
HAL Id: hal-00475998
https://hal.science/hal-00475998

Submitted on 19 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint handling strategies in Genetic Algorithms
application to optimal batch plant design

Antonin Ponsich, Catherine Azzaro-Pantel, Serge Domenech, Luc Pibouleau

To cite this version:
Antonin Ponsich, Catherine Azzaro-Pantel, Serge Domenech, Luc Pibouleau. Constraint handling
strategies in Genetic Algorithms application to optimal batch plant design. Chemical Engineering
and Processing: Process Intensification, 2008, 47 (3), pp.420-434. �10.1016/j.cep.2007.01.020�. �hal-
00475998�

https://hal.science/hal-00475998
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/27432

To cite this version:

Ponsich, Antonin and Azzaro-Pantel, Catherine and Domenech, Serge

and Pibouleau, Luc Constraint handling strategies in Genetic Algorithms

application to optimal batch plant design. (2008) Chemical Engineering and

Processing: Process Intensification, 47 (3). 420-434. ISSN 0255-2701

Official URL: https://doi.org/10.1016/j.cep.2007.01.020

mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/27432
http://www.idref.fr/09860564X
http://www.idref.fr/074768522
http://www.idref.fr/030493242
http://www.idref.fr/060147539
https://doi.org/10.1016/j.cep.2007.01.020

A

(
p
s
t
t
i
b
t
t
o

K

1

r
a
w
o
t

f
b
i
r
s
K
a
fi
s

d

Constraint handling strategies in Genetic Algorithms
application to optimal batch plant design

A. Ponsich, C. Azzaro-Pantel ∗, S. Domenech, L. Pibouleau
Laboratoire de Génie Chimique de Toulouse, 5 rue Paulin Talabot BP 1301, 31106 Toulouse Cedex 1, France

bstract

Optimal batch plant design is a recurrent issue in Process Engineering, which can be formulated as a Mixed Integer Non-Linear Programming
MINLP) optimisation problem involving specific constraints, which can be, typically, the respect of a time horizon for the synthesis of various
roducts. Genetic Algorithms constitute a common option for the solution of these problems, but their basic operating mode is not always well-
uited to any kind of constraint treatment: if those cannot be integrated in variable encoding or accounted for through adapted genetic operators,
heir handling turns to be a thorny issue. The point of this study is thus to test a few constraint handling techniques on a mid-size example in order
o determine which one is the best fitted, in the framework of one particular problem formulation. The investigated methods are the elimination of
nfeasible individuals, the use of a penalty term added in the minimized criterion, the relaxation of the discrete variables upper bounds, dominance-
ased tournaments and, finally, a multiobjective strategy. The numerical computations, analysed in terms of result quality and of computational

ime, show the superiority of elimination technique for the former criterion only when the latter one does not become a bottleneck. Besides, when
he problem complexity makes the random location of feasible space too difficult, a single tournament technique proves to be the most efficient
ne.

tch pl

a
m
e
w
a
q
p
t
t

l
e
h
p
i

eywords: MINLP optimisation; Genetic Algorithms; Constraint handling; Ba

. Introduction

Due to the growing interest for batch operating mode, a wide
ange of studies deals with the batch plant design issue. Actu-
lly, the problem was already modelled under various forms for
hich assumptions are more or less simplistic, and generally, the
bjective consists in the minimization of a function representing
he plant investment cost.

Kocis and Grossmann [1] proposed a simple posynomial
ormulation for multiproduct batch plant to validate the good
ehaviour of the Outer Approximation algorithm implemented
n DICOPT++, a solver available in the GAMS modelling envi-
onment [2]. The model involved only batch stages and was
ubmitted to a constraint on the total production time. Modi and
arimi [3] slightly modified this MINLP model by taking into
ccount, in addition, semi-continuous stages and intermediate
nite storage, for which location is previously set. They solved
mall size examples (up to two products and to three batch stages

∗ Corresponding author. Tel.: +33 5 34 61 52 52; fax: +33 5 34 61 52 53.
E-mail address: Catherine.AzzaroPantel@ensiacet.fr (C. Azzaro-Pantel).

o
a
p
r
t
A
B

oi:10.1016/j.cep.2007.01.020
ant design

nd five semi-continuous stages) with heuristics. The same for-
ulation was used again by Patel et al. [4] who treated larger size

xamples with Simulated Annealing and by Wang et al. [5–7]
ho tackled successively Genetic Algorithms, Tabu Search and

n Ants Foraging Method. Then, Montagna et al. [8] studied a
uite similar formulation for the design of a protein production
lant, with the location of the storage tanks being an optimisa-
ion variable: the solution, obtained with DICOPT++ [2], proves
o be a more viable alternative thanks to storage availability.

Thus, most of time, the resulting problems are MINLP prob-
ems which prove to be NP-hard. Since they are known to be
fficient-solving and easy-adaptive optimisation methods, meta-
euristics are widely used for the above-mentioned kind of
roblems. This class of optimisation techniques can be divided
nto two classes. The first one consists of neighbourhood meth-
ds, among which the most famous instances are Tabu Search
nd Simulated Annealing. A neighbourhood method typically
roceeds by starting with an initial configuration and iteratively

eplacing the actual solution by one of its neighbours, according
o an appropriate evolution of the objective function. Evolutive
lgorithms constitute the second class of stochastic methods.
ased on the principles of natural evolution stated by Darwin,

t
t
t
o
t
m
q
A
P

A
d
s
h
c
B
p
p
i
t
b
A
s
o
p
w
t
i

s
3
p
i
c
c
a

2

a
t

(
(

(

2

i
t
w
T

l
w
s
o
a
s

2

o
s
i
t
i
k
e
t

t

M

T
t
a

F

M
c
h
v
w
t
i
s

o
o
t
s
p
s
o
s
o
p
s
b

s
i

hey all involve three essential factors: (i) a population of solu-
ions of the considered problem; (ii) an adaptation evaluation
echnique of the individuals; (iii) an evolution process made up
f operators reproducing elimination of some individuals (selec-
ion) and creation of new ones from the survivors (crossover or

utation). This latter feature brings to an increase in the average
uality of the solutions. The most used techniques are Genetic
lgorithms (GAs), Evolutionary Strategies and Evolutionary
rogramming.

The framework of this study is the application of Genetic
lgorithms to a particular formulation of optimal batch plant
esign problems. The point is that the initial version of GAs
uch as devised by Holland [9] did not account for constraint
andling, except when these ones could be integrated in the
odings, and then handled through appropriate genetic operators.
ut it appears that most applications, being purely mathematical
roblems or applications drawn from real world, are modelled as
roblems are subjected to more or less severe constraints. This
s more particularly the case of problems from the Process Sys-
em Engineering area and, obviously, from the above-mentioned
atch plant design formulations. Consequently, the Evolutive
lgorithms community devoted its energies to propose con-

traint handling techniques, in particular for GAs. A large variety
f methods, more or less specific to the nature of the studied
roblems, were thus developed. Some of them are tested in this
ork, in order to determine which one is the best fitted for the

reatment of problems, in the framework of the formulation of
nterest.

This paper is divided into six sections. An overview on con-
traint handling techniques is presented in Section 2. Section

is devoted to the model development of the optimal batch
lant design problem. Section 4 describes the Genetic Algorithm
mplemented throughout the study and focuses on the specific
onstraint handling methods that were investigated. Some typi-
al results are then analysed in Section 5 and finally, conclusions
nd perspectives are given in Section 6.

. Overview of constraint handling techniques

Various papers reviewing the various existing techniques are
vailable, for instance in [10,11]. They usually involve a distinc-
ion between the following classes:

(i) elimination of infeasible individuals;
(ii) penalisation of the objective function;
iii) dominance concepts;
iv) preservation of feasibility;
(v) infeasible individuals repairing;
vi) hybrid methods.

.1. Elimination

This method, also called “death penalty method”, consists

n rejecting infeasible individuals. The most common way
o implement this strategy is to set their fitness equal to 0,
hich prevents infeasible solutions to pass the selection step.
his method is very simply implemented, but encounters prob-

o
t
s
c

ems for harshly constrained problems. In addition, its second
eakness is that no information is taken from the infeasible

pace, which could help to guide the search towards the global
ptimum. Nevertheless, this technique constitutes a first valid
pproach when no feature allows to previously determine a
pecific problem-fitted method.

.2. Penalty functions

This second class is certainly the most popular one, because
f its understanding and implementation simplicity. The con-
trained problem is transformed into an unconstrained one by
ntroducing the constraints in the objective function via penalty
erms. Then, it is possible to formulate this penalty term accord-
ng to a wide diversity of techniques. Firstly, it is of common
nowledge that the penalisation will be more efficient if its
xpression is related to the amount of constraint violation than
o the violated constraint number [12].

Let us consider the classical optimisation problem formula-
ion:

in f (x) s.t. gj(x) ≤ 0, j = 1, m (1)

hen, with the unconstrained formulation including the penalty
erm, the new criterion F to minimize can be generally written
s follows:

(x) = f (x) +
m∑

j=1

Rj max[0, gj(x)]β (2)

ost of time, the penalty is expressed under a quadratic form,
orresponding to β equal to 2. Equality constraints such as
k(x) = 0 can be reformulated as |hk(x)| − e ≤ 0, where ε is a
ery small value. Then, the Rj factor can be expressed in many
ays, showing various complexity and solution efficiency for

he tackled problem. General principles can however be stated
n order to guide the development of performing penalisation
trategies.

The first one points out that, in most problems, the global
ptimum is located on the feasible space boundary. So, on the
ne hand, if the influence of the penalty factor is too important,
he pressure exerted to push the individuals inside the feasible
pace will be too strong, preventing them from heading for more
romising regions. Furthermore, in case of disjointed feasible
paces, a too high penalty factor can confine the population to
ne feasible region without allowing individuals to cross infea-
ible zones and head for other feasible regions (where the global
ptimum could be located) [13]. On the other hand, a too low
enalty factor can lead to an exhaustive search in the infeasible
pace, visiting regions where the objective function is very low
ut that are strongly infeasible (see Fig. 1).

In addition, it is commonly admitted that the penalty term
hould be preferentially pretty low at the beginning of the search,
n order to explore a wide region of the search space. At the end

f the run, promising regions should be determined yet. It is
hen more relevant to have a high penalty term, to intensify the
earch on these zones by forcing the individuals to satisfy the
onstraints.

t
[
w
t
e
o
t

w
l
m
d

i
t
0
t
e
S

R

w
i
s
i
F
o
i
o
s

l
a
t
t
i

i
g

a
p
t
t
o
t
t
i
t
b
h
a
b
t
r
c
r
m

C
I
p
p
t
o
a
d
i
i
a
v
o
T
evaluations, making this method computationally expensive. In
addition, co-evolution involves the introduction and tuning of a
new GAs parameters set: population size, maximum generation
number, etc.
Fig. 1. Too weak penalty factor.

According to these principles, a great variety of penalisa-
ion methods were implemented, some of them are recalled in
14]. The simplest is the static penalty: a numerical value, that
ill not vary during the whole search, is allocated to each fac-

or Rj. Obviously, the drawback is that as many parameters as
xisting constraints have to be tuned without any known method-
logy. Normalizing the constraints enables however to reduce
he number of parameters to be chosen from m to 1.

A modified static penalty technique is proposed in [15], in
hich violation levels are set for each constraint. So considering
levels in a problem with m constraints, it was shown that the
ethod needs the tuning of m(2l + 1) parameters (see [14] for

etails).
Another proposal is a dynamic penalty strategy, for which Rj

s written as (C × t)a where t is the generation number. Here,
wo parameters must be tuned, i.e. C and a. Common values are
.5 and 2, respectively. Thus, this method enables to increase
he pressure on infeasible solutions along the search. A similar
ffect can be obtained with a method presenting an analogy with
imulated Annealing:

j = 1

2t
(3)

here τ is a decreasing temperature. It is necessary to determine
nitial and final temperatures, τi and τf, as well as a cooling
cheme for τ. This technique has two special features. First, it
nvolves a difference between linear and non-linear constraints.
easibility as regard with the former is maintained by specific
perators, so that only the latter has to be included in the anneal-
ng penalty term. In addition, the initial population is composed
f clones of a same feasible individual that respects linear con-
traints [14].

Different approaches, called adaptive penalties, are based on
earning from the population behaviour in the previous gener-

tions. In [16], the penalty factor decreases (resp. increases) if
he best individual was always feasible (resp. infeasible) during
he k last generations. For undeterminated cases, the factor value
s kept unchanged. This methodology imposes the tuning of the
nitial value for the penalty factor and of the number of learning
enerations k.

New techniques now rest on self-adaptive penalty
pproaches, which also learn from the current run, without any
arameter tuning. In [13], the constraints and the objective func-
ion are first normalized. Then, the method consists in computing
he penalty factor for constraint j at generation q as the product
f the factor at generation q − 1 with a coefficient depending on
he ratio of individuals violating constraint j at generation q. If
his ratio is fewer to 50%, then the coefficient is inferior to 1
n order to favour individuals located in the infeasible side of
he boundary. On the contrary, if the feasible individuals num-
er is weak, the value increases up to 1 to have the population
eading for the inside part of the feasible region. This oper-
ting mode enables to concentrate the search on the boundary
uilt by each constraint, i.e. where the global optimum is likely
o be located. The initial value is the ratio of the interquartile
ange of the objective function by the interquartile range of the
onsidered constraint at first generation, which implicitly car-
ies out normalization. No parameter is thus necessary in this
ethod.
Another kind of self-adaptive penalty is proposed by Coello

olleo [17], but this one is based on the principle of co-evolution.
n addition to the classical population P1 coding the tackled
roblem, the method considers a population P2 representing two
enalty coefficients that enable to evaluate population P1 (w1 for
he amount of violation of all constraints and w2 for the number
f violated constraints). Thus, each individual of P1 is evaluated
s many times as there are individuals in P2. Then, P1 evolves
uring a fixed number of generations and each individual of P2,
.e. each set of two penalty factors, is evaluated. This mechanism
s depicted in Fig. 2. Basically, the evaluation is calculated as the
verage of all objective functions of P1 evaluated by each indi-
idual of P2. Then P2 evolves like in any GA process, given that
ne generation for P2 is equivalent to a complete evolution of P1.
he evident drawback is the huge number of objective function
Fig. 2. Self-adaptive penalty by co-evolution [17].

b
o
e

⎧⎪⎨
⎪⎩
f
t
t
b
a
s
s
n
f
b
i
i
a

c
c
h
m
d

s
b
t
t

2

c
o
f
a
r
b
i
g
g

f
t
f

1
2

3

T
t
j
f

m
r
l
s
i
i
i
t
r
n
s

u
s

2

b
o
m
d
i
i

b
t
a
g
r
t
i
c
M
u
t

f
s
i
I
o
m
i
p
h
m
i

Finally, the technique proposed by Deb [18] is half-way
etween classical penalisation and dominance-based meth-
ds. Superiority of feasible individuals on infeasible ones is
xpressed by the following penalised criterion:

F (x) = f (x) if gj(x) ≤ 0, j = 1, . . . , m

F (x) = fmax +
m∑
j

gj(x) else
(4)

max is the worst objective function value of all feasible solu-
ions in the current population. The selection step is made out
hrough a tournament process, but it could have been a Gold-
erg’s roulette wheel as well [19]. Most individuals are infeasible
t the beginning of the search, hence the selection exerts a pres-
ure exclusively towards the feasible space until enough feasible
olutions are located. Without the stochastic effect of both tour-
ament or roulette wheel, the minimization of the objective
unction would only occur when the feasible individual num-
er exceeds the survivor number. In spite of the random effect
ntroduced, efficient mutation procedures and sometimes nich-
ng methods are necessary to maintain diversity in the population
nd to prevent the search from being trapped in a local optimum.

Let us recall that niching helps to avoid that two solutions
haracterized by a close set of variables both survive. Metric
onsiderations (usually, the euclidean distance) help to estimate
ow close an individual is from another one. In [18], tourna-
ent between two feasible individuals is authorized only if the

istance between them is lower than a constant threshold.
Among this profusion of techniques, some of the most clas-

ical methods were tested and evaluated in [20] for some
enchmark examples. Some methods are really adapted to par-
icular problems, but the authors finally chose the static penalty
echnique, which is the simplest and the most generic one.

.3. Dominance-based methods

This class of constraint handling techniques is based on prin-
iples drawn from multiobjective optimisation and, in particular,
n the dominance concept. The first idea is thus to trans-
orm a constrained mono-objective optimisation problem into
n unconstrained multiobjective problem, where each constraint
epresents a new criterion to be minimized. Sorting procedures
ased on the domination in the sense of Pareto (x dominates y
f and only if it is better than y for at least one criterion and as
ood as y for the other ones) leads toward the ideal solution x*:
j(x*) ≤ 0 for j = 1, . . ., m and f(x*) ≤ f(y) for all feasible y.

These concepts are used again by Coello Coello [21] in the
ramework of mono-objective constrained optimisation in order
o state particular dominance rules setting the superiority of
easible solutions on infeasible ones:

. an infeasible solution is dominated by a feasible one;
. if both individuals are feasible, the one with the worst objec-
tive function is dominated;

. if both individuals are infeasible, the one with greatest con-
straint violation is dominated.

t

t
�

hese rules are implemented in a tournament: it is to note that
his technique is finally exactly identical to Deb’s one [18], who
ust formalizes the rules as a penalty term added in the objective
unction.

Silva and Biscaia [22] use a quite similar methodology for
ultiobjective optimisation by setting additional domination

ankings. The constraints are normalized and four domination
evels are created and defined according to the range of con-
traint violation amount. The union of the range of all levels
s 1. Each individual is classified in these levels according to
ts largest constraint violation amount. Then, a positive integer
s assigned to each domination level and added as a penalty
erm to the normalized objective functions. The selection is car-
ied out through successive Pareto sorting rounds, during which
on-dominated individuals are chosen until obtaining enough
urviving individuals.

Thus, the two above-mentioned examples highlight how ten-
ous the boundary is between this constraint handling mode and
ome kinds of penalisation techniques.

.4. Other techniques

The description of other techniques is merged in this section
ecause they are usually applicable only with some assumptions,
r even defined exclusively for a particular problem. Firstly, in
any cases, an adapted encoding method may enable to han-

le some constraints. A good is example is presented in [23],
n which the number of 0-valued and 1-valued bits are coded
nstead of the bits themselves.

Besides, methods preserving solutions feasibility are usually
ased on specific crossover and mutation operators that are able
o build, from feasible individual(s), one or several individu-
ls that are feasible too. The GENOCOP algorithm provides a
ood example [24] for linear problems. Equality constraints are
emoved by substitution of an equal number of variables, so that
he feasible space is then a convex set defined by linear inequal-
ties. Due to this property, genetic operators consisting of linear
ombinations can ensure the feasibility of the created solutions.
aintaining the feasibility can also be carried out through the

se of decoders, i.e., instructions contained in the chromosome
hat state rules for building a feasible solution.

Moreover, repairing infeasible chromosomes is a quite
amous method. Indeed, in many cases of combinatorial optimi-
ation, it is easy to create rules that, starting from an infeasible
ndividual, enable to modify its structure to get a feasible one.
n [25] for instance, repair procedures are implemented to act
n individuals whose chromosome, resulting from crossover or
utation, has no physical meaning with regard to the used encod-

ng method. However, repair rules are always devoted to the
articular case of the studied problem and there is no existing
euristic for a general perspective. The particularity of the repair
ethods is also the possibility to replace in the population the

nfeasible individual by its repaired version or, on the contrary,

o use this version only for the solution evaluation.

A generalized repair method proposed in [26] involves
he first order development of the constraint violation vector

V, according to �x, which represents a tiny variation in the

o

�

w
t
a
p
i
p
t
p
c
v

o
f
e

3

a
a
p
h

3

b
e
g
t
t
c
o
t

m
n
p
i
p

3

m
t
f
p
r
w

m
t

c
T
i
p
b
s
F

(

3

J
c
s
o
a
b
p

N
w
m

ptimisation variables x:

V = ∇xV × �x, so �x = ∇xV
−1 × �V (5)

here matrix ∇xV is the constraint violation gradient according
o variables x. So, if the constraint violation amount is known
nd by approximating numerically its gradient, it is theoretically
ossible to determine the repair vector �x for the considered
nfeasible individual. Since ∇xV is usually not a square matrix,
seudoinverse computations provide an approximate inverse
hat can be used in (5). Despite its genericity ambition, it is
redictable that such a method will only be applicable in some
ases for which the functions and the nature of the involved
ariables are quite favourable.

This last technique can also be classified in the hybrid meth-
ds, just like the integration of Lagrange parameters in a penalty
unction, or the application of concepts drawn from fuzzy logic,
tc. It should be referred to [10] for more details.

. Batch plant design problems

Within the Process Engineering framework, batch processes
re of growing industrial importance because of their flexibility
nd their ability to produce low-volumes and high added-value
roducts. The Optimal Batch Plant Design (OBPD) problems
ave already been modelled and solved with a lot of approaches.

.1. Problem presentation

This kind of problems is composed of items operating in a
atch way. This means that a product batch has to be charged in
ach equipment item by an operator. This batch is subjected to
iven treatments in various equipment items, following a syn-
hesis sequence, also named production recipe. Since a plant has
o support the production of different products, the units must be
leaned after each batch has passed into it. In this study, we will
nly consider multiproduct plants, i.e. all the products follow
he same operating sequence.

The aim of the OBPD problems is to minimize the invest-
ent cost for all items included in the plant by optimising the

umber and size of parallel equipment units in each stage. The
roduction requirements of each product, the data related to each
tem (processing times and cost coefficients) and a fixed global
roduction time are specified.

.2. Assumptions

To model the OBPD problems, this paper uses Modi’s for-
ulation [3], modified by Xu et al. [27]. It considers not only

reatment in batch stages, which usually appears in all kinds of
ormulation, but also represents semi-continuous units that are
art of the whole process (pumps, heat exchangers, etc.). Let us
ecall that a semi-continuous unit is defined as a continuous unit

orking by alternating low-activity and normal activity periods.
Besides, this formulation takes into account short-term or

id-term intermediate storage tanks. They are used to divide
he whole process into sub-processes, in order to store materials

o

M

Fig. 3. Typical batch plant and modelling.

orresponding to the difference of each sub-process productivity.
his representation mode confers to the plant a major flexibil-

ty for numerical resolution, by preventing the whole process
roduction from being paralysed by one bottleneck stage. So, a
atch plant is finally represented by series of batch stages (B),
emi-continuous stages (SC) and storage tanks (T) as shown in
ig. 3 for the sake of illustration.

The model is based on the following assumptions:

(i) The devices used in a same production line cannot be used
twice by one same batch.

(ii) The plant works according to a series of single product
campaigns.

(iii) The units of the same batch or semi-continuous stage have
the same type and size.

(iv) All intermediate tanks sizes are finite.
(v) If a storage tanks exists between two stages, the opera-

tion mode is “Finite Intermediate Storage”. Otherwise,
the “Zero-Wait” policy is applied.

(vi) There is no limitation for utility.
(vii) The cleaning time of the batch items is included into the

processing time.
viii) The item sizes are continuous bounded variables.

.3. Model formulation

The model considers the synthesis of I products treated in
batch stages and K semi-continuous stages. Each batch stage

onsists of mj out-of-phase parallel items of same size Vj. Each
emi-continuous stage consists of nk out-of-phase parallel items
f same processing rate Rk. The item size (continuous vari-
bles) and equipment number per stage (discrete variables) are
ounded. The S-1 storage tanks, of size V ∗

s , divide the whole
rocess into S sub-processes.

According to the previously stated notations, a Mixed Integer
on-Linear Programming (MINLP) problem can be formulated,
hich minimizes an economic criterion representing the invest-
ent cost for all items. This cost is written as a power function

f the unit size:
in Cost =
J∑

j=1

mjajV
αj
j +

K∑
k=1

nkbkR
βk
k +

S−1∑
s=1

csV
γs
s (6)

w
c
E
w
b
t
e
c

(

3

b
w
o

here aj and aj, βk and bk, γs and cs are the classical cost coeffi-
ients (a complete nomenclature is in provided in Appendix A).
q. (1) shows that no fixed cost coefficient was set for any item,
hich would be formulated, for instance: a1

j + a2
jV

aj
j . This may

e few realistic and will not make optimisation to tend towards
he minimization of the equipment number per stage. How-
ver, this formulation was kept unchanged in order to be able to
ompare the results with those found in the dedicated literature.

This problem is subjected to three kinds of constraints:

(i) Variables bounding:

Vmin ≤ Vj ≤ Vmax, ∀ j ∈ {1, . . . , J} (7)

Rmin ≤ Rk ≤ Rmax, ∀ k ∈ {1, . . . , K} (8)

For the treated example, Vmin = 250 L and Rmin = 300
L h−1; Vmax and Rmax were both taken equal to 10,000
(L and L h−1, respectively). Moreover, for either batch or
semi-continuous stages, the maximum item number per
stage is limited to 3 (mmax = nmax = 3).

(ii) Time constraint: the total production time for all products
must be lower than time horizon H, given in the problem
data set.

I∑
i=1

Hi =
I∑

i=1

Qi

Prodi

≤ H (9)

where Qi is the demand for product i.
iii) Constraint on productivities: the global productivity for

product i (of the whole process) is equal to the lowest local
productivity (of each sub-process s).

Prodi = Min
s ∈ S

[Prodlocis], ∀ i ∈ {1, . . . , I} (10)

These local productivities are calculated from the fol-
lowing equations:
(a) Local productivities for product i in sub-process s:

Prodlocis = Bis

T L
is

, ∀ i ∈ {1, . . . , I}; ∀ s ∈ {1, . . . , S}
(11)

(b) Limiting cycle time for product i in sub-process s:

T L
is = Max

j ∈ Js,k ∈ Ks
[Tij, Θik], ∀ i ∈ {1, . . . , I};

∀ s ∈ {1, . . . , S} (12)

Js and Ks are respectively the sets of batch and semi-
continuous stages in sub-process s.

(c) Cycle time for product I in batch stage j:
Tij = Θik + Θi(k+1) + pij

mj

, ∀ i ∈ {1, . . . , I};

∀ j ∈ {1, . . . , J} (13)

d
s
a
T

Fig. 4. Structure of the plan
(k and k + 1 represent the semi-continuous stages before
and after batch stage j).

(d) Processing time of product i in batch stage j:

pij = p0
ij + gijB

dij
is , ∀ i ∈ {1, . . . , I};

∀ j ∈ {1, . . . , Js}; ∀ s ∈ {1, . . . , S} (14)

(e) Operating time for product i in semi-continuous stage
k:

Θik = BisDik

Rknk

, ∀ i ∈ {1, . . . , I};

∀ k ∈ {1, . . . , Ks}; ∀ s ∈ {1, . . . , S} (15)

(f) Batch size of product i in sub-process s:

Bis = Min
j ∈ Js

[
Vj

Sij

]
, ∀ i ∈ {1, . . . , I};

∀ s ∈ {1, . . . , S} (16)

Finally, the size of intermediate storage tanks is esti-
mated as the highest difference between the batch sizes
treated by two successive sub-processes:

Vs = Max
i ∈ I

[ProdiSis(T
L
is + T L

i(s+1) − Θit − Θi(t+1))],

∀ s ∈ {1, . . . , S − 1} (17)

Then, the aim of OBPD problems is to find the plant
structure that respects the production requirements
within the time horizon while minimizing the economic
criterion. The resulting MINLP problem proves to be
non-convex and NP-Hard [5].

To solve this problem by a GA, the constraint on
variable bounds is intrinsically handled by the cod-
ing and the constraint on productivities is implemented
in the model. As a consequence, the only constraint
to be handled explicitly by GA is the time constraint,
which imposes the I products to be synthesized before
a time horizon H. The constraint handling techniques
presented in Section 4.3 are applied only on this con-
straint.

.4. Studied example

One instance of optimal batch plant design problem will
e used as a reference. In order to test GA efficiency, its size
as chosen so as the GA faces some solution difficulties with-
ut being penalized too heavily by computational times. So, as

epicted in Fig. 4, the considered plant is composed of six batch
tages, eight semi-continuous stages and one intermediate stor-
ge tank. The plant has to support the synthesis of three products.
able 1 sums up all data associated to this problem.

t used as benchmark.

Table 1
Studied example data

B1 B2 B3 B4 B5 B6

Sij i = 1 8.28 6.92 9.70 2.95 6.57 10.60
i = 2 5.58 8.03 8.09 3.27 6.17 6.57
i = 3 2.34 9.19 10.30 5.70 5.98 3.14

p0
ij

i = 1 1.15 3.98 9.86 5.28 1.20 3.57
i = 2 5.95 7.52 7.01 7.00 1.08 5.78
i = 3 3.96 5.07 6.01 5.13 0.66 4.37

gij i = 1 0.20 0.36 0.24 0.40 0.50 0.40
i = 2 0.15 0.50 0.35 0.70 0.42 0.38
i = 3 0.34 0.64 0.50 0.85 0.30 0.22

dij i = 1 0.40 0.29 0.33 0.30 0.20 0.35
i = 2 0.40 0.29 0.33 0.30 0.20 0.35
i = 3 0.40 0.29 0.33 0.30 0.20 0.35

I
β

D

c
T
1
c
t
I
i
h

s
a
o
a
e
n
t

4

s
j
t

4

p
p
q
t
w
s
m
a

b

i
t
t
q
s
r
t

c
u
g
t
m
t
a

4

4

t
I
t

c
i
w
a
t
l
g
t
t

d
v
o
s
b
b
t

d

T
s
m
r
c
t
g
t
g
t

= 3; J = 6; K = 8; S = 2; H = 6000 h, aj = 250; bk = 370; cs = 278; αj = 0.60;

k = 0.22; γs = 0.49, Q = [437 × 103, 324 × 103, 258 × 103] kg; Sis = 1 L kg−1;

ik = 1 L kg−1 h−1.

The optimisation variables are, for each (batch or semi-
ontinuous) stage, the item size (Vj or Rk) and number (mj or nk).
hus, the numbers of continuous and integer variables are both
4. The corresponding combinatorial effect can be computed,
onsidering that each stage may have at most three items (recall
hat mmax = nmax = 3, see Section 3.3), and is equal to 4.8 × 106.
t is to underline that the continuous variables do not participate
n the previous calculation since the desired precision would a
ave a strong influence on the resulting combinatorial value.

The problem was solved to optimality by the DICOPT++
olver, implementing the Outer Approximation algorithm [28]
nd available within the GAMS modelling environment [2]. The
ptimal cost is equal to 620638 and will be helpful to provide
reference, with respect to which the GA result quality can be

valuated. The corresponding variables are neither shown here
or in the computational results section, since they did not prove
o be relevant for any performance evaluation.

. Specific comments on the used Genetic Algorithm

The aim of this section is not to describe into detail the optimi-
ation technique developed by Holland from 1975 [9]. We will
ust recall its basic principles and our comments are focused on
he specific parameters used in this study.

.1. General principles

The principles of GAs just lie on the analogy made between a
opulation of individuals and a set of solutions of an optimisation
roblem. Just like the former, the latter evolves towards a good
uality, or adaptation, according to the rules of natural selec-
ion stated by Darwin: the weakest individuals will disappear
hile the best ones will survive and be able to reproduce them-

elves. By way of genetic inheritance, the characteristics that

ake these individuals “stronger” will be preserved generation

fter generation.
The mechanisms implemented in the GAs mimic this natural

ehaviour. By creating selection rules that will express that the

i
t
s
a

ndividuals are adapted to the considered problem, the best solu-
ions are settled. Crossover and mutation operators then enable
o get, at the end of the algorithm run, a population of good
uality solutions. This heuristics set is mixed with a strongly
tochastic aspect, leading to the compromise between explo-
ation and intensification in the search space, which contributes
o GAs efficiency.

The GA presented in this study is adapted from a classi-
al, previously developed GA. The major difficulty for GAs
se lies in its parameters tuning. The quality of this tuning
reatly depends on user’s experience and on his knowledge of
he problem. Concerning the parameters such as population size,

aximal number of computed generations or survival and muta-
ion rates, a sensitivity analysis was performed to tend to an
ppropriate choice.

.2. Main parameters

.2.1. Variables encoding
A great number of studies proposed strategies coding simul-

aneously integer and continuous variables in the chromosome.
t is clear that the way the variables are encoded is essential for
he GAs efficiency.

The array representing the complete set of all variables is
alled a chromosome. It is composed of genes, each one encod-
ng a variable by means of one or several locus. Obviously, we
ill make in this work a difference between the genes encoding
continuous variable from those encoding a discrete one. Since

he formers are bounded, they can be written in a reduced form,
ike a real number a bounded within 0 and 1. Besides, each inte-
er variable is coded directly in a single-locus gene, containing
he variable value. Since an item number in a stage may be equal
o 1, 2 or 3, so does a gene coding an integer variable.

The encoding method for continuous variables consists in
iscretising them, i.e. discretising the above-mentioned reduced
ariables a. According to the required precision, a given number
f decimals of a is coded. This will logically have an effect on the
tring length, and so on the problem size. The so-called weighed
ox was used in this study: each decimal is coded by four bits
1, b2, b3, b4, weighing respectively 1, 2, 3, 3. As an example,
he value of decimal d of a will be:

= b1 × 1 + b2 × 2 + b3 × 3 + b4 × 3 (18)

he coding used for the continuous the part of the chromo-
ome is illustrated in Fig. 5. It is to admit that this encoding
ethod presents drawbacks. Firstly, one same number can be

epresented in various ways (for instance, number 3 may be
oded by the following strings: 1100, 0010 or 0001). This means
hat there exists some kind of ponderation of the probability to
et a given number, which could cause higher computational
imes. Furthermore, the chosen encoding method does not inte-
rate any Hamming distance concept, that would enable to have
wo numbers close one from another represented by two sim-

lar strings (i.e. differing by only a few values). Nevertheless,
he chosen method offers the advantage of preventing from bias,
ince the sum of all weights is lower than ten. That is why it was
dopted in the following study.

a
A
r

a
c
a
v
m
1

4

b
e
c
a
c
p
c
a

m
o
v
t
b
b
t

4

o
m
i
t
h

4

n
i
g
r
[

s
s
t
t
F
C

F

S
t
w
p
g
w
r

4

s
i⎧⎪⎪⎪⎪⎪⎨
Fig. 5. Coding example with the weighed boxes.

Further works proved that floating-point encoding may be
lso adapted. However, since encoding techniques in Genetic
lgorithms is not the point of this work, it is recommended to

eport to [29], providing a more detailed study about this issue.
Finally, considering that four decimals of the reduced vari-

bles are necessary to have the required precision on the initial
ontinuous variables, and since each decimal is coded by 4 bits,
string for a continuous variable is 16 bits long. An integer

ariable is coded on one locus, so the size of the complete chro-
osome is equal to 17 multiplied by the stage number (here,

4), thus 238 loci.

.2.2. Genetic operators
Obviously, the crossover and mutation operators are to

e in accord with the encoding method logic. A wide vari-
ty of crossover techniques exists (1-point crossover, k-points
rossover, uniform crossover, etc.). In a simplicity perspective
nd since a comparative study on crossover techniques does not
onstitutes the main issue of this work, a classical single cut-
oint procedure is implemented. Fig. 6 gives an example of the
rossover technique, for a string involving 0–1 bits (item size)
nd integer loci (item number).

Besides, two distinct mutation operators must be used: (i)
utation by reversion of the bit value on the continuous part

f the string; (ii) mutation by subtraction of one unit of a bit
alue on the discrete part (when possible). This technique leads
owards minimization, but cannot prevent the algorithm from

eing trapped in a local optimum. Finally, elitism is carried out
y copying the two best percents of the current population into
he next generation.

Fig. 6. One cut-point crossover.

⎪⎪⎪⎪⎪⎩
T
n
i
f
s
s
s
b
o
f
m
l
s

.3. Constraint handling

Obviously it is not possible to tackle all the previ-
usly mentioned constraint handling techniques. The followed
ethodology only considers methods that seem easy-

mplementing in GAs and adaptable to the framework of the
reated problem, for which only the time constraint needs to be
andled by the GA.

.3.1. Elimination technique
The first technique tested in this study is elimination tech-

ique. As explained previously, it works by preventing the
nfeasible individuals to be able to take part in the following
eneration. This is carried out in the selection step of the algo-
ithm, which involves the use of the Goldberg’s roulette wheel
30].

This method can be seen like a random draw for which a
ector of the wheel stands for each individual. The area of the
ector depends on the relative fitness fi of solution i related to
he sum of all the other solution’s fitness. In order to be fitted to
he maximization effect of GAs, the fitness of each individual
i is calculated as the difference between its objective function
i and the worst objective function in the current population:

i = Cmax − Ci (19)

o, setting the fitness of infeasible individuals to 0 implies that,
here is no probability to have them selected by the roulette
heel. The consequence of this operating mode is that a com-
letely feasible population has to be generated for the first
eneration. Indeed, without that condition, all fitness values
ould be equal to 0 and the GA would be equivalent to a simple

andom walk.

.3.2. Penalisation of infeasible individuals
The most classical penalisation technique was used here, i.e.

tatic penalty. Then, the criterion that is minimized by the GA
s:

F (x) = C(x) if
I∑
i

Hi ≤ H

F (x) = C(x) + ρ

(
H −

I∑
i

Hi

)2

else

(20)

he selection method is kept unchanged as regard to the elimi-
ation technique, i.e. Goldberg’s roulette wheel. Moreover, the
nitial population creation is not submitted any more to any
easibility constraint. Our aim is not to implement a really
ophisticated method as the ones previously mentioned in the
ection devoted to the state of the art (dynamic, annealing or
elf-adaptive factor for instance). So, the ρ factor is set at the
eginning of the search and does not vary in the whole run. Obvi-
usly, on the one hand, the greater is the value of the penalty

actor, the higher is the weight of the second term, i.e. mini-
ization of constraint violation. On the other hand, if ρ takes

ow values, the search may tend towards solutions minimizing
trongly the objective function but violating widely the time

c
t
f

4

b
g
u
u
t
d
p
a
p
i
o
t
T
t
w
t
c

4

t
d
b
w
a
d
r
n
c
i
e
n

s
w
e
t
(
m
p
b
o

4

h
l
v
r
fi

s

C

T
c
n
s
a
p
o

5

m
r
e
0

t
t
s
a
1
f
F

t
r

5

T
m
s
S
s
e
p
s
o
w
c
computation of the objective function by a simulator.

This low performance is due to the number of objective func-
tion evaluations. Actually, the theoretical evaluation number is
the product MaxGen × PopSize, which is equal to 4.0 × 104

Table 2
Results for elimination technique
onstraint. So, various values of this factor were tested in order
o determine the best compromise between solution quality and
easibility.

.3.3. Relaxation of upper discrete bounds
The basic idea of this technique came from the antagonism

etween the time constraint, which imposes to manufacture a
iven quantity of the I products within a time horizon H, and the
pper limit of parallel items in a stage. Indeed, increasing the
pper bounds of discrete variables, mmax and nmax, means that
he item number per stage can be higher, which allows the pro-
uctivity to be higher. Thus, it makes it easier for the considered
lant to respect the time constraint. As a consequence, if mmax
nd nmax are relaxed to a higher value, building a feasible initial
opulation for the first roulette wheel step will become an easier
ssue. Afterwards, it is predictable that the minimization of the
bjective function by the GA will make the discrete variables
end towards lower values, thus within the initial feasible space.
his one initially corresponded to discrete upper bounds equal

o 3. In this study, mmax = nmax were relaxed to the value Nmax,
hich is set to a constant value at the beginning of the run. Since

he studied problem is not so difficult, values for Nmax have been
hosen equal to 4, 5 or 6.

.3.4. Dominance-based tournament
This method proposed in [21] is based on the discrimina-

ion between feasible and infeasible solutions, and follows these
ominance rules: (i) a feasible individual dominates an infeasi-
le one; (ii) if both individuals are feasible, the one with the
orst objective function is dominated; (iii) if both individu-

ls are infeasible, the one with greatest constraint violation is
ominated. These rules are implemented in a tournament that
eplaces the roulette wheel as the selection process. A tour-
ament instance involves NComp competitors: each of them is
ompared to all the other ones according to the mentioned rules,
n order to determine the NWin winners (championship). For
ach selection step, the tournament is repeated as many times as
ecessary to get enough surviving individuals.

A previous intuitive understanding makes it able to fore-
ee that the selection pressure will be all the more important
hen the difference between NComp and NWin is greater. How-

ver, various combinations of competitors and winners were
ested. A special case of this method, namely single tournament
referred as T.U. in the following sections, for Unique Tourna-
ent), occurs when the number of competitors is equal to the

opulation size while the number of winners is the survivor num-
er: then, all survivors are determined in one single tournament
ccurrence for each selection step.

.3.5. Multiobjective strategy
The last option under investigation for an efficient constraint

andling involves a multiobjective strategy. As mentioned in the

iterature analysis, this method simply considers the constraint
iolation as a second criterion that has to be minimized. So, the
esulting problem is a bi-criteria unconstrained problem. The
rst objective function is the initial investment cost, while the

B
O
C

econd one is written as a quadratic form:

′(x) =
(

H −
I∑
i

Hi

)2

(21)

he use of a multiobjective strategy with the two considered
riteria means a modification of the selection technique. The
ew method involves two roulette wheels. Each one is used to
elect, with the usual probabilistic effect, the best individuals
ccording to each criterion. At the end of the search, a sorting
rocess is carried out for all visited solutions in order to keep
nly Pareto’s non-dominated individuals.

. Computational results and interpretation

The parameters used to study the Genetic Algorithm perfor-
ances were tuned by a sensitivity analysis. The algorithm was

un with a 200 individuals population (PopSize) during 200 gen-
rations (MaxGen). Crossover and mutation rate were fixed to
.6 and 0.4, respectively.

The results in this section are analysed in terms of computa-
ional time and quality. This quality is evaluated, of course, by
he gap between the best found solution and the optimum. But,
ince GAs are a stochastic method, its results have to be analysed
lso in terms of repeatability. So, for each test, the GA was run
00 times and the best solution F∗

GA, is recorded. The criterion
or repeatability evaluation is the dispersion of the runs around
∗
GA. The 2%-dispersion or 5%-dispersion are then defined as

he percentage of runs providing a result lying respectively in the
ange [F∗

GA, F∗
GA + 2% (= F∗

GA × 1.02)] or [F∗
GA, F∗

GA + 5%].

.1. Elimination technique

Results for elimination technique are presented in Table 2.
hey show an unquestionable quality since both exhibit an opti-
al gap. Two percent and 5%-dispersions are also excellent

ince they are equal to, respectively, 82% and 100% of the runs.
o this method will constitute a reference for the other con-
traint handling techniques. Besides, the computational time is
qual to 35 s (with a Compaq Workstation W6000 with Xeon
rocessor). This is quite high for such a medium-size example,
ince the DICOPT++ module gave an optimal result in less than
ne second. It allows to foresee restrictive computational cost
hen treating more complex problems. This feature would also

onstitute a bottleneck for applications that would carry out the
Elimination technique

est result 622,566
ptimal gap (%) 0.31
PU time (s) 35

Table 3
Best found solution for various penalty factor values

ρ = 10−4 ρ = 10−2 ρ = 1 ρ = 102 ρ = 104

Best result (including penalty) 257,024 544,547 620,137 622,799 622,245
R ,506
O 1.61
C 15

(
r
t
n
w
i
t

5

t
b
t
M
r
p

T
t
c
t
v
t
p

v
s
t
a
t
o

fi
u
d
s
d
f
d
(
i

f
v
a
s
s

q
c
2

s
p
s
i
s
s
n
o

f
be a challenging task which, thus increasing the probability of
determining a good quality result. Higher values of the penalty
factor should then be more attractive. From ρ = 104 to ρ = 102,
the 2–5% dispersions saving is high without any extreme feasible

Fig. 7. Evolution of feasible solutions ratio.
eal investment (without pen.) 207,820 486
ptimal gap (%) −66.52 −2
onstraint violation (%) 369.7 40.

with systematic evaluations of identical individuals). But the
eal evaluation number is equal to 7.11 × 105, i.e. almost 18
imes the theoretical value. The huge difference is due to the
ecessity of creating a completely feasible initial population,
hich turns to be a harsh task. The time spent in randomly find-

ng 200 feasible individuals for the first generation takes almost
he majority of computing resources.

.2. Penalisation technique

First, as regard to the computational time, it is obvious that
his technique is really more performing. Indeed, since no feasi-
ility condition is imposed for the initial population generation,
he number of objective function evaluations is here equal to

axGen × PopSize: this allows the computational time to be
educed from 35 s with the elimination technique to 2 s with the
enalisation method.

Concerning the solution quality, the results are presented in
able 3: in the first row, the value of the penalized objective func-

ion is given; in the second one, the corresponding investment
ost represents the objective function without the penalty term;
he optimal gap presented in the third row can have negative
alues since infeasible solution may be really “cheaper” than
he feasible ones; finally, the constraint violation is the total
roduction time related to the initial time horizon H.

These results agree with the predicted trends. For small
alues of the penalty factor, the found solution is widely infea-
ible, which explains the low investment cost, so far away from
he constrained optimal value. As the penalty factor rises, the
mount of constraint violation decreases. At the same time,
he economic criterion logically increases until reaching near
ptimal values when the best found solution is feasible.

No feasible solution is found during a whole run for the two
rst cases (10−4 and 10−2). Moreover, for the three highest val-
es, the evolution of feasible individuals ratio in the population
uring a run is shown in Fig. 7. After fifty generation, the ratio
tabilizes between 30% and 40% for ρ = 102 and ρ = 104, but
rops down when ρ is equal to 1. The best feasible solution
ound for this last penalty factor is equal to 621,973 (this value
oes not appear in Table 3 since the best result found by the GA
620,137) is slightly infeasible) and is quite interesting since it
s only 0.21% higher than the optimal value.

Finally, 2% and 5% dispersions increase markedly when the ρ

actor decreases (Fig. 8) since it is easier to find low-valued indi-

iduals. For ρ = 10−4, the dispersions exhibit equivalent results
s those obtained with the elimination technique. For ρ = 1, it
hould be noted that the dispersions concerning only feasible
olutions found in each run (which does not appear in Fig. 8) are
619,464 622,783 622,245
−0.19 0.35 0.26
0.43 0.01 0.0

uite high: 58% and 100% of the runs found a feasible solution
loser than the above-mentioned 621,973 value plus respectively
% and 5%.

So, the efficiency of this constraint handling mode is demon-
trated in terms of computational time. Some values of the
enalty factor even provide dispersions that turn out to be quite
atisfactory. Nevertheless, the choice of an appropriate ρ value
s disrupted by the antagonism between criterion quality and
olution feasibility. The number of feasible solutions is not truly
ignificant for this example since its medium-complexity does
ot prevent from finding, whatever the encountered case, near-
ptimal solutions.

However, this criterion will be much more important when,
or larger size examples, the location of feasible solutions will
Fig. 8. Dispersions for different ρ values.

ns rat

r
t

5

s
u
r
f
c
i
n
T
i

t
b
5
r
c
H
a

l
i
w
t
b
p
N
s
6
p

w
T
r

r
t
t
f

n
a
N
t
r

t
l
b
d
b

w
T
b
t
the value shows a decreasing trend when the relaxation is larger.
For the last case (Nmax = 6), the number of infeasible individuals
tested to generate the initial population is divided by a 100 fac-
tor regarding the elimination method. So, the additional cost of

Fig. 10. Two percent to 5% dispersions for relaxation method.

Table 4
Results for the relaxation method
Fig. 9. Evolution of feasible solutio

atio loss. So, the most appropriate compromise between these
wo possibilities turns to be the second one.

.3. Discrete upper bound relaxation

The first results that have to be checked is the effect of GA on
olution feasibility, in order to justify the good behaviour of the
pper bound relaxation for discrete variables. Charts in Fig. 9
epresent: (a) the evolution, generation after generation, of the
easible solution ratio in a broad sense, i.e. respecting the time
onstraint only; (b) the evolution of the feasible solutions ratio
n a strict sense, respecting the initial upper bound on equipment
umber per stage (in addition to the constraint time, obviously).
rivially, the relaxed upper bound is necessarily respected since

t is integrated in the variables encoding.
The Goldberg’s roulette wheel, which involves the genera-

ion of a fully feasible initial population (in a broad sense) can
e observed in Fig. 9(a). The curves that correspond to Nmax = 4,
and 6 are almost merging together. The feasible solutions

atio in a broad sense then decreases inevitably as the stochastic
rossover and mutation processes create infeasible individuals.
owever, for all the three cases, the rate stabilizes between 65%

nd 70% from generation 40.
In Fig. 9(b), the feasible solutions ratio in a strict sense fol-

ows a conflicting evolution. The initial population does not
nvolve any solution respecting the three items per stage limit,
hich is the required effect. Then, the Genetic Algorithm seems

o guide the search towards minimization of the equipment num-
er since the three curves rise until reaching a plateau. The
lateau value depends on the relaxation degree: the lower is
max, then the higher will be the pressure towards (really) fea-

ible regions. So, the values for the plateau are 32%, 48% and
2% for an upper bound respectively relaxed to 4, 5 and 6 items
er operating stage.

It is to note that no failure is to be lamented (i.e. a run for
hich no one feasible solution is found during the whole search).
his reinforces the GA ability to reduce the items number while

especting the time constraint.
With regard to results quality presented in Fig. 10, the first
emark is that the best solutions found are all very close to
he global optimum, thus no conclusion could be drawn from
his values. Moreover, a better reliability of lower relaxations is
ound. This behaviour is not a surprise since their greater harsh-

B
O
C

io: (a) strict sense; (b) broad sense.

ess makes them look like the elimination technique (which is
lso shown as a reference). Nevertheless, the 2% dispersion for
max = 4 is still equal to the half-part of the elimination one:

he efficiency loss is huge. For an extreme value (Nmax = 6), the
esults are finally far from being satisfactory.

So, the most viable option seems to be a low relaxation of
he discrete upper bound, but this one has a computational price:
ast row of Table 4 indicates that the CPU time is almost divided
y two from Nmax = 4 to Nmax = 6. Admittedly, the 2 s absolute
ifference is weak, but it is easily predictable that the gap should
e quite higher for a larger size example.

Finally, it must be kept in mind that the computational time
ith the elimination technique is 10 or 15 times greater (35 s).
he CPU time differences between the various relaxations can
e related to the number of visited solutions in order to be able
o create a feasible initial population. As it is plotted in Fig. 11,
Nmax = 4 Nmax = 5 Nmax = 6

est solution 622,433 621,322 621,906
ptimal gap (%) 0.29 0.11 0.20
PU time (s) 4.5 2.7 2.3

o
t

5

f
p
e

a
a
t
a
t
w
o
t
t
c
t

b
a
f
t
v

F
s

w
f
c
t
s
d
i

F
d
u
d
e
a
i
i
t
i

p
r
b
t

T
R

(

(

Fig. 11. Visited individual number to create the initial population.

bjective function evaluation becomes insignificant with regard
o the total evaluation number.

.4. Dominance-based tournament

The computational time for this method is logically identical
or all tested tournament versions, i.e. 2 s. Indeed, just like in the
enalisation technique, the real number of objective function
valuations is equal to the theoretical one (MaxGen × PopSize).

Results of Table 5(a) and (b) point out that, as for the relax-
tion case, the best found solutions for all tournament versions
re all close to the optimal solution (from 0.23% to 0.65%). So
his criterion does not allow drawing any significant conclusions
bout superiority of some combinations on other ones. Besides,
he last row of Table 5, showing the failure ratio, highlights the
eakness of the combinations that were pointed out to be, a pri-
ri, the less selective ones. Indeed, the failure number is higher
han 0 for the (3, 2) version and concerns almost a half-part of
he runs for the (5, 4) tournament. Since the tackled example
omplexity is only medium, this trend does not encourage to try
o apply these versions to larger size examples.

So the two remaining criteria that should help to decide
etween the various options are now 2% and 5% dispersions

nd the feasible solutions ratio. Fig. 12 shows the evolution of
easible solutions ratio, generation after generation, and exhibits
he bad performances of (3, 2) and (5, 4) tournaments. For both
ersions, the encountered feasible solutions ratio keeps being

h

o
c

able 5
esults for different tournament versions

(NComp = 2, NWin = 1)

a)
Best result 622,269
Optimal gap (%) 0.26
Failure ratio (%) 0

(4, 2) (5, 1)

b)
Best result 622,035 623,819
Optimal gap (%) 0.23 0.51
Failure ratio (%) 0 0
ig. 12. Evolution of feasible solutions ratio (curves and legend written in the
ame order).

eak. This remark should nevertheless be moderated by the
act that the feasible solution number is actually an average cal-
ulated according to the 100 runs without taking into account
he failed runs. This means that, for instance, in the (5, 4) case
howing a 45% failure rate, the feasible solutions ratio must be
ivided by (1–0.45) to get the average feasible individuals ratio
n a successful run.

This “corrected” version for (5, 4) tournament was plotted in
ig. 12 just for the sake of illustration, as it could have been
one for the (3, 2) combination. But the corresponding val-
es still remain lower than 30%. This analysis highlighted a
ouble unfitness of this tournament version, concerning both
xploration and intensification. On the one hand, it is not reli-
ble to push individuals towards the feasible region when this
s not determined yet. On the other hand, when a feasible point
s found, this kind of tournament is unable to exert pressure on
he individuals towards the located feasible region in order to
ntensify the search in this promising zone.

Regarding the other combinations, all of them seem quite
erforming. They all show almost identical feasible solutions
atios, except the (2, 1) and (4, 2) versions which prove to be a
it lower. It is to note that the curves can be classified according
o an increasing order of the ratio NComp/NWin. As predicted, the
igher is this ratio, the more feasible solutions are got in a run.
The dispersions plotted in Fig. 13 reinforce the low quality
f (5, 4) tournament. An analysis similar to the previous one
an be carried out to correct the dispersions values according to

(3, 1) (3, 2) (4, 1)

622,921 622,246 624,671
0.37 0.26 0.65
0 7 0

(5, 2) (5, 4) T.U.

623,840 622,638 623,093
0.52 0.32 0.40

45 0

t
c
T
w
o
i
t
f
v

m
t
t
a
w
p
t
v
e
i
q

w
t
t
c
i

m
s
m
c

a
s
d
I
n
A
i
s
p
i

c
o
o
a
i
s
m

5

Fig. 13. Dispersions for different tournament versions.

he failure number. This allows some moderation but it does not
hange the negative conclusions about the mentioned versions.
hen, it must be pointed out that the (5, 1) combination, which
as the best one in terms of solutions feasibility, is in the case
f dispersions among the worst tested versions. This behaviour
s disappointing and no explanation was found to account for
his failing. But this trend has to be moderated since the results
or the (5, 1) tournament do not lie far from the average of other
ersions.

Considering the best combinations, the single tournament
ethod shows a huge superiority on the other ones. Then comes

he (4, 2) version. Between the two above-mentioned extremes,
he statistic qualities of the results provided by the other versions
re quite identical. Finally, the most favourable compromise is,
ithout any doubt, the single tournament method. Indeed, its
erformances for dispersions as well as number for feasible solu-
ions found during the search belong to the best ones among the
arious tested combinations. However, the comparison with the
limination technique highlights the fact that even if this last one
s really slower, it keeps being the best one in terms of solution
uality.

Nevertheless, it is to note that the way the single tournament
orks involves the removal of the tournament stochastic charac-
er. This effect is usually obtained through the random choice of
he competitors among the population. In the single tournament
ase, only the very best individuals are selected. Furthermore,
ts operating mode underlies that the pressure towards a mini-

a
n

Fig. 14. Study on
Fig. 15. Pareto non-dominated solutions.

ization of the objective function is exerted only when all the
elected surviving individuals are feasible. These two aspects
ay tend to deteriorate the diversity in the population, which

ould be penalising for more constrained problems.
To overcome this difficulty, it is recommended in [18] to use

niching technique such as the one described in the second
ection. In [21], another technique to preserve the individuals
iversity consists in applying a tournament with a probability Sr.
f a random number is higher than Sr, the tournament winner is
ominated randomly. Such a method was adopted in this work.
ccording to the above mentioned dominance rules, the best

ndividuals among the population are determined. Then, each
urvivor is selected among the single tournament winners with a
robability Sr. If a random number is higher than Sr, the survivor
s randomly chosen in the whole population.

It is suggested in [21] to use Sr values between 0.8 and 1. Some
omputations were carried out to test this parameter influence,
nly for the single tournament case. As proven by Fig. 14, the
btained results are not convincing, for the dispersions as well
s for the feasible solution number: the simplest version (Sr = 1)
s the most efficient. However, it is not possible to generalize,
ince for larger size instances of the problem, this diversification
ethod could be useful.

.5. Multiobjective strategy
The Pareto front, i.e. the set of non-dominated individu-
ls according to the Pareto sense is shown in Fig. 15. A first
egative comment is that there is no feasible non-dominated

Sr influence.

s
c
m
b
c
a
T
i
i
t
t

6

f
c
S
w
m
a
s

t
p
o
i
o
m
b
e
t
i
t
n
t
t
f
b
b

t
i
b
r
s
e
n
n
f
b
t

m
n
h
c

t
m

A

a
b
B
c
d

D

g

H
H
i
I
j
J
J
k
K
K

m
n

p
p

P
P
Q
R
R

R

S
S
S

T
T

V
V
V
V

G

olution. The solution characterized by the smallest amount of
onstraint violation (10%) lies at almost 25% of the global opti-
um of the mono-objective initial problem. The two solutions

eing the closest to the optimal value propose an investment
ost improvement equal to 2.36% and 3.86%, but they show an
mount of constraint violation of respectively 56% and 58%.
hese solutions may be helpful in a decision helping aim, but

n the framework of mono-objective optimisation they are few
nteresting. In addition, one-run computational time, mainly due
o the Pareto sorting procedure, is time expensive, 20 min. So
he results are rather inconclusive for this method.

. Conclusions

The aim of this study was to determine a technique that, in the
ramework of optimal batch plant design problems, should be
ompetitive in terms of computational time and of result quality.
o, a mid-size benchmark example was proposed and solved
ith one same GA implementing various constraint handling
odes: elimination, penalisation, relaxation of discrete vari-

bles bounds, dominance-based tournament and multiobjective
trategy.

The first remark is that among the five studied techniques,
hree of them need the tuning of one or several parameters: static
enalty factor, value of the relaxed discrete upper bound, terms
f the tournament, etc. This makes a drawback towards the elim-
nation and multiobjective strategies. However, this latter turns
ut to be quite unadapted to the presented mono-objective opti-
isation framework. The elimination technique is yet interesting

ut computationally expensive. Actually, the time spent in gen-
rating a feasible initial population constitutes the bottleneck of
he run. Indeed, methods that are not submitted to this restriction,
.e. penalisation and tournament, are attractive from the compu-
ational time viewpoint since the objective function evaluation
umber is equal to its theoretical value. Then, an intermediate
echnique is the relaxation of discrete upper bounds, for which
he computational cost is quite limited. But it is predictable that,
or larger size problems, an appropriate tuning of the upper
ound should be necessary to find a satisfactory compromise
etween solution quality and time efficiency.

As regard to the result quality, it is clear that the elimina-
ion technique is the best one. Besides, the result quality is quite
nteresting for two factor values of the penalisation technique
ut the feasible solution number is not convincing. The same
emark is valid for the relaxation method, which shows good
olutions for the fewest relaxed cases. But the necessary param-
ter tuning to prevent the time cost from becoming prohibitive is
ot encouraging. Finally, concerning the dominance-based tour-
aments, the best option is the single tournament. The visited
easible solutions and the study of the result dispersions provided
y various runs exhibit a similar behaviour to the elimination
echnique.

It can be concluded that the elimination constraint handling

ode is attractive when the computational time is not a bottle-

eck for calculations. When the problem complexity involves
igh computational time, the single tournament may be an effi-
ient alternative. These guidelines should be useful for selecting

α

β

γ

Θ

he most appropriate constraint handling technique for the treat-
ent of similar problems of batch plant design.

ppendix A. Nomenclature

j cost factor for batch stage j
k cost factor for semi-continuous stage k
is batch size for product i in batch stage s (kg)
s cost factor for intermediate storage tanks
ij power coefficient for processing time of product i in

batch stage j
ik duty factor for product i in semi-continuous stage k

(L kg−1)
ij coefficient for processing time of product i in batch

stage j
time horizon (h)

i production time of product i (h)
index for products
total number of products
index for batch stages
total number of batch stages

s total number of batch stages in sub-process s
index for semi-continuous stages
total number of semi-continuous stages

s total number of semi-continuous stages in sub-process
s

j number of parallel out-of-phase items in batch stage j
k number of parallel out-of-phase items in semi-

continuous stage k
ij processing time of product i in batch stage j (h)
0
ij constant for calculation of processing time of product

i in batch stage j (h)
rodi global productivity for product i (kg/h)
rodlocis local productivity for product i in sub-process s (kg/h)
i demand for product i
k processing rate for semi-continuous stage k (L h−1)
max maximum feasible processing rate for semi-continuous

stage k (L h−1)
min minimum feasible processing rate for semi-continuous

stage k (L h−1)
total number of sub-processes

ij size factor of product i n batch stage j (L kg−1)
is size factor of product i in intermediate storage tanks

(L kg−1)
ij cycling time of product i in batch stage j (h)
L
is limiting cycling time of product i in sub-process s (h)
j size of batch stage j (L)
max maximum feasible size of batch stage j (L)
min minimum feasible size of batch stage j (L)
s size of intermediate storage tank (L)

reek letters

j power cost coefficient for batch stage j
k power cost coefficient for semi-continuous stage k
s power cost coeficient for intermediate storage
ik operating time of product i in semi-continuous stage k

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

eferences

[1] G.R. Kocis, I.E. Grossmann, Global optimization of nonconvex mixed-
integer non-linear programming (MINLP) problems in process synthesis,
Ind. Eng. Chem. Res. 27 (1998) 1407–1421.

[2] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, GAMS User’s Guide,
GAMS Development Corporation, 1998.

[3] A.K. Modi, I.A. Karimi, Design of multiproduct batch processes with finite
intermediate storage, Comput. Chem. Eng. 13 (1989) 127–139.

[4] A.N. Patel, R.S.H. Mah, I.A. Karimi, Preliminary design of multiproduct
non-continuous plants using simulated annealing, Comput. Chem. Eng. 15
(1991) 451–469.

[5] C. Wang, H. Quan, X. Xu, Optimal design of multiproduct batch chem-
ical process using genetic algorithms, Ind. Eng. Chem. Res. 35 (1996)
3560–3566.

[6] C. Wang, H. Quan, X. Xu, Optimal design of multiproduct batch chemical
process using tabu search, Comput. Chem. Eng. 23 (1999) 427–437.

[7] C. Wang, Z. Xin, Ants foraging mechanism in the design of batch chemical
process, Ind. Eng. Chem. Res 41 (2002) 6678–6686.

[8] J.M. Montagna, A.R. Vecchietti, O.A. Irribarren, J.M. Pinto, J.A. Asenjo,
Optimal design of protein production plants with time and size factor
process models, Biotechnol. Prog. 16 (2000) 228–237.

[9] J.H. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, MI, 1975.

10] C.A. Coello Coello, Theoretical and numerical constraint-handling tech-
niques uses with evolutionary algorithms: a survey of the state of the art,
Comput. Meth. Appl. Mech. Eng. 191 (2002) 1245–1287.

11] Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for constrained
parameters optimization problems, Evol. Comput. 4 (1996) 1–32.

12] J.T. Richardson, M.R. Palmer, G. Liepins, M. Hilliard, Some guidelines for
genetic algorithms with penalty functions, in: D. Schaffer (Ed.), Proceed-
ings of the Third International Conference on Genetic Algorithms, George
Mason University, Morgan Kaufmann Publishers, 1989, pp. 191–197.

13] W.H. Wu, C.Y. Lin, The second-generation of self organizing adaptive
penalty strategy for constrained genetic search, Adv. Eng. Softw. 35 (2004)
815–825.

14] Z. Michalewicz, Genetic algorithms, numerical optimization, and con-

straints, in: L. Eshelman (Ed.), Proceedings of the Sixth International
Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San
Mateo, 1995, pp. 151–158.

15] A. Homaifar, S.H.Y. Lai, X. Qi, Constrained optimization via genetic algo-
rithms, Simulation 62 (1994) 242–254.

[

16] A.B. Hadj-Alouane, J.C. Bean, A genetic algorithm for the multiple-choice
integer program, Operat. Res. 45 (1997) 92–101.

17] C.A. Coello Coello, Use of a self-adaptive penalty approach for engineering
optimization problems, Comput. Industr. 41 (2000) 113–127.

18] K. Deb, An efficient constraint handling method for genetic algorithms,
Comput. Meth. Appl. Mech. Eng. 186 (2000) 311–338.

19] L. Costa, P. Oliveira, Evolutionary algorithms approach to the solution of
mixed integer non-linear programming problems, Comput. Chem. Eng. 25
(2001) 257–266.

20] Z. Michalewicz, D. Dasgupta, R.G. Le Riche, M. Schoenauer, Evolutionary
algorithms for constrained engineering problems, Comput. Ind. Eng. 30
(1996) 851–870.

21] C.A. Coello Coello, E. Mezura Montes, Constraint-handling in genetic
algorithms through the use of dominance-based tournament selection, Adv.
Eng. Informat. 16 (2002) 193–203.

22] C.M. Silva, E.C. Biscaia Jr., Genetic algorithm development for multiob-
jective optimization of batch free-radical polymerization reactors, Comput.
Chem. Eng. 27 (2003) 1329–1344.

23] Y.C. Hou, Y.H. Chang, A new efficient encoding mode of genetic algo-
rithms for the generalized plant allocation problem, J. Informat. Sci. Eng.
20 (2004) 1019–1034.

24] Z. Michalewicz, N.F. Attia, Evolutionary optimization of constrained prob-
lems, in: A.V. Sebald (Ed.), Proceedings of Third Annual Conference
of Evolutionary Programming, World Scientific, Singapore, 1994, pp.
98–108.

25] A. Dietz, C. Azzaro-Pantel, L. Pibouleau, S. Domenech, A framework for
multiproduct batch plant design with environmental considerations: appli-
cation to protein production, Ind. Eng. Chem. Res. 44 (2005) 2191–2206.

26] P. Chootinan, A. Chen, Constraint handling in genetic algorithmsising a
gradient-based repair method, Comp. Operat. Res. 33 (2006) 2263–2281.

27] X. Xu, G. Zheng, S. Cheng, Optimal design of multiproduct batch chem-
ical process—a heuristic approach, Chem. Eng. J. 44 (1993) 442–450 (in
Chinese).

28] J. Viswanathan, I.E. Grossmann, A combined penalty function and outer-
approximation method for MINLP optimisation, Comput. Chem. Eng. 14
(1990) 769–782.

29] A. Ponsich, C. Azzaro-Pantel, L. Pibouleau, S. Domenech, in: Michalewicz,

Z., Siarry (Eds.), Some guidelines for Genetic Algorithm implementation
in MINLP Batch Plant Design problems, Springer volume Metaheuristics,
in press.

30] D.E. Golberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Publishing Company Inc., MA, 1989.

