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Abstract

In a regression model with univariate censored responses, a new estimator of the

joint distribution function of the covariates and response is proposed, under the as-

sumption that the response and the censoring variable are independent conditionally

to the covariates. This estimator is based on the conditional Kaplan-Meier estima-

tor of Beran (1981), and happens to be an extension of the multivariate empirical

distribution function used in the uncensored case. We derive asymptotic i.i.d. rep-

resentations for the integrals with respect to the measure de�ned by this estimated

distribution function. These representations hold even in the case where the co-

variates are multidimensional under some additional assumption on the censoring.

Applications to censored regression and to density estimation are considered.
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1 Introduction

Under random censoring, estimation of the distribution of a single variable Y is tradition-

ally carried out using the Kaplan-Meier estimator (Kaplan and Meier, 1958). A vast scope

of approaches has been developed to study the theoretical behavior of this estimator, and

of Kaplan-Meier integrals (KM−integrals in the following). See e.g. Gill (1983), Stute

and Wang (1993), Stute (1995), Akritas (2000). A crucial identi�ability assumption to

obtain convergence is the independence of Y and C, the censoring variable. In presence

of (uncensored) covariates X, it seems natural to extend Kaplan-Meier's approach, but

now to estimate a multivariate distribution function, that is F (x, y) = P(X ≤ x, Y ≤ y).

However, traditional approaches to this kind of problem typically face two major kind

of drawbacks, that is either they do not allow to handle multivariate X, or they rely on

strong identi�ability assumptions which restrain the �eld of applications. The aim of this

paper is to propose a new approach which circumvents these two important limitations,

and to provide a version of the uniform strong law of large numbers and of the uniform

central limit theorem which apply to this framework of censored regression.

Indeed, a crucial point in censored regression is to extend the identi�ability assump-

tion on the independence of Y and C (needed to ensure the convergence of KM−integrals
in absence of covariates) to the case where explanatory variables are present. In the

spirit of KM−estimator, one may impose that Y and C are independent condition-

ally to X, which seems to be the slightest identi�ability assumption. Under this as-

sumption, Beran (1981) provided an estimator of the conditional distribution function

F (y | x) = P (Y ≤ y | X = x). In this approach, kernel smoothing is introduced into

Kaplan-Meier's approach to account for the information on the interest variable con-

tained in the covariates. Asymptotic behavior of Beran type estimators has been studied

by Dabrowska (1987,1989, 1992), Mielniczuk (1987, 1991), Mc Keague and Utikal (1990),

Gonzalez Manteiga and Cardoso Suarez (1994), Li and Doss (1995), Li (1997), Van Keile-

gom and Veraverbeke (1997). See also Linton and Nielsen (1995) who use similar tools for

estimating the cumulative hazard function. Van Keilegom and Akritas (1999) proposed,

with some additional assumptions on the regression model, a modi�cation of Beran's ap-

proach and derived asymptotic properties of their estimator in the case X ∈ R. A major

di�culty in studying this kind of estimator stands in the non-i.i.d. sums that may be

involved in. To circumvent this problem in the case of the (unconditional) product-limit

estimator, Lo and Singh (1986) provided a representation as a sum of i.i.d. terms with

some remainder term which is asymptotically negligible. Their result was then extended
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by Major and Retjo (1988) to a more general setting. For the conditional Kaplan-Meier

estimator, representations similar to Lo and Singh (1986) were derived, all in the case

where x is univariate, see e.g. Van Keilegom and Akritas (1999), Van Keilegom and

Veraverberke (1997). In particular, Du and Akritas (2002) proposed an uniform i.i.d.

representation that holds uniformly in y and x.

When it comes to the multivariate distribution function F (x, y), Stute (1993, 1996)

proposed an extension of KM−estimator, and furnished asymptotic representation of

integrals with respect to this estimator that turned out to have interesting practical ap-

plications for regression purpose in some situations, see also Stute (1999), Sanchez-Sellero,

Gonzalez-Manteiga and Van Keilegom (2005), Delecroix, Lopez and Patilea (2008), Lopez

and Patilea (2009). Moreover, in this approach, the covariates do not need to be one-

dimensional. Nevertheless, consistency of Stute's estimator relies on assumptions that

may be unrealistic in some situations, especially when C and X are not independent. On

the other hand, under the more appealing assumption that Y and C are independent con-

ditionally to X, Van Keilegom and Akritas (1999) used an integrated version of Beran's

estimator to estimate F (x, y). Van Keilegom and Akritas (1999) also provided some al-

ternative estimator in their so-called �scale-location� model. To our best knowledge, i.i.d.

representations of integrals with respect to these estimated distributions have not been

provided yet. Moreover, it is particularly disappointing to see that, in the uncensored

case, the empirical distribution function of (X ′, Y ) can not be seen as a particular case of

these approaches. On the contrary, KM -estimator is a generalization of the (univariate)

empirical distribution function. As a large amount of statistical tools are seen to be re-

lated to integrals with respect to the empirical distribution function, it is still of interest

to produce some procedure that would generalize this simple and classical way to proceed

to the censored framework. In fact, an important preoccupation in the study of censored

regression is to extend procedures existing in the uncensored case. For this reason, it is

of real interest to use the most natural extension of the uncensored case's concepts.

The main contribution of this present paper is to propose a new estimator of F (x, y)

which is an extension of the notion of the multivariate empirical distribution function, and

can also be seen as a generalization of the univariate Kaplan-Meier estimator. To perform

the asymptotic analysis of this estimator, we rely on the asymptotic representation derived

by Du and Akritas (2002), but the new proof of this result that we provide improves

the convergence rate of the remainder term. Our main theoretical result (Theorem 3.5)

provides a general asymptotic representation of our estimator of F (x, y). Unlike the other
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existing results on this issue, our results apply not only to the estimation of F (x, y),

but also to the more general case of integrals with respect to the underlying probability

measure. Therefore Theorem 3.5 can be seen as a generalization of the uniform CLT in

this censored regression framework. Furthermore, we propose a reasonable modi�cation

of the identi�ability assumption of the model that may allow us to consider multivariate

covariates.

The paper is organized as follows. In section 2, we present the model and motivate

the introduction of our new estimator of F (x, y). In section 3, we present the asymp-

totic properties of integrals with respect to this estimator. Section 4 is devoted to some

applications of these results, while section 6 gives the proof of some technical results.

2 Model and estimation procedure

2.1 Regression model and description of the methodology

We consider a random vector (X ′, Y ) ∈ Rd+1, and a random variable C which will be

referred to as the censoring variable. If variables X and Y are fully observed, and if we

dispose on a n-sample of i.i.d. replications (X ′i, Yi)1≤i≤n, a traditional way to estimate the

joint distribution function F (x, y) = P(X ≤ x, Y ≤ y) is to consider the (multivariate)

empirical distribution function,

F̂emp (x, y) =
1

n

n∑
i=1

1Xi≤x,Yi≤y, (2.1)

where 1A denotes the indicator function of the set A. If we are interested in estimating

E[φ(X, Y )] =
∫
φ(x, y)dF (x, y) for some measurable function φ, we can proceed by using∫

φ(x, y)dF̂emp(x, y) =
1

n

n∑
i=1

φ (Xi, Yi) .

Studying the behavior of these integrals is then more general than simply studying the

distribution function (2.1). Asymptotic results on these empirical integrals may be derived

by applying the classical strong law of large numbers and the central limit theorem. In

a censored regression model, the situation is di�erent since the variable Y is not directly

available. Indeed, instead of Y , one observes

T = Y ∧ C,

δ = 1Y≤C ,
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and we will assume throughout this paper that P(Y = C) = 0. Observations consist of a

n−sample (X ′i, Ti, δi)1≤i≤n. In this framework, the empirical distribution function can not

be computed, since it depends on unobserved quantities Yi. In absence of covariatesX, the

univariate distribution function P(Y ≤ y) can be estimated computing the Kaplan-Meier

estimator,

Fkm (y) = 1−
∏
Ti≤y

(
1− dĤ1(Ti)

n−1
∑n

j=1 1Tj≥Ti

)δi

, (2.2)

where Ĥ1(t) = n−1
∑n

i=1 δi1Ti≤t. The de�nition (2.2) is valid only for y less than the largest

observation, conventions must be adopted if one wishes to de�ne it on the whole real line.

Asymptotics of Fkm and of integrals with respect to Fkm can be found in Stute and Wang

(1993) and Stute (1995). Since Fkm is a piecewise constant function, this estimator can

be rewritten as Fkm(y) =
∑n

i=1Win1Ti≤y, where Win denotes the jump of Fkm at the i−th
observation. Conditions for convergence are essentially of two kinds : moment conditions

(which can be interpreted as assumptions on the �strength� of the censoring in the tail of

the distributions, see condition (1.6) in Stute, 1995), and an identi�ability condition that

is only needed to ensure that Fkm converges to the proper function. This identi�ability

condition, in the univariate case, reduces to

Y and C are independent. (2.3)

In a regression framework, an important question is to extend condition (2.3) to the

presence of covariates. A �rst way to proceed would be to assume that

(X ′, Y ) and C are independent. (2.4)

However, assumption (2.4) is too restrictive, since, in several frameworks, the censor-

ing variable may depend on X. Stute (1996) proposed to replace this assumption by

assumption (2.3) and

P (Y ≤ C | X, Y ) = P (Y ≤ C | Y ) . (2.5)

Under (2.3) and (2.5), Stute (1996) studied the asymptotics of an estimator based on the

jumps Win of Fkm, that is

FS (x, y) =
n∑
i=1

Win1Xi≤x,Ti≤y,

where Win denotes the jump of Fkm at the i-th observation. Observing that

Win =
1

n

δi
1−Gkm (Ti−)

,
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where Gkm (t) denotes the Kaplan-Meier estimator of G(t) = P (C ≤ t) (see e.g. Satten

and Datta, 2001), this estimator may be rewritten as

FS (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y
1−Gkm (Ti−)

. (2.6)

From this writing, one may observe two interesting facts. First, this estimator is a gen-

eralization of the empirical distribution function used in the uncensored case. Indeed, in

absence of censoring, 1 − Gkm (t) ≡ 1 for t < ∞, and δ = 1 a.s. Second, FS can be seen

as an approximation of the empirical function

F̃S (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y
1−G (Ti−)

,

which can not be computed in practice since G is unknown. The identi�ability conditions

(2.3) and (2.5) (or (2.4)) are needed to ensure that E[F ∗S(x, y)] = F (x, y).

However, conditions (2.4) and (2.5), which impose restrictions on the conditional law

of the censoring, are still too strong for some applications. The slightest condition that

one may wish to impose, in the spirit of (2.3), is

Y and C are independent conditionally to X, (2.7)

see e.g. Beran (1981), Dabrowska (1987, 1989, 1992), Van Keilegom and Akritas (1999).

Inspired by the empirical distribution function, we are searching for an estimator which

puts mass only at the uncensored observations, that is of the form

1

n

n∑
i=1

δiW (Xi, Ti)1Xi≤x,Ti≤y, (2.8)

where W (Xi, Ti) is some weight which has to be chosen in order to compensate the bias

due to censoring (F̃S is an estimator of the type (2.8), however, under (2.7), it is biased).

An �ideal� way to proceed would be to use weights such as, for any function φ,

E [δiW (Xi, Ti)φ(Xi, Ti)] =

∫
φ(x, y)dF (x, y) ,

so that integrals with respect to the measure de�ned by (2.8) converge to the proper limit

by the law of large numbers. In this case, (2.8) would appear to be a sum of i.i.d. quantities

converging to F (x, y) from the strong law of large numbers. Under (2.7), observe that,

for any function φ,

E[δiW (Xi, Ti)φ(Xi, Ti)] = E[{1−G(Yi − |Xi)}W (Xi, Yi)φ(Xi, Yi)], (2.9)
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where G(y | x) denotes P(C ≤ y | X = x). Hence, a natural choice of W would be

W (Xi, Ti) =
1

1−G (Ti− | Xi)
.

This would lead to the analog of FS de�ned in (2.6),

F̃ (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y
1−G (Ti− | Xi)

. (2.10)

Unfortunately, G(y | x) is unknown. In the uncensored case, conditional distribution

function estimation has been considered by Stute (1986) and Horvath and Yandell (1988)

among others. In this censored framework, G(y | x) can be estimated using Beran's kernel

estimator (1981). This estimator is de�ned, in the case d = 1, by

Ĝ(y | x) = 1−
∏
Ti≤y

(
1− win(x)dĤ0(Ti)∑n

j=1 wjn(x)1Tj≥Ti

)1−δi

, (2.11)

for y less than the largest observation of the sample (Ti)1≤i≤n, where, introducing a positive

kernel function K,

win(x) =
K
(
Xi−x
h

)∑n
j=1K

(
Xj−x
h

) ,
and with Ĥ0(t) = n−1

∑n
i=1(1−δi)1Ti≤t. The de�nition in equation (2.11) is valid adopting

the convention 0/0 = 0, since the denominator can not be zero unless it is also the case

for the numerator. As for the Kaplan-Meier estimator, a convention has to be adopted to

de�ne it above the largest observation. The results we provide are valid for any kind of

convention adopted for dealing with this issue, since they do not focus on the behavior of

Beran's estimator near the tail of the distribution of Y (Assumption 2 below). With at

hand the estimator (2.11), the estimator of F that we propose is then

F̂ (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y

1− Ĝ (Ti− | Xi)
, (2.12)

for y ≤ max1≤i≤n(Ti). This type of approach is quite natural in censored regression, see

e.g. van der Laan and Robins (2003) or Koul, Susarla, Van Ryzin (1981). From this

de�nition, we see that this estimator generalizes the empirical distribution function for

the same reasons (2.6) does. Now if we consider a function φ(x, y), we can estimate∫
φ(x, y)dF (x, y) by ∫

φ(x, y)dF̂ (x, y) =
1

n

n∑
i=1

δiφ (Xi, Ti)

1− Ĝ (Ti− | Xi)
. (2.13)
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This estimator is more di�cult to study than (2.10), since, as it is the case for Kaplan-

Meier integrals, the sums in (2.12) and (2.13) are not i.i.d. In fact, each term depends on

the whole sample since Ĝ itself is computed from the whole sample. In section 3, we will

show that ∫
φ(x, y)dF̂ (x, y) =

∫
φ(x, y)dF̃ (x, y) + Sn (φ) ,

where, from (2.9), the �rst integral converges to
∫
φ(x, y)dF (x, y) at rate n−1/2 (conse-

quence of the strong law of large numbers and the central limit theorem), while Sn(φ),

under suitable conditions, is equivalent to a centered i.i.d sum which only contributes to

the asymptotic variance.

2.2 Comparison with other approaches

Under (2.7), most of the e�orts have been concentrated in estimating F (y | x) = P(Y ≤ y |
X = x). Dabrowska (1987, 1989) studied uniform consistency and asymptotic normality

of Beran's estimator. Van Keilegom and Veraverberke (1997), in the case of a �xed

design, provided an asymptotic i.i.d. representation of F̂ (y | x), that is a representation

of F̂ (y | x) as a mean of i.i.d. quantities plus a remainder term which becomes negligible

as n grows to in�nity. More recently, Du and Akritas (2002) provided an analogous

representation holding uniformly in y and x for a random variable X. Van Keilegom and

Akritas (1999) proposed an alternative to Beran's estimator under some restrictions on

the regression model. In particular, they assumed

Y = m (X) + σ (X) ε, (2.14)

for some location function m, some scale function σ, and ε independent from X.

When it comes to the estimation of the estimation of F (x, y), the only approach that

has been used consists of considering∫ x

−∞
F̂ (y | u)dF̂ (u) , (2.15)

where F̂ (x) denotes the empirical distribution function of X. Instead of (2.11), any

other estimator of the conditional distribution function may be used, see for example

Van Keilegom and Akritas (1999) who provided asymptotic i.i.d. representations for

two di�erent estimators based on this principle. To connect another drawback of these

procedure with this incapacity to generalize the empirical distribution function, we must

mention that none of these approaches has been extended successfully to the case d > 1.
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Of course, the de�nition of Beran's estimator could be extended to multivariate kernels.

But the use of non-parametric regression methods make estimators of the type (2.15)

very sensitive to the so-called �curse of dimensionality�, that is the loss of performance

of non-parametric techniques when the number of covariates d increases. This drawback

does not a�ect the estimator (2.1) in the uncensored case. For this reason, parametric

estimators which can be written as integrals with respect to (2.1) do not su�er from the

curse of dimensionality. It is still the case using the estimator (2.6) under (2.3)-(2.5) (see

Stute, 1999, Delecroix, Lopez and Patilea, 2008). Unfortunately, this is not the case if

we use (2.15). For this reason, parametric regression has only been considered in the case

d = 1, see e.g. Heuchenne and Van Keilegom (2007a, 2007b).

On the other hand, the estimator proposed in (2.13) is not of the type (2.15). It still

relies on Beran's estimator, so that its asymptotical behavior will only be carried out

for d = 1. However, in section 2.3 below, we propose a modi�cation of this estimator to

handle the case d > 1, by slightly strengthening the condition (2.7).

2.3 The case d > 1

In (2.12), a non-parametric kernel estimator appears. Therefore, considering a large num-

ber of covariates raises theoretical and practical di�culties. For this reason, we propose

a slight reasonable modi�cation of the identi�ability assumption (2.7) which happens to

be a good compromise between (2.7) and (2.4)-(2.5), and under which we will be able to

modify the de�nition of F̂ using only univariate kernels. Let g : Rd → R be some known

function. The new set of identi�ability conditions we propose is

Y and C independent conditionally to g (X) , (2.16)

P (Y ≤ C | X, Y ) = P (Y ≤ C | g(X), Y ) . (2.17)

In particular, condition (2.17) will hold if L(C | X, Y ) = L(C | g(X), Y ), that is if C

depends only on g(X) and Y . As an important example, denote X = (X(1), ..., X(d)).

In some practical situations, one may suspect the censoring variable to depend only on

g(X) = X(k) for some k known.

Another interesting advantage of this model is that it may permit us to consider

discrete covariates. If we refer to the approach of Van Keilegom and Akritas (1999), we

can only consider continuous covariates. Here, we will only have to assume that g(X) has

a density (but not necessary all components of X). Under this new set of identi�ability
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conditions, we propose to use

F̃ (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y
1−G (Ti− | g(Xi))

, (2.18)

F̂ (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y

1− Ĝ (Ti− | g(Xi))
. (2.19)

Note that using the set of condition (2.16)-(2.17) does not permit to prevent the

estimators of type (2.15) from the curse of dimensionality. In fact, using estimators

(2.15), we still need to estimate F (y | x), no matter the identi�ability conditions.

3 Asymptotic properties

In this section, we present the asymptotic properties of integrals with respect to F̂ . In

section 3.1, we discuss the di�erent assumptions under which our asymptotic results hold.

Section 3.2 presents an uniform strong law of large numbers for F̂ , while section 3.3

provides some new results on the asymptotic i.i.d. representation of Beran's estimator

by improving the convergence rate of the remainder term. In section 3.4, we provide

uniform asymptotic representations of integrals with respect to F̂ , with di�erent rate

of convergence for the remainder term, depending on the assumptions on the class of

functions considered. These representations can be used to obtain uniform CLT results

for general classes of functions.

3.1 Assumptions

To simplify the notations, we denote Zi = g(Xi) in the following.

We list here some assumptions that are needed to ensure consistency and asymptotic

normality of our estimator. We will use the following notations to refer to some (sub-

)distribution functions,

H (t) = P (T ≤ t) ,

H (t | z) = P (T ≤ t | Z = z) ,

H0 (t | z) = P (T ≤ t, δ = 0 | Z = z) ,

H1 (t | z) = P (T ≤ t, δ = 1 | Z = z) .

Assumptions on the model.
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Assumption 1 The variable Z = g(X) belongs to a compact subset Z ⊂ R. The distri-
bution function of Z has four bounded derivatives on the interior of Z. Furthermore, the
density fZ (z) satis�es

inf
z∈Z

fZ (z) > 0.

Assumption 2 Let τH,z = inf{t | H(t | z) < 1}. There exists some real number τ < τH,z

for all z ∈ Z.

Assumption 2 has to be connected with the bad performances of Beran's estimator in

the tail of the distribution of Y . This assumption is present in Du and Akritas (2002). In

Van Keilegom and Akritas (1999), this assumption is avoided only through the speci�c

form of their scale-location regression model (2.14).

The important situation that we have in mind in which Assumption 2 holds, is when,

for all x, the support of the conditional law L(Y | Z = z) is [a(z), τH ] ⊂] − ∞,+∞[,

where the upper bound τH does not depend on z and can be �nite or not (for example,

this condition is ful�lled when Y is Gaussian conditionally to Z = g(X)). In this case, τ

can be chosen arbitrary close to τH .

Assumptions on the regularity of the (sub-)distribution functions.

Assumption 3 • Functions H0 and H1 have four derivatives with respect to z. Fur-

thermore, these derivatives are uniformly bounded for y < τ .

• Let Hf (t|z) = H(t|z)fZ(z), and let

Φ̃(s|z) =
ψτ (s, z)

fZ(z)2

∂2Hf (s|z)

∂z2
,

where ψt(s, z) = 1s≤t[1 − H(s − |x)]−2. Assume that supz V (Φ̃(·|z)) < ∞, where
V (g(·)) denotes the variation norm of a function g de�ned on ]−∞; τ ].

Assumptions on the kernel.

Assumption 4 The kernel K is a symmetric probability density function with compact

support, and K is twice continuously di�erentiable.

Assumptions on the family of functions. To achieve uniform consistency over a

class of functions, it is necessary to make assumptions on the class of functions F .
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Assumption 5 The class δ[1 − G(T − |X)]−1 × F is P-Glivenko-Cantelli (cf. Van der

Vaart and Wellner, 1996, page 81) and has an integrable envelope Φ satisfying Φ(t, z) = 0

for t ≥ τ, for some τ as de�ned in Assumption 1.

For asymptotic normality, we will need more restrictions on the class F . First, we
need some additional moment condition on the envelope, and some di�erentiability with

respect to z.

Assumption 6 Assume that

• The envelope Φ is square integrable and supz∈Zδ
∫

Φ(x, y)d|∂2
zFz(x, y)| < ∞, where

Fz(x, y) = P(X ≤ x, Y ≤ y|Z = z).

• We have Φ(x, t) = 0 for t ≥ τ or g(x) ∈ Z−Zδ, for some τ as de�ned in Assumption

1, and Zδ the set of all points of Z at distance at least δ, for some δ ≥ 0.

• Let Kφ(z, t) =
∫
x,y≤t φ(x, y)dFz(x, y). The functions Kφ are twice di�erentiable with

respect to z, and

sup
φ∈F ,y≤τ,x∈Z

|∂zKφ(z, y)|+ |∂2
zKφ(z, y)| <∞.

The reason for introducing the set Zδ is to prevent us from some boundary e�ects which

happen while obtaining uniform convergence rate for kernel estimators, see the proof of

our Theorem 3.5 and Theorem 3.6 below. The order of the bias terms corresponding to our

kernel estimators will be O(h2) if we restrain ourselves to points in Zδ, while considering
the boundaries leads to increase the order of the bias. However, δ can be taken as small

as required.

For the sake of simplicity, we restrain ourselves to a class of smooth functions with

respect to z (but not necessarily smooth with respect to y). But our result can eas-

ily be generalized to the case of functions with a �nite number of discontinuities. In-

deed, for some �xed K ≥ 0, let (Ii)1≤i≤K be a sequence of subsets of Zδ, and de�ne

φ(X, Y ) =
∑K

i=1 φi(X, Y )1g(X)∈Ii , where Ii ⊂ Zδ, and φi ∈ Fi, where Fi satis�es the same

assumptions as the class F .
We also need an assumption on the complexity of the class of functions. We consider

two cases, the case where F is related to some Donsker class of functions, and the more

restrictive assumption on its uniform covering number under which we obtain a faster rate

for the remainder term in the asymptotic expansion. Let N(ε,F , L2) denote the covering
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number (cf. Van der Vaart and Wellner, 1996 page 83) of the class F relatively to the

L2−norm.

Assumption 7 Let C1 be the set of all functions from ]−∞; τ ] to with variation bounded

by M. Let C2 be the set of the functions f from Zδ to [−M,M ] with twice continuous

derivatives bounded by M, for some M ≥ 0, with supz,z′∈Zδ |f
′′(z)− f ′′(z′)||z− z′|−η ≤M

for some 0 < η < 1. Let G = {(z, t) → g(z, t) : ∀z ∈ Zδ, g(z, ·) ∈ C1, ∂zg(z, ·) ∈ C1∀t ≤
τ, g(·, t) ∈ C2}. Assume that (z, t) → G(t|z) ∈ G and that the class of functions FG is

Donsker.

It is natural to assume that, to obtain our uniform CLT, the class F has to be Donsker.

Indeed, by de�nition of a Donsker class, the uniform CLT will not hold in absence of

censoring if F is not Donsker. Our Assumption 7 is a little bit more restrictive, but is

close to optimality. Indeed, the class of functions G contains the functions G and Ĝ, seen

as functions of two variables. As pointed out in Lemma 6.1, the bracketing number of

this class can be obtained, which shows that G is a uniformly bounded Donsker class.

Hence, Assumption 7 will be ful�lled in a large number of situations, for example if F is

an uniformly bounded Donsker class (see Van der Vaart and Wellner, 1996 page 192 for

additional permanence properties of Donsker classes), or by elementary arguments if the

bracketing number of F can be computed.

We now give a more restrictive assumption under which the convergence of our esti-

mators can be improved.

Assumption 8 For all ε > 0, and for a class of functions C, de�ne N(ε, C, Lr(P)) be

the smallest number of balls with respect to the norm ‖ · ‖2,P in L2(P). We say that a

class of function C with a square integrable envelope C is a VC-class of functions if

supPN(ε‖C‖2,P, C, L2(P)) ≤ Aε−V for some A and V > 0, where the supremum is taken

on all probability measures such as ‖C‖2,P <∞. Assume that F is VC.

3.2 Uniform Strong Law of Large Numbers

Theorem 3.1 Under Assumptions 1 to 5, and with h→ 0, and nh/[log n]1/2 →∞,

sup
φ∈F

∣∣∣∣∫ φ (x, y) dF̂ (x, y)−
∫
φ (x, y) dF (x, y)

∣∣∣∣→a.s. 0.

Remark 3.2 In all the proofs below, we will assume that we are on the set A = {f̂Z(z) 6=
0, Ĥ(t|z) 6= 1, Ĝ(t|z) 6= 1,∀t ≤ τ, z ∈ Z}. This allows us not to discuss any problem caused

13



by the presence of these functions at the denominator. From the uniform convergence of

nonparametric estimators (see Einmahl and Mason, 2005, and Van Keilegom and Akritas,

1999) and our Assumptions 1, 2, and 5, there exists some n0 (almost surely) such as we are

on the set A for all n ≥ n0. This is su�cient for deriving our asymptotic representations.

Proof. Write, from the de�nition (2.13) of I(φ),

I(φ) =
1

n

n∑
i=1

δiφ (Xi, Ti)

1−G (Ti− | Zi)

+
1

n

n∑
i=1

δiφ(Xi, Ti)[Ĝ(Ti − |Zi)−G(Ti − |Zi)]
[1−G (Ti − |Zi)][1− Ĝ (Ti − |Zi)]

(3.1)

= I0n + I1n.

From the strong law of large numbers, the �rst term converges almost surely to
∫
φ (x, y) dF (x, y)

(uniformly over F from Assumption 5), while, for the second,

|I1n| ≤ OP (1)× sup
t≤τ,z∈Z

∣∣∣Ĝ(t− |z)−G (t− |z)
∣∣∣× 1

n

n∑
i=1

δi |Φ(Xi, Ti)|
[1−G(Ti − |Zi)]2

.

The empirical sum converges almost surely, while the supremum tends to zero almost

surely from Proposition 4.3 in Van Keilegom and Akritas (1999).

3.3 An i.i.d. representation of the conditional Kaplan-Meier es-

timator

Theorem 3.3 Let

ηΛ,i(t, z) = win(z)

(
[1− δi]1Ti≤t

1−H(Ti − |z)
−
∫ t

−∞

1Ti≥sdH0(s|z)

[1−H(Ti − |z)]2

)
,

ηG,i(t, z) = win(z)

(
[1− δi][1−G(Yi − |z)]1Yi≤t

[1−G(Yi)][1−H(Ti|z)]
−
∫ Ti

−∞

[1−G(s− |z)]1Ti≥sdH0(s|z)

[1−G(s|z)][1−H(Ti − |z)]2

)
.

Under Assumptions 1 to 4, for h such as nh4 → 0,

Λ̂G(t|z)− ΛG(t|z) =
1

n

n∑
i=1

ηΛ,i(t, z) +RΛ(t, z), (3.2)

Ĝ(t|z)−G(t|z) =
1

n

n∑
i=1

ηG,i(t, z) +RG(t, z), (3.3)

with supt≤τ,z∈Zδ |RG(t, z)| = OP ([log n]n−1h−1).
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The proof of this result follows the lines of Du and Akritas (2002), but using our

Lemma 3.4 below which replaces their Proposition 4.1. The di�erence between the results

of Du and Akritas (2002) and the present one only comes from the faster convergence

rate for the remainder term, but the main terms of the expansion are rigorously the same.

The proof of Lemma 3.4 is technical and is postponed to the Appendix section.

Lemma 3.4 Let ψt(s, z) = 1s≤t[1 − H(s − |z)]−2, and Ψt(s, z) = ψt(s, z)fZ(z)−2, for

t ≤ τ, and assume that supz V (Ψτ (·, z)) <∞. Let

In(ψt, z) =

∫
ψt(s, z)[Ĥ(s− |z)−H(s|z)]d[Ĥ0 −H0](s|z)

Under Assumptions 1 to 4, for h such as nh4 → 0,

sup
t≤τ,z∈Zδ

|In(ψt, z)| = OP ([log n]n−1h−1).

Proof of Theorem 3.3. As in the proof of Theorem 3.1 in Du and Akritas (2002),

we �rst decompose Λ̂G(t|x)− ΛG(t|x) into

Λ̂G(t|z)− ΛG(t|z) =
1

n

n∑
i=1

ηΛ,i(t, z) +

∫ t

−∞

[Ĥ(t− |z)−H(t− |z)]2dĤ0(t|z)

[1− Ĥ(t− |z)][1−H(t− |z)]2

+

∫ t

−∞

Ĥ(t− |z)−H(t− |z)

[1−H(t− |z)]2
d{Ĥ0(t|z)−H0(t|z)}.

The second term is of rate OP ([log n]n−1h−1) uniformly over (t, z) ∈ [−∞; τ ] × Zδ, from
Lemma 4.2 in Du and Akritas (2002). On the other hand, the last term is covered by

Lemma 3.4, so that sup(t,z)∈[−∞;τ ]×Zδ |RΛ(t, z)| = OP ([log n]n−1h−1), which proves (3.2).

To prove (3.3), we follow the proof Theorem 3.2 in Du and Akritas (2002), but using

our Lemma 3.4 instead of their Proposition 4.1. Using a representation of conditional

Kaplan-Meier estimator which is the conditional version of Lemma 2.4 in Gill (1983) and

the decomposition proposed in the proof of Theorem 3.2 in Du and Akritas (2002), we

get

Ĝ(t|z)−G(t|z) = [1−G(t|z)]

∫ t

−∞

[1−G(t− |z)]

[1−G(t|z)]
d(Λ̂G(t|z)− ΛG(t|z)) +RG(t|z),

with sup(t,z)∈[−∞;τ ]×Zδ RG(t|z) = OP ([log n]n−1h−1). Then (3.3) follows from integration

by parts and (3.2).
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3.4 Uniform Central Limit Theorem

Theorem 3.1 is not su�cient when it comes to proving asymptotic normality of integrals

of type (2.13). As in the case of Kaplan-Meier integrals (see Stute, 1996), the i.i.d.

expansion introduces an additional term if we need a remainder term decreasing to zero

at a su�ciently fast rate. The representation of Du and Akritas (2002) which has been

recalled in Theorem 3.3 can be rewritten, analogously to the expansion of Kaplan-Meier's

estimator in absence of covariates,

Ĝ(t|z)−G(t|z)

1−G(t|z)
=

∫ t

−∞

dMn,z(y)

[1−G(y|z)][1− F (y − |z)]
+RG

n (z, t), (3.4)

where

Mn,z(y) =
1

n

n∑
i=1

wni(z)

[
(1− δi)1Ti≤t −

∫ t

−∞

1Ti≥ydG(y|z)

1−G(y − |z)

]
.

As a by-product of representation (3.4), the weak convergence of the process [Ĝ(t|z) −
G(t|z)][1 − G(t|z)]−1 can be obtained, retrieving the results of Theorem 1 in Dabrowska

(1992). The rate of convergence is slower than n−1/2 as for usual kernel estimators.

The representation (3.4) can be compared to the representation derived by Stute (1995)

and Akritas (2000) for the Kaplan-Meier estimator. Indeed, (3.4) is similar to equation

(13) in Theorem 6 of Akritas (2000), except for the presence of the kernel weights, and

of conditional distribution functions. On the other hand, a crucial di�erence with the

asymptotic representation of Kaplan-Meier estimator comes from the fact that the integral

in (3.4) does not have zero expectation. Indeed, Mn,z is not a martingale with respect to

the natural �ltration Ht = σ({Xi1Ti≤t, Ti1Ti≤t, δi1Ti≤t, i = 1, ..., n}), since it is biased. In
fact, we have, for all t,

E[ηG,i(Zi, t)|Zi] = 0, (3.5)

but E[ηi,G(z, t)] 6= 0. However, there exists a martingale which is be naturally related to

the asymptotics of F̂ , as shown in our Theorems 3.5 and Theorem 3.6 below. De�ne

M i(t) = (1− δi)1Ti≤t −
∫ t

−∞

1Ti≥ydG(y|Zi)
1−G(y − |Zi)

,

which can be seen as a corrected version of Mn,z.

Theorem 3.5 Under Assumptions 1 to 7, assume that h ∈ Hη = [hmin, hmax], where

[log n]−1nh3+η
min →∞, and nh4

max → 0,∫
φ (x, y) d(F̂ − F̃ ) (x, y) =

1

n

n∑
i=1

Ψi(φ) +Rn (φ) ,
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with

Ψi(φ) =

∫
φ̄Zi(s)dMi(s)

[1− F (s− | Zi)][1−G(s | Zi)]
,

φ̄z(s) =

∫
Z×R

1s≤yφ(x, y)dFz(x, y),

and where supφ∈F |Rn (φ)| = oP (n−1/2).

Proof. First, using the uniform convergence rate of Ĝ, observe that∫
φ(x, y)d[F̂ (x, y)−F̃ (x, y)] =

1

n

n∑
i=1

δiφ(Xi, Ti)[Ĝ(Ti − |Zi)−G(Ti − |Zi)]
[1−G(Ti − |Zi)]2

+OP ([log n]n−1h−1).

The function δφ(X,T )G(T − |Z)[1 − G(T − |Z)]−2 belongs to a Donsker class C, from
Assumption 7 and a permanence property of Donsker class (see Example 2.10.10 in Van

der Vaart and Wellner, 1996). It is also the case for δφ(X,T )Ĝ(T − |Z)[1−G(T − |Z)]−2

with probability tending to one from Lemma 6.2. Using the asymptotic equicontinuity of

Donsker classes (see e.g. Van der Vaart and Wellner, 1996), we get, from Assumption 7

that∫
φ(x, y)d[F̂ (x, y)−F̃ (x, y)] =

∫
φ(x, y)[Ĝ(y − |g(x))−G(y − |g(x))]dF (x, y)

1−G(t− |g(x))
+RF,φ(t, x),

where sup(t,x)∈[−∞;τ ]×Z,φ∈F |RF,φ(t, x)| = oP (n−1/2). Now using the i.i.d. representation of

Ĝ from Theorem 3.3, it follows that∫
φ(x, y)[Ĝ(y − |g(x))−G(y − |g(x))]dF (x, y)

1−G(t− |g(x))
=

n∑
i=1

∫ K
(
Zi−g(x)

h

)
∑n

j=1K
(
Zj−g(x)

h

)φ(x, y)ηG,i(g(x), y−)dF (x, y) +Rφ,

where supφ∈F |Rφ| ≤ E[|Φ|] × OP (n−1h−1). Let f̂Z(z) = n−1h−1
∑n

j=1K ([Zj − z]h−1) .

The main term can be decomposed into three parts, that is

1

nh

n∑
i=1

∫
K

(
Zi − g(x)

h

)
φ(x, y)ηG,i(x, y−)

fZ(g(x))
dF (x, y) (3.6)

+
1

nh

n∑
i=1

∫
K

(
Zi − g(x)

h

)
φ(x, y)ηG,i(g(x), y−)[f̂Z(g(x))− fZ(g(x))]

fZ(g(x))2
dF (x, y) (3.7)

+
1

nh

n∑
i=1

∫
K

(
Zi − g(x)

h

)
φ(x, y)ηG,i(g(x), y−)[f̂Z(g(x))− fZ(g(x))]2

f̂Z(g(x))fZ(g(x))2
dF (x, y). (3.8)
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Using the uniform convergence rate of f̂Z (see Einmahl and Mason 2005), (3.8) is easily

seen to be OP ([log n]n−1h−1) uniformly over φ ∈ F . On the other hand, (3.7) can be

rewritten as
∫
φ(x, y)Un(g(x), y)dF (x, y), where

Un(z, y) =
1

n2h2

∑
i,j

K

(
Zi − z
h

)
ηG,i(z, y−)

fZ(z)2

{
K

(
Zj − z
h

)
− fZ(z)

}

=

(
1

nh

n∑
i=1

K

(
Zi − z
h

)
ηG,i(z, y−)

fZ(z)2

)(
1

nh

n∑
j=1

K

(
Zj − z
h

)
− fZ(z)

)
.

The right parenthesis is OP (h2 +[log n]1/2n−1/2h−1/2) uniformly over z ∈ Zδ using the uni-
form rate of consistency of f̂Z .On the other hand, the �rst parenthesis is E[ηG,1(z, t−)|Z1 =

z]fZ(z)−1 +R(z, t), with supz,t |R(z, t)| = OP (h2 + [log n]1/2n−1/2h−1/2) (see Einmahl and

Mason, 2005). Moreover, as pointed out in equation (3.5), E[ηG,1(z, t−)|Z1 = z] = 0.

Hence (3.7) can be bounded by E[Φ(X, Y )]×OP (h4 + [log n]n−1h−1). Now let wi(x, y) =

φ(x, y)ηG,i(g(x), y−). From Assumption 6, wi is twice di�erentiable with respect to z =

g(x), and supy≤τ,g(x)∈Zδ |∂
2
zwi(x, y)| ≤M |Φ(x, y)+supφ∈F ,y≤τ,g(x)∈Zδ |∂zφ(x, y)+∂2

zφ(x, y)|.
A change of variables and a second order Taylor expansion, Assumption 4 and Assumption

6 lead to rewrite (3.6) as

1

n

n∑
i=1

∫
φ(Xi, y)ηG,i(g(Xi), y−)dFZi(x, y) +OP (h2).

In Theorem 3.5, the remainder term is oP (n−1/2). However, one could be interested in

a more precise rate for the remainder term. This can be obtained if we strengthen the

assumptions on the class of functions F , that is if we replace Assumption 7 by the more

restrictive assumption 4.

Theorem 3.6 Under Assumptions 1 to 6, and Assumption 8, assume that h ∈ Hη =

[hmin, hmax], where [log n]−1nh3+η
min →∞, and nh4

max → 0,∫
φ (x, y) d(F̂ − F̃ ) (x, y) =

1

n

n∑
i=1

Ψi(φ)

+Rn (φ) ,

with Ψi(φ) de�ned in Theorem 3.5 and supφ∈F |Rn (φ)| = OP ([log n]n−1h−1 + h2).

Proof. Write∫
φ(x, y)d[F̂ (x, y)− F̃ (x, y)] =

1

n

n∑
i=1

δiφ(Xi, Ti)[Ĝ(Ti − |Zi)−G(Ti − |Zi)]
[1−G(Ti − |Zi)]2

+R(φ),
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where supφ∈F |R(φ)| ≤ OP (1)× supt≤τ,z∈Zδ |Ĝ(t− |z)− G(t− |z)|2 = OP ([log n]n−1h−1).

Using the i.i.d. representation of Ĝ, this can be rewritten as

1

n2h

∑
i,j

K

(
Zi − Zj

h

)
δiφ(Xi, Ti)ηG,j(Zi, Ti−)

[1−G(Ti − |Zi)]f̂Z(Zi)
+ R̃(φ),

with supφ∈F |R̃(φ)| = OP ([log n]n−1h−1). The main term can be decomposed into

1

n2h

∑
i,j

K

(
Zi − Zj

h

)
δiφ(Xi, Ti)ηG,j(Zi, Ti−)

[1−G(Ti − |Zi)]fZ(Zi)
(3.9)

+
1

n2h

∑
i,j

K

(
Zi − Zj

h

)
δiφ(Xi, Ti)ηG,j(Zi, Ti−)[f̂Z(Zi)− fZ(Zi)]

[1−G(Ti − |Zi)]f 2
Z(Zi)

(3.10)

+
1

n2h

∑
i,j

K

(
Zi − Zj

h

)
δiφ(Xi, Ti)ηG,j(Zi, Ti−)[f̂Z(Zi)− fZ(Zi)]

2

[1−G(Ti − |Zi)]f̂Z(Zi)f 2
Z(Zi)

. (3.11)

Using the uniform rate of convergence of the kernel estimator of the density, it is easy to

see that (3.11) is of rate OP ([log n]n−1h−1).We now consider (3.9). First observe that the

sum of the terms for i = j is negligible. Consider the U−process

U(φ, h) =
1

n(n− 1)

∑
i 6=j

K

(
Zi − Zj

h

)
δiφ(Xi, Ti)ηG,j(Zi, Ti−)

fZ(Zi)[1−G(Ti − |Zi)]

=
1

n(n− 1)

∑
i 6=j

ψφ(Xi, Ti, δi;Xj, Tj, δj).

The class of functions {z → K([z − u]/h) : h ≥ 0, u ∈ Zδ} is VC from Assumption 4

(see Pakes and Pollard, 1989). Hence, using Lemma A.1 in Einmahl and Mason (2000),

the class of functions ψφ for φ ∈ F is VC. the U−process U(φ, h) is indexed by a VC-

class of functions. Denote by P (φ, h) the Hajek projection of U(φ, h). De�ning R(φ, h) =

U(φ, h) − P (φ, h), it follows from Sherman (1994) that supφ,h |R(φ, h)| = OP (n−1). To

compute the Hajek projection, observe that

E[U(φ, h)] = OP (h3),

sup
x,t,δ

∣∣∣∣E [K (Zi − Zjh

)
δiφ(Xi, Ti)ηG,j(Zi, Ti−)

fZ(Zi)[1−G(Ti − |Zi)]
|Xi, Ti, δi = (x, t, δ)

]∣∣∣∣ = OP (h3),

which can be proved by similar arguments as those developed in the proof of Theorem 3.5

(change of variables and Taylor expansion, using the regularity Assumptions 6). Hence,

we can write

(3.9) =
1

nh

n∑
j=1

E

[
K

(
Zi − Zj

h

)
δiφ(Xi, Ti)ηG,j(Zi, Ti−)

fZ(Zi)[1−G(Ti − |Zi)]
|Xj, Tj, δj

]
+R′(φ),
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with supφ∈F |R′(φ)| = OP (h2 + [log n]n−1h−1). Using again the same arguments as in

Theorem 3.5, the conditional expectations are equal to Ψj(φ)+ R̃j(φ), where supj,φ |R̃j| =
OP (h2). The negligibility of (3.10) can be obtained using similar arguments, but with a

third order U−process.

4 Applications

4.1 Regression analysis

To simplify, assume that d = 1. Consider the following regression model,

E[Y | X, Y ≤ τ ] = f(θ0, X),

where f is a known function and θ0 ∈ Θ ⊂ Rk an unknown parameter, and τ is as in

Assumption 1. Once again, introducing τ is a classical way to proceed for mean-regression

under (2.7). See e.g. Heuchenne and Van Keilegom (2007b). If we assume that θ0 is the

unique minimizer of

M(θ) = E
[
{Y − f(θ,X)}21Y≤τ,X∈Zδ

]
,

we can estimate θ0 by

θ̂ = arg min
θ∈Θ

∫
x∈Zδ,y≤τ

[y − f(θ, x)]2dF̂ (x, y).

As a consequence of Theorem 3.1 and Theorem 3.5, the following proposition furnishes

the asymptotics for θ̂.

Proposition 4.1 Assume that the Assumption of Theorem 3.1 hold with F = {x →
f(θ, x), θ ∈ Θ}. We have

θ̂ → θ0 a.s. (4.1)

Furthermore, let ∇θ (resp. ∇2
θ) denotes the vectors of partial derivatives with respect to

θ (resp. the Hessian matrix) and assume that F ′ = {x → ∇2
θf(θ, x), θ ∈ Θ} satis�es

the Assumptions for Theorem 3.1. We have, under Assumptions 1 to 6 for φ(x, y) =

∇θf(θ0, x)[y − f(θ0, x)],
√
n(θ̂ − θ0)⇒ N (0,Ω−1V Ω−1), (4.2)

with

Ω = E [∇θf(θ0, X)∇θf(θ0, X)′] ,

V = V ar

(∫
φ(x, y)dF̃ (x, y) +

1

n

n∑
i=1

∫
[1−G(s|Xi)

−1φ̄Xi(s)dMi(s)

[1− F (s− |Xi)]

)
.
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Proof. Let

Mn(θ) =

∫
x∈Z,y≤τ

[y − f(θ, x)]2dF̂ (x, y).

Apply Theorem 3.1 to obtain supθ |Mn(θ)−M(θ)| = oP (1), and hence (4.1) follows. For

(4.2), observe that, from a Taylor development,

θ̂ − θ0 = ∇2
θMn(θ1n)−1∇θMn(θ0),

for some θ1n between θ0 and θ̂. Apply Theorem 3.1 to see that we have ∇2
θMn(θ1n)−1 →

Ω−1a.s., and Theorem 3.5 to obtain that ∇θMn(θ0)⇒ N (0, V ).

4.2 Density estimation

In this section, we assume that Y has a Lebesgue density f that we wish to estimate.

Estimation of the density of Y has received a lot interest in the case Y ⊥ C. See e.g.

Mielniczuk (1986). This assumption may not hold in several practical situations. In such

cases the estimator of Mielniczuk (1986) is biased. An alternative is to consider that we

are under (2.7) or (2.16)-(2.17), where X represent some auxiliary variables which are

observed. In this framework, our estimator F̂ will permit us to estimate the density f ,

for example through the use of kernel smoothing. Let K̃ be a compact support function,

h1 some positive parameter tending to zero, and de�ne

f̂δ(y) = h−1
1

∫
Zδ×R

K̃

(
y′ − y
h1

)
dF̂ (x, y′). (4.3)

Observe that, since K̃ has compact support, if we choose h1 small enough, the integral

in (4.3) is only on Zδ×] − ∞; τ ] for some τ < τH . Let K̃h1,y = K̃((y − .)h−1
1 ). As an

immediate corollary of Theorem 3.6, deduce that

f̂δ(y) = h−1
1

∫
Zδ×R

K̃h1,y(s)dF̃ (x, y′)

+
1

nh1

n∑
i=1

1Xi∈Zδ

∫ ¯̃KXi

(
.−y
h1

)
dMi(s)

[1− F (s− | Xi)][1−G(s | Xi)]

+Rn(y), (4.4)

with

sup
y≤τ
|Rn(y)| = OP ([log n]n−1h−1h−1

1 ) +OP (h2h−1
1 ).
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5 Conclusion

We developed a new estimator for the distribution function F (x, y) = P(X ≤ x, Y ≤ y)

in the case where the variable Y is randomly right-censored, with the censoring variable

allowed to depend from the covariates X. Our estimator can be seen as a generalized

version of the empirical distribution function, and we provided asymptotic expansions

uniform over quite general classes of functions. These representations allows us to obtain

uniform law of large numbers and uniform central limit theorem for integrals with respect

to the estimator we propose. Moreover, we indicated how this estimator can be slightly

modi�ed in order to be used in the case where X is multivariate. This becomes achievable

by reinforcing the identi�ability assumption of the regression model, by assuming that the

censoring depends fromX only through a univariate term g(X). This property seems quite

interesting, in the sense that most result on regression in this framework were provided

only in the case where X ∈ R. Estimation of the function g from the data is the next step

for improving this technique, and will be investigated elsewhere.

6 Technicalities

6.1 Proof of Lemma 3.4

Let us introduce some notations.

Ĥ0,f (u|z) = Ĥ0(u|z)f̂Z(z), H0,f (u|z) = H0(u|z)fZ(z),

Ĥf (u|z) = Ĥ(u− |z)f̂Z(z), Hf (u|z) = H(u− |z)fZ(z),

where

f̂Z(z) =
1

nh

n∑
i=1

K

(
Zi − z
h

)
.

We shall decompose

Ĥ(u|z)−H(u|z) =
Ĥf (u|z)−Hf (u|z)

fZ(z)
+

[fZ(z)− f̂Z(z)][Ĥf (u|z)−Hf (u|z)]

fZ(z)f̂Z(z)

+
[fZ(z)− f̂Z(z)]Hf (u|z)

fZ(z)2
+

[fZ(z)− f̂Z(z)]2Hf (u|z)

f̂Z(z)fZ(z)2
,
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and Ĥ0(u|z)−H0(u|z) similarly. In(ψt, z) can then be decomposed into 16 terms, of which

the following ones are the hardest to bound,∫
ψt(u, z)

fZ(z)2
[Ĥf (u|z)−Hf (u|z)]d[Ĥ0,f (u|z)−H0,f (u|z)], (6.1)∫

ψt(u, z)Hf (u|z)

fZ(z)3
[fZ(z)− f̂Z(z)]d[Ĥ0,f (u|z)−H0,f (u|z)]. (6.2)

For the others, it su�ces to observe that supz∈Zδ |[f̂Z(z)−fZ(z)]f̂Z(z)−1| = OP ([log n]1/2n−1/2h−1/2),

supu,z∈Zδ |Ĥf (u|z)−Hf (u|z)| = OP ([log n]1/2n−1/2h−1/2) (see Einmahl and Mason, 2005).

Consider the term in (6.1). Let H̃f (u|z) = E[Ĥf (u|z)], and H̃0,f (u|z) = E[H̃0,f (u|z)].

Decompose (6.1) into∫
ψt(u, z)

fZ(z)2
[H̃f (u|z)−Hf (u|z)]d[Ĥ0,f (u|z)−H0,f (u|z)]

+

∫
ψt(u, z)

fZ(z)2
[Ĥf (u|z)− H̃f (u|z)]d[Ĥ0,f (u|z)−H0,f (u|z)]

= A1(t, z) + A2(t, z).

To study A1(t, z), by Taylor expansion,

H̃f (u|z)−Hf (u|z) =
h2
∫
v2K(v)dv

2

∂2Hf (u|z)

∂z2
+ h4

∫
v4K(v)
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∂4Hf (u|z̃(v, u))

∂z4
dv. (6.3)

A similar expansion holds for H̃0,f (u|z)−H0,f (u|z). Since
∫
d[Ĥ0,f (u|z) +H0,f (u|z)] ≤ 2,

sup
z,t

∣∣∣∣∫ ψt(u, z)

fZ(z)2

∂4Hf (u|z̃(v, u))

∂z4
d[Ĥ0,f (u|z)−H0,f (u|z)]

∣∣∣∣ ≤M <∞.

Next we have to study∫ t

−∞
Φ̃(u|z)d[Ĥ0,f (u|z)−H0,f (u|z)] =

∫ t

−∞
Φ̃(u|z)d[Ĥ0,f (u|z)− H̃0,f (u|z)]

+

∫ t

−∞
Φ̃(u|z)d[H̃0,f (u|z)−H0,f (u|z)]

= A11(s, z) + A12(s, z),

where

Φ̃(u|z) =
ψt(u, z)

fZ(z)2

∂2Hf (u|z)

∂z2
.

By integration by parts, and expansion like in (6.3), A12(t, z) can be uniformly bounded

by

sup
u,z

∣∣∣∣[H̃0,f (t|z)−H0,f (t|z)]Φ̃(t|z)−
∫ t

−∞
[H̃0,f (u|z)−H0,f (u|z)]dΦ̃(u|z)

∣∣∣∣ = O(h2). (6.4)
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On the other hand, A11(t, z) can be rewritten as

A11(t, z) =
1

nh

n∑
i=1

{
(1− δi)1Ti≤tΦ(Ti|z)K

(
Zi − z
h

)
− E

[
(1− δi)1Ti≤tΦ(Ti|z)K

(
Zi − z
h

)]}
.

By Theorem 4 in Einmahl and Mason (2005), supt,z |A11(t, z)| = OP ([log n]1/2n−1/2h−1/2).

Gathering the results, deduce that supt,z |A1(t, z)| = OP ([log n]n−1h−1).

To study A2(t, z), decompose into∫
ψt(u, z)

fZ(z)2
[Ĥf (u|z)− H̃f (u|z)]d[H̃0,f (u|z)−H0,f (u|z)]

+

∫
ψt(u, z)

fZ(z)2
[Ĥf (u|z)− H̃f (u|z)]d[Ĥ0,f (u|z)− H̃0,f (u|z)]

= A21(t, z) + A22(t, z).

By integration by parts,

A21(t, z) = Ψt(t, z)[Ĥf (t|z)− H̃f (t|z)][H̃0,f (t|z)−H0,f (t|z)]

−
∫ t

−∞
[Ĥf (u|z)− H̃f (u|z)][H̃0,f (u|z)−H0,f (u|z)]dΨt(u, z)

−
∫ t

−∞
Ψt(u, z)[H̃0,f (u|z)−H0,f (u|z)]d[Ĥf (u|z)− H̃f (u|z)],

where Ψt(u, z) = ψt(u, z)fZ(z)−2. The �rst two terms are uniformly bounded byOP ([log n]n−1h−1).

Using the analog of (6.3) for H̃0,f −H0,f , the third term in the decomposition of A21(t, z)

can be rewritten as

h2
∫
v2K(v)dv

nh1

n∑
i=1

(
Ψt(Ti, z)

∂2H0,f (Ti|z)

∂z2
K

(
Zi − z
h

)
1Ti≤t

−E
[
Ψt(T, z)

∂2H0,f (T |z)

∂z2
K

(
Z − z
h

)
1T≤t

])
+ h4Rn(t, z),

where supt,z |Rn(t, z)| = OP (1). Using again Theorem 4 in Einmahl and Mason (2005),

the main term is seen to be OP ([log n]1/2h5/2n−1/2) uniformly in t and z, which leads to

supt,z |A21(t, z)| = OP ([log n]n−1h−1).

The last term to study is A22(t, z) which can be rewritten as

1

n2h2
1

∑
i 6=j

ξz,t,h(Wi,Wj) +
1

nh1

(
1

nh1

n∑
i=1

ξz,t,h1(Wi,Wi)

)
= Un1(z, t, h) + Un2(z, t, h),

24



where Wi = (Zi, Ti, δi), and

ξx,t,h(w1, w2) = (1− δ1)Ψt(t1, z)1t1≤sK

(
z1 − z
h

)
Γz,h(z2, t2, t1)

−
∫

1u≤t(1− δ)Ψt(u, z)K

(
v − z
h

)
Γz,h1(z2, t2, u)dPW (v, u, δ),

where PW denotes the law of Wi, and where

Γz,h1(z2, t2, u) = 1t2≤uK

(
z2 − z
h

)
−
∫

1t′≤uK

(
v − z
h

)
dPW (v, t′, δ).

By elementary calculus, we have

sup
t,x
|Un2(z, t, h)| ≤ C

1

nh

(
1

nh

n∑
i=1

K2

(
Zi − z
h

))
= OP (n−1h−1).

On the other hand, h2U1n(z, t, h1) is a degenerate second order U−process indexed by a

V C−class of bounded functions. Moreover,

E
[
ξz,t,h(W1,W2)2

]
≤ CE

[
K2

(
Z1 − z
h

)
Γ2
z,t,h(Z2, T2, T1)

]
,

≤ 2C

(
E

[
K2

(
Z1 − z
h

)
K2

(
Z2 − z
h

)]

+E

[
K2

(
Z1 − z
h

)]{∫
K

(
s− z
h1

)
dPW (s, u, δ)

}2
)

≤ C̃h2.

Hence, by Theorem 2 of Major (2006),

sup
t,z
|Un1(z, t, h)| = OP ([log n]n−1h−1).

6.2 The class G

In this section, we give some results on the bracketing number of the class of functions

G de�ned in Assumption 7. De�ne the bracket [f, g] as the set of functions h such as

f ≤ h ≤ g, and, for all ε > 0, de�ne the ε−bracketing number of a class of functions C
in Lr, as the smallest number of brackets [fi, gi] such as ‖fi− gi‖r ≤ ε needed to cover C.
This number is denoted by N[](ε, C, Lr).We recall that the class C will be Donsker as soon
as
∫ 1

0
[logN[](ε, C, L2)]1/2dε < ∞ (see e.g. Van der Vaart and Wellner, 1996). We recall
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some bounds on the bracketing numbers of the classes C1 and C2 de�ned in Assumption

7, see Corollary 2.7.2 and Theorem 2.7.5 in Van der Vaart and Wellner (1996),

logN[](ε, C1, L
2) ≤ O(ε−1),

logN[](ε, C2, L
∞) ≤ O(ε−1).

Lemma 6.1 Let G be the class of functions de�ned in Assumption 7. We have, for any

ε > 0,

logN[](ε,G) ≤ O(ε−2/(1+η)).

Proof. To shorten the notation, letN1(ε) = logN[](ε, C1, L
2), N2(ε) = logN[](ε, C2, L

∞).

Assume, without loss of generality, that M = 1, where M is the constant involved in As-

sumption 7. Let {[ψ1,j, ψ2,j]}1≤j≤N1(ε), and {[φ1,k, φ2,k]}1≤k≤N1(ε1/(1+η)) be respectively a set

of ε− and ε1/(1+η)−brackets covering C1. Let zi = iε1/(1+η), for 0 ≤ i ≤ ε−1/(1+η). De�ne

ψ̃1,i,j,k(z, y) = ψ1,j(y) + (z − zi)φ1,k(y).

Let f be a function de�ned on {0, ..., bε−1/(1+η)c + 1} taking values in {1, ..., N1(ε)} ×
{1, ..., N1(ε1/(1+η))}, and de�ne the lower bracket indexed by f,

ψ̃f (z, y) = ψ̃1,i,f(i)(z, y) forz ∈ [zi; zi+1[.

As in the proof of Theorem 2.7.1 and Corollary 2.7.2 in Van der Vaart and Wellner, it is

clear that for any χ ∈ G, there exists some f such as f ≤ ψ̃f1 and χ− ψ̃f1 � ε. Hence the

number of functions f will provide the order of the bracketing number, that is

exp(ε−1 + ε−1/(1+η))ε
−1/(1+η)

= O(exp(ε−2/(1+η))).

As a consequence, G is a Donsker class of functions, since 0 < η < 1. Lemma 6.2 below

shows that, if G belongs to G, Ĝ also belongs to G with probability tending to one (which

allows to use the asymptotic equicontinuity argument of the proof of Theorem 3.5.

Lemma 6.2 Let Z = g(X) and Ĝ(t|z) denote Beran's estimator of G(t|z) = P(C ≤
t|Z = z). Under the Assumptions of Theorem 3.5, (t, z) → Ĝ(t|z) ∈ G with probability

tending to one if h ∈ Hη.

Proof. This Lemma follows directly from the uniform convergence of the Ĝ and

its derivative towards G, see Proposition 4.3 in Akritas and Van Keilegom (1999), and

from Proposition 4.4 in Van Keilegom and Akritas (1999) which concerns |∂zĜ(t|z) −
∂zG(t|z′)||z − z′|−η.
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