delity seems to exist, at least numerically[START_REF] Benenti | Stability of classical motion under a system's perturbations[END_REF]; see also our examples 4 in Sect. 3

We would like to point out that in the examples

and

of Section 3, the map T is not anymore continuous; nevertheless the existence of an absolutely continuous stationary measure can be proved with other arguments[START_REF] Baladi | On the spectra of randomly perturbed expanding maps[END_REF][START_REF] Demers | Stability of statistical properties in two-dimensional piecewise hyperbolic maps[END_REF] 

Of course that above estimate is relevant only for times longer than log ε -α / log λ, since for shorter time it gives a rather large bound while the quantity under consideration is trivially bounded by 2 ρ 2 ∞ .

Where by x -y we means that x and y are lifted on the universal cover of T 2 , that is R 2 , then one rescale the variables and then takes the mod 1 to bring it back to the torus.
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for a given realization ω = (ω 1 , ω 2 , • • • ) ∈ Ω N ε . Instead of doing that, we will take the average over all realizations, which produces the annealed version of the preceding correlation integral and we set the new version of the classical delity as:

In terms of the random evolution operator U ε the above integral can be simply written as

which is formally similar to the random classical delity dened in [START_REF] Liu | Smooth Ergodic Theory of Random Dynamical Systems[END_REF]. The advantage of this formula is that it is physically simpler to perturb the map T by randomly composing sequence of maps close to T . A very established theory exists for this kind of random perturbations and all the examples of Sect. 3 t as well with it. We now show that in many cases the random evolution operator T ε can be obtained from U ε by a suitable choice of the probability measure θ ε and of the random maps T ω . To make the argument as simple as possible, let us suppose that X = T m , the m-dimensional torus, and dene the additive noise: T ω = T (x) -ω mod T m , where ω ∈ T m and then take θ ε absolutely continuous with respect to the Lebesgue measure dω over T m and with a continuously dierentiable density h ε with support contained in the square [-ε, ε] m : dθ ε = h ε (ω)dω = 1. A simple change of variables on the m-dimensional torus immediately gives, for any g ∈ L ∞ (dω):

from which it follows that q ε (T x, y) = h ε (T x -y).

Appendix A counterexample to classical delity

Here is a simple example of a systems not having classical delity (see Denition 1).

We consider the algebraic automorphisms T L of the torus X = T 2 dened by

where x = (x 1 , x 2 ) is a point on the torus, and its perturbed map T ω (x) = T (x) + ω mod1 and we compute for all ρ ∈ C 1 (X):

where m denotes the normalized Lebesgue (Haar) measure over X.