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Abstract: - Kohonen maps are an efficient mechanism in signal processing and data mining applications. However, all 

the existing versions and approaches of this special type of neural networks are still incapable to efficiently handle 

within a simple, fast, and unified framework, the imperfection of the patterns’ information elements on the one hand 

like the uncertainty, the missing data, etc., and the heterogeneity of their measuring scale (qualitative, quantitative, 

ordinal, etc.) on the other hand. Therefore, we propose in this paper a possibilistic Kohonen network essentially based 

on two fuzzy measures: the possibility and the necessity degrees, to deal with all these aspects together in a robust way. 

Concrete examples and medical applications will also be given to clarify and to easily explain the proposed algorithm. 

Key-Words: - Self-Organizing Maps (SOMs), Fuzzy Logic (Possibility Theory), Imperfect information, 

Gastroenterology Dataset, Similarity. 

1   Introduction 
Kohonen networks (known as Self-Organizing Maps 

“SOMs”) are an effective mechanism in signal 

processing. They can convert a complex high-

dimensional input signal into a simpler low-dimensional 

discrete map [1] [2]. Ritter [3] has shown that SOMs 

represent a nonlinear generalization of principal 

components analysis (another dimension-reduction 

technique). Thus, they are nicely appropriate for cluster 

analysis, image and sound processing, and many other 

applications [1] [4]. The SOM training algorithm 

resembles also to vector quantization (VQ) algorithms, 

such as K-means. The important distinction is that in 

addition to the best-matching weight vector, its 

topological neighbors on the map are updated too.  

Actually, Kohonen networks are a special type 

of the neural networks based on the competitive learning 

which is based on similarity estimation. All the previous 

works and applications of the SOMs suppose generally 

that the value of each input is precise, certain, and given 

in order to calculate the similarity and to estimate the 

new weights of the network, while in reality, a 

remarkable amount of incomplete and imperfect values 

may be presented to the input of the artificial neural 

networks. For this reason, we will propose in this paper 

an approach fundamentally based on possibility theory to 

estimate the similarity and the weights, taking into 

account the imperfection of the data sets. Our paper is 

organized as follow:  section 2 briefly presents the 

SOMs, the algorithm, and the limitations. Section 3 

contains the basic principles of possibility theory and the 

proposed approach to overcome the limitations. Then, a 

concrete example is presented in section 4 and a real 

medical application is illustrated in section 5 to clarify 

and to simply explain our approach. Our remarks and 

perspectives are discussed in section 6. 

2   Self-Organizing Maps  
Kohonen networks [1] were introduced in 1982 by the 

Finnish researcher Tuevo Kohonen as a special type of 

neural networks to reduce the dimensionality of the input 

signals. They have been call self-organizing maps thanks 

to their ability to elucidate or reproduce some 

fundamental organizational property of the input data 

without benefit of supervised training procedures. Like 

neural networks, SOMs are feedforward and fully 

connected. Feedforward networks don’t allow looping or 

cycling. “Fully connected” means that every node in a 

given layer is connected to every node in the next layer, 

and unconnected to any node in the same layer. Each 

connection between nodes has a weight associated with 

it, which is assigned randomly to a value between zero 

and one at initialization. Adjusting these weights 

represents the key for the learning mechanism. Input 

variable values need to be normalized or standardized so 

that certain variables don’t overwhelm others in the 

learning algorithm. Unlike most neural networks, SOMs 

have no hidden layer. Data from the input layer is passed 

along directly to the output layer. The output layer is 

represented in the form of a lattice whose shape is 

usually rectangular (see figure 1) or hexagonal.  

For a given object (record, instance, stimuli, 

feature vector, etc.), a particular field value (attribute, 

variable, observation, feature, sample, example, etc.) is 

forwarded from a particular input node to every node in 

the output layer. The values of all the fields, together 

with the weights assigned to each connection, determine 

the values of a scoring function (such as Euclidean 
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distance) for each output node. The output node with the 

best outcome from the scoring function would then be 

designed as the winning node, or the Best Matching Unit 

(BMU). This node becomes the center of neighborhood 

of excited neurons whose weights are adjusted so as to 

further improve the score function. In other words, these 

nodes will participate in the adaption (learning) process.   

Fig. 1  Self-organizing map topology 

2.1 Kohonen Algorithm 
For each input vector from the data set  
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where nX  represents an object in the data set like a 

patient record in a medical database for example and nix

represents an attribute of nX  (like the hemoglobin or 

the age of the patient), do: 

I- Competition: 

For each output node j , calculate the similarity (or the 

dissimilarity) between the two vectors jW  and nX  using 

the scoring function (the Euclidean distance given by 

equation 1 for example): 

∑ −=
i

niijnj xwXwD
2)(),( )            (1) 

and find the wining node J  that maximizes the 

Similarity (or minimizes the dissimilarity) over all the 

output nodes. 

II- Cooperation:  

Identify all output nodes j   within the neighborhood of 

J  defined by the neighborhood size R . For these 

nodes, do the following for all input record fields: 

A. Select the nodes in the neighborhood of the winning 

node that will participate in the learning phase. The 

weights of these nodes are adjusted so as to further 

improve the score function. In other words, these nodes 

will have an increased chance of winning the 

competition once again, for a similar set of field values. 

B. Adjust the weights: 

)( ,,, currentijnicurrentijnewij wxww −+= η  

C. Adjust the learning rate and neighborhood size, as 

needed. 

D.   Stop when the termination criteria are met. 

2.1.1   Prior Works’ Limitation 

In the beginning, the conventional SOM training as 

proposed by Kohonen (the previous paragraph) were 

only capable to process crisp quantitative (numeric) 

information elements since both determining the BMU 

from the map units and updating BMU’s topological 

neighbors are based on numeric distance function, 

typically the Euclidean. 

Later, the necessity to handle both the 

qualitative and the quantitative data under a unified 

framework were imposed due to the huge number of 

heterogeneous data encountered in the large databases. 

To fulfill this need, many techniques and approaches 

have been proposed [5]: 

The first approach supposes that the qualitative 

variables must be always presented to Kohonen nets by 

using as many neurons as the number of the values that 

the variable can take. In this case, only one of the 

neurons will be turned on according to the value of the 

variable. All the other neurons will be turned off. This 

technique is called one-of-n encoding. The only 

exception to this rule is if the qualitative variable is 

binary (taking one of only two possible values), then one 

neuron can be used. It is turned on for one value, and off 

for the other. Figure 2 [5] depicts an illustrative example 

of this transformation. In this example it is supposed that 
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the qualitative variable Favorite-Drink can take four 

possible categories {Coke, Pepsi, Mocca, Nescafe}.  

Fig. 2 Qualitative attribute “Favorite-Drink” is 

transformed to four binary attributes according to its 

domain 

For many network models, it is theoretically 

possible to encode qualitative variables by assigning few 

values to the same neuron. For instance, if a qualitative 

attribute takes three possible values, we might code the 

first as fully off, the second as half on, and the last one 

as fully on. Though many nets are capable of reacting to 

inputs coded in this way, the learning is usually slowed 

down considerably when this is done. 

This approach has the following five main 

drawbacks: 1) It is unable to determine the similarity 

information among the qualitative values. For example, 

the transformed relation does not show that Coke is more 

similar to Pepsi than Mocca. 2) When the domain of a 

qualitative attribute is large, transforming it to a set of 

binary attributes increases the dimensionality of the 

relation, resulting in wasting storage space and 

increasing training time. 3) It is hard to maintain the new 

schema. When the domain of an attribute changes, the 

transformed relation schema needs to be changed too. 

For instance, if “juice” is added to the domain of 

Favorite-Drink, an additional attribute “juice” needs to 

be included in the transformed relation schema. 4) New 

binary attributes are unable to reflect the semantics of 

the original attribute. For example, after the 

transformation, the four binary attributes cannot express 

the meaning of Favorite-Drink. 5) When the number of 

the categories is large, the data vectors are all similar to 

each other. For example, suppose that we have eight 

categories. The activation vector for a case belonging to 

the third category would be (0, 0, 1, 0, 0, 0, 0, 0), while 

another case’s activation vector might be (0, 0, 0, 0, 0, 0, 

1, 0). The coordinates in six of the eight dimensions are 

exactly the same for both cases. Now suppose that we 

are trying to teach a neural network to respond with such 

vectors as outputs. If it simply responds to each case by 

turning off all its outputs, only one of them will be 

wrong. Accordingly, this will produce a relatively small 

mean square error.       

To overcome the aforementioned shortcomings, 

and to consider the heterogeneous data simultaneously, 

the generalized SOMs (denoted as GSOMs) have been 

proposed [5]. These maps adapt a general distance 

representation structure, called distance hierarchy to 

facilitate the distance computation. This hierarchy has 

been proved to be general distance representation 

mechanism for both qualitative and quantitative values. 

It is composed of nodes and links; where higher-level 

nodes represent more general concepts while lower-level 

nodes represent more specific concepts. An example of 

such hierarchy is schematized in figure 3. All the 

attributes of the training dataset and their corresponding 

components of the GSOM units are both associated with 

a distance hierarchy. To compute the distance between a 

training pattern and a GSOM unit, the attribute values of 

the pattern and the corresponding components of the 

GSOM unit should be mapped to their associated 

distance hierarchies, according to the method well-

illustrated in [5]. Then, the distance is computed by 

aggregating the distances between the mapping points in 

their hierarchies. 

Fig. 3 An example of a hierarchical structure  

In spite of the fact that GSOM are able to easily 

measure the distance between the qualitative as well as 

the quantitative variable in an efficient manner as proved 

in [5], and by overcoming all the drawbacks of one-of-n 

encoding technique, their uses, however, is limited to the 

crisp values assigned in a certain and precise manner. i.e. 

this extended version of Kohonen maps stands incapable 

to deal with the different types of information 

imperfection (missing data, imprecision, probabilistic 

uncertainty, etc.). 

Actually, the imperfection of the information 

elements in database objects has almost been neglected 

and ignored, and the majority of the proposed algorithms 

and methods assume that in the worst case the variables 

can be cleaned and prepared in order to get a perfect 

training set. This optimistic point of view cannot be 

applied to a great deal of the everyday databases for two 

main reasons. On the one hand, there are always some 

attributes that cannot be estimated exactly (precisely) 

because of the measuring instrument tolerance, or the 

expert uncertainty and doubt, so they can be given as a 

vague or as imprecise values modeled by possibility 
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distributions. On the other hand, it is common to find 

missing values of the attributes in a data set. Deleting the 

fields or the attributes that contain such values might 

decrease the size of the learning base to a great deal 

plaguing the learning process. Estimating the values of 

the missing data before the learning process might be 

complicated, long, and uncertain.  

In reality, only few attempts and efforts have 

carried out to seriously consider the ill-defined variables, 

like the fuzzy-neuro approach proposed in [6]. This 

approach supposes that the input feature values can be 

described in terms of some combination of membership 

values for the linguistic properties that characterize each 

of them. For instance, instead of presenting the vector 

]...[ 21 Siii xxxX =  as the input to the SOM, the 

membership degrees of all its components to the 

characteristic properties of each of them are calculated. 

For instance, if we suppose that each variable is 

described via the same three properties “low”, “medium” 

and “high” as shown in the example depicted in figure 4, 

then the input of the SOM will be  

As we might notice from this simple example, 

the number of the input neurons required will notably be 

increased. Instead of one input neuron for each variable, 

n input units is needed, where n is the number of the 

describing properties of the considered variable. As the 

training time and the storage space are strongly impacted 

by the number of the neurons, this technique could be 

considerably be slowed in some applications in data 

mining, and we must look for another strategy to better 

prepare the data at the inputs of the SOM. 

Fig. 4 A Kohonen map used to handle the  

      ambiguity of information elements 

In fact, data preparation can make the difference 

between a SOM that trains in few days and performs 

quite well, versus another that works in few minutes and 

performs excellently, since the training time can often be 

expensive, especially when the SOM cannot achieve a 

good learning. Consequently, there is an imposed need 

to find an approach that considers the heterogeneous and 

the imperfection of information elements, providing 

robust, simple, low-cost, and fast solutions. This issue is 

extremely fundamental in all soft-computation methods.  

2.2 SOM Information Elements Visualization 
To visualize the cluster shape and structure of a data 

cloud, and to achieve an efficient exploratory data 

analyses, several techniques have been proposed in the 

literature. These techniques are usually based on vector 

projection, using physical coordinates, color coding, etc. 

However, the most commonly used strategy to visualize 

the clusters on the SOM is distance matrices. In this 

technique, the distances between each unit i and the units 

in its neighborhood R are calculated: 

{ }ijRjWWD jii ≠∈−= ,\

The distances, or for example the median of 

these distances [7], for each map unit are typically 

visualized using color, although other techniques are 

also possible [8]. The unified distance matrix (U-

distance-matrix) [9] visualizes all distances between 

each map unit and its neighbors. This is possible due to 

the regular structure of the map grid. The cluster borders 

can be identified as “mountains” of high distances 

separating the “valleys” of low distances that represent 

the clusters themselves. It is also possible to use a 

unified similarity matrix. In this case, the significations 

are inversed. Figure 5 presents examples of both spatial 

and color projections as well as the U-matrix. We can 

see that it is hard to see local details in the dense areas 

using the PCA, except in the interactive visualization 

environments where the user can zoom in on the 

interesting details. Contrary to PCA-projection, the map 

grid has equal amount of space for each map unit, and 

hence, map units even in the dense areas can be seen 

clearly. 

Fig. 5 SOM cluster visualization models using the PCA-

projection, the coloring, and the U-distance-matrix 
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3   Possibility theory  
Possibility theory [10-15] provides a method to 

formalize subjective uncertainties of events, that is to say 

a means of assessing to what extent the occurrence (the 

realization) of an event is possible and to what extent we 

are certain of its occurrence, without having however the 

possibility to measure the exact probability of this 

realization because we don’t know an analogous event to 

be referred to, or because the uncertainty is the 

consequence of observation instrument reliability 

absence. Let’s attribute to each event defined on the 

universe of discourse Ω  (in other words to each element 

belonging to ( )Ωρ ) a coefficient ranging between 0 and

1 assessing to which degree the occurrence of an event is 

possible, where the value “1” means that the event is 

completely possible, while the value “0” means that the 

event is impossible. To define this coefficient, we 

introduce the possibility measure Π  which is a function 

defined over )(Ωρ , taking values in [ ]1,0 , such that:

Axiom 1: ( ) 0=Π φ         (3) 

Axiom 2: ( ) 1=ΩΠ     (4) 

Axiom3: )(,..., 21 Ω∈∀ ρAA

)(sup)( ,...2,1,..2,1 iiii AA Π=∪Π ==   (5) 

where sup indicates the supremum of the concerned 

values. 

We can say that the possibility measure is totally 

defined, if we can attribute a possibility coefficient to all 

the singletons of Ω . Consequently, the possibility 

distribution function π  defined on Ω , whose values are 

included in [ ]1,0 , such that 1)(sup =∈ xx πχ  must be 

defined. As a result the function Π  can be defined form 

the function π  by: 

( )Ω∈∀ ρA  )(sup)( xA Ax π∈=Π  (6) 

Reciprocally, π  can be defined form Π  by: 

Ω∈∀x  { })()( xx Π=π  (7) 

We should also mention here that the characteristic 

function of a subset from Ω  can be considered as a 

possibility distribution π  defined on Ω .  To calculate 

the possibility degree of the couple ),( yx  given that 

1Ω∈x  and 2Ω∈y  where ,1Ω 2Ω  are two non-

interactive universes of discourse, the conjoint 

possibility distribution defined on the Cartesian product 

21 Ω×Ω  should be calculated from:  

1Ω∈∀x 2Ω∈∀y  ))(),(min(),( yxyx γχ πππ =      (8) 

In fact, the possibility measure is not sufficient to 

describe the incertitude of the realization of an event, 

because sometimes the realization of both the event A 

and its complement 
C

A could be completely possible 

simultaneously ( 1)( =Π A  and 1)( =Π C
A  at the same 

time). This means that in this particular case it is 

impossible to take a decision concerning the realization 

of A depending on the estimated possibility measure. For 

this reason, another function, defined on )(Ωρ , whose 

values are included in [ ]1,0  and which is called the

necessity measure (denoted N) is defined as follows: 

Axiom 1: 0)( =φN          (9) 

Axiom 2: 1)( =ΩN          (10) 

Axiom 3: )()( 21 Ω∈∀Ω∈∀ ρρ AA

)(inf)( ,...2,1,....2,1 iiii ANAN == =∩         (11) where 

inf stands for infimum. 

3.1 Possibility-Based Similarity estimation  

Suppose that we have two objects 
jO  and kO  containing 

“S” attributes (
jO  represents the weight vector of 

Kohonen network, and kO  represents the input vector 

for example): 

]....[ 21 Sjijjjj xxxxO =  

]....[ 21 Skikkkk xxxxO = .  

Each attribute could take a precise or an imprecise 

value modeled by its possibility distribution, and this 

value can be quantitative (numeric), qualitative 

(nominal), or ordinal. The values of some attributes 

could be unassigned (missing value). Besides, each 

attribute is associated with a “tolerance function” [11] 

defined by an expert as a formula or as a table permitting 

to describe mathematically to which degree we consider 

that two values of this attribute are similar. An example 

of tolerance function is the function that we call “close 

to”. Such a function can be defined by the following 

formula: 

Δ

−
−= yx

yxa

aa
aa 1),(μ  if  Δ≤− yx aa    (12) 

0),( =yxa aaμ  Otherwise 
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 Where Δ  is a variable that influences the slope of 

the function and consequently the notion of “close to”. 

The tolerance function can be also:   

- The function of tolerance "True/false": two values of 

an attribute are similar if they are identical (similarity 

equals to 1). If the values are different, the similarity is 

null, this type of functions is used especially when 

dealing with nominal variables having independent 

categories. In the case of ordinal variables we must use 

the function “close to”. 

- The "ad hoc" tolerance functions which are defined by 

the experts to reflect their point of view about the 

similarities between the attributes. 

In our approach the similarity between the two 

objects jO  and kO  can be estimated by means of two 

measures: the possibility degree of similarity between 

jO  and kO  that tells us to which degree it is possible 

that these vectors are similar, and the necessity degree of 

similarity of these vectors that tells us to which degree 

we are certain of their similarity. The probability of the 

similarity between jO  and kO  exists between the 

necessity degree that represents the lower limit and the 

possibility degree that represents the upper limit. To 

calculate the possibility and the necessity degrees of 

resemblance, we must calculate the local possibility and 

necessity degrees between their corresponding attributes 

and aggregate them by taking their average, for example 

in order to take a decision concerning the total similarity. 

The local possibility and necessity degrees of similarity 

between 
ijx  given by its possibility distribution 

),(
,

yxij
xX ijj

π  and ikx  given by its possibility distribution 

),(
,

ik
xX

xx
ikk

π  for all { }Si ,...,2,1∈  are calculated

according to the following relations: 

 Supposing that D  is the definition domain of the 

considered attribute ix  ( DDU ×= ) and that μ  is the 

tolerance function associated to this attribute, the 

conjoint possibility distribution Dπ  is calculated as: 

))(),(min(),( ,, yxxx
ikkijj xXxXikijD πππ =    (13) 

In this case, the local possibility degree of similarity iπ
can be calculated as: 

))](),([min(sup),( uuxx DUuikiji πμπ ∈=      (14) 

The local necessity degree of similarity iN  can be 

calculated as: 

))](1),([max(inf),( uuxxN DUuikiji πμ −= ∈      (15) 

We consider that if the value of an attribute is 

given in one object and is unassigned in the other (the 

case of missing values), it is completely possible that 

these values are similar 1=iπ  but we are entirely 

uncertain 0=iN .  The total possibility (necessity) 

degree of a certain node j  is the average of all the local 

possibility (necessity) degrees connected to this node. 

3.2 Possibilistic Approach  
In order to overcome the drawbacks and the limitations 

of the conventional auto-organizing maps discussed in 

section 2.1.1, we propose the following simple 

modifications: 

1)- Concerning the similarity between the output units 

and the input vectors, we can either calculate the 

similarities between all the input vectors using the 

possibilistic similarity that we have previously proposed 

(section 3.1) to deal with the heterogeneity and the 

imperfections of the information elements at the same 

time [13-15], and then to introduce this possibilistic 

similarity matrix to the inputs of the SOMs, or we model 

the similarity between each output unit and the input 

vector, using the necessity and the average necessity and 

possibility degrees of the resemblance between each 

variable of the vector and the corresponding weight. In 

this last case, the winning neuron is the one that has the 

greatest necessity degree. When two or more neurons 

have equal necessity degrees, their possibility degrees 

are compared. It is recommended to introduce the 

possibilistic inter-variable similarity matrix to the input 

of the SOMs (the first solution) when the number of the 

training vector is small, since the number of the input 

neurons is equal to their number. However, for a 

significant number of the learning vectors, it is more 

judicious to apply the second solution to accelerate the 

learning phase. 

2)- As the weights are given as a vector of precise values 

and the input attributes could modeled or transformed to 

possibility attributions like

{ },....)(,...,)(,)( 2211 ii xxxxxx πππ , we suggest to 

use the following equation to compute the new weight: 

∑∑
−×+= )]()([

)(
currentii

i

currentnew wxx
x

ww π
π
η
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Thanks to the robust tools of possibility theory, 

these simple and logical modifications can easily handle 

the aforementioned challenging points assuring the 

generality of the approach in a simple and fast way as we 

will show via a concrete example in the following 

paragraph. 

4   Illustrative Example 
Consider the following simple example. Suppose that we 

have a dataset with two attributes, “age” and “income”, 

which have already been normalized (see table 1), and 

the knowledge about these attributes might be imprecise 

modeled by a possibility distribution. Suppose that we 

would like to use a 2 × 2 Kohonen map to represent 

hidden clusters in the data set. Therefore, we would have 

the topology shown in Figure 1. This type of data set 

cannot be solved using the traditional scoring functions 

that suppose that the compared values have to be crisp. 

Besides, we cannot manage to apply the weight 

adjustment equation with such imprecise attributes, 

given as possibility distributions.  

1 
11x  is about 

0.8 figure 6-

a 

8.012 =x  Older 

person with 

high 

income 

2 8.021 =x  1.022 =x  Older 

person with 

low income 

3 
31x  is about 

0.2 figure 6-

b 

32x  is 

somehow 

high 

figure 6-c 

Younger 

person with 

high 

income 

4 1.041 =x  1.042 =x  Younger 

person with 

low income 

5 
51x is given 

by its 

possibility 

distribution 

51π  figure 

6-d  

8.052 =x  Older 

person with 

high 

income 

Table 1 The dataset of our example 

With such a small network, we set the 

neighborhood size to zero ( 0=R ), so that only the 

winning node will be awarded the opportunity to adjust 

its weight. Also, we set the learning rate η  to 0.5. 

Finally, assume that the weights have been randomly 

initialized as follows: 

20.010.080.010.0

20.090.080.090.0

24142313

22122111

====
====

wwww

wwww

For the first input vector, we perform the following 

competition, cooperation, and adaptation sequence: 

A. Competition: We compute the necessity and the 

possibility degrees of similarity between this input 

vector and the weight vector for each of the four output 

nodes (see table 2): 

(a) (b) 

(c) 
  (d) 

Fig. 6  Possibility distributions of the imprecise values  

Table 2. The necessity and the possibility degrees (the 

first vector) 

The winning node for this first input record is 

therefore “node 1”, since it maximizes the similarity 

(modeled by the possibility and the necessity degrees) 

between the input vector for this record, and the weight 

vector, over all nodes. Node 1 won the competition for 

the first record because its weights are more similar to 

the field values for this record than the other nodes’ 

weights. For this reason, we may expect node 1 to 

exhibit an affinity for records of older persons with high-

income. In other words, we may expect node 1 to 

represent a cluster of older, high-income persons. 

B. Cooperation: In this simple example we have set the 

neighborhood size R = 0 therefore, only the winning 
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node, “node 1”, will be able to adjust its weights. 

C. Adaptation: For the winning node, “node 1”, the 

weights are adjusted as follows: 

85.0,11 =neww , 8.0,21 =neww  

For the next input vector [ ]1.0,8.02 =X , see table 3: 

Table 3. The necessity and the possibility degrees (the 

second vector) 

Node 2 won the competition because its weights (0.9, 

0.2) are more similar to the field values for this record 

than the other nodes’ weights. As a result: 

85.0,12 =neww , 15.0,22 =neww . 

For the third input vector, see table 4: 

Table 4. the necessity and the possibility degrees (the 

third vector) 

Figure 7 shows us the main steps of possibility and 

necessity degree calculation. 

Node 2 wins the competition, and as a result: 

15.0,13 =neww , 85.0,23 =neww . 

For the vector [ ]1.0,1.04 =X , see table 5. 

Table 5. The necessity and the possibility degrees (the 

fourth vector) 

Node 3 wins the competition, and as a 

result: 1.0,14 =neww , 15.0,24 =neww . 

Finally, for X5, see table 6: 

Table 6. the necessity and the possibility degrees (the 

last vector) 

Node 1 wins the competition, so given that 

85.0,11 =currentw
 and 11x  is given as possibility

distribution 

⎭
⎬
⎫

⎩
⎨
⎧

85.0

50.0

80.0

1

75.0

25.0

70.0

75.0  (figure 2-d), the 

new weight neww ,11  is calculated as following:

[ ] 81.00)85.080.0()85.075.0(25.0)85.070.0(75.0
)50.0125.075.0(

5.0
85.0,11 =+−+−+−

+++
+=neww

Given that 80.021 =w  and 80.012 =x  the new weight 

neww ,21
 won’t change.

Fig. 7 Local possibility and necessity calculation. X 

represents the first fuzzy proposition concerning the 

value of the attribute in the first object. Y represents the 

second fuzzy proposition concerning the value of the 

same attribute in the second object. μ represents the 

possibility or the necessity degree. 
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Notice that even if the value of an attribute is 

given as a probability distribution, it can easily be 

transformed to possibility distribution using a suitable 

transformation [16], and the estimation of the similarity 

will then be simple and straightforward unlike the prior 

conventional methods that stand paralyzed in front of 

such cases. 

5   Medical Application 
The proposed method will be applied in the following to 

the medical gastroenterology database of the hospital 

“Morvan” in Brest, France. This database [17] is briefly 

described in the following subsection, and the results 

will be presented in section 6.2.  

5.1 Medical Dataset Description  
The possibility-based similarity modeling exploited by 

this clustering algorithm was tested on a digestive 

endoscope atlas of documented endoscopic lesions 

descriptions, and scene information of the upper 

gastrointestinal tract, esophagus, stomach, and 

duodenum [17]. Database images attributes description 

characterize observed anomalies or lesions identified by 

an expert, according to a well defined and exhaustive 

description structure: 

Object location: anatomic

(longitudinal), position in the

organ (axial), and distance from

the teeth.

Repeated objects: number of

identical objects and spatial

organization.

Object aspect: shape and edge,

dominant color and color

regularity, relief and regularity

of relief, sizes (major, minor

axes and thickness), axes ratio

and major axis orientation,

height, motility, effect of

insufflations, and consistency.

Relation with adjacent organ:

color contrast, texture contrast,

and consequences on the lumen.

These descriptors represent 24 features, 

summing 145 distinct values for simple objects. 

Attributes are either semantically or numerically coded, 

with the help of an adapted interface by an expert 

physician. Complex objects are defined when two or 

more simple objects are related on the same visual scene. 

Each one has its own attributes and a spatial relation 

(closeness and order, rated as: into, in contact, in contact 

and upward, around, and around and upward) links them, 

resulting in 33 features and 206 different values. 

Depending on the secondary objects types, other 

relationships may appear like relative sizes and 

consistency, combined with the absence of some features 

in some objects, uncertain and incomplete descriptions. 

Endoscopic diagnosis relies on the analysis of 

associations between these elementary lesions and the 

medical context, which includes sex, age, clinical 

antecedents, consultation circumstances, and symptoms. 

Complementary exams may be necessary to determine 

whether the initial diagnosis is confirmed or refused. 

These exams include histological examination of biopsy 

specimens, coloration of the digestive mucosa, and 

morphological or functional evaluations. Once 

processed, all these elements and diagnostic decisions 

are then recorded on a medical report. Among the 

documented lesions and pathologies we find: dilated 

lumen, stenosis, extrinsic compression, web, ring, hiatal 

hernia, undigested food, liquid blood, blood clot, z-line, 

spot, circular Barrett’s, moniliasis, simple erosion, ulcer, 

and Petechial mucosa. 

Lesions and diagnosis are intended to be 

independently described under this scheme, even though 

practical experience shows that endoscopic findings may 

point towards a particular diagnosis, whereas other 

diagnosis alternatives including the same lesions could 

also be specified. For this reason, the digestive 

endoscope atlas also defines specialized findings, which 

are classes that describe more in detail the generic 

diagnosis. Validated by medical experts, the atlas 

consists of 89 endoscopic findings, 126 endoscopic 

diagnoses, and 118 specialized findings, a priori 

descriptions. 

To illustrate our results in a clear and simple 

manner, a subset of cases (CB) belonging to the main 

image database were processed. This facilitates 

understanding the studied possibilistic clustering 

approaches, the results graphic representation, and 

emphasizes the general character of the proposed 

approach. Defined as CB = {p1, p2, …, p18}, the subset of 

cases contains 18 described images, presented in figure 

8. CB is structured in the following manner according to

the ground-truth provided by the specialist: P1 = {p1, p2} 

corresponds to the “Dilated Lumen” pathology; P2 = {p3, 

p4, p5, p6, p7, p8, p9, p10} conforms with the description of 

“Esophagus Stenosis”; P3 = {p11, p12, p13, p14} is a set of 

images that represent the “Extrinsic Compression” 

pathology; P4 = {p15} describes the “Web Shape” 

pathology; P5 = {p16, p17, p18} is a set of images on which 

the “Ring Shape” pathology is visible. 
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Figure 8. The medical dataset. 

5.2 Experimental Results 
In the beginning, the proposed method has been applied 

to the dataset CB described in the precedent section 

using the batch training in which the dataset is presented 

entirely in each epoch. Firstly, we assume that we have a 

45×  map and then a 1515×  output units. The 

visualization models briefly illustrated in section 2.2 will 

be used to display the experimental outcome.  

Figure 9 schematizes the unified similarity 

matrix using the color codes depicted in the vertical 

color bar at the upper left corner of figure 9. The 

similarity between each object and the output unites in 

the map are also coded with colors according to their 

associated bars in this figure. As it is clearly shown, the 

objects having the same pathology belong to the same or 

neighbor units. Looking closely to the coloring maps of 

these objects that reassemble to fingerprints, we can 

notice that colored maps of all the objects having the 

same class are approximately the same, i.e. the similar 

objects have similar fingerprints that differ from one 

pathology to another. Figure 10 depicts another type of 

results representation using bar charts in each output unit 

that present its similarity to all the objects. Again, it can 

be remarked that units having objects of the same class 

are more similar than the other ones. The visual 

presentation of these information elements using the 

principal component analysis in a 3-dimensional 

coordinate space is also plotted in figure 11. Another 

example is given in figures 12 and 13 in which we apply 

the same steps to a 1515× unit map. The same remarks 

and observations can be deduced. The fingerprints of 

each object are clearer in this example. 

At last, to show the generality and the validity of 

our approach in all the types of training, all the 

aforementioned steps are applied to a 45×  unit map 

using the sequential mode of training (figures 14 and 

15). It is clear that we get similar analysis and 

conclusions from the observation of the depicted plots. 

Fig. 9 Visualization of the SOM of the gastroenterology 

dataset using a 45×  unit map (batch training). U-matrix 

on the top left, then component planes, and map unit 

labels on bottom right 

Fig. 10 The bar charts in each output unit show its 

similarity to each object of the 45×  unit map (batch 

training) 
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Fig. 11 Projection of the gastroenterology dataset to the sunspace spanned by its  

three eigenvectors with greatest eigenvalues.  

The different pathologies have been plotted using different colors.  

Neighboring map units are connected with lines. Labels associated with map units are also shown 

Fig. 12 Visualization of the SOM of the gastroenterology dataset using 1515× unit map (batch training). 

U-matrix on the top left, then component planes, and map unit labels on bottom right 

11



  

Fig. 13 The bar charts in each output unit of a 1515× unit map  

show its similarity to each object (batch training) 

Fig. 14 Visualization of the SOM of the gastroenterology dataset using 45×  unit map 

(sequential training) 
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Fig. 15 The bar charts in each output unit of a 45×  unit 

map show its similarity to each object (sequential 

training) 

6   Discussion and perspectives 
Kohonen networks are a type of the unsupervised 

artificial neural networks that are trained to produce and 

to visualize low-dimensional views of high-dimensional 

data, akin to multidimensional scaling (MDS). These 

networks have been widely used in different signal 

processing and data mining applications thanks to their 

simplicity and performance. Nevertheless, calculating 

the similarity between the input vector and the weight 

vector using the scoring function limits their use 

especially when dealing with imperfect and 

heterogeneous data. For instance, the traditional 

networks cannot solve the case presented in the example 

given in the section 4 for instance.  

To overcome this drawback and to ameliorate 

the performance of these networks, we modeled the 

similarity by two fuzzy measures: the possibility and the 

necessity degrees in order to insure a wide use of 

Kohonen networks taking into account the imperfection 

of the variables (uncertain, imprecise or missing data). In 

fact, these degrees could estimate the similarity between 

the qualitative, quantitative and the ordinal variables. 

Thus, they can be used without any modification in any 

other domain of signal and image processing (image 

retrieval for example). They can also be used in all the 

data mining techniques that demand the estimation of 

similarity (the k-nearest neighbor for instance). In 

addition to their generality and their similarity to human 

reasoning, these measures insure a fast computation time 

which is very important in neural network applications 

since they are based fundamentally on basic 

mathematical operators (max, min, etc.) and because we 

don’t need additional preprocessing phases to prepare 

the data and to estimate the missing values or to deal 

with the imprecise observations. In fact, this last 

operation (data cleaning and data preparation) could be 

very cost and complicated, and could reduce 

scientifically the size of the training set especially when 

we have missing values in many attributes of the 

records.  

The proposed approach has been applied to a 

gastroenterology dataset, and the classes of the objects 

have correctly been assigned. It has been shown that the 

objects of the same class flock in neighbor output units. 

This may enable the doctors to study the similarity 

between the objects themselves and between the classes 

of the dataset as well, in order to build knowledge 

databases. Then doctors can study the characteristics and 

the properties of the features of the similar objects in 

order to get new potential unknown rules as future work 

using the techniques of rule extraction algorithms in data 

mining. Briefly, these characteristics of Kohonen 

networks and the possibility measures can open new 

directions for future researches and can solve practical 

problems. 
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