
HAL Id: hal-00476116
https://hal.science/hal-00476116v3

Submitted on 12 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimism in Reinforcement Learning and
Kullback-Leibler Divergence

Sarah Filippi, Olivier Cappé, Aurélien Garivier

To cite this version:
Sarah Filippi, Olivier Cappé, Aurélien Garivier. Optimism in Reinforcement Learning and Kullback-
Leibler Divergence. Communication, Control, and Computing (Allerton), 2010 48th Annual Aller-
ton Conference on, Sep 2010, Monticello (Illinois), United States. pp.115 - 122, �10.1109/ALLER-
TON.2010.5706896�. �hal-00476116v3�

https://hal.science/hal-00476116v3
https://hal.archives-ouvertes.fr

Optimism in Reinforcement Learning

and Kullback-Leibler Divergence

Sarah Filippi, Olivier Cappé and Aurélien Garivier
LTCI, TELECOM ParisTech and CNRS
46 rue Barrault, 75013 Paris, France

Email: (filippi, cappe, garivier)@telecom-paristech.fr∗

October 13, 2010

Abstract

We consider model-based reinforcement learning in finite Markov De-
cision Processes (MDPs), focussing on so-called optimistic strategies. In
MDPs, optimism can be implemented by carrying out extended value it-
erations under a constraint of consistency with the estimated model tran-
sition probabilities. The UCRL2 algorithm by Auer, Jaksch and Ortner
(2009), which follows this strategy, has recently been shown to guarantee
near-optimal regret bounds. In this paper, we strongly argue in favor of
using the Kullback-Leibler (KL) divergence for this purpose. By studying
the linear maximization problem under KL constraints, we provide an ef-
ficient algorithm, termed KL-UCRL, for solving KL-optimistic extended
value iteration. Using recent deviation bounds on the KL divergence, we
prove that KL-UCRL provides the same guarantees as UCRL2 in terms of
regret. However, numerical experiments on classical benchmarks show a
significantly improved behavior, particularly when the MDP has reduced
connectivity. To support this observation, we provide elements of com-
parison between the two algorithms based on geometric considerations.
Keywords : Reinforcement learning; Markov decision processes; Model-
based approaches; Optimism; Kullback-Leibler divergence; Regret bounds

1 Introduction

In reinforcement learning, an agent interacts with an unknown environment,
aiming to maximize its long-term payoff [15]. This interaction is modelled by a
Markov Decision Process (MDP) and it is assumed that the agent does not know
the parameters of the process and needs to learn directly from observations. The
agent thus faces a fundamental trade-off between gathering experimental data
about the consequences of the actions (exploration) and acting consistently with

∗This work has been partially supported by Orange Labs under contract no289365.

1

past experience in order to maximize the rewards (exploitation).
We consider in this article a MDP with finite state and action spaces for which

we propose a model-based reinforcement learning algorithm, i.e., an algorithm
that maintains running estimates of the model parameters (transitions proba-
bilities and expected rewards) [6, 10, 14, 16]. A well-known approach to balance
exploration and exploitation, followed for example by the well-know algorithm
R-MAX [4], is the so-called optimism in the face of uncertainty principle. It
was first proposed in the multi-armed bandit context by [11], and has been ex-
tended since then to several frameworks: instead of acting optimally according
to the estimated model, the agent follows the optimal policy for a surrogate
model, named optimistic model, which is close enough to the former but leads
to a higher long-term reward. The performance of such an algorithm can be
analyzed in terms of regret, which consists in comparing the rewards collected
by the algorithm with the rewards obtained when following an optimal policy.
The study of the asymptotic regret due to [11] in the multi-armed context has
been extended to MDPs by [5], proving that an optimistic algorithm can achieve
logarithmic regret. The subsequent works [2, 9, 3] introduced algorithms that
guarantee non-asymptotic logarithmic regret in a large class of MDPs. In these
latter works, the optimistic model is computed using the L1 (or total variation)
norm as a measure of proximity between the estimated and optimistic transition
probabilities.

In addition to logarithmic regret bounds, the UCRL2 algorithm of [9] is also
attractive due to the simplicity of each L1 extended value iteration step. In this
case, optimism simply results in adding a bonus to the most promising transition
(i.e., the transition that leads to the state with current highest value) while
removing the corresponding probability mass from less promising transitions.
This process is both elementary and easily interpretable, which is desirable in
some applications.

However, the L1 extended value iteration leads to undesirable pitfalls, which
may compromise the practical performance of the algorithm. First, the opti-
mistic model is not continuous with respect to the estimated parameters – small
changes in the estimates may result in very different optimistic models. More
importantly, the L1 optimistic model can become incompatible with the obser-
vations by assigning a probability of zero to a transition that has actually been
observed. Moreover, in MDPs with reduced connectivity, L1 optimism results
in a persistent bonus for all transitions heading towards the most valuable state,
even when significant evidence has been accumulated that these transitions are
impossible.

In this paper, we propose an improved optimistic algorithm, called KL-
UCRL, that avoids these pitfalls altogether. The key is the use of the Kullback-
Leibler (KL) pseudo-distance instead of the L1 metric, as in [5]. Indeed, the
smoothness of the KL metric largely alleviates the first issue. The second issue
is completely avoided thanks to the strong relationship between the geometry
of the probability simplex induced by the KL pseudo-metric and the theory of
large deviations. For the third issue, we show that the KL-optimistic model
results from a trade-off between the relative value of the most promising state

2

and the statistical evidence accumulated so far regarding its reachability.
We provide an efficient procedure, based on one-dimensional line searches,

to solve the linear maximization problem under KL constraints. As a conse-
quence, the numerical complexity of the KL-UCRL algorithm is comparable to
that of UCRL2. Building on the analysis of [9, 3, 1], we also obtain logarithmic
regret bounds for the KL-UCRL algorithm. The proof of this result is based on
novel concentration inequalities for the KL-divergence, which have interesting
properties when compared with those traditionally used for the L1 norm. Al-
though the obtained regret bounds are comparable to earlier results in term of
rate and dependence in the number of states and actions, we observed in prac-
tice significant performance improvements. This observation is illustrated using
benchmark examples (the RiverSwim and SixArms environments of [14]) and
through a thorough discussion of the geometric properties of KL neighborhoods.

The paper is organized as follows. The model and a brief survey of the
value iteration algorithm in undiscounted MDPs are presented in Section 2.
Section 3 and 4 are devoted, respectively, to the description and the analysis
of the KL-UCRL algorithm. Section 5 contains numerical experiments and
Section 6 concludes the paper by discussing the advantages of using KL rather
than L1 confidence neighborhoods.

2 Markov Decision Process

Consider a Markov decision process (MDP) M = (X ,A, P, r) with finite state
space X , and action space A. Let Xt ∈ X and At ∈ A denote respectively
the state of the system and the action chosen by the agent at time t. The
probability to jump from state Xt to state Xt+1 is denoted by P (Xt+1;Xt, At).
Besides, the agent receives at time t a random reward Rt ∈ [0, 1] with mean
r(Xt, At). The aim of the agent is to choose the sequence of actions so as to
maximize the cumulated reward. His choices are summarized in a stationary
policy π : X → A.

In this paper, we consider communicating MDPs, i.e., MDPs such that for
any pair of states x, x′, there exists policies under which x′ can be reached from
x with positive probability. For those MDPs, it is known that the average reward
following a stationary policy π, denoted by ρπ(M) and defined as

ρπ(M) = lim
n→∞

1

n
EM,π

(
n∑

t=0

Rt

)
,

is state-independent [13]. Let π∗(M) : X → A and ρ∗(M) denote respectively
the optimal policy and the optimal average reward: ρ∗(M) = supπ ρ

π(M) =
ρπ

∗(M)(M) . The notations ρ∗(M) and π∗(M) are meant to highlight the fact
that both the optimal average reward and the optimal policy depend on the
model M. The optimal average reward satisfies the so-called Bellman optimality

3

equation: for all x ∈ X ,

h∗(M, x) + ρ∗(M) =

max
a∈A

(
r(x, a) +

∑

x′∈X

P (x′;x, a)h∗(M, x′)

)
,

where the |X |-dimensional vector h∗(M) is called a bias vector. Note that it is
only defined up to an additive constant. For a fixed MDP M, the optimal policy
π∗(M) can be derived by solving the optimality equation and by defining, for
all x ∈ X ,

π∗(M, x) ∈ argmax
a∈A

(
r(x, a) +

∑

x′∈X

P (x′;x, a)h∗(M, x)

)
.

In practice, the optimal average reward and the optimal policy may be com-
puted, for instance, using the value iteration algorithm [13].

3 The KL-UCRL algorithm

In this paper, we focus on the reinforcement learning problem in which the
agent does not know the model M beforehand, i.e. the transition probabilities
and the distribution of the rewards are unknown. More specifically, we con-
sider model-based reinforcement learning algorithms which estimate the model
through observations and act accordingly. Denote by P̂t(x

′;x, a) the estimate
at time t of the transition probability from state x to state x′ conditionally to
the action a, and, by r̂t(x, a) the mean reward received in state x when action
a has been chosen. We have:

P̂t(x
′;x, a) =

Nt(x, a, x
′)

max(Nt(x, a), 1)

r̂t(x, a) =

∑t−1
k=0 Rk1{Xk=x,Ak=a}

max(Nt(x, a), 1)
, (1)

where Nt(x, a, x
′) =

∑t−1
k=0 1{Xk=x,Ak=a,Xk+1=x′} is the number of visits, up to

time t, to the state x followed by a visit to x′ when the action a has been
chosen, and similarly, Nt(x, a) =

∑t−1
k=0 1{Xk=x,Ak=a}. The optimal policy in

the estimated model M̂t = (X ,A, P̂t, r̂t) may be misleading due to estimation
errors: pure exploitation policies are commonly known to fail with positive
probability. To avoid this problem, optimistic model-based approaches consider

a set Mt of potential MDPs including M̂t and choose the MDP from this set
that leads to the largest average reward. In the following, the set Mt is defined
as follows:

Mt = {M = (X ,A, P, r) : ∀x ∈ X , ∀a ∈ A,

|r̂t(x, a)− r(x, a)| ≤ ǫR(x, a, t)

and d(P̂t(.;x, a), P (.;x, a)) ≤ ǫP (x, a, t)} ,

4

where d measures the difference between the transition probabilities. The ra-
dius of the neighborhoods ǫR(x, a, t) and ǫP (x, a, t) around, respectively, the
estimated reward r̂t(x, a) and the estimated transition probabilities P̂t(.;x, a),
decrease with Nt(x, a).

In contrast to UCRL2, which uses the L1-distance for d, we propose to
rely on the Kullback-Leibler divergence, as in the seminal article [5]; however,
contrary to the approach of [5], no prior knowledge on the state structure of the
MDP is needed. Recall that the Kullback-Leibler divergence is defined for all
n-dimensional probability vectors p and q by KL(p, q) =

∑n
i=1 pi log

pi

qi
(with

the convention that 0 log 0 = 0). In the sequel, we will show that this choice
dramatically alters the behavior of the algorithm and leads to significantly better
performance, while causing a limited increase of complexity; in Section 6, the
advantages of using a KL-divergence instead of the L1-norm are illustrated and
argumented.

3.1 The KL-UCRL algorithm

The KL-UCRL algorithm, described below, is a variant of the efficient model-
based algorithm UCRL2, introduced by [1] and extended to more general MDPs
by [3]. The key step of the algorithm, the search for the optimistic model (Step
8), is detailed below as Algorithm 2.

Algorithm 1 KL-UCRL

1: Initialization: j = 0, t0 = 0; ∀a ∈ A, ∀x ∈ X , n0(x, a) = 0, N0(x, a) = 0;
initial policy π0.

2: for all t ≥ 1 do

3: Observe Xt

4: if nj(Xt, πj(Xt)) ≥ max(Ntj (Xt, πj(Xt)), 1) then
5: Begin a new episode: j = j + 1, tj = t,
6: Reinitialize: ∀a ∈ A, ∀x ∈ X , nj(x, a) = 0

7: Estimate P̂t and r̂t according to (1)
8: Find the optimistic model Mj ∈ Mt and the related policy πj solving

equation (2) and using Algorithm 2
9: end if

10: Choose action At = πj(Xt)
11: Receive reward Rt

12: Update the count within the current episode:

nj(Xt, At) = nj(Xt, At) + 1

13: Update the global count:

Nt(Xt, At) = Nt−1(Xt, At) + 1

14: end for

5

The KL-UCRL algorithm proceeds in episodes. Let tj be the starting time
of episode j; the length of the j-th episode depends on the number of visits
Ntj (x, a) to each state-action pair (x, a) before tj compared to the number of
visits nj(x, a) to the same pair during the j-th episode. More precisely, an
episode ends as soon as nj(x, a) ≥ Ntj (x, a) for some state-action pair (x, a).
The policy πj , followed during the j-th episode, is an optimal policy for the
optimistic MDP Mj = (X ,A, Pj , rj) ∈ Mtj , which is computed by solving the
extended optimality equations : for all x ∈ X

h∗(x) + ρ∗ = max
P,r

max
a∈A

(
r(x, a) +

∑

x′∈X

P (x′;x, a)h∗(x′)

)
(2)

where the maximum is taken over all P, r such that

∀x, ∀a, KL(P̂tj(.;x, a), P (.;x, a)) ≤ CP

Ntj (x, a)
,

∀x, ∀a, |r̂tj (x, a) − r(x, a)| ≤ CR√
Ntj (x, a)

,

where CP and CR are constants which control the size of the confidence balls.
The transition matrix Pj and the mean reward rj of the optimistic MDP Mj

maximize those equations. The extended value iteration algorithm may be used
to approximately solve the fixed point equation (2) [13, 1].

3.2 Maximization of a linear function on a KL-ball

At each step of the extended value iteration algorithm, the maximization prob-
lem (2) has to be solved. For every state x and action a, the maximization of
r(x, a) under the constraint that |r̂tj (x, a) − r(x, a)| ≤ CR/

√
Ntj (x, a) is ob-

viously solved taking r(x, a) = r̂tj (x, a) + CR/
√
Ntj (x, a), so that the main

difficulty lies in maximizing the dot product between the probability vector
q = P (.;x, a) and the value vector V = h∗ over a KL-ball around the fixed
probability vector p = P̂tj (.;x, a):

max
q∈S|X|

V ′q s.t. KL(p, q) ≤ ǫ , (3)

where V ′ denotes the transpose of V and S
n the set of n-dimensional proba-

bility vectors. The radius of the neighborhood ǫ = CP /Ntj (x, a) controls the
size of the confidence ball. This convex maximization problem is studied in Ap-
pendix A, leading to the efficient algorithm presented below. Detailed analysis
of the Lagrangian of (3) shows that the solution of the maximization problem
essentially relies on finding roots of the function f (that depends on the pa-
rameter V), defined as follows: for all ν ≥ maxi∈Z̄ Vi, with Z̄ = {i : pi > 0},

f(ν) =
∑

i∈Z̄

pi log(ν − Vi) + log


∑

i∈Z̄

pi
ν − Vi


 . (4)

6

In the special case where the most promising state iM has never been reached
from the current state-action pair (i.e. piM = 0), the algorithm makes a trade-
off between the relative value of the most promising state ViM and the statistical
evidence accumulated so far regarding its reachability.

Algorithm 2 Function MaxKL

Input A value function V , a probability vector p, a constant ǫ
Output A probability vector q that maximizes (3)
1: Let Z = {i : pi = 0} and Z̄ = {i : pi > 0}.
2: Let I∗ = Z ∩ argmaxi Vi

3: if I∗ 6= ∅ and there exists i ∈ I∗ such that f(Vi) < ǫ then
4: Let ν = Vi and r = 1− exp(f(ν)− ǫ).
5: For all i ∈ I∗, assign values of qi such that

∑

i∈I∗

qi = r .

6: For all i ∈ Z/I∗, let qi = 0.
7: else

8: For all i ∈ Z, let qi = 0. Let r = 0.
9: Find ν such that f(ν) = ǫ using Newton’s method.

10: end if

11: For all i ∈ Z̄, let qi =
(1−r)q̃i∑

i∈Z̄ q̃i
where q̃i =

pi

ν−Vi
.

In practice, f being a convex positive decreasing function (see Appendix B),
Newton’s method can be applied to find ν such that f(ν) = ǫ (in Step 9 of
the algorithm), so that numerically solving (3) is a matter of a few iterations.
Appendix B contains a discussion of the initialization of Newton’s algorithm
based on asymptotic arguments.

4 Regret bounds

4.1 Theoretical results

To analyze the performance of KL-UCRL, we compare the rewards accumulated
by the algorithm to the rewards that would be obtained, on average, by an agent
playing an optimal policy. The regret of the algorithm after T steps is defined
as in [9]:

RegretT =

T∑

t=1

(ρ∗(M)−Rt) .

We adapt the regret bound analysis of the UCRL2 algorithm to the use of
KL-neighborhoods, and obtain similar theorems. Let

D(M) = max
x,x′

min
π

EM,π(τ(x, x
′)) ,

7

where τ(x, x′) is the hitting time of x′, starting from state x. TheD(M) constant
will appear in the regret bounds. For all communicating MDPs M, D(M) is
finite. Theorem 1 establishes an upper bound on the regret of the KL-UCRL
algorithm with CP and CR defined as

CP = |X |
(
B + log

(
B +

1

log(T)

)[
1 +

1

B + 1
log(T)

])

where B = log
(

2e|X |2|A| log(T)
δ

)
and

CR =

√
log (4|X ||A| log(T)/δ)

1.99
.

Theorem 1 With probability 1 − δ, it holds that for T > 5, the regret of KL-
UCRL is bounded by

RegretT ≤ CD(M)|X |
√

|A|T log(log(T)/δ) ,

for a constant C ≤ 24 that does not dependent on the model.

It is also possible to prove a logarithmic upper bound for the expected regret.
This bound, presented in Theorem 2, depends on the model through the constant
∆(M) defined as ∆(M) = ρ∗(M)−maxπ,ρπ(M)<ρ∗(M) ρ

π(M). ∆(M) quantifies
the margin between optimal and suboptimal policies.

Theorem 2 For T > 5, the expected regret of KL-UCRL is bounded by

E(RegretT) ≤ CD2(M)
|X |2|A| log(T)

∆(M)
+ C(M) ,

where C ≤ 400 is a constant independent of the model, and C(M) is a constant
which depends on the model (see [9]).

4.2 Elements of proof

The proof of Theorem 1 is inspired from [9, 3]. Due to the lack of space, we only
provide the main steps of the proof. First, the following proposition enables us
to ensure that, with high probability, the true model M = (X ,A, P, r) belongs
to the set of models Mt at each time step.

Proposition 1 For every horizon T ≥ 1 and for δ > 0, P (∀t ≤ T , M ∈ Mt) ≥
1− 2δ.

8

The proof relies on the two following concentration inequalities due to [7, 8]: for
all x ∈ X , a ∈ A, any CP > 0, and CR > 0, it holds that

P

(
∀t ≤ T, KL(P̂t(.;x, a), P (.;x, a)) >

CP

Nt(x, a)

)

≤ 2e(CP log(T) + |X |)e−
CP
|X| = 1− δ

|X ||A| (5)

P

(
∀t ≤ T, |r̂t(x, a)− r(x, a)| ≤ CR√

Nt(x, a)

)

≤ 4 log(T)e−1.99CR = 1− δ

|X ||A| .

Then, summing over all state-action pairs, Proposition 1 follows.
Using Hoeffding’s inequality, with high probability, the regret at time T can

be written as the sum of a regret in each of the m(T) episodes plus an additional
term Ce(T, δ)) =

√
T log(1/δ)/2:

RegretT ≤
∑

(x,a)

NT (x, a)(ρ
∗(M)− r(x, a)) + Ce(T, δ)

≤
m(T)∑

k=1

∑

(x,a)

nk(x, a)(ρ
∗(M)− r(x, a)) + Ce(T, δ)

Let Pk and πk denote, respectively, the transition probability matrix of the
optimistic model and the optimal policy in the k-th episode (1 ≤ k ≤ m(T)). It
is easy to show that (see [9] for details), with probability 1− δ,

RegretT ≤
m(T)∑

k=1

∑

x∈X

nk(x, πk(x))
[

+ (rk(x, πk(x)) − r(x, πk(x)))

(Pk(.;x, πk(x))− P (.;x, πk(x)))
′
hk

+ (P (.;x, πk(x)) − ex)
′hk

]

+ Ce(T, δ) ,

where hk is a bias vector, ex(y) = 1 if x = y and ex(y) = 0 otherwise. We now
bound each of the three terms in the previous summation. Denote by nπk

k the
row vector such that nπk

k (x) = nk(x, πk(x)) and by rπk

k (resp. rπk) the column
vector such that rπk

k (x) = rk(x, πk(x)) (resp. rπk(x) = r(x, πk(x))). Similarly
P πk

k (resp. P πk) is the transition matrix if the policy πk is followed under the
optimistic model Mk (resp. the true model M). If the true model M ∈ Mtk ,
we have for all x ∈ X , for all a ∈ A,

nπk

k (rπk

k − rπk) ≤ 2
∑

(x,a)

nk(x, a)

√
CR

Nt(x, a)
(6)

9

Using Pinsker’s inequality, and the fact that ‖hk‖∞ ≤ D [9],

nπk

k (P πk

k − P πk)hk

≤
∑

(x,a)

nk(x, a)‖Pk(.;x, a)− P (.;x, a)‖1‖hk‖∞

≤ 2D
√
2
∑

(x,a)

nk(x, a)

√
CP

Ntk(x, a)
. (7)

The third term nπk

k (P πk − I)hk may be written as follows:

nπk

k (P πk − I)hk ≤
tk+1−1∑

t=tk

(P (.;Xt, At)− eXt+1
)hk

+ hk(Xt+1)− hk(Xt) ,

where ex is the all 0’s vector with a 1 only on the x-th component. For all
t ∈ [tk, tk+1−1], note that ξt = (P (.;Xt, At)−eXt+1

)hk is a martingale difference
upper-bounded byD. Applying the Azuma-Hoeffding inequality, we obtain that

m(T)∑

k=1

nπk

k (P πk − I)hk =

T∑

t=1

ξt +m(T)D

≤ D

√
T log(1/δ)

2
+m(T)D (8)

with probability 1− δ. In addition, Auer and al [1] proved that

m(T)∑

k=1

∑

x,a

nk(x, a)√
Ntk(x, a)

≤ (
√
2 + 1)

√
|X ||A|T

and

m(T) ≤ |X ||A| log2
(

8T

|X ||A|

)
.

Combining all the terms completes the proof of Theorem 1. The proof of The-
orem 2 follows from Theorem 1 using the same arguments as in the proof of
Theorem 4 in [9].

5 Numerical experiments

To compare the behavior of algorithms KL-UCRL and UCRL2, we consider
the benchmark environments RiverSwim and SixArms proposed by [14] as well
as a collection of randomly generated sparse environments. The RiverSwim
environment consists of six states. The agent starts from the left side of the
row and, in each state, can either swim left or right. Swimming to the right

10

3 4 5 621

0.6
0.35

0.6 0.6 0.6
0.35 0.35 0.35

0.050.050.05 0.05
0.6

0.4

0.6

0.4

1111

1

1

R=10000

R=5

Figure 1: RiverSwim Transition Model: the continuous (resp. dotted) arrows
represent the transitions if action 1 (resp. 2) has been chosen.

(against the current of the river) is successful with probability 0.35; it leaves the
agent in the same state with a high probability equal to 0.6, and leads him to
the left with probability 0.05 (see Figure 1). On the contrary, swimming to the
left (with the current) is always successful. The agent receives a small reward
when he reaches the leftmost state, and a much larger reward when reaching the
rightmost state – the other states offer no reward. This MDP requires efficient
exploration procedures, since the agent, having no prior idea of the rewards,
has to reach the right side to discover which is the most valuable state-action
pair. The SixArms environment consists of seven states, one of which (state

a=4

a=5

a=6

0

3

2

14

5

6

a=1,2,3,4,6

a=2

a=3

a=1,2,3,5,6

a=5

a=1,3,4,5,6

a=1,2,4,5,6

a=1,2,3,4,5

a=1,2,3,4,6

R4 = 800

R5 = 1660

R6 = 6000

R1 = 50

R2 = 133

R3 = 300

p6 = 0.05

p1 = 1

p2 = 0.15

p3 = 0.1

p6 = 0.01

p5 = 0.03

Figure 2: SixArms Transition Model

0) is the initial state. From the initial state, the agent may choose one among
six actions: the action a ∈ {1, . . . , 6} leads to the state x = a with probability
pa (see Figure 2) and let the agent in the initial state with probability 1 − pa.
From all the other states, some actions deterministically lead the agent to the
initial state while the others leave it in the current state. Staying in a state
x ∈ {1, . . . , 6}, the agent receives a reward equal to Rx (see Figure 2), otherwise,
no reward is received.

We compare the performance of the KL-UCRL algorithm to UCRL2 using
20 Monte-Carlo replications. For both algorithms, the constants CP and CR

are settled to ensure that the upper bounds of the regret of Theorem 1 and
Theorem 2 in [9] hold with probability 0.95. In the SixArms environment,
the received rewards being deterministic, we slightly modify both algorithms so
that the agent knows them beforehand. We observe in Figure 3 and 4 that the
KL-UCRL algorithm accomplishes a smaller average regret than the UCRL2

11

algorithm in those benchmark environments. In both environments, it is crucial
for the agent to learn that there is no action leading from some states to the
most promising one: for example, in the RiverSwim environment, between one
of the first four states and the sixth state.

In addition to those benchmark environments, a generator of sparse envi-
ronments has been used to create 10-states and 5-actions environments with
random rewards in [0, 1]. In these random environments, each state is con-
nected with, on average, five other states (with transition probabilities drawn
from a Dirichlet distribution). We reproduced the same experiments as in the
previous environments and display the average regret in Figure 5.

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5
x 10

7

t

R
eg

re
t

KLUCRL
UCRL

Figure 3: Comparison of the regret of the UCRL2 and KL-UCRL algorithms in
the RiverSwim environment.

6 Discussion

In this section, we expose the advantages of using a confidence ball based on
the Kullback-Leibler divergence rather than an L1-ball, as proposed for instance
in [9, 16], in the computation of the optimistic policy. This discussion aims at
explaining and interpreting the difference of performance that can be observed in
simulations. In KL-UCRL, optimism reduces to maximizing the linear function
V ′q over a KL-ball (see (3)), whereas the other algorithms make use of an L1-

12

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16
x 10

6

t

R
eg

re
t

KL−UCRL
UCRL2

Figure 4: Comparison of the regret of the UCRL2 and KL-UCRL algorithms in
the SixArms environment.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

t

R
eg

re
t

KL−UCRL
UCRL2

Figure 5: Comparison of the regret of the UCRL2 and KL-UCRL algorithms in
randomly generated sparse environments.

13

ball:
max
q∈S|X|

V ′q s.t. ‖p− q‖1 ≤ ǫ′ . (9)

Continuity

Consider an estimated transition probability vector p, and denote by qKL (resp.
q1) the probability vector which maximizes Equation (3) (resp. Equation (9)).
It is easily seen that qKL and q1 lie respectively on the border of the convex set
{q ∈ S

|X| : KL(p, q) ≤ ǫ} and at one of the vertices of the polytope {q ∈ S
|X| :

‖p− q‖1 ≤ ǫ′}. A first noteworthy difference between those neighborhoods is
that, due to the smoothness of the KL-neighborhood, qKL is continuous with
respect to the vector V , which is not the case for q1.

To illustrate this, Figure 6 displays L1- and KL-balls around 3-dimensional
probability vectors. The set of 3-dimensional probability vectors is represented
by a triangle whose vertices are the vectors (1, 0, 0)′, (0, 1, 0)′ and (0, 0, 1)′, the
probability vector p by a white star, and the vectors qKL and q1 by a white
point. The arrow represents the direction of V ’s projection on the simplex and
indicates the gradient of the linear function to maximize. The maximizer q1

can vary significantly for small changes of the value function, while qKL varies
continuously.

Unlikely transitions

Denote im = argminj Vj and iM = argmaxj Vj . As underlined by [9], q1im =
max(pim − ǫ′/2, 0) and q1iM = min(p1iM + ǫ′/2, 1). This has two consequences:

1. if p is such that 0 < pim < ǫ′/2, then the vector q1im = 0; so the optimistic
model may assign a probability equal to zero to a transition that has actu-
ally been observed, which makes it hardly compatible with the optimism
principle. Indeed, an optimistic MDP should not forbid transitions that
really exists, even if they lead to states with small values;

2. if p is such that piM = 0, then q1iM never equals 0; therefore, an opti-
mistic algorithm that uses L1-balls will always assign positive probability
to transitions to iM even if this transition is impossible under the true
MDP and if much evidence has been accumulated against the existence of
such a transition. Thus, the exploration bonus of the optimistic procedure
is wasted, whereas it could be used more efficiently to favor some other
transitions.

This explains a large part of the experimental advantage of KL-UCRL observed
in the simulations. Indeed, qKL always assigns strictly positive probability to
observed transitions, and eventually renounces unobserved transitions even if
the target states have a potentially large value. Algorithm 2 works as follows:
for all i such that pi 6= 0, qi 6= 0; for all i such that pi = 0, qi = 0 except if
piM = 0 and if f(ViM) < ǫ, in which case qiM = 1 − exp(f(ViM) − ǫ). But this
is no longer the case when ǫ becomes small enough, that is, when sufficiently
many observations are available. We illustrate those two important differences

14

Figure 6: The L1-neighborhood {q ∈ S
3 : ‖p− q‖1 ≤ 0.2} (left) and KL-

neighborhood {q ∈ S
3 : KL(p, q) ≤ 0.02} (right) around the probability vector

p = (0.15, 0.2, 0.65)′ (white star). The white points are the maximizers of equa-
tions (3) and (9) with V = (0, 0.05, 1)′ (up) and V = (0,−0.05, 1)′ (down).

in Figure 7, by representing the L1 and KL neighborhoods together with the
maximizers qKL and q1, first if pim is positive by very small, and second if piM is
equal to 0. Figure 8 also illustrates the latter case, by representing the evolution
of the probability vector q that maximizes both (9) and (3) for an example with
p = (0.3, 0.7, 0)′, V = (1, 2, 3)′ and ǫ decreasing from 1/2 to 1/500.

A Linear optimization over a KL-ball

This section explains how to solve the optimization problem of Equation (3).
In [12], a similar problem arises in a different context, and a somewhat different
solution is proposed for the case when the pi are all positive. As a problem of
maximizing a linear function under convex constraints, it is sufficient to consider
the Lagrangian function

L(q, λ, ν, µ1, . . . , µN) =

N∑

i=1

qiVi − λ

(
N∑

i=1

pi log
pi
qi

− ǫ

)

− ν

(
N∑

i=1

qi − 1

)
+

N∑

i=1

µiqi .

15

Figure 7: The L1 (left) and KL-neighborhoods (right) around the probability
vector p = (0, 0.4, 0.6)′ (up) and p = (0.05, 0.35, 0.6)′ (down). The white point
is the maximizer of the equations (3) and (9) with V = (−1,−2,−5)′ (up)
and V = (−1, 0.05, 0)′ (down). We took, ǫ = 0.05 (up), ǫ = 0.02(down) and
ǫ′ =

√
2ǫ.

16

1/250 1/500
0

0.3

0.7

1

ε

q
1

q
2

q
3

1/250 1/500
0

0.3

0.7

1

ε

q
1

q
2

q
3

Figure 8: Evolution of the probability vector q that maximizes both (3) (top)
and (9) (bottom) with p = (0.3, 0.7, 0)′, V = (1, 2, 3)′ and ǫ decreasing from 1/2
to 1/500

17

If q is a maximizer, there exist λ ∈ R, ν, µi ≥ 0 (i = 1 . . .N) such that the
following conditions are simultaneously satisfied:





Vi + λ
pi
qi

− ν + µi = 0 (10)

λ

(
N∑

i=1

pi log
pi
qi

− ǫ

)
= 0 (11)

ν

(
N∑

i=1

qi − 1

)
= 0 (12)

µiqi = 0 (13)

Let Z = {i, pi = 0}. Conditions (10) to (13) imply that λ 6= 0 and ν 6= 0. For
i ∈ Z̄, Equation (10) implies that qi = λ pi

ν−µi−Vi
. Since λ 6= 0, qi > 0 and then,

according to (13), µi = 0. Therefore,

∀i ∈ Z̄ , qi = λ
pi

ν − Vi
. (14)

Let r =
∑

i∈Z qi. Summing on i ∈ Z̄ and using equations (14) and (12), we
have

λ
∑

i∈Z̄

pi
ν − Vi

=
∑

i∈Z̄

qi = 1− r . (15)

Using (14) and (15), we can write
∑

i∈Z̄ pi log
pi

qi
= f(ν)− log(1− r) where f is

defined in (4). Then, q satisfies condition (11) if and only if f(ν) = ǫ+log(1−r) .
Consider now the case where i ∈ Z. Let I∗ = Z ∩ argmaxi Vi. Note that,

for all i ∈ Z \ I∗, qi = 0. Indeed, otherwise, µi should be zero, and then
ν = Vi according to (10), which involves a possible negative denominator in (14).
According to (13), for all i ∈ I∗, either qi = 0 or µi = 0. The second case implies
that ν = Vi and r > 0 which requires that f(ν) < ǫ so that (A) can be satisfied
with r > 0. Therefore,

• if f(Vi) < ǫ for i ∈ I∗, then ν = Vi and the constant r can be computed
solving equation f(ν) = ǫ − log(1 − r); the values of qi for i ∈ I∗ may be
chosen in any way such that

∑
i∈I∗ qi = r;

• if for all i ∈ I∗ f(Vi) ≥ ǫ, then r = 0, qi = 0 for all i ∈ Z and ν is the
solution of the equation f(ν) = ǫ.

Once ν and r have been determined, the other components of q can be computed

according to (14): we have that for i ∈ Z̄, qi =
(1−r)q̃i∑

i∈Z̄ q̃i
where q̃i =

pi

ν−Vi
.

B Properties of the f function

In this section, a few properties of function f defined in Equation (4) are stated,
as this function plays a key role in the maximizing procedure of Section 3.2.

18

Proposition 2 f is a convex, decreasing mapping from] maxi∈Z̄ Vi;∞[onto
]0;∞[.

Proof 1 Using Jensen’s inequality, it is easily shown that the f function de-
creases from +∞ to 0. The second derivative of f with respect to ν is equal
to

−
∑

i

pi
(ν − Vi)2

+
2
∑

i
pi

(ν−Vi)3

∑
i

pi

ν−Vi
−
(∑

i
pi

(ν−Vi)2

)2

(∑
i

pi

ν−Vi

)2 .

If Z denotes a positive random value such that P
(
Z = 1

ν−Vi

)
= pi, then

f ′′(ν) =
2E(Z3)E(Z)− E(Z2)E(Z)2 − E(Z2)2

E(Z)2
.

Using Cauchy-Schwartz inequality, we have E(Z2)2 = E(Z3/2Z1/2)2 ≤ E(Z3)E(Z).
In addition E(Z2)2 ≥ E(Z2)E(Z)2 . These two inequalities show that f ′′(ν) ≥ 0.

As mentioned in Section 3.2, Newton’s method can be applied to solve the
equation f(ν) = ǫ for a fixed value of ǫ. When ǫ is close to 0, the solution of this
equation is quite large and an appropriate initialization accelerates convergence.
Using a second-order Taylor’s-series approximation of the function f , it can be
seen that, for ν near∞, f(ν) =

σp,V

2ν2 +o(1
ν2), where σp,V =

∑
i piV

2
i −(

∑
i piVi)

2.

The Newton iterations can thus be initialized by taking ν0 =
√
σp,V /(2ǫ).

References

[1] P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for rein-
forcement learning. Advances in Neural Information Processing Systems,
21, 2009.

[2] P. Auer and R. Ortner. Logarithmic online regret bounds for undiscounted
reinforcement learning. Advances in Neural Information Processing Sys-
tems, page 49, 2007.

[3] P. Bartlett and A. Tewari. REGAL: A Regularization based Algorithm for
Reinforcement Learning in Weakly Communicating MDPs. Annual Con-
ference on Uncertainty in Artificial Intelligence, 2009.

[4] R. Brafman and M. Tennenholtz. R-max-a general polynomial time algo-
rithm for near-optimal reinforcement learning. Journal of Machine Learn-
ing Research, 3:213–231, 2003.

[5] A. Burnetas and M. Katehakis. Optimal adaptive policies for Markov deci-
sion processes. Mathematics of Operations Research, pages 222–255, 1997.

19

[6] E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping
conditions for the multi-armed bandit and reinforcement learning problems.
Journal of Machine Learning Research, 7:1079–1105, 2006.

[7] A. Garivier and F. Leonardi. Context tree selection: A unifying view.
preprint, 2010.

[8] A. Garivier and E. Moulines. On upper-confidence bound policies for non-
stationary bandit problems. Arxiv preprint arXiv:0805.3415, 2008.

[9] T. Jaksch, R. Ortner, and P. Auer. Near-optimal Regret Bounds for Rein-
forcement Learning. Journal of Machine Learning Research, 11:1563–1600,
2010.

[10] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial
time. Journal of machine learning, 49(2-3):209–232, 2002.

[11] T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1):4–22, 1985.

[12] A. Nilim and L. El Ghaoui. Robust control of Markov decision processes
with uncertain transition matrices. Operations Research, 53(5):780–798,
2005.

[13] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc. New York, NY, USA, 1994.

[14] A. Strehl and M. Littman. An analysis of model-based interval estimation
for Markov decision processes. Journal of Computer and System Sciences,
74(8):1309–1331, 2008.

[15] R. Sutton and A. Barto. Reinforcement learning: An introduction. The
MIT press, 1998.

[16] A. Tewari and P. Bartlett. Optimistic linear programming gives logarithmic
regret for irreducible MDPs. Advances in Neural Information Processing
Systems, 20:1505–1512, 2008.

20

