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Abstract

This paper addresses the problem of estimating the polarization degree of polarimetric images in

coherent illumination. It has been recently shown that the degree of polarization associated to polarimetric

images can be estimated by the method of moments applied to two or four images assuming fully

developed speckle. This paper shows that the estimation can also be conducted by using maximum

likelihood methods. The maximum likelihood estimators of the polarization degree are derived from the

joint distribution of the image intensities. We show that the joint distribution of polarimetric images

is a multivariate gamma distribution whose marginals are univariate, bivariate or trivariate gamma

distributions. This property is used to derive maximum likelihood estimators of the polarization degree

using two, three or four images. The proposed estimators provide better performance that the estimators

of moments. These results are illustrated by estimations conducted on synthetic and real images.

Index Terms

Polarimetric images, degree of polarization, maximum likelihood estimator, multivariate gamma distri-

butions.
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I. INTRODUCTION

Polarimetric imagery allows one to analyze the polarimetric properties of the light backscattered or

transmitted by a scene. It gives complementary information to standard intensity images. The materials

which compose the scene are of different nature which induces different reflection or transmission of the

received light. In particular, the modification of the state of polarization of the received light can be related

to the kind of material affected by this light. Polarimetric imaging has been used successfully in many

image processing applications. For instance, in medical applications, polarimetry provides information

about the loss of birefringence of the collagen when the skin is damaged, allowing one to classify

normal and thermally damaged skins [1]. In military applications, polarimetry can be used to detect

small targets embedded in a background clutter like minefield [2], [3]. Other examples of applications

where polarimetry has shown interesting properties include computer vision [4], [5], [6], [7], remote

sensing [8], astrophysics [9], separation of diffuse and specular components [10], underwater imaging

[11], image dehazing [12].

Polarimetric imaging systems can be divided into two categories: passive [13], [14] and active [15],

[16]. When active polarimetric imagery [17] is used, the scene is often illuminated with a coherent source

of light, typically a laser beam. This type of imagery is interesting as it controls the emitted light allowing

to obtain images by night and to facilitate the interpretation of the polarization state of the reflected light.

The use of a laser beam has supplementary advantages. Its high directivity supports uniform illumination

and its wavelenght improves the resolution for a given aperture. However when coherent light is used as

a source of illumination, the polarimetric images are degraded by speckle fluctuations [18]. The speckle

introduces a granulous structure in the images which deteriorates the analysis of the polarimetric properties

of the light from the images. This phenomenon limits the use of a laser when no statistical consideration

of the speckle is introduced [19]. We propose in this paper to take advantage of the speckle noise in

order to obtain informations on the polarimetric properties of the light backscattered by the objects.

In order to analyze the polarimetric properties of the light coming from the scene, the covariance matrix

of the Jones vector is usually estimated [20]. In particular, the knowledge of this covariance matrix allows

one to compute the degree of polarization (DoP) of the light [18]. Some interesting polarization properties

of the materials in the scene can be deduced from this scalar parameter. As a consequence estimating the

DoP is important in many field such as in optical fiber transmission for reflecting the degree of waveform

degradation caused by polarization mode dispersion [21], in quantum optics for characterizing polarimetric

properties in this non classical optics [22]. The DoP is also used for analyzing the beam propagation in a
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turbulent atmosphere [23], for determining surface orientation of objects [24], as discrimination criterion

by which to reject multiply scattered photons [25], and for medical applications [26].

In standard Stokes coherent imagery [27], four images are needed to access to the DoP. These systems

consist of a laser which illuminates the scene of interest, a quarter-wave plate which introduces a phase

shift to the electrical field and a polarizer which transmits the light in a particular direction. Four

configurations of the couple quarter-wave plate/polarizer are used to obtain the different images.

In front of the complexity and the amount of polarimetric data to analyze, it seems intesting to develop

methods that reduces the measurement time, the cost of the imagery systems as well as the complexity of

the systems. Some methods have been proposed to reduce the number of acquired images. For example,

the Orthogonal State Contrast Image (OSCI) [28], [29] gives access to polarimetric properties of the

light using only two images. However, the OSCI is only an estimate of the degree of polarization in

the particular cases of pure depolarizers. Recently we have shown that when coherent illumination is

considered the DoP can be estimated with moment based estimators with two images and assuming fully

developped speckle [30] and with only a single image [31], [32] for a more general model of the speckle.

We propose in this paper maximum likelihood estimators of the DoP under coherent illumination assuming

fully developped speckle that offers better performances as the moment based estimators. The study is

carried out by decreasing the number of avalaible images from 4 to 2 images.

The paper is organized as follows. Section II recalls some important results regarding the statistical

properties of the Stokes vector. Section III and IV address the problem of estimating the DoP of

polarimetric images using maximum likelihood (ML) and moment methods. Different situations are

considered depending on the number of available images. Estimation results conducted on synthetic and

real data are presented in section V and VI respectively. Conclusions and perspectives are reported in

Section VII.

II. BACKGROUND

The light can be described by a monochromatic electrical field propagating in the eZ direction in an

homogeneous and isotropic medium at a point r, at time t

E(r, t) = [AX(r, t)eX +AY (r, t)eY ]e−i2πνt, (1)

where ν is the vibration central frequency, A(r, t) = [AX(r, t), AY (r, t)]T is the Jones vector whose

components are complex. For obvious simplicity reasons, the notations A = A(r, t), AX = AX(r, t)

and AY = AY (r, t) will be used in the rest of the paper. The state of polarization of the light can be
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described by the random behavior of the Jones vector whose covariance matrix, called the polarization

matrix, is

Γ =

E [AXA∗X ] E [AXA∗Y ]

E [AYA∗X ] E [AYA∗Y ]

 ,

 a1 a3 + ia4

a3 − ia4 a2

 , (2)

where E [·] and ∗ denote the mathematical expectation and the complex conjugate, respectively. The

covariance matrix Γ is a non negative hermitian matrix whose diagonal terms are the intensity components

in the X and Y directions. The cross terms of Γ are the correlations between the Jones components. If

we assume a fully developed speckle, the phase of the light reflected by the elementary diffusers (which

constitute the diffusing surface of the scene) is uniformly distributed. In this case, the Jones vector A is

distributed according to a complex Gaussian distribution with probability density function (pdf) [18]

pA(A) =
1

π2|Γ|
e−A†Γ−1A, (3)

where |Γ| is the determinant of the matrix Γ and † denotes the conjugate transpose operator. The different

components of the covariance matrix Γ can be classically estimated by using four intensity images. The

two first images I1 and I2 are obtained by analyzing the light backscattered by the scene in two orthogonal

states of polarization. This is done by introducing a polarizer between the scene and the camera, that

is parallel or orthogonal to the incident light. The third intensity I3 is obtained by recording the light

backscattered in the direction oriented to 45˚ from the incident light, by modifying the orientation of

the polarizer. Finally the last image I4 is obtained by adding a quarter wave plate, before the polarizer,

in order to introduce a phase difference of λ/4 in the previous configuration. As a consequence, the four

intensities are related to the components of the Jones vector as follows:

I1 = |AX |2, I2 = |AY |2,

I3 =
1
2
|AX |2 +

1
2
|AY |2 + Re (AXA∗Y ) ,

I4 =
1
2
|AX |2 +

1
2
|AY |2 + Im (AXA∗Y ) .

(4)

The DoP of a given pixel of the polarimetric image is defined by [33, p. 134-136]

P 2 = 1− 4
|Γ|

[trace (Γ)]2
= 1−

4
[
a1a2 − (a2

3 + a2
4)
]

(a1 + a2)2
, (5)

where trace (Γ) is the trace of the matrix Γ. The DoP characterizes the state of polarization of the light:

the light is totally depolarized for P = 0, totally polarized for P = 1 and partially polarized when

P ∈ ]0, 1[. This paper studies different DoP estimators for polarimetric images at a given pixel. Since

only one realization of the random vector I = (I1, I2, I3, I4)T is available for this pixel, the images

are supposed to be locally stationary and ergodic. These assumptions allow us to build estimates using
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several neighbor pixels belonging to a so-called estimation window. The estimators derived in this paper

assume there is no spatial correlation between the pixels of the estimation window. This is a realistic

hypothesis in many configurations of optical systems1.

III. DOP ESTIMATION USING ML METHODS

This section studies DoP estimators based on several vectors I1, . . . , In associated to the n pixels of

the the estimation window, where Ij denotes the intensity vector associated with the jth pixel. These

estimators are constructed from estimates of the covariance matrix elements ai, i = 1, ..., 4. Different

estimators are studied depending on the number of available polarimetric images, i.e. 2, 3 or 4 polarimetric

images. The first step is to derive the joint distribution of the intensity vector I . This joint distribution

and its margins will be used to derive the different estimators.

A. Joint distribution of the intensity vector

To determine the distribution of a random vector I , it is very usual to determine its Laplace transform

(also denoted as moment generating function) defined as

LI(θ) = E

exp

− 4∑
j=1

θjIj

 , (6)

where θ = (θ1, θ2, θ3, θ4)T ∈ R4. The intensity vector I is related to the random hermitian matrix

S = AA† where

S =

 s1 s3 + is4

s3 − is4 s2

 =

 |AX |2 AXA
∗
Y

AYA
∗
X |AY |2

 .

Indeed, by using (4) and by denoting s = (s1, s2, s3, s4)T , the following relation can be obtained

s = MI =


1 0 0 0

0 1 0 0

−1/2 −1/2 1 0

−1/2 −1/2 0 1

 I. (7)

As a consequence, the Laplace transform of I is defined as

LI(θ) = E
[
exp

(
−θT I

)]
= E

[
exp

(
−θTM−1s

)]
= Ls

(
M−Tθ

)
. (8)

1Introducing spatial correlation between the different pixels of the estimation window would be interesting. However, it would

increase considerably the computational complexity of the DoP estimators proposed in this paper
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On the other hand, the Laplace transform of the matrix S is defined as

LS(Θ) = E [exp [− trace (SΘ)]] , (9)

where

Θ =

 θ1 θ3 + iθ4

θ3 − iθ4 θ2

 .

Straightforward computations allow one to show that

trace (SΘ) = θ1s1 + θ2s2 + 2θ3s3 + 2θ4s4,

hence

LS(Θ) = Ls (θ1, θ2, 2θ3, 2θ4) , (10)

which allows one to relate the two Laplace transforms LS and Ls.

Using the complex Gaussian assumption for A, it is well known that the hermitian matrix S = AA†

is distributed according to a complex Wishart distribution [34] whose Laplace transform is

LS(Θ) = E {exp [− trace (SΘ)]} = |I2 + ΓΘ|−1, (11)

where I2 is the 2 × 2 identity matrix and Θ is a 2 × 2 hermitian matrix ensuring existence of LS(Θ).

This allows one to determine Ls(θ) using (10), and LI(θ) using (8). The following result is obtained

LI(θ) =
1

P (θ)
, (12)

where P (θ) is an affine polynomial2 defined as

P (θ) = 1 +αTθ + k [2θ1θ2 + θ3θ4 + (θ1 + θ2)(θ3 + θ4)] ,

with α = [a1, a2, (a1 + a2 + 2a3)/2, (a1 + a2 + 2a4)/2]T and k = 1
2(a1a2−a2

3−a2
4). As a consequence,

the intensity vector I = (I1, I2, I3, I4)T is distributed according to a multivariate gamma distribution

(MGD) as defined in [35], [36]. Moreover, according to (12), the distribution of the intensity vector I is

fully characterized by the parameter vector α, or equivalently by a = (a1, a2, a3, a4)T .

2A polynomial P (z) where z = (z1, . . . , zd) is affine if the one variable polynomial zj 7→ P (z) can be written Azj + B

(for any j = 1, . . . , d), where A and B are polynomials with respect to the zi’s for i 6= j.
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B. DoP estimation using 4 images

Using the properties of MGDs, it can be shown that the maximum likelihood estimator (MLE) of

α = E [I] is

α̂ML =
1
n

n∑
j=1

Ij .

This result is classical and was for instance mentioned in [37, p. 237] or [30]. The mean of the intensity

vector is related to the vector a as follows

α1 = E [I1] = a1, α3 = E [I3] = (a1 + a2 + 2a3) /2,

α2 = E [I2] = a2, α4 = E [I4] = (a1 + a2 + 2a4) /2,

i.e., a = Mα. The functional invariance principle [38, p. 176] can then be used to derive the MLE of a

âML = Mα̂ML.

The MLEs of the parameters ai, i = 1, ..., 4, are then plugged into (5) yielding an estimate of the

polarization degree P 2 based on 4 polarimetric images. This yields the classical estimator of the DoP

(see for instance [27, p. 340])

P̂ 2
4 = 1−

4
[
â1â2 − (â2

3 + â2
4)
]

(â1 + â2)2
. (13)

Interestingly, the asymptotic variance of the estimator P̂ 2
4 can be determined. Using the relation α̂ML =

1
n

∑n
j=1 I

j , it can be proved that the MLE of a is unbiased and efficient, providing an optimal estimation

of a. Moreover, the covariance matrix of âML is expressed as

cov (âML) =
1
n
Mcov (I)MT ,

where cov (I) is the covariance matrix of the intensity vector I . The covariance matrix cov (I) can

be computed by using the moments of a bivariate gamma distribution. Indeed, by setting θi = 0, for

i /∈ {k, l} in (12), the Laplace transform of the vector (Ik, Il) is shown to be the Laplace transform of a

bivariate gamma distribution. The second-order moments of the intensity vector I can then be computed.

Straightforward computations lead to

cov (âML) =
1
n


a2

1 a2
3 + a2

4 a1a3 a1a4

a2
3 + a2

4 a2
2 a2a3 a2a4

a1a3 a2a3 c3,3 a3a4

a1a4 a2a4 a3a4 c4,4

 , (14)
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with c3,3 = (a1a2 + a2
3− a2

4)/2 and c4,4 = (a1a2− a2
3 + a2

4)/2. The asymptotic variance of the estimator

(13) is its Cramer-Rao bound which expresses as

varA

(
P̂ 2

4

)
= GT4 cov (âML)G4 =

2(1− P 2)2P 2

n
, (15)

where

G4(a) =
(

4(a1a2 − a2
2 − 2a2

3 − 2a2
4)

(a1 + a2)3
,
4(a1a2 − a2

1 − 2a2
3 − 2a2

4)
(a1 + a2)3

,
8a3

(a1 + a2)2
,

8a4

(a1 + a2)2

)T
(16)

is the gradient of the function g4 : a 7→ g4(a) = P 2 (see [38, p. 45] for details). Note that the expression

(15) of the asymptotic variance of P̂ 2
4 has already been obtained in [30] using a Taylor expansion of

P 2 around its true value. However, the proposed methodology to determine varA

(
P̂ 2

4

)
is interested

since it will be generalized to other DoP estimators. Note also that the asymptotic variance of P̂ 2
4 (i.e.

the asymptotic variance of the DoP estimator based on 4 images) only depends on the parameters ai,

i = 1, ..., 4 through P 2 and that this function of P 2 is maximum for P 2 = 1/3. This property will be

confirmed in our simulation results.

C. DoP estimation using 3 images

Straightforward computations using (4) show that the intensity vector I belongs to a cone whose

equation is:

[I3 − (I1 + I2)/2]2 + [I4 − (I1 + I2)/2]2 = I1I2.

Consequently, the distribution of I is singular and defined on this cone and one can think to estimate

the unknown parameter vector a by using three images only. The analysis is conducted here with Ĩ =

(I1, I2, I3)T . However, similar results could be obtained with Ĩ = (I1, I2, I4)T . The Laplace transform

of Ĩ is obtained by setting θ4 = 0 in (12)

LeI(θ̃) = E

exp

− 3∑
j=1

θjIj

 =
1

P̃ (θ̃)
,

with P̃ (θ̃) = 1 +
∑3

i=1 αiθi + k [2θ1θ2 + θ1θ3 + θ2θ3] and θ̃ = (θ1, θ2, θ3)T . This expression shows that

Ĩ is distributed according to an MGD (since P̃ (θ̃) is an affine polynomial). Interestingly, the density of

the intensity vector Ĩ = (I1, I2, I3)T can be determined. Letac and Wesolowski [39] recently derived the

distributions whose Laplace transforms are

LeI(θ̃) =
[
1− 2cT θ̃ + v(θ̃)

]−p
,
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where p > 0, c ∈ RN and v(θ̃) is a quadratic form of θ̃. By setting N = 3, p = 1, c = 1
2 (α1, α2, α3)T

and v(θ̃) = k [2θ1θ2 + θ1θ3 + θ2θ3] in their results, the following density for the intensity vector Ĩ can

be obtained:

p(Ĩ) =
1

k

√
πv′(Ĩ)

exp
[
−(a2 + a3)I1 + (a1 + a3)I2 − 2a3I3

2k

]
f 1

2

(
a2

4v
′(Ĩ)

16k2

)
IΩ(Ĩ), (17)

where v′(Ĩ) = (I1 +I2)2−(I1−I2)2−(I1 +I2−2I3)2, Ω =
{
Ĩ ∈ R3; v′(Ĩ) > 0

}
, IΩ(Ĩ) is the indicator

defined on Ω, and

fq(z) =
∞∑
m=0

zm

Γ(m+ q)m!
, q > 0,

is related to the the confluent hypergeometric function [40, p. 374]. It is interesting to note here that a

necessary and sufficient condition for p(Ĩ) to be the pdf of a probability distribution on R3 is a1a2 >

a3
3 + a2

4. This condition is not restrictive since it is equivalent to assuming that the covariance matrix of

the Jones vector defined in (2) is positive definite. The MLE of a based on three images can be obtained

by differentiating p(Ĩ) with respect to each component of a. By differentiating p(Ĩ) with respect to

a1, a2 and a3, the following relation can be obtained
â1

â2

â3

 =


1 0 0

0 1 0

−1/2 1 −1/2



α̂1

α̂2

α̂3

 ,

with α̂l = 1
n

∑n
j=1 I

j
l for l = 1, 2, 3. After replacing â1, â2 and â3 in ∂p(eI)

∂a2
4

= 0, Appendix I shows that

the MLE of parameter a2
4 (denoted as ã2

4) satisfies the following nonlinear equation

1
2n

n∑
j=1

√√√√√v′
(
Ĩ
j
)

ã2
4

tanh


√
ã2

4v
′
(
Ĩ
j
)

d̂− ã2
4

 = 1,

where d̂ = â1 â2 − â2
3. The estimates of (a1, a2, a3) and a2

4 are then plugged into (5) yielding a DoP

estimate based on 3 polarimetric images

P̃ 2
3 = 1−

4
[
â1â2 − (â2

3 + ã2
4)
]

(â1 + â2)2
.

Interestingly, the asymptotic variance of the estimator P̃ 2
3 can be determined. The asymptotic covariance

matrix of the estimator (â1, â2, â3, ã4) (for the unknown parameter vector η = (a1, a2, a3, a
2
4)T ) can be

obtained from the asymptotic efficiency of the MLE. Indeed, the asymptotic covariance matrix of the

January 29, 2009 DRAFT



10

MLE equals the Cramer Rao Lower Bound (CRLB), which is defined as the inverse of the following

Fisher information matrix

F3(η) = −E

[
∂2 log p(Ĩ;η)
∂η∂ηT

]
.

However, the expectations appearing in this expression are difficult to compute analytically because of the

term log f 1
2

appearing in the log-density. In such situation, it is very usual to approximate the expectations

by using Monte Carlo methods. More specifically, this approach consists of approximating the elements

of the Fisher information matrix (FIM) F3 (η) as follows

[F3 (η)]ij ' −
1
N

N∑
k=1

∂2 log p(xk)
∂ηi∂ηj

,

where xk is distributed according to a trivariate gamma distribution whose pdf is defined in (17) and N

is the number of Monte Carlo runs. Finally, the asymptotic variance of P̃ 2
3 can be determined as follows:

var
(
P̃ 2

3

)
= GT3 F

−1
3 G3, (18)

where G3 is the gradient of the transformation from η = (a1, a2, a3, a
2
4) to P 2, i.e.

G3 =
(

4(a1a2 − a2
2 − 2a2

3 − 2a2
4)

(a1 + a2)3
,
4(a1a2 − a2

1 − 2a2
3 − 2a2

4)
(a1 + a2)3

,
8a3

(a1 + a4)2

)T
.

D. DoP estimation using 2 images

The Laplace transform of I = (I1, I2)T can be obtained by setting θ3 = 0 and θ4 = 0 in (12)

LI(θ) = E

exp

− 2∑
j=1

θjIj

 =
1

P (θ)
, (19)

where P (θ) = 1 + a1θ1 + a2θ2 + (a1a2 − a2
3 − a2

4)θ1θ2 and θ = (θ1, θ2)T . As a consequence, the

distribution of I is a bivariate gamma distribution (since P (θ) is an affine polynomial). This distribution

is parameterized by three parameters a1, a2 and r = a2
3+a2

4. As a consequence, one can think of estimating

these three parameters by using the ML method. The density of the bivariate gamma distribution having

the Laplace transform LI(θ) has been defined in [36]:

p(I) =
1
2k

exp
(
−a2I1 + a1I2

2k

)
f1 (cI1I2) IR2

+
(I) ,

with k = 1
2(a1a2 − a2

3 − a2
4) and c = 1

4(a1a2 − 2k)k−2. By differentiating this density with respect to

a1, a2, we obtain

â1 = α̂1, â2 = α̂2,
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with α̂l = 1
n

∑n
j=1 I

j
l for l = 1, 2. These two estimates are then replaced in ∂p(I)

∂r = 0, showing that the

MLE of r satisfies the following nonlinear relation:

â1â2 − r −
1
n

n∑
j=1

Ij1I
j
2

f2

(
rIj

1I
j
2

(ba1ba2−r)2
)

f1

(
rIj

1I
j
2

(ba1ba2−r)2
) = 0.

As in the case of three images, the practical determination of the MLE of r (denoted as r) can be achieved

by using a Newton-Raphson procedure. Note that the convergence of this numerical procedure has been

proved in [41] for specific bivariate distributions. The MLEs of a1, a2 and r are then plugged into (5)

yielding a DoP estimate based on 2 polarimetric images

P 2
2 = 1− 4 (â1â2 − r)

(â1 + â2)2
.

The asymptotic variance of the estimator P 2
2 can be computed similarly to the case of three images

varA
(
P 2

2

)
= GT2 F

−1
2 G2, (20)

where G2 is the gradient of the transformation from (a1, a2, r) to P 2, i.e.

G2 =
(

4(a1a2 − a2
2 − 2r)

(a1 + a2)3
,
4(a1a2 − a2

1 − 2r)
(a1 + a2)3

)T
, (21)

and F−1
2 is the inverse Fisher information matrix for the parameter vector η = (a1, a2, r)T .

IV. DOP ESTIMATION USING MOMENT METHODS

In order to appreciate the performance of the DoP estimators derived above, this section studies

estimators based on the classical method of moments.

A. 4 images

When four polarimetric images are available, the moment estimator of a based on the first order

moments of the intensity vector I = (I1, I2, I3, I4)T is also the estimator derived in section III-B

âMo = Mα̂Mo,

where α̂Mo = 1
n

∑n
j=1 I

j . As a consequence, this estimator is unbiased and efficient providing an optimal

estimation of â.
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B. 3 images

In the case of three observed intensities, the first order moments of Ĩ = (I1, I2, I3)T are

E [I1] = a1,E [I2] = a2,E [I3] =
1
2

(a1 + a2) + a3.

yielding the following moment estimators of a1, a2 and a3:

(ã1, ã2, ã3)T = (â1, â2, â3)T .

Obviously, other moments of Ĩ have to be considered to estimate a2
4. This study focuses on the following

second order moments

E [I1I2] = a1a2 + a2
3 + a2

4, (22)

E [I1I3] = a2
1 +

(a2

2
+ 2a3

)
a1 +

a2
3 + a2

4

2
, (23)

E [I2I3] = a2
2 +

(a1

2
+ 2a3

)
a2 +

a2
3 + a2

4

2
. (24)

The other second order moments E
[
I2

1

]
,E
[
I2

2

]
and E

[
I2

3

]
have not been considered here since they do

not depend on a4. Of course, other higher order moments of the intensities could be considered as well.

However, the estimation performance would not change significantly when using these moments. This

indicates that most information regarding parameter a4 is contained in the moments E [I1I2] ,E [I1I3] and

E [I2I3]. Based on these comments, the proposed method of moments estimates the parameter a2
4 from

(22), (23) and (24) using a non-linear least squares (NLLS) method. As the system is overdetermined, it

is interesting to weight each equation by using the covariance matrix of the estimates. Indeed, suppose

for example that the variance of I1I2 is small with respect to the variances of I1I3 and I2I3. Using the

same weight for (22), (23) and (24) would penalize the estimation with respect to a procedure based

on (22) only. The NLLS method tackles this difficulty by minimizing an optimal weighted least-squares

criterion. The NLLS method for the DoP estimation problem is briefly recalled in the end of this section

(the interested reader is invited to consult [42] for more details).

Denote as f(η) = (E [I1I2] ,E [I1I3] ,E [I2I3])T , as sn the empirical moments associated with f and as

C(η) the covariance matrix C(η) = ncov(sn), where η = (a1, a2, a3, a
2
4)T is the vector of the unknown

parameters. The NLLS estimator of a2
4 is obtained as the solution of the following optimization problem:

ã2
4Mo = arg min

x>0

[
f̃(x)− sn

]T
C̃(x)−1

[
f̃(x)− sn

]
,

with f̃(x) = f(ã1, ã2, ã3, x) and C̃(x) = C(ã1, ã2, ã3, x). As there is no tractable expression for the

criterion to be minimized, the computation of ã2
4Mo is achieved by using a Levenberg-Marquardt gradient
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procedure. The DoP can then be estimated by replacing the values of a1, a2, a3 and a2
4 in (5) by their

moment estimators

P̃ 2
3 Mo = 1−

4
[
â1â2 − (â2

3 + ã2
4Mo)

]
(â1 + â2)2

.

A lower bound for the asymptotic variance of any estimator obtained from a method of moments can

be obtained. This bound was first derived in the context of time series [42]. However, it can also be

applied to the DoP estimation problem. Consider the following function h(·) : RM → RL composed of

the first and second order moments of I , i.e. such that h(I1, I2, I3) = (I1, I2, I3, I1I2, I1I3, I2I3)T with

M = 3 and L = 6. Consider also the following statistic (of size L) defined of empirical moments of the

intensity vector

sn =
1
n

n∑
j=1

h(Ij), (25)

The first and second-order moments of sn classically satisfy the following relations:

E [sn] = f(η) = E
[
h(I1)

]
, (26)

ncov[sn] = C(η) = cov[h(I1)]. (27)

A major result in the framework of moment methods is that the covariance matrix of any estimator of

moments based on sn satisfies the following relation:

ncov[sn] ≥ B(η) =
(
H(η)C(η)−1H(η)T

)−1
, (28)

where ≥ means that the difference between the two matrices is positive definite and H(η) is the Jacobian

matrix of E [h(I1, I2, I3)] whose derivatives are computed with respect to the components of η

H(η) =


1 0 1

2 a2 2a1 + a2
2 + 2a3

a2
2

0 1 1
2 a1

a1
2 2a2 + a1

2 + 2a3

0 0 1 2a3 2a1 + a3 2a2 + a3

0 0 0 1 1
2

1
2

 (29)

Since B(η) uses only the statistical properties of sn, it provides a lower bound on the asymptotic

variances of all estimators constructed from the empirical moments contained in sn. The minimal bound

B(η) can be used to obtain the following minimal asymptotic variance of any moment estimate of the

DoP based on sn

varA

(
P̃ 2

3 Mo

)
≥ GT3B(η)G3. (30)
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C. 2 images

When the intensity vector is I = (I1, I2)T , the moment estimators of a1, a2 and r = a2
3 + a2

4 have

been derived in [30] by using the following set of equations:

E [I1] = a1, E [I2] = a2, (31)

E [I1I2] = a1a2 + r. (32)

The estimators of a1 and a2 are directly related to (31):

(a1, a2)T = (â1, â2)T ,

whereas the estimator of r obtained from (32) is

rMo =
1
n

n∑
j=1

Ij1I
j
2 − â1â2.

The DoP can then be estimated by replacing the values of a1, a2 and r in (5) by their moment estimators

P 2
2 Mo = 1− 4 [â1â2 − rMo]

(â1 + â2)2
.

The asymptotic covariance matrix of the moment estimator vector η
2,Mo

= (â1, â2, rMo)T can be easily

computed as:

varA

(
η

2,Mo

)
=

1
n


a2

1 r 2a1r

r a2
2 2a2r

2a1 2a2r a2
1a

2
2 + 4a1a2r + 3r2

 .

This expression can be used to derive the asymptotic variance of P 2
2 Mo:

varA
(
P 2

2 Mo
)

= GT2 varA

(
η

2,Mo

)
G2, (33)

where G2 is the gradient of the transformation from (a1, a2, r) to P 2, which has been defined previously.

Straightforward computations lead to the following result

varA
(
P 2

2 Mo
)

=
2(1− P 2)2(P 2 + 1/2)

n
+

64a1a2r

n(a1 + a2)4
.

Note that this last result was also obtained in [30] by using a Taylor expansion of P 2 around its true

value.
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TABLE I

POLARIMETRIC IMAGE DOPS.

P 2
0 P 2

1 P 2
2 P 2

3 P 2
4 P 2

5 P 2
6 P 2

7 P 2
8

0 0.2 0.3 0.4 0.5 0.6 0.8 0.9 0.99

TABLE II

COVARIANCE MATRICES OF THE JONES VECTOR.

Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

a1 2 15 1 16 82 18 30 2 1.25

a2 2 6 1 3.6 17 11 14 2 26

a3 0 0.2 0.4 0 0 7 16 0.6 0

a4 0 0.5
√

0.14 0 13 8 8 1.8 5.5

V. ESTIMATION RESULTS ON SYNTHETIC DATA

Several experiments have been conducted to evaluate the performance of the ML and moment estimators

derived in this paper. The first simulations presented here have been obtained with polarimetric images

with 9 different DoPs reported in Table I (inspired from [30]). The corresponding entries of the covariance

matrices of the Jones vector, denoted as Γi for i ∈ {0, . . . , 8}, are given in Table II.

Figure 1 shows the log mean square errors (MSEs) of the square DoP estimates obtained with two

images using the ML method (plus markers) and the method of moments (cross markers). These MSEs

can be compared to those corresponding to 4 images (diamond markers) (note that the ML method and

the method of moments coincide when 4 images are observed, as explained in section IV-A). The loss

of performance obtained when using two polarimetric images instead of four can be clearly observed.

The sample size is n = 15× 15 in these simulations. This corresponds to a square observation window

containing 225 pixels. The theoretical asymptotic log MSEs associated to the ML estimators (dashed

lines) and the asymptotic lower bound for moment estimators (dotted line) (corresponding to Eq.’s (15),

(20) and (33)) are also depicted in Fig 1. The asymptotic MSEs of the different estimators match perfectly

with their estimates, except for the MLE associated to the matrices Γ0, Γ1 and Γ3 for 2 images. This can

be explained for matrices Γ0 and Γ3 by noting that the parameter r = a2
3 +a2

4 equals zero in these cases.

In other words, r belongs to the boundary of its definition domain, preventing the use of its theoretical
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asymptotic variance [43, p. 8]. The difference between estimated and theoretical results regarding the

matrix Γ1 can be explained by noting that the parameter r is close to 0. In this case, the asymptotic

MSE of the estimator is not reached for this sample size (a better match would be obtained for a larger

sample size). A last comment resulting from Fig. 1 is that all estimators reach their best performance for

large values of the DoP as expected.

Figure 2 shows the log MSEs between the true square DoP and the one estimated using three images

by the ML method (plus markers) and the NLLS method of moments (cross markers). The theoretical

asymptotic log MSEs of the different estimators are also depicted (they correspond to Eq.’s (18) and (30)).

The asymptotic and estimated performance of all estimators match perfectly, except for the matrices Γ0, Γ1

and Γ3 (same reason as above). The MLE clearly outperforms the moment estimator and its performance

is better for large values of the DoP. The loss of performance obtained when observing three polarimetric

images instead of four can be clearly observed by looking at the corresponding asymptotic and estimated

log MSEs.

A comparison between Figs. 1 and 2 shows that the MLEs derived for two, three and four images have

a similar global behavior, with a maximum near P 2 = 1/3 and a decreasing variance when P 2 tends to

1. Moreover the MLE for two images has roughly similar performance that the MLE for three images.

This encouraging result indicates that the DoP of polarimetric images can be estimated with two images

without significant loss of performance.

The next set of simulations studies the performance of the different estimators as a function of the

sample size. Figures 3 and 4 show the log MSEs of the DoP estimates obtained for 2 and 3 images and

for two particular matrices Γ2 and Γ7. These simulations allow us to appreciate the gain of performance

obtained with the ML method when compared to the method of moments. The usual linear relation

between log10 MSE and log10(n) can also be observed.

To appreciate the estimation performance on synthetic images, we have considered a synthetic polari-

metric image of size 512×512 composed of three distinct objects located on an homogeneous background

(according to the scheme depicted in Fig. 5 and inspired from [30]). The polarimetric properties of these

objects and background (i.e. the covariance matrix of the Jones vector and the DoP) are reported in Table

III. Typical intensities associated to this polarimetric image are also represented in Fig. 6. The DoP of

each pixel x(i,j) (for i, j = 1, . . . , 512) has been estimated from vectors belonging to windows of size

n = 15× 15 centered around the pixel of coordinates (i, j) in the analyzed image. The estimated DoPs

are depicted in Fig. 7 for the different estimation methods. The numbers appearing in each region of the

image are given for indication. They represent the means of the DoP estimates for each object assuming
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that the region constituting objects are perfectly known (Note that these means are slightly different from

the theoretical DoP since near the boundary of each object, the square estimation window is composed

of both background and object pixels. Therefore, the intensities are not homogeneous on these estimation

windows, and the estimation is biased.). Finally, these results confirm that the MLE performs better than

the moment estimator for DoP estimation. They also show that the polarimetric properties of the image

seem to be estimated efficiently with 3 or 2 intensity images only.

TABLE III

POLARIMETRIC PROPERTIES OF IMAGE DOPS.

Object Polarization matrix Γ P 2 Total intensity IT = a1 + a2 Remarks

Background

0B@0.79 0

0 0.98

1CA 0.0115 1.77 very depolarizing and dark back-

ground

1

0B@3.6 0

0 0.22

1CA 0.783 3.82 very bright and weakly depolarizing

object (typically steel)

2

0B@ 3 0.1

0.1 0.6

1CA 0.447 3.6 bright object quite depolarizing

3

0B@ 0.7 0.5 + 0.2 i

0.5− 0.2 i 1.07

1CA 0.414 1.77 dark object whose intensity is the

same that the background

VI. ESTIMATION RESULTS ON REAL DATA

A. Experimental framework

In order to confirm our simulation results, a simple but optimized imaging system has been designed.

It enables to acquire real polarimetric images under coherent illumination. The emission part is a He:Ne

laser, oscillating at 623nm and providing a 15mW output power. The corresponding output beam is

linearly polarized along the vertical direction and carefully reshaped in order to obtain a 5cm diameter

uniform illumination spot. The reception part consists of a 12-bits Basler A312f camera giving images

with a resolution of 782× 582 pixels. The fore optics is a 50mm focal objective including an adjustable

diaphragm. In order to analyze the polarimetric signature of the scene, a linear polarizer is placed in front

of the camera. Actually, the intensity images corresponding to I1, I2 and I3 are obtained by orienting this

polarizer at respectively 0, 90 and 45 degrees with respect to the polarization of the illumination beam.
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Otherwise, the intensity image related to I4 is obtained by inserting in front of the polarizer (oriented at

0˚) a quarter wave whose fast axis is oriented at 45˚. Finally, the scene, located 3m away, consists of

two types of panels. The first one, intended to provide low DoP, is a grey diffuse plastic material (left

object of Fig. 8), whereas the second one is made of a sand blasted aluminium panel (right object of

Fig. 8) providing a high DoP value.

B. Estimation Results

The intensity images corresponding to I1, I2, I3 and I4 are depicted in Fig. 8. The total intensity

ITot = I1 + I2, which is the intensity measured by a conventional imaging system of reflectivity, is

represented in Fig. 8(e). This last image shows that the plastic and steel disks have a similar level of

reflectivity and can hardly be distinguished without a polarimetric processing. It is important to note that

the measured intensities are quite low due to the experimental conditions. Therefore, the noises affecting

these images is significant on this set of real data.

Figure 9 shows the estimated square DoPs P 2 for 2, 3 and 4 images. The estimation window size has

been fixed to a quite small value n = 9×9. This size allows one to mitigate the inhomogeneities on both

plastic and steel disks and provides a good tradeoff between the estimation robustness and the expected

resolution of the estimated polarimetric images. The DoP estimates obtained with the ML method for 2

and 3 images clearly provide better results than those obtained with the methods of moments, particularly

for the plastic disk. Moreover, the expected values of these MLE are quite different on each object: the

plastic disk appears highly depolarizing and the steel disk reveals itself to be not very depolarizing. This

result is in good agreement with the theoretical properties of the studied materials and emphasizes the

interest for polarimetric imaging systems.

It is interesting to note that the DoP estimates obtained with the ML method for 2 images give more

homogeneous results than methods obtained for 3 or 4 images. This result can be explained as follows.

The parameter r = a2
3 + a2

4 is the covariance between the intensities I1 and I2. The theoretical value

of this covariance is not affected by additive and independent noises affecting the images I1 and I2. In

the case of 2 images, the DoP estimator is obtained from the estimator of this parameter r thanks to the

covariance structure between I1 and I2. Conversely, in the case of 4 images for example, the estimators

of a3 and a4 are deduced from the mean of the intensity vector I = (I1, I2, I3, I4)T . Obviously, these

estimators are very sensitive to additive noises. This explains why the MLE is more robust to noise on

this set of polarimetric images.
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VII. CONCLUSIONS

Some recent studies have shown that the polarization degree of polarimetric images can be estimated

by the method of moments using only two polarimetric images. This paper proved that the estimation can

also be conducted by maximum likelihood methods using two, threeor four images. The estimation results

obtained on synthetic and real data were very encouraging. Future investigations include the generalization

of these results to low flux images. Another degradation is added to the speckle noise when the intensity

level of the light coming from the scene corresponds to a small number of photons. This is for instance

the case when the objects are far from the source of illumination or under low flux illumination. This

combination of Poisson and speckle noises leads to a complex multivariate distribution for the images.

Estimating the parameters of polarimetric images in this context using maximum likelihood methods is

currently under investigation.
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APPENDIX I

MLE OF a2
4 FOR THREE IMAGES

After removing the terms which do not depend on a, the log-likelihood associated to the density of

the intensity vector Ĩ = (I1, I2, I3)T derived in section III-C can be written

l3

(
Ĩ

(n)
;a
)

= −
n∑
j=1

[
(a2 + a3)I1 + (a1 + a3)I2 − 2a3I3

2k
− log f 1

2

(
a2

4v
′(Ĩ

j
)

16k2

)]
− n log(k),

with k = (a1a2− a2
3− a2

4)/2. By differentiating this log-likelihood with respect to a1, a2 and a3 and by

solving the resulting system, the following result can be obtained:
â1

â2

â3

 =


1 0 0

0 1 0

−1/2 1 −1/2



α̂1

α̂2

α̂3

 ,

with α̂l = 1
n

∑n
j=1 I

j
l for l = 1, 2, 3. After differentiating the log-likelihood with respect to a2

4, the

following score function is obtained

g3

(
Ĩ

(n)
;a
)

=
n

4k2
[2k − (a2 + a3)m̂1 − (a1 + a3)m̂2 + 2a3m̂3]

+
(a1a2 − a2

3 + a2
4)

32k3

n∑
j=1

v′(Ĩ
j
)
f 3

2

(
a2
4v
′(eIj

)
16k2

)
f 1

2

(
a2
4v
′(eIj

)
16k2

) .
After replacing (a1, a2, a3) by their MLEs in this score function, multiplying the result by −8k2[n(a1a2−

a2
3 + a2

4)]−1 and equating to zero, the following result can be obtained:

1− 1
4n

1

d̂− a2
4

n∑
j=1

v′
(
Ĩ
j
) f 3

2

(
a2
4v
′
“eIj
”

4(bd−a2
4)

2

)
f 1

2

(
a2
4v
′
“eIj
”

4(bd−a2
4)

2

) = 0,

where d̂ = â1 â2 − â2
3. The relation f 3

2
(x)/f 1

2
(x) = tanh (2

√
x) /
√
x allows one to obtain the nonlinear

relation used for the ML estimation of a2
4:

1− 1
2n

n∑
j=1

√√√√v′
(
Ĩ
j
)

a2
4

tanh


√
a2

4v
′
(
Ĩ
j
)

d̂− a2
4

 = 0,

where tanh(x) is the hyperbolic tangent of x.
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Fig. 1. log MSEs of the square DoP estimates using 2 and 4 images vs P 2 for the set of polarization matrices defined in

Tab. II (n = 15× 15, “MoM”: method of moments estimators, “MLE”: maximum likelihood estimators, “Asympt.”: theoretical

asymptotic value of the log MSE for a given estimator).
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Fig. 2. log MSEs of the square DoP estimates using 3 and 4 images vs P 2 for the set of polarization matrices defined in

Tab. II (n = 15× 15, “MoM”: method of moments estimators, “MLE”: maximum likelihood estimators, “Asympt.”: theoretical

asymptotic value of the log MSE for a given estimator).
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(b) 3 images

Fig. 3. log MSE of the estimated square DoP P 2 using 2 or 3 intensity images versus the logarithm of the sample size for the

matrix Γ2 (“MoM”: method of moments estimators, “MLE”: maximum likelihood estimators, “Asympt.”: theoretical asymptotic

value of the log MSE for a given estimator).
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Fig. 4. log MSE of the estimated square DoP P 2 using 2 or 3 intensity images versus the logarithm of the sample size for the

matrix Γ7 (“MoM”: method of moments estimators, “MLE”: maximum likelihood estimators, “Asympt.”: theoretical asymptotic

value of the log MSE for a given estimator).
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Background

Fig. 5. Composition of the scene used to generate synthetic polarimetric intensity images.

(a) Intensity I1 (b) Intensity I2 (c) Total Intensity I1 + I2

(d) Intensity I3 (e) Intensity I4 (f) Theoretical DoP

Fig. 6. Synthetic intensity images and theoretical DoPs for the scene depicted in Fig. 5 and described in Tab. III.
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(a) MoM 2 images (b) MLE 2 images

(c) MoM 3 images (d) MLE 3 images

(e) 4 images (f) Theoretical DoP

Fig. 7. Estimates of P 2 using 2, 3 or 4 intensity images for the synthetic polarimetric images (the numbers appearing in

each region of the image are given for indication and represent the means of the estimates for each object assuming that the

region constituting each object is perfectly known) for an estimation window of size n = 15×15. “MoM”: method of moments

estimators, “MLE”: maximum likelihood estimators.
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(a) Intensity I1 (b) Intensity I2

(c) Intensity I3 (d) Intensity I4

(e) Total Intensity ITotal = I1 + I2

Fig. 8. Real polarimetric intensity images of a scene composed of a plastic disk (left) and a steel disk (right).
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(a) 2 images: MoM (b) 2 images: MLE

(c) 3 images: MoM (d) 3 images: MLE

(e) 4 images

Fig. 9. Estimates of P 2 using 2, 3 or 4 intensity images for the real polarimetric images (size of the estimation window:

n = 9× 9, “MoM”: method of moments estimators, “MLE”: maximum likelihood estimators).
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